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The “real time” formulation of time-dependent density functional theory (TDDFT) involves integra-
tion of the time-dependent Kohn-Sham (TDKS) equation in order to describe the time evolution of
the electron density following a perturbation. This approach, which is complementary to the more
traditional linear-response formulation of TDDFT, is more efficient for computation of broad-band
spectra (including core-excited states) and for systems where the density of states is large. Integration
of the TDKS equation is complicated by the time-dependent nature of the effective Hamiltonian, and
we introduce several predictor/corrector algorithms to propagate the density matrix, one of which
can be viewed as a self-consistent extension of the widely used modified-midpoint algorithm. The
predictor/corrector algorithms facilitate larger time steps and are shown to be more efficient despite
requiring more than one Fock build per time step, and furthermore can be used to detect a divergent
simulation on-the-fly, which can then be halted or else the time step modified. Published by AIP
Publishing. https://doi.org/10.1063/1.5004675

I. INTRODUCTION

The development of computational methods to study
excited states and electron dynamics under external elec-
tromagnetic fields is essential for mechanistic studies of
many physico-chemical processes. Weak-field processes
include generation of photo-lesions in DNA1 and light
harvesting in dye sensitized solar cells,2,3 both of which
involve photo-excitation, charge transfer, and photo-ionization
processes. Strong-field processes include high harmonic
generation,4 multi-photon ionization,5 and above-threshold
ionization.6 The emergence of attosecond spectroscopy makes
probing electronic motions possible,7,8 and experiments can
now directly probe electron dynamics to study bond break-
ing,9 ionization,10,11 and electron solvation.12,13 Development
of improved computational methods to complement these
experiments is essential.

Time-dependent density functional theory (TDDFT)14,15

is the presently the most popular method for computing excited
states and response properties, due to its reasonable trade-
off between accuracy and efficiency.16 The most widely used
and implemented version of TDDFT is the linear response
(LR) approach based on Casida’s equation,17 but while LR-
TDDFT has proven to be an economical tool to study a
few low-lying excited states of an isolated molecule, it is
limited to the weak-field perturbative regime and cannot be
used to study strong-field processes18,19 or non-linear opti-
cal properties.20–22 Furthermore, Casida’s equation is solved
iteratively in a basis of (occupied) × (virtual) dimension,23

which is suitable for computing a few low-lying excited states
but becomes prohibitive in both memory and computer time
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when the density of states is high, e.g., in a semiconduc-
tor,24 or when core-excited states or broad-band spectra are of
interest.25

An alternative to solving Casida’s equation in the fre-
quency domain is to solve the time-dependent Kohn-Sham
(TDKS) equation in the time domain, in what has been dubbed
the “real-time” (RT) approach to TDDFT.26–30 This approach
is intrinsically non-perturbative and is thus suitable for both
weak and strong fields. In the weak-field limit, RT-TDDFT
and LR-TDDFT results should be equivalent. Unlike the
LR approach, where the energy spectrum is obtained itera-
tively starting with the lowest excited state, in RT-TDDFT
the entire broad-band spectrum is obtained at once, with res-
olution that improves upon further time propagation. The RT
approach has been implemented in various DFT codes includ-
ing Octopus,31 Siesta,20 Qbox,32 Gaussian,33,34 NWChem,35

and Q-Chem,36 and has been formulated using real-space
grids,20,31 plane waves,32 and Gaussian-type orbitals.33–36 We
focus exclusively on Gaussian-type orbitals in this work.

Both the accuracy and efficiency of a RT-TDDFT cal-
culation depend critically on the integrator that is used to
propagate the density based on the TDKS equation. It is elec-
tron dynamics that is propagated, and often the time step∆t for
this propagation is as small as 0.05 a.u. (≈1 as),36–38 although
somewhat larger time steps (as large as 0.5 a.u.) have been
used in some applications.35,39–41 The numerical validity must
always be carefully checked during the calculation. In calcu-
lations based on Gaussian orbitals, which are the exclusive
basis sets examined here, time integration involves evalua-
tion of the Fock matrix at every time step, for a simulation
that might propagate for tens of femtoseconds at a minimum.
Thus, while the RT approach avoids the memory bottleneck
of the LR approach, requiring only about twice the memory
footprint of the ground-state DFT calculation (because the
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Fock and density matrices become complex), the numerous
“Fock builds” may increase the computational time.

In the present work, we introduce two predictor/corrector
(PC) methods that significantly improve both the efficiency
of time propagation (as characterized by the number of Fock
builds per unit of simulated time) and the stability of the numer-
ical integration. One of these algorithms can be viewed as a
self-consistent extension of the modified-midpoint algorithm
of Li et al.,33 and the purpose of the self-consistent PC design
is two-fold. First, the self-consistent step between the pre-
dicted and corrected values of the density matrix serves as
a self-checking procedure that can be used to halt a diver-
gent calculation immediately so that computational time is
not wasted on an inappropriate calculation. In principle, adap-
tive time-step controls could also be incorporated based on
this self-checking, though we have not done so here. Second,
through exact evaluation of the matrix exponentials that appear
in the propagator algorithm, which is possible when using
Gaussian orbitals but likely is not possible when using plane
waves or real-space grids, we rule out errors generated by this
step and therefore gain a better view of how error propagates
via the integrator itself.

The remainder of this paper is structured as follows. In
Sec. II, we briefly review the TDKS formalism and then detail
the PC algorithms and discuss their mathematical conver-
gence properties. Section III provides numerical results that
compare the accuracy and stability of different algorithms,
including examination of energy and density conservation, and
comparison of excitation spectra.

II. THEORY
A. TDKS equation

In TDDFT, the time-dependent electron density ρ (r, t) is
obtained by solving the TDKS equation. In atomic units (a.u.),
this equation is

− 1
2 ∇̂

2ψk(r, t) + vKS(r, t)ψk(r, t) = i
∂

∂t
ψk(r, t), (1)

where the functions ψk are time-dependent molecular orbitals
(MOs) for a fictitious, non-interacting reference system. The
Kohn-Sham potential

vKS(r, t) = vext(r, t) +
∫

dr′
ρ(r′, t)
|r − r′ |

+ vxc(r, t) (2)

includes the external potential (vext), the Hartree or mean-field
Coulomb potential, and the exchange-correlation potential
(vxc).

We assume that the exact density is representable in terms
of a single Slater determinant,

ρ(r, t) =
occ∑
k

��ψk(r, t)��2 . (3)

The time-dependent MOs can be expanded in a fixed basis
{ψ0

k (r)} provided by the ground-state Kohn-Sham orbitals,
with time-dependent coefficients,

ψk(r, t) =
∑

j

Cjk(t)ψ0
j (r). (4)

The sum in this equation runs over both occupied and virtual
MOs of the ground-state calculation, regardless of whether
ψk(r, t) is an occupied or a virtual orbital. (Only the occu-
pied orbitals must be propagated in time, however.) Fixing the
{ψ0

k (r)} basis, Eq. (1) becomes∑
n

FjnCnk (t) = i
∂

∂t
Cjk(t), (5)

where Fjk = 〈ψ
0
j |f̂KS |ψ

0
k 〉 and

f̂KS = −
1
2 ∇̂

2 + vKS(r, t) (6)

is the Fock operator. The time-dependent density is thus

ρ(r, t) =
∑

jk

Pkj(t)ψ
0
k (r)ψ0

j (r)∗, (7)

where P = CoccC†occ is the one-electron density matrix, with
matrix elements

Pjk(t) =
occ∑
n

Cjn(t) Ckn(t)∗ . (8)

Henceforth, we assume that time propagation starts from
the ground state and that the MOs are represented as linear
combinations of atomic orbitals (AOs). The initial density
matrix at t = 0 is

P(0) = diag
( MOs︷                         ︸︸                         ︷
1, 1, 1, . . . , 1︸         ︷︷         ︸

occupied

, 0, 0, . . . , 0︸      ︷︷      ︸
virtual

)
(9)

in the MO basis {ψ0
k }.

Equation (5) can be simplified into a form of the Liouville-
von Neumann (LvN) equation,

i
∂P
∂t
= FP − PF, (10)

whose solution P(t) can be written, formally, using a unitary
propagator

U(t2, t1) = T̂ exp

(
−i

∫ t2

t1

F(t) dt

)
, (11)

whose definition involves time-ordered integration,42 indi-
cated by T̂ in Eq. (11). The density matrix at time t is

P(t) = U(t, 0) P(0)
[
U(t, 0)

]† . (12)

Unitarity of the propagator ensures that the density matrix sat-
isfies the properties P2 = P, P† = P, and tr(P) = ne (the number
of electrons) at each moment in time, provided that the density
matrix satisfies these properties at t = 0.

B. Time integration of the propagator

The LvN equation is a “stiff” differential equation. Once
the system is excited from the ground state, matrix ele-
ments of P(t) oscillate at a broad range of frequencies. The
Fourier components of these oscillations correspond to the
Bohr frequencies, including both valence-to-valence and core-
to-valence excitations. To maintain numerical stability, Eq.
(10) must therefore be integrated using a very small time
step, especially if Taylor-expansion-based propagation algo-
rithms (e.g., Euler, Runge-Kutta, Crank-Nicolson, etc.43,44)
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are employed. If excitations out of core orbitals or other
high energy excitations are not of interest, then a frozen
core approximation,45 or else a more general active-space
implementation,34 can be used remove the highest-frequency
components. On the other hand, these high-lying excitations
are actually attractive targets for a real-time implementa-
tion due to the iterative nature of LR-TDDFT algorithms,
whose cost scales with the number of excited states that are
needed and thus becomes very expensive for high-energy
excitations.

