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Quantum chemistry in arbitrary dielectric environments:
Theory and implementation of nonequilibrium Poisson
boundary conditions and application to compute vertical
ionization energies at the air/water interface
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Widely used continuum solvation models for electronic structure calculations, including popular
polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic
and characterized by a scalar dielectric constant, ε. This assumption is invalid at a liquid/vapor inter-
face or any other anisotropic solvation environment. To address such scenarios, we introduce a more
general formalism based on solution of Poisson’s equation for a spatially varying dielectric function,
ε(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the con-
text of Poisson’s equation that includes the out-of-equilibrium dielectric response that accompanies
a sudden change in the electron density of the solute, such as that which occurs in a vertical ion-
ization process. A multigrid solver for Poisson’s equation is developed to accommodate the large
spatial grids necessary to discretize the three-dimensional electron density. We apply this methodol-
ogy to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and
compare them to VIEs computed in bulk water, finding only very small differences between the two
environments. VIEs computed using approximately two solvation shells of explicit water molecules
are in excellent agreement with experiment for F�(aq), Cl�(aq), neat liquid water, and the hydrated
electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections
modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are
therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet
photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as
compared to those in bulk water, our calculations provide some confidence that these experiments
can indeed be interpreted as measurements of VIEs in bulk water. Published by AIP Publishing.
https://doi.org/10.1063/1.5023916

I. INTRODUCTION

Fundamental aspects of ion solvation at the air/water
interface have attracted significant attention in recent years,1–7

including investigations of how ion coordination motifs, con-
centrations, and reactivity may differ at the interface versus
bulk water. At the same time, the development of liquid micro-
jet photoelectron spectroscopy has opened the way to experi-
mental measurements of vertical ionization energies (VIEs) of
molecules in solution,8–11,17 as opposed to the gas-phase VIEs
afforded by traditional photoelectron spectroscopy. However,
interpretation of solution-phase photoelectron spectra is com-
plicated by the possibility that the ejected electron may be
scattered and/or recaptured by the liquid and thus detected
with reduced kinetic energy or possibly not detected at all.
As such, the microjet experiments are likely more sensitive to
species solvated at the liquid/vapor interface than they are to
the same species in a bulk liquid environment. The wavelength-
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dependent nature of the electron attenuation length12,13 (a mea-
sure of the likelihood that the emitted electron is recaptured)
leads to solution-phase photoelectron spectra that depend on
the wavelength of the photodetachment laser.14,15 For these
reasons and others,16 theoretical prediction of VIEs in solu-
tion is desirable in order to facilitate the interpretation of
the experiments. From a quantum chemistry point of view,
one may expect a significant polarization response from the
medium upon ionization of the solute, so the question arises
how this effect can be incorporated in a tractable way. A contin-
uum representation of the solvent represents one cost-effective
strategy.

The most common continuum solvation models in quan-
tum chemistry are based upon the framework of the polarizable
continuum model (PCM),19–23 in which the continuum sol-
vent’s electrostatic interaction with the atomistic solute is
parameterized in terms of a single, scalar dielectric constant, ε.
For accurate solvation energies, nonelectrostatic interactions
must be included as well, but the electrostatic contribution
can still be obtained from a PCM.23–27 These models are sim-
ple, efficient, and—assuming nonelectrostatic corrections are
included—reasonably accurate,20,23–27 and are therefore wide-
ly used in quantum chemistry. As conventionally formulated,
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however, these models assume that the solvation environment
is isotropic, as appropriate for solvation in bulk liquid but not
at an interface.

There have been some attempts to modify the PCM for-
malism for use in anisotropic environments, including a formu-
lation that uses a dielectric tensor in place of a scalar dielectric
constant.28–31 This is useful, e.g., in the case of liquid crystals
where the dielectric “constant” is strongly direction-dependent
and therefore a diagonal tensor with different values εxx,
εyy, and εzz might afford a reasonable description. Mennucci
et al.32–34 and others35,36 have developed PCMs designed
for liquid/vapor interfaces by modifying certain matrix ele-
ments of the PCM equations within the interfacial region.
Mennucci et al. used a smooth switching function to inter-
polate between liquid and vapor values of ε,32–34 as is also
done in the approach presented here. For complete general-
ity, however, an anisotropic continuum environment should be
described theoretically using Poisson’s equation,22 not with a
scalar (or tensor) dielectric constant but rather with a spatially
varying dielectric function, ε(r).