We will not use frozen orbitals in this work and will
employ propagators based on approximations to Eq. (11). Note
that the integration in this equation is non-trivial because F(t)
does not commute with F(t ′) for t , t ′. This fact itself neces-
sitates the use of a small time step, stiffness of the equation
notwithstanding. Let tN = N∆t denote the value of t at the N th
time step, and for simplicity denote by UN the propagator from
tN to tN +1,

UN = U(tN+1, tN ) = T̂ exp

(
−i

∫ tN+1

tN

F(t) dt

)
, (13)

which takes PN to PN +1. In detail,

PN+1 = UN UN−1 · · ·U1U0P0U†0U†1 · · ·U
†

N−1U†N . (14)

Discretizing time allows us to evaluate the integral in Eq.
(13) and to ignore the time-ordering, with the caveat that the
exact time-ordered propagator is obtained only in the limit
∆t → 0.

A second consideration is the exponential in Eq. (13).
Unitarity of the propagator is essential to preserving the trace
and idempotency of the density matrix. If the dimension of
U is large, as in a plane-wave or grid-based calculation, then
the matrix exponential can only be approximated, using meth-
ods such as polynomial expansions or subspace projection.46

This introduces additional error in each integration step. When
Gaussian orbitals are used, however, the dimension of U is
relatively small and exact evaluation of the exponential (by
diagonalization) incurs negligible cost as compared to a sin-
gle Fock build. As such, we always compute exact matrix
exponentials.

C. Modified midpoint algorithm

Schlegel and co-workers33 introduced the modified-
midpoint unitary transform (MMUT) time-propagation algo-
rithm that was mentioned in Sec. I and which is based on the
approximation

UN ≈ exp
(
−i∆t FN+1/2

)
, (15)

in conjunction with an exact evaluation of the matrix exponen-
tial. Although Eq. (15) only approximates UN , this approxi-
mate propagator is unitary by construction. A diagram of a
MMUT time step appears in Fig. 1. Starting at time tN , with
initial inputs being the density matrix at the previous half time
step (PN�1/2) and at the current time (PN ), FN is first con-
structed based on PN . Next, PN�1/2 is propagated to PN +1/2 via
midpoint approximation, i.e.,

PN+1/2 =
(
e−i∆tFN

)
PN−1/2

(
ei∆tFN

)
. (16)

FIG. 1. Flow chart for the MMUT method. Given initial values of PN �1/2
and PN , the quantity FN is constructed and PN +1/2 is calculated as a full time
step propagation from PN �1/2, using the midpoint Fock matrix FN [Eq. (16)].
Finally, PN +1 is obtained as a half time step propagation from PN +1/2, again
using FN [Eq. (17)].

Finally, PN +1 is calculated according to

PN+1 =
(
e−(i∆t/2)FN

)
PN+1/2

(
e(i∆t/2)FN

)
. (17)

The MMUT algorithm is actually a modified explicit Euler
method, where “explicit” means that the algorithm employs
only that information that is available at the current and previ-
ous times. The Euler method is used in the exponential parts.
The stability of this algorithm can be improved by switching
from an explicit to an implicit scheme, wherein one iteratively
solves equations that depend on both current and future infor-
mation. In the following, we illustrate several different implicit
predictor/corrector (PC) algorithms for time propagation of
P(t).

D. Linear Fock, linear density (LFLP) PC algorithms

The first of our proposed PC algorithms is illustrated
schematically in Fig. 2 and detailed in Algorithm 1. It is based
on the assumption that when ∆t is small, changes in the Fock
and density matrices can be obtained by linear extrapolation.
Starting from tN with initial information FN�1/2, FN , and PN ,
the algorithm consists of the following steps, which are labeled
by number in Fig. 2.

FIG. 2. Flow chart for the LFLP-PC propagator algorithm. The predicted
Fock matrix Fp

N+1/2 is obtained by linear extrapolation of initial values of
FN �1/2 and FN and a corrected version is constructed based on a linear inter-
polation of the density matrix. Predicted and corrected values of the Fock
matrix must reach consistency before proceeding to the next time step.
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Algorithm 1. LFLP-PC.

1: Inputs:
P0 ← ground state DFT result
F0 ← calculated by using P0

tinitial, tfinal, ∆t
2: Initialize:

N f ← (tfinal � tinitial)/∆t
F
�1/2 ← F0

3: for step N = 1 to N f do ▹Propagation loop
4: Fp

N+1/2 ← 2FN − FN−1/2 ▹Step 1

5: UN ← exp(−i∆t Fp
N+1/2) ▹Step 2

6: PN+1 ← UN PN U†N
7: PN +1/2 ← (PN + PN +1)/2 ▹Step 3
8: Fc

N+1/2 ← calculated by using PN +1/2 ▹Step 4

9: δFN+1/2 ← Fp
N+1/2 − Fc

N+1/2 ▹Step 5

10: if ||δFN+1/2 ‖F > ξαn then ▹ not consistent
11: Fp

N+1/2 ← Fc
N+1/2

12: go to line 5 (Step 2)
13: else
14: switch method do ▹ consistent
15: case LFLP-PC1
16: FN+1/2 ← Fc

N+1/2

17: case LFLP-PC2
18: FN+1/2 ← (Fp

N+1/2 + Fc
N+1/2)/2

19: case LFLP-PC3

20: FN+1/2 ← (Fp[0]
N+1/2 + Fc

N+1/2)/2

21: end if
22: end for

Step 1: Predict Fp
N+1/2 by linear extrapolation,

Fp
N+1/2 − FN = FN − FN−1/2. (18)

Step 2: Propagate PN to PN +1 using

UN ≈ exp
(
−i∆t Fp

N+1/2

)
. (19)

This is the same as the MMUT update in Eq. (15).
Step 3: The density matrix at the midpoint, PN +1/2, is

obtained by (backwards) linear interpolation.
Step 4: A corrected Fock matrix for the midpoint, Fc

N+1/2,
is constructed using PN +1/2.

Step 5: Evaluate the difference between Fp
N+1/2 and Fc

N+1/2.
If consistency has not been achieved, update the
former and return to step 2.

In the final step of this procedure, we evaluate consistency
in terms of the Frobenius norm,

‖A‖F =
[
tr(AA†)

]1/2
=

(∑
jk

A2
jk

)1/2
. (20)

Specifically, if A1 and A2 are two n × n matrices that we wish
to compare, then we judge them to be numerically equivalent
if

‖A1 − A2‖F

nα
< ξ, (21)

where ξ is a specified threshold and α is the largest eigenvalue
of A1.

We designate the approach outlined above as the “linear
Fock, linear density predictor/corrector” (LFLP-PC) method.
Even within this paradigm, however, there are several possi-
ble ways to update Fp

N+1/2 in the final step, if self-consistency

has not been achieved. We will examine the stability and effi-
ciency of three possible updates, leading to three possible
algorithms.

• LFLP-PC1: Use the latest value of the corrector matrix,
Fc

N+1/2.
• LFLP-PC2: Use the average of the last two approxima-

tions to FN +1/2.
• LFLP-PC3: Use the average of the latest Fc

N+1/2 and

the initial prediction Fp
N+1/2. We denote this average as

Fp[0]
N+1/2.

The efficiency and stability of each will be examined below.

E. Exponential density predictor/corrector
(EP-PC) algorithms

An alternative to linear extrapolation of P is to use strictly
exponential updates of the density matrix, as shown schemat-
ically in Fig. 3 and detailed in Algorithm 2. Starting from
tN , with initial information PN , the algorithm proceeds as
follows.

Step 1: Build FN using PN .
Step 2: Obtain Pp

N+1 by using FN according to

Pp
N+1 =

(
e−i∆t FN

)
PN

(
ei∆t FN

)
(22)

Step 3: Build Fp
N+1 using Pp

N+1.
Step 4: Build the propagator by using the trapezoidal rule

to perform the integral in Eq. (11),

UN = exp
[
−(i∆t/2)(FN + Fp

N+1)
]

, (23)

and then update the corrected density matrix,
Pc

N+1 = UN PU†N .
Step 5: Check the consistency between Pp

N+1 with Pc
N+1. If

consistency is reached, proceed to the next time step,
otherwise substitute Pp

N+1 with Pc
N+1 and return to

step 3.

Consistency checking for P uses the same procedure as that
used to check the consistency of F in the LFLP-PC algorithms
[Eq. (21)], except that in the present case α = 1, as that is the
maximum eigenvalue of P.

As with LFLP-PC, we will examine three variants of EP-
PC. These differ in how we choose PN +1 in step 5 of the

FIG. 3. Flow chart for the EP-PC propagator algorithm. The density matrix P
is predicted exponentially, and the propagator is approximated using the trape-
zoidal rule. Predicted and corrected density matrices must reach consistency
before proceeding to the next time step.
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Algorithm 2. EP-PC.