A simplified version of such a model, in which ε(r) is
replaced by a set of distinct dielectric constants ε1,ε2, . . . in
different spatial regions, was introduced long ago by Saku-
rai et al.37,38 and used in semi-empirical electronic structure
calculations.38 At its core, this model amounts to solution of
Poisson’s equation in each spatial region, subject to appropri-
ate boundary conditions. In the present work, we introduce an
even more general formalism and computational algorithm in
which the function ε(r) is allowed to be completely arbitrary.
It is ultimately defined by the value of ε at each point on a
discretization grid.

Other solvers for Poisson’s equation have been reported
recently,39–43 including several for use with quantum chem-
istry.40–43 What is novel in the present work is the introduction
of nonequilibrium corrections. These account for the response
of the continuum solvent to a sudden change in the electron
density of the solute, such as that which occurs upon (vertical)
ionization.44–47 We have previously formulated this nonequi-
librium theory for use with PCMs,48–50 and here we make
the appropriate modifications for use with Poisson’s equation.
A preliminary version of this methodology was reported in
Ref. 42, but whereas that formulation was perturbative (follow-
ing along the lines of our group’s previous work on PCMs48),
the present version includes the full solvent response. We have
also made significant improvements to our grid-based Poisson
solver, as compared to the one described in Ref. 42.

This work aims to evaluate the limitations of nonequi-
librium anisotropic Poisson boundary conditions in quantum
chemistry calculations, by comparing to aqueous-phase VIEs
measured using liquid microjet photoelectron spectroscopy.11

Perhaps unsurprisingly, VIEs for atomic ions computed using
nothing but a PCM representation of the solvent afford
extremely poor agreement with experiment;18 hence, we will
include explicit water molecules in the atomistic, quantum-
mechanical (QM) region. In PCM calculations, where the
solute cavity that defines the solute/continuum interface is usu-
ally constructed from atom-centered spheres,19–23 inclusion
of a large number of explicit solvent molecules sometimes
leads to erratic convergence with respect to the size of the

QM region.51 This occurs because the dielectric medium arti-
ficially intrudes into the interstices between explicit solvent
molecules, which should properly be characterized by ε = 1
since these are part of the QM region. We avoid such artifacts
by using a single, spherical solute cavity around the entire QM
region or alternatively using a novel cavity construction that
is described herein. Finally, we consider whether VIEs com-
puted in bulk water differ appreciably from those obtained
at the air/water interface. This is easily addressed computa-
tionally but less trivial to interrogate experimentally, although
experimental insight might be gained from angle-resolved
photoelectron spectroscopy.52–55

II. NONEQUILIBRIUM POISSON FORMALISM
A. Self-consistent equilibrium solvation

Solution of the gas-phase Poisson equation,

∇̂2ϕsol(r) = −4πρsol(r), (2.1)

affords the electrostatic potential ϕsol(r) arising from the elec-
tronic and nuclear components of the solute’s charge density,
ρsol(r). The quantity ρsol(r) is to be computed from a quantum
chemistry calculation, but we make no assumptions about the
level of electronic structure theory. The quantities ϕsol and ρsol

can be partitioned into electronic and nuclear components,

ϕsol(r) = ϕnuc(r) + ϕelec(r), (2.2a)

ρsol(r) = ρnuc(r) + ρelec(r). (2.2b)

The solute’s internal energy in a vacuum is

Eint =
1
2

∫
dr ϕsol(r) ρsol(r) (2.3)

and includes the electron–electron, electron–nuclear, and
nuclear–nuclear interactions. Upon immersion of the solute in
continuum solvent, characterized by a spatially varying dielec-
tric function ε(r), the solute–solvent interaction is governed
by the most general form of Poisson’s equation,