1: Inputs:
P0 ← ground state DFT result
tinitial, tfinal, ∆t

2: Initialize:
N f ← (tfinal � tinitial)/∆t

3: for step N = 1 to N f do ▹Propagation loop
4: build FN using PN ▹Step 1
5: Pp

N+1 ← exp(−i∆tFN )PN exp(i∆tFN ) ▹Step 2
6: build Fp

N+1 using Pp
N+1 ▹Step 3

7: UN ← exp [−i(∆t/2)(FN + Fp
N+1)] ▹Step 4

8: Pc
N+1 ← UN PN U†N

9: δPN+1 ← Pp
N+1 − Pc

N+1 ▹Step 5
10: if ||δPN+1 ||F > ξαn then ▹PC not converged
11: Pp

N+1 ← Pc
N+1

12: go to line 6 (Step 3)
13: else ▹PC converged
14: switch method do
15: case EP-PC1
16: PN+1 ← Pc

N+1
17: case EP-PC2
18: PN+1 ← (Pp

N+1 + Pc
N+1)/2

19: case EP-PC3

20: PN+1 ← (Pp[0]
N+1 + Pc

N+1)/2
21: end if
22: end for

algorithm, before proceeding to the next time step. The three
alternatives are as follows:

• EP-PC1: Use the latest corrector matrix, Pc
N+1.

• EP-PC2: Use the average of the two most recent values
of Pc

N+1.
• EP-PC3: Use the average of the last Pc

N+1 and the initial

Pp
N+1, which is denoted as Pp[0]

N+1.

F. Mathematical convergence properties
of the PC methods

The iterative step that checks for consistency between the
predicted and corrected values of either FN or PN (i.e., step 5
in Figs. 1 and 2) is critical for achieving stable and efficient
simulations. This process ensures that the propagation going
forward is close enough to the one going backward during one
time step and thus acts as an on-the-fly self-check that monitors
whether the whole calculation is well-behaved. Convergence
of the PC iterations is not guaranteed and may either fail or else
require numerous iterations to converge. As such, it is useful
to explore the conditions under which one might expect good
convergence behavior.

As shown in the Appendix, one can derive an upper bound
on the largest time step that will lead to convergence of the PC
iterations, namely,

∆t <
2



[
PN , ∇̂P F���P→P?N+1

]F

. (24)

Here, PN is the current density matrix, P?N+1 is the true value
converged after numerous iterations, and ∇̂P F|P→P?N+1

is the
directional derivative of the Fock matrix with respect to the

density matrix along a direction from PN to P?N+1. The mag-
nitude of the denominator in Eq. (24) also affects the rate of
convergence of the PC iterations.

This convergence condition provides information about
how the PC methods behave. When ∆t is small and well below
the upper bound in Eq. (24), the rate of convergence is fast
and only one or two iterations are needed. More iterations are
required when ∆t is larger, and if the time step is too large
(beyond the upper bound), the PC iterations will fail to con-
verge and the calculation is no longer valid. Somewhere in
between, there exists an optimal value of ∆t that maximizes
efficiency by minimizing the number of Fock builds per unit
of simulated time. Considering that the Fock matrix depends
on the exchange-correlation functional and basis set, the upper
bound in Eq. (24) and also the rate of convergence are affected
by both choices. Unfortunately, the denominator in Eq. (24) is
difficult to compute analytically, but the optimal choice of ∆t
can be estimated by running a few short test calculations with
different values of ∆t.

G. Convergence of approximations
for the time-ordered integral

The time-ordered integration in Eq. (13) needs to be
approximated at each time step. In LFLP-PC, a midpoint rule
is used [Eq. (15)] and in EP-PC a trapezoidal rule is used
[Eq. (23)], but in either case, the convergence of these approx-
imations to the true time-ordered integration is unclear. Note
that in Sec. II F, we used the word “consistency” to refer
to self-consistency of the PC algorithms, and it is impor-
tant to distinguish that in the present section we use the term
“convergence” in a different context, specifically, to refer to
consistency between the approximate integration scheme that
is used in practice and the true time-ordered integration. The
latter can be expressed in terms of the Magnus expansion that
is introduced in Sec. II G 1, and in this context “convergence”
means to estimate the truncation error that we introduce in this
expansion. In Sec. II G 2, we use a transformation to the inter-
action representation to introduce an on-the-fly check, based
on the norm of δF at each time step, as a way to monitor
convergence of the integral approximations.

1. Non-linear Magnus expansion

The Magnus expansion44,47 replaces the complicated
time-ordered integration that defines the propagator by means
of an infinite series of nested commutators involving the inte-
grand (Fock matrix) evaluated at different times. For t ∈ (tN ,
tN +1), one solves a discretized version of either the TDKS
equation [Eq. (5)] or the LvN equation [Eq. (10)] by propagat-
ing the MO coefficients (CN +1 = UN CN ) or the density matrix
(PN+1 = UN PN U†N ), respectively, using

UN = T̂ exp

(
−i

∫ tN+1

tN

F(τ, P) dτ

)
. (25)

[Note that this is the same as Eq. (13), but with the dependence
of F on P made explicit.]

The Magnus expansion has been discussed previously in
the context of the TDKS equation but only in its “linear”
form,35,46,48 which is appropriate when the operator appear-
ing in the integrand is independent of the quantity that is being
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propagated in time, but not in the context of Eq. (25). The
dependence of F on P makes the Magnus expansion a non-
linear problem and thus we consider a generalized formalism
that is appropriate in such cases.44,47 This non-linear Mag-
nus expansion replaces the time-ordered integration with an
infinite series

UN = exp(Ω) = lim
n→∞

exp
(
Ω[n]) , (26)

with

Ω[n] =

n∑
k=1

Ωk . (27)

The termsΩk in this expansion involve increasingly com-
plicated integrals over nested commutators, but time ordering
is not required. If truncated at Ω[m], the Magnus expansion is
correct to O[(∆t)m],47 meaning that the difference Ω � Ω[m]

introduces error of O[(∆t)m+1]. This implies that in evaluating
each term Ωk , one need only retain terms up to O[(∆t)m] for
mth-order truncation.

For mth-order truncation, one finds47 that Ω[0](t) ≡ 0,

Ω[1](t) = −i
∫ t

tN

F(τ, PN ) dτ, (28)

and for m ≥ 2,

Ω[m](t) =
m−2∑
k=0

Bk

k!

∫ t

tN

dτ adk
Ω[m−1](τ)

×

(
−iF

(
τ, eΩ

[m−1](τ)PN
[
eΩ

[m−1](τ)]†)) . (29)

Here, Bk are the Bernoulli numbers and adk is the nested
commutator with the trivial definition

ad0
Ω (−iF) = −iF, (30)

for k = 0 and

adk
Ω (−iF) =

[
Ω, adk−1

Ω (−iF)
]

, (31)

for k ≥ 1.47 For a second-order approximation,Ω[1] [Eq. (28)]
needs to be approximated up to O(∆t), meaning that the errors
enter at O[(∆t)2], and

Ω[2] = −i
∫ tN+1

tN

dτ F
(
τ, eΩ

[1](τ)PN
[
eΩ

[1](τ)]†) (32)

should be approximated up to O[(∆t)2].
The simple Euler method amounts to the approximation

Ω[1] ≈ �iF(tN , PN )∆t, without taking account of Ω[2], and is
therefore a first-order method. The MMUT, LFLP-PC, and EP-
PC algorithms are second-order approximations that involve
evaluation of both Ω[1] and Ω[2]. In the case of MMUT, for t
∈ [tN�1/2, tN +1/2], Ω[1] at the midpoint tN is approximated by

Ω[1](tN ) = −i
∫ tN

tN−1/2

F dτ = −iFN−1∆t/2 + O[(∆t)2] . (33)

Obviously the Fock matrix FN�1 used in this expression lags
FN at the end of the propagation interval, but we may estimate
the error as

(FN−1 − FN )∆t ∼ O
[
(∆t)2] . (34)

The midpoint PN is then updated usingΩ[1] and midpoint inte-
gration is applied to the integral appearing in Ω[2], with total

error of O[(∆t)3]. Similarly, for LFLP-PC, Ω[1] is approx-
imated by linear extrapolation and Ω[2] is calculated using
the midpoint rule. For EP-PC, Ω[1] is approximated using
the Euler method and Ω[2] is calculated using the trapezoidal
rule.

Magnus expansions beyond second order are not gener-
ally employed in TDKS calculations because they dramatically
increase the required number of Fock builds for each time
step, and construction of the Fock matrix is the overwhelming
bottleneck for TDKS calculations in Gaussian basis sets. To
ensure that a second-order truncation of Eq. (26) is converged,
the time interval must be much smaller than the convergence
radius, which implies that44∫ tN+1

tN

‖F(τ)‖2 dτ � π, (35)

where ||· · · ||2 denotes the matrix 2-norm.49

2. Interaction representation

In this section, we transform the LvN equation into the
interaction representation, in an effort to reduce the magni-
tude of ||F(τ, P)||2 and thus enlarge the radius of convergence
in ∆t, according to Eq. (35). One way to implement the inter-
action representation is to consider FN as a reference Fock
matrix in the N th propagation step; the value FN thus becomes
an initial condition for time propagation over the interval t ∈
[tN , tN +1]. For simplicity, we therefore denote FN as F0 in
what follows and note that this quantity is independent of time
for propagation over the aforementioned interval. We define
δFt = F(t) � FN and partition the total Fock matrix at time t
according to

Ft = F0 + δFt . (36)

Transform δFt and P into the interaction representation
according to

δFI
t = eiF0t δFt e−iF0t (37)

and
PI

t = eiF0t Pt e−iF0t . (38)

In this representation, the LvN equation becomes

i
∂

∂t
PI

t =
[
δFI

t , PI
t
]
, (39)

therefore the propagator in the interaction representation is

UI(tN+1, tN ) = T̂ exp

(
−i

∫ (N+1)∆t

N∆t
δFI

t dt

)
. (40)

The time integration proceeds according to

PI
N+1 = UI(tN+1, tN ) PI

N
[
UI(tN+1, tN )

]† . (41)

Since δFI
t is the time-varying part of the Fock matrix with

respect to FN , it should be relatively small (especially when
the external field is weak), and accordingly ‖δFI

t ‖2 should be
much smaller than ||F||2. This should enlarge the convergence
radius in ∆t.

Next, we demonstrate that the algorithm for each time
step in the interaction picture yields the same final formalism
as in the Heisenberg picture, within the same order of error in
∆t, when the Magnus expansion is truncated at the same order
in both representations. We explicitly consider the LFLP-PC
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case (i.e., midpoint approximation for the integrand), but the
EP-PC case (trapezoidal approximation) can be proved in a
similar way. Using midpoint approximation in the interaction
representation, the propagator is

UI(tN+1, tN ) = exp
(
−i∆t δFI

N+1/2
)

, (42)

which in light of Eq. (37) can be recasted as

UI(tN+1, tN ) = exp
{
−i∆t exp

[
i(N + 1/2)∆t F0

]
× δFN+1/2 exp

[
−i(N + 1/2)∆t F0

] }
=

∞∑
n=0

1
n!

{
−i∆t exp

[
i(N + 1/2)∆t F0

]
× δFN+1/2 exp

[
−i(N + 1/2)∆t F0

] }n .

(43)

Multiplying out the power series and combining terms, we
obtain

UI(tN+1, tN ) = ei(N+1/2)∆t F0

×

[ ∞∑
n=0

(−i∆t δFN+1/2)n

n!

]
e−i(N+1/2)∆t F0

= ei(N+1/2)∆t F0 e−i∆t δFN+1/2 e−i(N+1/2)∆t F0 .

(44)

Substituting this expression for UI into Eq. (41) and then
inverting Eq. (38) to solve for PN +1, one obtains

PN+1 = e−i(∆t/2)F0 e−i∆t δFN+1/2 e−i(∆t/2)F0

×PN ei(∆t/2)F0 ei∆t δFN+1/2 ei(∆t/2)F0 . (45)

According to the second-order Trotter-Suzuki factoriza-
tion,50

e(Â+B̂)∆t = eÂ∆t/2 eB̂∆t eÂ∆t/2 + O
[
(∆t)3] , (46)

therefore

e−i(∆t/2)F0 e−i∆t δFN+1/2 e−i(∆t/2)F0

= e−i∆t(F0+δFN+1/2) + O
[
(∆t)3] , (47)

with a local truncation error of O[(∆t)3]. Equation (45) can be
further simplified by combining exponentials to obtain

PN+1 = e−i∆t(F0+δFN+1/2) PN ei∆t(F0+δFN+1/2). (48)

This equation is identical with step 2 in the LFLP-PC algorithm
within the Heisenberg picture,

PN+1 = e−i∆t FN+1/2 PN ei∆t FN+1/2 . (49)

This result, and the analogous one for the LFLP-PC scheme,
demonstrates that PC propagation of the density matrix is iden-
tical within the Heisenberg and interaction representations,
within a local truncation error ofO[(∆t)3]. As such, the conver-
gence criterion in Eq. (35) is actually determined by ‖δFI

t ‖2.
The latter is bounded from above by its Frobenius norm49

and can be simplified in the Heisenberg picture using trace
invariance under cyclic permutations, i.e.,

‖δFI‖2 ≤ tr
[
δFI(δFI)†

]
= tr(δFδF†) = ‖δF‖F. (50)

Thus the quality of the truncated Magnus expansion can be
monitored by checking ||δF||F on-the-fly during the calcula-
tion. In principle, this could be used to create an adaptive
step-size algorithm that reduces ∆t when necessary, although
we have not yet implemented such a procedure.

III. NUMERICAL RESULTS

The proposed algorithms were implemented in the Q-
Chem program,51 building upon the initial TDKS implemen-
tation in Q-Chem that was reported by Nguyen and Parkhill.36

These algorithms are available starting from v. 5.0 of the code.
Most calculations reported here use either the PBE52 or the
LRC-ωPBEh53 density functional, and the 6-31G(d) basis set,
although other functionals and basis sets are briefly considered
to demonstrate that these results are indeed representative. The
choice of an appropriate functional and basis set for applica-
tions is beyond the scope of this paper, though we note that
basis sets much larger than 6-31G(d) are required for model-
ing strong-field effects,40,54,55 and functionals such as LRC-
ωPBEh should be tuned.40,56 Description of Rydberg states,
which are important in high harmonic generation,55,57,58 cer-
tainly requires diffuse basis functions at least. Finally, studies
of strong-field ionization require in addition the use of absorb-
ing boundary conditions,37,54–56 which are not considered
here.

TDKS calculations start from the electronic ground state,
subject to a weak perturbation during the first time step, whose
magnitude is 10�5 a.u. (5 mV/nm) in each of the x, y, and
z directions,59 as appropriate for obtaining an unpolarized
absorption spectrum. For TDKS calculations using the PC
algorithms, the threshold ξ [Eq. (21)] is set to 10�7 unless
stated otherwise. TDKS absorption spectra are computed from
the trace of the cross section tensor,35

S(ω) = 1
3

[
σxx(ω) + σyy(ω) + σzz(ω)

]
, (51)

where

σij(ω) =

(
4πω

c

)
Im

[
αij(ω)

]
(52)

depends on the imaginary part of the frequency-dependent
polarizability tensor, whose matrix elements

αij(ω) =
∂µi

∂Ej(ω)
(53)

(where i, j ∈ {x, y, z}) describe how the induced dipole moment
µi responds to an applied electric field with frequency ω
propagating in direction j.

A. Numerical stability

We find that the LFLP-PC3 algorithm, in which the initial
predictor matrix Fp

N+1/2 is always averaged with the current
corrector matrix Fc

N+1/2 to estimate the half-step Fock matrix,
is unstable even when∆t is small; see Fig. S1 in the supplemen-
tary material. This is a general problem for predictor/corrector
methods applied to ordinary differential equations, where the
use of the average of the initial predictor value with the cur-
rent corrector value as a starting point for the next iteration
can lead to instability.60 (Curiously, however, we observe no
such instability for EP-PC3, where the initial Pp

N+1 is always
averaged with the current Pc

N+1.) For this reason, we do not
consider the LFLP-PC3 algorithm in what follows, although
we do consider EP-PC3.

To compare the stability of the MMUT and PC algo-
rithms for large time steps, we simulated one water molecule
for 90 fs following perturbation by an external electric field.
For demonstrative and comparative purposes, these tests

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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FIG. 4. Fluctuations in the total energy for TDKS simulations of H2O at the PBE/6-31G(d) level using two different propagators (MMUT on the left and EP-PC1
on the right), for time steps ranging from 0.02 to 1.0 a.u. As the time step is increased, the MMUT algorithm becomes unstable, whereas energy fluctuations are
stable using EP-PC1. Two different external field amplitudes are considered; note that the vertical scales are different in the various panels.

intentionally use time steps >0.2 a.u., significantly larger than
the ∼0.05 a.u. time steps that are typically used in MMUT
simulations.33,34 The impulsive, time-dependent external

electric field is selected to have a frequency that is resonant
with the bright state of H2O (corresponding to 12.0 eV for
PBE and 12.6 eV for LRC-ωPBEh), with a Gaussian pulse

FIG. 5. Fluctuations in the total energy for TDKS simulations of H2O at the LRC-ωPBEh/6-31G(d) level using two different propagators (MMUT on the left
and EP-PC1 on the right), for time steps ranging from 0.02 to 1.0 a.u. As the time step is increased, the MMUT algorithm becomes unstable, whereas energy
fluctuations are stable using EP-PC1. Two different external field amplitudes are considered; note that the vertical scales are different in the various panels.
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FIG. 6. Absorption cross sections S(ω), in arbitrary units, for H2O computed using different propagators (MMUT and EP-PC1) and time steps (0.02–1.0 a.u.).
The gray horizontal line in the background is a reference line indicating where S(ω) ≡ 0. The impulsive, time-dependent external field has a Gaussian envelope
(shown in red) and a resonant frequency whose value, in energy units, is indicated by the red arrow around 12 eV.

envelope whose maximum amplitude ranges from 10�4

–10�1 a.u. Following the pulse, the molecule evolves from
the ground state into a superposition of states, and if the exter-
nal field is weak, then this superposition will be dominated by
the ground eigenstate, with an excited-state contribution that
is dominated by states around 12 eV.