∇̂ ·
[
ε(r) ∇̂ϕtot(r)

]
= −4πρsol(r), (2.4)

where
ϕtot(r) = ϕsol(r) + ϕpol(r) (2.5)

includes an induced polarization potential, ϕpol(r).
For electronic structure methods using atom-centered

Gaussian basis functions gµ(r), the electronic contribution to
the electrostatic potential is

ϕelec(r) = −
∑
µν

Pµν ϕµν(r), (2.6)

where P is the one-electron density matrix and ϕµν(r) is the
electrostatic potential generated by the shell pair gµ(r) gν(r),

ϕµν(r) =
∫

dr′
gµ(r) gν(r′)
|r − r′ |

. (2.7)

Nuclear charges are smeared out using Gaussian functions to
avoid problems with discretizing them onto a grid. The elec-
trostatic potential generated by these Gaussian nuclear charges
is

ϕnuc(r) =
atoms∑
α

Zα
|r − Rα |

erf

(
|r − Rα |
√

2σ

)
, (2.8)
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where Zα and Rα are the charge and position of nucleus α and
σ is the standard deviation of the Gaussian, which is an input
parameter to the method.

The solute’s charge density is obtained from ϕsol(r)
according to

ρsol(r) = −
1

4π
∇̂2ϕsol(r). (2.9)

In this work, ∇̂2ϕsol(r) is computed using an eighth-order cen-
tral finite-difference scheme, as described in Sec. III A. Unlike
our original implementation of Poisson boundary conditions,42

which required the direct evaluation of the electron density
on the real-space grid, the present implementation evaluates
ϕelec(r) on the grid, via Eq. (2.6), and then computes ρsol(r)
from Eq. (2.9). We find that the present approach is more robust
with respect to changes in the grid size and spacing.

To solve the Poisson problem in Eq. (2.4), we adapt a
procedure outlined in Refs. 40 and 41 for obtaining the solvent
polarization response, which is characterized by the quantities
ϕpol(r) and ρpol(r). Equation (2.4) is first recast as a vacuum-
like Poisson equation,

∇̂2ϕtot(r) = −4πρtot(r), (2.10)

where the total charge density is

ρtot(r) = ρsol(r) + ρpol(r). (2.11)

Note carefully the difference between Eq. (2.10) and Eq. (2.1).
The effects of the inhomogeneous dielectric function ε(r) are
contained in the polarization charge density ρpol(r), the form
of which is40,41

ρpol(r) =

[
1 − ε(r)
ε(r)

]
ρsol(r) + ρiter(r). (2.12)

The first term on the right side of Eq. (2.12) is the solute charge
density scaled by a dielectric-dependent factor that is only
non-zero outside of the atomistic region (solute cavity), where
ε > 1. The second term ρiter(r) is a charge density induced by
the inhomogeneous dielectric in regions where it transitions
from ε = 1 near the solute molecule to a value appropriate
for bulk solvent outside of the solute cavity. As the notation
implies, this correction is obtained iteratively, and its value at
the kth iteration can be expressed as40,41

ρ(k)
iter(r) =

1
4π

[
∇̂ ln ε(r)

]
·
[
∇̂ϕ(k)

tot (r)
]
. (2.13)

Algorithm 1 outlines a procedure for the iterative solu-
tion of Eq. (2.10) to obtain ϕtot(r), ϕpol(r), and ρpol(r). We
call this the “equilibrium” Poisson-equation solver (PEqS)
method, which we now describe. The quantities ϕsol(r) and
ρsol(r) are initialized using Eqs. (2.2a) and (2.6)–(2.9), then
ρ(k)

iter(r) is computed using Eq. (2.13), and Eq. (2.12) is then

used to generate ρ(k)
pol(r). With the total density now in hand, the

total electrostatic potential is obtained via the numerical solu-
tion of Eq. (2.10) using a multigrid conjugate gradient (CG)
procedure that is described in Sec. III B. This affords ϕ(k+1)

tot (r),
and the iterative part of the charge density is then updated using
Eq. (2.13). However, rather than using this directly to define

Algorithm 1. Equilibrium PEqS method.