Figures 4 and 5, and Fig. S2 in the supplementary material,
depict fluctuations in the total energy for TDKS simulations
of H2O at the PBE/ and LRC-ωPBEh/6-31G(d) levels. Both
the MMUT and EP-PC1 propagator algorithms are examined,
using time steps ranging up to∆t = 1.0 a.u. (=0.024 fs). Because
of the resonant nature of the pulse, the molecule gains energy
from the external field, causing an increase in the total energy
immediately following the pulse (Fig. S5 of the supplementary
material). Energy fluctuations are computed as the total energy
change between successive steps, |EN � EN�1|. The maximum
field amplitude is 2 × 10�4 a.u. for the weak field and 0.2 a.u.
for the strong field.

In practical applications, the MMUT algorithm requires
that much smaller time steps be used,35–41 and for good

reason: our results demonstrate that this algorithm is no longer
stable for ∆t ≥ 0.2 a.u. at the PBE/6-31G(d) level (Fig. 4) or
for ∆t ≥ 0.1 a.u. at the LRC-ωPBEh/6-31G(d) level (Fig. 5).
The non-local exchange term evidently makes the system more
sensitive to errors, likely because the Hartree-Fock exchange
contribution to the Fock matrix oscillates more rapidly in time
as compared to other components of the exchange-correlation
functional.61,62 Meanwhile, the induced dipole diverges to
unrealistically large values as errors accumulate; see Fig. S3
in the supplementary material. The EP-PC1 propagator, how-
ever, is stable across the entire range of time steps in Figs. 4
and 5, up to 1.0 a.u., and the induced dipole moment exhibits
stable oscillations with reasonable amplitude (Fig. S4 of the
supplementary material). Finally, we note that fluctuations in
tr(P) are <10�7 in all simulations. Since matrix exponents
are computed exactly in this work, via diagonalization, and
our PC methods are designed such that averages are taken
in the exponent, any deviations in tr(P) are due to round-
off errors that are controllable by tightening numerical drop
tolerances.

TABLE I. Maximum values of ∆t||δF||F, rounded to the nearest power of ten, for TDKS simulations of H2O,
using the EP-PC1 propagator for various time steps and field amplitudes. The total simulation time is 90 fs in each
case.

∆t (a.u.)

PBE LRC-ωPBEh

Field strength (a.u.) 0.02 0.10 0.20 0.50 1.00 0.02 0.10 0.20 0.50 1.00

2 × 10�4 10�7 10�5 10�5 10�4 10�3 10�6 10�5 10�4 10�4 10�3

2 × 10�3 10�6 10�4 10�4 10�3 10�2 10�5 10�4 10�3 10�3 10�2

2 × 10�2 10�5 10�3 10�3 10�2 10�1 10�4 10�3 10�2 10�2 10�1

2 × 10�1 10�3 10�1 10�1 100 100 10�3 10�1 10�1 100 100

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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FIG. 7. Larger molecules used to check the convergence of the PC iterations.

Absorption cross sections S(ω) for this same set of sim-
ulations (Figs. 4 and 5, and Fig. S2 of the supplementary
material) are plotted in Fig. 6 and Fig. S6. As the pulse
amplitude increases, the spectra begin to deviate from the

weak-field result. Using the MMUT algorithm, the spectrum
can be resolved for ∆t ≤ 0.5 a.u., with the divergence that
appears in the late-stage propagation (Figs. 4 and 5) manifest-
ing as noise in the spectrum. Presumably, however, these spec-
tra will eventually be unresolvable if the divergent dynamics
is propagated further forward in time. The EP-PC algorithms,
on the other hand, have no problem resolving the spectrum all
the way up to ∆t = 1.0 a.u., although the peaks start to shift as
∆t increases. This shifting is discussed in Sec. III B.

To verify convergence of Magnus expansion, we moni-
tored ||δF||F on-the-fly during these simulations. Table I lists
the maximum value of the product ∆t||δF||F for each simu-
lation, a quantity that should be bounded for a convergent
simulation, according to Eq. (35). For weak fields, the val-
ues in Table I are quite small in comparison to the region
of convergence indicated by Eq. (35), even for large values
of ∆t, which demonstrates that first-order truncation of the
Magnus expansion is not a critical limitation for simulation of
weak-field electron dynamics. For stronger fields, however, the
maximum value of∆t||δF||F becomes comparable to the radius
of convergence, and as such ||δF||F is a much more important
quantity that should be monitored in simulations of strong-field
dynamics.

To check the convergence of the iterative step in the PC
methods (step 5 in Figs. 1 and 2), we ran tests on a set of

TABLE II. Average number of Fock build per time step for different molecules, calculated at the PBE/6-31G(d)
level with a threshold ξ = 10�7. The notation “n.c.” indicates that the simulation did not converge, either because
the predicted and corrected matrices diverged from one another or else because more than 200 Fock builds were
required in a single time step.

Number of Fock builds Number of Fock builds

LFLP- EP- LFLP- EP-

∆t (a.u.) PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC3

Water Benzene

0.5 2.94 2.94 2.06 2.13 2.13 2.13 2.13 2.00 2.00 2.00
1.0 4.06 4.19 3.19 3.13 3.06 2.75 2.81 2.06 2.13 2.13
1.5 9.19 9.25 5.06 5.25 5.63 3.50 3.56 2.75 2.69 2.69
2.0 66.06 n.c. n.c. n.c. n.c. 4.81 4.88 3.69 3.56 3.69

Adenine 2,3,5-trifluorobenzaldehyde

0.5 2.13 2.13 2.00 2.00 2.00 2.13 2.13 2.00 2.00 2.00
1.0 2.81 2.81 2.00 2.00 2.00 3.38 3.38 2.13 2.06 2.06
1.5 4.00 3.88 2.81 2.56 2.56 11.44 11.13 3.50 2.69 3.13
2.0 14.69 13.56 7.00 6.81 6.69 n.c. n.c. n.c. n.c. n.c.

4′-hydroxybenzylidene-
Dibenzonaphthyridindione 2,3-dimethylimidazoline

0.5 2.13 2.13 2.00 2.00 2.00 2.13 2.13 2.00 2.00 2.00
1.0 2.69 2.63 2.00 2.00 2.00 2.63 2.56 2.00 2.00 2.00
1.5 4.25 3.25 2.25 2.25 2.25 4.75 3.88 2.56 2.38 2.38
2.0 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.

Oligoporphyrin dimer Phthalocyanine

0.5 2.13 2.13 2.00 2.00 2.00 2.13 2.13 2.00 2.00 2.00
1.0 2.38 2.31 2.00 2.00 2.00 2.38 2.38 2.00 2.00 2.00
1.5 3.00 2.75 2.00 2.00 2.00 2.81 2.63 2.00 2.00 2.00
2.0 6.56 3.44 2.13 2.19 2.19 6.06 3.75 2.63 2.25 2.25

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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molecules ranging in size from H2O up to an 84-atom oligopor-
phyrin dimer. The molecules in the test set are water, benzene,
adenine, and five larger molecules depicted in Fig. 7, which
were taken from Ref. 63. In Table II (for PBE) and Table III
(for LRC-ωPBEh), we list the average number of Fock builds
required per time step, for each molecule in the test set, using
different propagator algorithms and values of ∆t in the range
0.5–2.0 a.u. (For ∆t = 2.0 a.u., convergence usually requires
more than 10 Fock builds per time step, and for larger time
steps, most simulations fail to converge within 200 iterations.)
Note that we use a threshold ξ = 10�7 for the PBE functional
but ξ = 10�8 for LRC-ωPBEh, in an effort to obtain spec-
tra of similar quality with both functionals. This difference is
discussed in Sec. III B.

The convergence properties with respect to ∆t are similar
for the LFLP-PC and EP-PC methods, and stable conver-
gence is obtained for each molecule and algorithm out to at
least ∆t = 1.5 a.u. The two LFLP-PC variants perform sim-
ilarly, and likewise the three EP-PC variants afford similar
performance to one another. Because the convergence prop-
erties depend upon the choice of functional and basis set,
we performed additional tests on the adenine molecule using
the LFLP-PC1 and EP-PC1 algorithms in conjunction with
the 6-31G, 6-31G(d), and 6-31+G basis sets and 10 differ-
ent exchange-correlation functionals, including generalized

gradient approximations (GGAs), global hybrid functionals,
and long-range corrected (i.e., range-separated hybrid) func-
tionals. The performance of each method is characterized in
terms of the average number of Fock builds per time step, for
∆t in the range 0.1–2.0 a.u., with results shown in Table IV.
The optimal choice of ∆t is not necessarily the choice that
minimizes the number of Fock builds per time step but rather
that which minimizes the number of Fock builds per unit of
simulated time. Although this optimal choice depends some-
what on the choice of functional and basis set, in each case it
lies in the range ∆t = 1.0–1.5 a.u. This conclusion, reached for
a single molecule using a collection of functionals and basis
sets, is consistent with the conclusion drawn from Tables II and
III based on a selection of molecules using a single functional
and basis set.

Whereas the MMUT algorithm requires exactly one Fock
build per time step, the PC methods require a minimum of two
and are thus more efficient only insofar as a time step twice
as large can be used. A typical MMUT time step is ∆t . 0.1
a.u., and the data in Table IV show that the PC algorithms with
∆t = 0.2 a.u. require just slightly more than two Fock builds
per step, meaning that the efficiency of the new algorithms is
comparable or superior to that of MMUT in most cases. (Even
when the efficiency is about the same, the PC methods facilitate
on-the-fly checks of the stability of the time propagation that

TABLE III. Average number of Fock build per time step for different molecules, calculated at the LRC-ωPBEh/6-
31G(d) level with a threshold ξ = 10�8. The notation “n.c.” indicates that the simulation did not converge, either
because the predicted and corrected matrices diverged from one another or else because more than 200 Fock builds
were required in a single time step.

Number of Fock builds Number of Fock builds

LFLP- EP- LFLP- EP-

∆t (a.u.) PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC3

Water Benzene

0.5 2.81 2.94 3.63 3.63 3.56 2.38 2.38 2.94 2.94 2.94
1.0 4.50 4.50 6.19 6.13 5.56 3.25 3.19 4.44 4.44 4.44
1.5 7.50 8.00 10.75 10.69 10.56 4.50 4.56 6.56 6.56 6.63
2.0 11.13 12.75 20.50 20.50 19.63 6.56 6.69 9.56 9.56 10.00

Adenine 2,3,5-trifluorobenzaldehyde

0.5 2.38 2.38 3.06 3.06 3.06 2.44 2.63 3.38 3.38 3.31
1.0 3.88 3.94 5.38 5.38 5.44 5.00 4.81 6.81 6.75 6.63
1.5 6.75 6.81 10.13 10.13 10.38 11.56 11.31 13.88 13.69 14.06
2.0 14.44 14.50 21.50 21.38 21.75 17.81 14.56 n.c. n.c. n.c.

4′-hydroxybenzylidene-
Dibenzonaphthyridindione 2,3-dimethylimidazoline

0.5 2.31 2.31 3.13 3.13 3.13 2.31 2.31 3.13 3.13 3.19
1.0 3.81 3.81 5.75 5.75 5.56 4.13 4.13 6.06 6.06 6.06
1.5 7.69 7.94 12.00 12.00 12.25 8.94 9.19 13.50 13.50 13.88
2.0 20.75 20.50 n.c. n.c. n.c. 28.31 28.50 n.c. n.c. n.c.

Oligoporphyrin dimer Phthalocyanine

0.5 2.38 2.38 3.15 3.15 3.25 2.44 2.50 3.13 3.13 3.13
1.0 3.64 3.58 5.25 5.33 5.29 3.38 3.38 5.06 5.06 5.19
1.5 6.60 6.29 8.75 8.75 8.50 5.88 5.75 9.08 9.08 9.25
2.0 10.50 11.50 12.50 14.67 12.00 13.50 13.13 19.60 19.80 21.00
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TABLE IV. Average number of Fock builds per time step for TDKS simulations of adenine, computed using the LFLP-PC1 or EP-PC1 propagator algorithm in
conjunction with various exchange-correlation functionals, basis sets, and time steps. The notation “n.c.” indicates that the simulation did not converge, either
because the predicted and corrected matrices diverged from one another or else because more than 200 Fock builds were required in a single time step. In each
case, the optimal choice of ∆t, which minimizes the number of Fock builds per unit of simulated time, is highlighted in boldface type.

6-31G 6-31G(d) 6-31+G 6-31G 6-31G(d) 6-31+G

∆t (a.u.) LFLP EP LFLP EP LFLP EP LFLP EP LFLP EP LFLP EP

PBE LRC-ωPBEh

0.1 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.2 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.13 2.13 2.00 2.13 2.13
0.5 2.25 2.94 2.13 2.00 2.25 2.94 2.31 3.06 2.13 2.00 2.31 3.06
1.0 3.38 4.63 2.13 2.06 3.56 4.75 3.75 5.31 2.13 2.25 4.06 5.38
1.5 6.56 9.88 4.00 3.88 6.19 9.50 7.31 23.06 3.00 3.25 7.00 10.44
2.0 28.81 n.c. 14.69 13.56 22.44 n.c. 15.50 n.c. 5.83 6.64 13.75 21.75

PBE0 M06-L

0.1 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.2 2.13 2.00 2.11 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.5 2.25 2.94 2.13 2.00 2.25 2.94 2.25 2.94 2.13 2.00 2.25 2.94
1.0 3.56 4.94 2.13 2.13 3.75 5.19 3.63 4.69 2.13 2.13 3.69 4.81
1.5 7.00 10.38 2.44 3.19 6.94 10.00 6.50 9.25 3.00 3.13 6.06 9.13
2.0 20.75 30.25 7.25 7.31 16.06 26.25 18.56 28.13 4.91 6.87 15.63 25.13

B3LYP M06

0.1 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.2 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.5 2.25 2.94 2.13 2.00 2.25 2.94 2.25 2.94 2.13 2.00 2.25 2.94
1.0 3.56 4.81 2.13 3.19 3.75 5.13 3.63 5.00 2.13 2.13 3.69 5.19
1.5 7.00 10.44 2.38 8.56 6.81 10.31 6.94 10.44 2.50 3.38 6.88 10.44
2.0 23.81 n.c. 8.25 n.c. 18.94 24.33 22.88 n.c. 5.82 8.50 18.94 25.33

CAM-B3LYP M06-2X

0.1 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00
0.2 2.13 2.06 2.13 2.00 2.13 2.06 2.13 2.13 2.13 2.00 2.13 2.13
0.5 2.25 3.06 2.13 2.00 2.25 3.06 2.25 3.06 2.13 2.00 2.25 3.06
1.0 3.69 5.25 2.13 2.19 4.06 5.31 3.63 5.31 2.13 2.19 4.00 5.38
1.5 7.19 10.50 2.94 3.31 6.94 10.88 7.25 10.25 2.94 3.31 7.00 10.44
2.0 18.19 27.50 5.63 6.88 14.69 24.50 16.19 25.13 5.00 7.09 13.50 22.44

LRC-ωPBE M11-L

0.1 2.13 2.00 2.13 2.00 2.13 2.00 2.13 2.00 2.09 2.00 2.13 2.00
0.2 2.13 2.13 2.13 2.00 2.13 2.13 2.13 2.13 2.13 2.00 2.13 2.13
0.5 2.31 3.06 2.13 2.00 2.31 3.06 2.31 3.06 2.13 2.00 2.31 3.06
1.0 4.00 5.44 2.13 2.25 4.06 5.44 3.81 5.56 2.13 2.44 4.13 5.63
1.5 7.81 11.63 2.88 3.56 7.81 11.56 6.94 10.63 3.31 3.30 7.25 10.56
2.0 25.56 n.c. 8.13 8.72 21.19 n.c. 14.19 20.69 5.94 5.36 12.69 19.50

are not possible with MMUT.) For a more direct comparison
to the efficiency of the MMUT algorithm, we took the PBE0
data from Table IV and converted them into units of “equivalent
MMUT time steps,” defined as the (average) time step that can
be taken for the cost of a single Fock build, or in other words
the time step that would be needed in the MMUT algorithm in
order to match the efficiency of the PC algorithm. Numerically,
the equivalent MMUT time steps are simply the reciprocals of
the average Fock builds listed in Table IV, and the former
values are given in Table V. For ∆t < 0.2 a.u., this equivalent
MMUT time step is no larger than a typical, stable MMUT time
step as dictated by energy conservation (∼0.1 a.u.), which is
another way of stating that the PC and MMUT algorithms are

approximately equally efficient for time steps this small. For
actual time steps in the range 0.5–1.5 a.u., however, the effi-
ciency of the PC algorithms is in some cases comparable to a
MMUT algorithm with a time step of 0.5–0.6 a.u. (assuming
such a simulation were even stable using MMUT), meaning
that the PC algorithm is 2–3 times more efficient.

Referring to Eq. (24), the convergence rate can be adjusted
using ∆t. As such, a feasible way to find an appropriate value
of ∆t is to run tests using different values in the beginning,
prior to committing to large-scale simulations, in order to esti-
mate the range of convergence with respect to the time step.
This allows the user to estimate the most efficient choice of ∆t
a priori since this choice is obviously a compromise between
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TABLE V. Equivalent MMUT time steps for TDKS simulations of adenine
using the PBE0 functional and the LFLP-PC1 and EP-PC1 algorithms. The
equivalent MMUT ∆t is defined as the average time step that can be taken
for the cost of a single Fock build, i.e., at the cost of the MMUT algorithm.
Optimal (largest) values are highlighted in boldface type. Numerically, these
values are the reciprocals of the PBE0 data in Table IV.

Equivalent MMUT ∆t (a.u.)

Actual ∆t
6-31G 6-31G(d) 6-31+G

(a.u.) LFLP EP LFLP EP LFLP EP

0.1 0.05 0.05 0.05 0.05 0.05 0.05
0.2 0.09 0.10 0.09 0.10 0.09 0.10
0.5 0.22 0.17 0.24 0.25 0.22 0.17
1.0 0.28 0.20 0.47 0.47 0.27 0.19
1.5 0.21 0.14 0.62 0.47 0.22 0.15
2.0 0.10 0.07 0.28 0.27 0.12 0.08

reducing the number of steps at the expense of steps that require
more than one Fock build. For non-self-consistent approaches
such as the MMUT propagator, the validity of a simulation
cannot be guaranteed or known even after the fact, except in
the trivial case of a divergent simulation that fails to conserve
energy and thus indicates a much too aggressive choice for ∆t.
For stable simulations, the convergence of computed proper-
ties (e.g., spectra) should in principle be checked by running

several full-length simulations using different values of ∆t.
A significant advantage of PC methods is that convergence
of the Magnus expansion can be monitored and ∆t adjusted
on-the-fly to ensure convergence.

B. Convergence of calculated spectra

Finally, we examine how absorption spectra computed
from TDKS simulations converge with respect to the thresh-
old ξ and the time step ∆t. Simulations in this section were
propagated for a total simulation time T = 5, 000 a.u. (≈121
fs). The resulting spectral line shapes are broadened by damp-
ing the induced dipole moment as µ(t) e�t /τ with τ = 200
a.u. Absolute values of the spectra are taken to avoid spurious
negative parts due to numerical artifacts introduced by finite
time-sampling.43

We first examine the dependence of the computed spectra
on the threshold ξ. We calculate TDKS spectra of single H2O
molecule using∆t = 0.5 a.u. with ξ ranging from 10�5 to 10�10.
Figure 8 shows TDKS spectra computed using the EP-PC3
algorithm in comparison to stick spectra from a LR-TDDFT
calculation. (TDKS results using other propagators are sim-
ilar and can be found in Figs. S9–S12 of the supplementary
material.) As ξ is decreased, the TDKS spectra converge to the
LR result. For the loosest thresholds (ξ = 10�5 for PBE and
ξ = 10�6 for LRC-ωPBEh), the TDKS spectra are noisy and

FIG. 8. Comparison of LR-TDDFT
stick spectra (in blue) to broad-
band TDKS spectra (in red) for H2O
molecule. The TDKS spectra were com-
puted using the EP-PC3 algorithm with
∆t = 0.5 a.u., propagated for a total
of 5000 a.u., using various thresholds
ξ . All TDKS spectra have been scaled
by a common, empirical factor in order
to match the intensities from the LR-
TDDFT calculation.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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TABLE VI. Average number of Fock builds per time step as a function of the
threshold ξ , for TDKS simulations of H2O at the PBE/6-31G(d) level using
various PC algorithms. Each simulation is propagated in time for a total of
5000 a.u. using ∆t = 0.5 a.u.

Number of Fock builds

LFLP- EP-

ξ PC1 PC2 PC1 PC2 PC3

10�5 2.89 2.80 2.00 2.83 2.83
10�6 2.89 2.83 2.00 2.85 2.85
10�7 2.91 2.88 2.00 2.87 2.87
10�8 4.01 3.91 3.62 2.93 2.93
10�9 4.85 4.85 4.14 4.47 3.36

exhibit spurious peaks but converge to clearly resolved spectra
for ξ = 10�9 (PBE) or ξ = 10�10 (LRC-ωPBEh). These con-
verged spectra are in good agreement with LR-TDDFT results
for energies .40 eV (PBE) or .30 eV (LRC-ωPBEh), and
while there is some peak shifting with respect to LR results at
higher energies, this shifting is largely independent of ξ. This
observation suggests that it is the finite time step, rather than
the threshold, that is the major source of the peak shifting.
The controlled convergence with respect to ξ indicates that
this parameter can effectively be used to reduce the noise in
time-domain dynamics, for GGA functionals, while for LRC
functionals, the parameter ξ eliminates spurious damping in
the time-domain dynamics. This is explored in Figs. S7 and
S8 of the supplementary material, which show how various

values of ξ affect the fluctuations in the time-dependent dipole
moment.

Table VI shows the average number of Fock builds per
time step for the H2O simulations in Fig. 8(a). Unsurprisingly,
this number increases as the threshold is loosened, so it is wise
not to set too small a value for ξ. If only the low-energy part of
the spectrum is of interest (.30–40 eV), then ξ = 10�7 seems
to be sufficient for GGA functionals or ξ = 10�8 for range-
separated hybrid functionals. Smaller values are necessary to
eliminate noise at higher energies.

We next study the convergence of spectra with respect
to ∆t, using the spectrum of a single adenine molecule as a
test case. Spectra are plotted in Fig. 9 for time steps rang-
ing from 0.2 to 2.0 a.u., with the ∆t = 0.2 a.u. result taken
as a reference spectrum. (In Figs. S13 and S14 of the supple-
mentary material, we use time steps as small as 0.02 a.u. to
demonstrate that the ∆t = 0.2 a.u. spectrum can indeed serve
as a reference, for the PC propagator methods. This, again,
stands in contrast to MMUT results.) Spectra in Fig. 9 were
obtained using the EP-PC3 algorithm but results for other PC
algorithms are similar; see Figs. S15–S18 of the supplemen-
tary material. Because the TDKS spectrum is obtained from
the Fourier transform of the discrete time series representing
the induced dipole moment [Eq. (52)], its range of validity is
limited to frequencies smaller than the Nyquist frequency, f Ny

= π/∆t.64 Above this, a higher sampling rate is necessary for
the time series, or in other words ∆t must be reduced. For con-
venience, Table VII provides Nyquist frequencies (in units of
eV) corresponding to values of ∆t examined here.

FIG. 9. Absorption spectrum of ade-
nine computed via TDKS simulation
using the EP-PC3 algorithm. A refer-
ence spectrum (in red), computed using
∆t = 0.2 a.u., is compared to spectra
obtained using several larger values of
∆t. The latter are mostly consistent with
the reference spectrum up to frequencies
(energies)∼f Ny/5 for PBE or∼f Ny/8 for
LRC-ωPBEh. For ∆t = 2.0 a.u., we plot
the spectrum only out to f Ny (≈43 eV).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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TABLE VII. Nyquist frequencies (expressed in energy units) for various
values of ∆t.

Energy (eV)

∆t (a.u.) f Ny f Ny/5 f Ny/8

0.2 427 85 53
0.5 171 34 21
1.0 85 17 11
1.5 57 11 7
2.0 43 8 5

Spectra in Fig. 9 obtained using ∆t > 0.2 a.u. are con-
verged to the reference spectrum only at low energies. The
larger the time step, the more quickly this agreement dete-
riorates as energy increases, both in terms of the peak posi-
tions and (especially) oscillator strengths. Empirically, we
observe that the spectrum is in reasonable agreement with
the reference up to energies Emax ≈ f Ny/5 for the PBE func-
tional or Emax ≈ f Ny/8 for LRC-ωPBEh. This suggests that
the time step should be selected such that ∆t < π/5Emax

for GGA functionals or ∆t < π/8Emax for global or range-
separated hybrid functionals, where Emax is the largest exci-
tation energy of interest. Examining Table VII, we see that
a rather large time step of ∆t = 1.0–2.0 a.u. (depending on
whether the functional contains Hartree-Fock exchange) suf-
fices for computing spectra up to about 9 eV, which covers
the optical and much of the UV region of the electromagnetic
spectrum.

IV. CONCLUSIONS

We have introduced several predictor/corrector meth-
ods for efficient propagation of the TDKS equation in real
time. The first type of algorithm, which we call LFLP-PC,
is based on linear extrapolation and interpolation of the Fock
matrix using a midpoint rule and may be regarded as a self-
consistent version of the MMUT approach that is already
in widespread use.33,34 A second type of algorithm, EP-PC,
uses an exponential extrapolation of the density matrix with
trapezoidal integration of the propagator. Both methods use a
one-term truncation of the Magnus expansion and all matrix
exponentials are computed exactly, via diagonalization, which
is appropriate in Gaussian basis sets or other representa-
tions where the dimension of the Hamiltonian is small. (This
aspect of our algorithms would need to be modified for
plane-wave or real-space grid implementations of DFT, where
the dimension of the Hamiltonian matrix precludes exact
diagonalization.)

The self-consistent PC approach improves the stability
and computational efficiency of the density matrix propaga-
tion, and for weak-field dynamics, we are able to use time steps
as large as ∆t = 1.0–1.5 a.u. while retaining numerical stabil-
ity and energy-conserving dynamics. Although the MMUT
algorithm requires only a single Fock matrix construction per
time step, whereas the self-consistent approaches require more
than one, the MMUT approach is restricted to the use of time
steps no larger than 0.2–0.5 a.u.,35,39–41 and sometimes as
small as 0.05 a.u.,36–38 and overall the PC algorithms prove

to be a net “win,” reducing the average number of Fock builds
per unit of simulation time. For most applications, the cost
of TDKS calculations in Gaussian basis sets is overwhelm-
ingly dominated by the cost of Fock matrix construction, so
this reduction in the number of Fock builds translates directly
into speedup of the simulations. The very small time interval
between the predictor and corrector steps (a fraction of ∆t)
also means that the additional Fock builds can make good
use of “incremental” techniques for Fock matrix construc-
tion,34,65,66 leading to additional speedup. Consequently, the
PC algorithms are no worse than equally efficient as com-
pared to MMUT, and often several times more efficient, while
at the same time providing tools that allow one to check on-
the-fly for any divergence of the propagated dynamics in a
way that is not possible using MMUT. The latter point is criti-
cal but is often overlooked. Although catastrophic divergence
of a TDKS simulation can be detected simply by monitoring
(lack of) energy conservation, it is possible for a simulation
to conserve energy yet afford an absorption spectrum that
differs from the LR-TDDFT result, even for a weakly per-
turbing external field. Assuming that the matrix exponentials
are evaluated exactly, this behavior—if and when it occurs—is
a manifestation of error accumulation due to finite truncation
of the Magnus expansion combined with a time step that is too
large.

We have discussed three factors that influence conver-
gence of the iterative PC procedure. First, Eq. (24) affords
a rigorous upper bound for how large ∆t can be in a con-
vergent simulation, although this formal result is difficult
to evaluate in practice. For weak-field perturbations where
the electron density oscillates around the ground-state den-
sity, however, the optimal time step can be determined at
the beginning of the calculation using short test runs with
different values of ∆t. For strong-field perturbations, the
electron density will deviate far from that of the ground
state, but self-consistent iteration in the PC approach acts as
an on-the-fly self-examination that can flag an overly large
time step. This can be used to halt the simulation imme-
diately, or else to reduce ∆t, whenever the predicted and
corrected Fock or density matrices fail to converge to one
another.

A second quantity that influences convergence is ||δF||F,
which measures the magnitude of the fluctuations in the
Fock matrix and provides as an indicator of the convergence
(or lack thereof) of the Magnus expansion; see Eq. (35).
This quantity is easily monitored and the fluctuations in F(t)
over a given time step determine whether one has a valid
approximation to the time-ordered integral that appears in
the time evolution operator. Strong-field dynamics are char-
acterized by large values of ||δF||F and ∆t must be reduced
accordingly.

Finally, the discrete nature of the time series that rep-
resents the electron dynamics places an upper bound on the
absorption spectrum that is governed by the time step and the
associated Nyquist frequency (f Ny) arising from the discrete
Fourier transform of the dipole fluctuations. In practice, we
find that the spectrum is reasonably well converged for ener-
gies Emax . f Ny/5 (in the case of GGA functionals) or Emax .
f Ny/8 (for hybrid functionals).
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SUPPLEMENTARY MATERIAL

See supplementary material for additional tests and data
for other parameter sets.
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APPENDIX: CONVERGENCE OF THE PC STEP

This appendix presents a derivation of Eq. (24), which
demonstrates that the PC iterations (step 5 in Figs. 1 and
2) necessarily converge if ∆t is sufficiently small, and fur-
thermore provides an explicit upper bound on how large ∆t
can be in order to obtain convergence. For definiteness, we
consider the EP-PC algorithm but the proof for LFLP-PC is
similar and the upper bound [Eq. (24)] is the same in either
case.

Denote the construction of the Fock matrix as a map-
ping F: P 7→ F. Denote by U : F 7→ U(tN +1, tN ), the
mapping between the Fock matrix and the propagator, for
t ∈ [tN , tN +1]. Strictly speaking, U is a functional map-
ping because its involves integration of F(t) over the interval
[tN , tN +1]. Within the adiabatic approximation to TDDFT,
however, the exchange-correlation functional lacks memory
and this simplifies to a mapping between complex-valued
n × n matrices. Consistency between predicted and cor-
rected matrices requires the existence of a solution to a
fixed-point problem via self-iteration. To be specific, the
problem of finding self-consistent values of Pp

N+1 and Pc
N+1

requires PN +1 to reach a solution P?N+1 that satisfies the
equality

P?N+1 =
[
U◦F(P?N+1)

]
PN

[
U◦F(P?N+1)

]† . (A1)

The notation U◦F indicates a compound mapping. In the first
instance, for example, it means using the mapping F to build
FN +1 based on P?N+1 then using U to build UN based on
FN +1.

Since the right side of Eq. (A1) can be regarded as a map-
ping of P?N+1 as a whole, and that mapping equals the variable
P?N+1 itself, Eq. (A1) represents a fixed-point problem, i.e., a
problem of the general form x = f (x). Denote such a mapping
Y: PN +1 7→ PN +1 as

Y(PN+1) = exp
{
−i(∆t/2)

[
F(PN+1) + FN

] }
×PN exp

{
i(∆t/2)

[
F(PN+1) + FN

] }
, (A2)

where FN and PN are known values from the previous time
step. The solution P?N+1 to the fixed-point problem in Eq. (A1)
is approached by self-mapping (self-iteration) such that a new

PN +1 is updated using the value of Y (PN+1), until PN +1 equals
Y(PN+1).

For self-mapping procedures such as these, the existence
of a convergent solution can be estimated by using the Banach
fixed-point theorem.68 Consider a first-order expansion of Eq.
(A2),

Y(PN+1) =

{
1−

i∆t
2

[
F(PN+1) + FN

]
+ O

[
(∆t)2]} PN

×

{
1 +

i∆t
2

[
F(PN+1) + FN

]
+ O

[
(∆t)2]} .

(A3)

Define the distance between two matrices B1 and B2 as

d(B1, B2) = ‖B1 − B2‖F . (A4)

According to the Banach fixed-point theorem, convergence of
the self-mapping problem requires the existence of q ∈ [0, 1)
such that

d
(
Y(P[k]

N+1),Y(P[k+1]
N+1 )

)
≤ q d

(
P[k]

N+1, P[k+1]
N+1

)
, (A5)

where the superscript in P[k]
N+1 refers to PN +1 obtained after k

iterations. Equation (A5) requires that for each iteration, the
mapping is a contraction that shrinks the distance between the
points P[k]

N+1 and P[k+1]
N+1 by a uniform fraction q < 1, such that

eventually the sequence {P[0]
N+1, P[1]

N+1, P[2]
N+1, · · · } converges to

the solution P?N+1. The smaller q is, the faster the rate of
convergence.

Next substitute Eq. (A3) into Eq. (A5) and denote

δF[k]
N+1 = F(P[k]

N+1) − F(P[k+1]
N+1 ) (A6)

and

δP[k]
N+1 = P[k]

N+1 − P[k+1]
N+1 . (A7)

For the first order terms, the Banach theorem affords a
condition that

∆t
2

PN δF[k]
N+1 − δF[k]

N+1 PN
F
≤ qδP[k]

N+1
F

. (A8)

The Frobenius norm is a scalar, so we can move ‖δP[k]
N+1‖F

from the right to the left side in Eq. (A8) and thus rewrite this
inequality, using a commutator, as

∆t
2




PN ,

δF[k]
N+1

‖δP[k]
N+1‖F



F

≤ q . (A9)

As P[k]
N+1 approaches the solution P?N+1, the quantity

δP[k]
N+1 becomes small. By considering the limit δP[k]

N+1 →

0, the second term in the commutator of Eq. (A9) can
be simplified into a form reminiscent of a directional
derivative,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022805
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*.
,

δF[k]
N+1

‖δP[k]
N+1‖F

+/
-ij

≈
δFij

‖δP‖F

�������P→P?
N+1

= lim
P[k]

N+1→P[k+1]
N+1

[
F

(
P[k]

N+1

)
− F

(
P[k+1]

N+1

)]
ij

‖δP[k]
N+1‖

= lim
P[k]

N+1→P[k+1]
N+1

∑
pq

(
∂Fij

∂Ppq

) [
(P[k]

N+1)pq − (P[k+1]
N+1 )pq

]
‖δP[k]

N+1‖

= lim
P[k]

N+1→P[k+1]
N+1

∑
pq

(
∂Fij

∂Ppq

) (
δP[k]

N+1

)
pq

‖δP[k]
N+1‖

=
∑
pq

(δP)pq

‖δP‖

∂Fij

∂Ppq

�������P→P?
N+1

=
(
∇̂P F���P→P?N+1

)
ij

. (A10)

In obtaining the second equality in Eq. (A10), we have used
a first-order Taylor expansion around P?N+1. The penultimate
line in this expression, which defines the directional derivative
in the final line, can be viewed as a vector dot product between
a direction vector (δP)/||P|| and a gradient ∂F/∂P.

Subject to the approximation at the start of Eq. (A10), Eq.
(A9) now can be expressed as

∆t
2


[
PN , ∇̂P F���P→P?N+1

]F
. q . (A11)

The terms inside of ||· · · ||F in Eq. (A11) are determined by
the properties of the system, insofar as PN depends on the
electronic dynamics, which is driven by the external field, and
∇̂PF depends on the derivative of the Fock matrix with respect
to the future density matrix PN +1. The latter is numerically
approached in the direction δPN +1. Considering that q < 1, the
existence of a convergence solution requires that the upper-
bound condition quoted in Eq. (24) be satisfied. The maximum
value of ∆t is therefore determined by the system and its
dynamical properties. By adjusting ∆t to be larger (within
the convergence region), the rate of convergence is decreased
which means more iterations per time step are needed to reach
consistency within the predictor/corrector scheme and vice
versa.
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