1: Initialize ∆h = 0.
2: for j = 1, 2, . . . do until SCF error < τSCF

3: Diagonalize F(j) = F(j)
0 + ∆h(j) to obtain P(j )

4: Compute ρsol(r) and ϕsol(r)
5: if j = 1 then
6: ρtot(r) = ρsol(r)
7: ϕtot(r) = ϕsol(r)
8: else
9: ρtot(r) = ρsol(r) + ρpol(r)

10: ϕtot(r) = ϕsol(r) + ϕpol(r)
11: end if
12: Initialize ρ(0)

iter(r) using ϕ(0)
tot (r)

13: for k = 0, 1, . . . do until ∆ρiter < τPEqS

14: Compute ϕ(k+1)
tot (r)

15: Update ρ(k+1)
iter (r), ρpol(r), and ρtot(r)

16: end for
17: Update ∆h(j )

18: Compute E = Eint + Gelst

19: end for

ρ(k+1)
iter (r), we instead use a damping procedure to stabilize the

update between iterations k and k + 1,

ρ(k+1)
iter (r) =

η

4π
[
∇̂ ln ε(r)

]
·
[
∇̂ϕ(k+1)

tot (r)
]

+ (1 − η) ρ(k)
iter(r). (2.14)

We take η = 0.6 as in Refs. 40 and 41. Convergence of the
solvent polarization response is achieved when the residual

∆ρiter =
ρ

(k+1)
iter (r) − ρ(k)

iter(r) (2.15)

falls below a threshold, τPEqS.
Operationally, the solvent polarization response is

included in the QM calculations by augmenting the gas-phase
Fock matrix F0 with a correction ∆h to its one-electron part.
This correction has matrix elements

∆hµν = −
∫

dr ϕµν(r) ρpol(r). (2.16)

Finally, the converged solution of Eq. (2.10) affords a total
energy

E = Eint +
1
2

∫
dr ϕpol(r) ρsol(r), (2.17)

which consists of the solute’s internal energy Eint from the
electronic structure calculation, plus the electrostatic contri-
bution

Gelst =
1
2

∫
dr ϕsol(r) ρpol(r) (2.18)

to the solvation free energy.

B. State-specific nonequilibrium solvation

To incorporate solvent polarization effects following ver-
tical ionization of the solute, we have adapted the nonequi-
librium solvation approach developed for PCMs,45,48–50,56–58

for use with three-dimensional charge densities rather than
the apparent surface charges used by PCMs. In previous
work, we developed a perturbative approach to correcting
the solute/continuum interaction for a sudden change in the
electronic state of the solute, either electronic excitation or
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ionization.48–50 The perturbative approach is tantamount to
“freezing” the inertial components of a reference-state solvent
reaction field such that, upon vertical ionization, this frozen
reaction field governs the solvent response to the ionized state’s
charge distribution, which is prevented from relaxing. In the
case of electronic excitation, the perturbative nature of the
correction avoids a state-switching problem that arises in the
case of near-degeneracies when using a state-specific Hamilto-
nian,59 and in Ref. 42 we introduced a Poisson equation solver
based on the perturbative approach.

For VIEs, the state-switching problem is not an issue and
in this work we develop a Poisson equation solver based on a
state-specific, nonequilibrium treatment of solvent polariza-
tion, rather than a perturbative approach. Within the state-
specific approach, the final (ionized) state’s charge distribution
relaxes in the presence of the slow inertial component of the
reference-state reaction field as well as the fast noninertial
component of its own reaction field.

For the state-specific method, the solute wave function for
state |Ψi〉 is obtained by solving the Schrödinger equation

ĤSS
i |Ψi

〉
= ESS

i |Ψi
〉

(2.19)

with a state-specific Hamiltonian of the form

ĤSS
i = Ĥvac

i + V̂ slow
0 + V̂ fast

i . (2.20)

Subscripts indicate whether a particular quantity originates
from the equilibrium reference state (i = 0) or else the nonequi-
librium final state. (For ionization to the electronic ground
state, there is only one possible final state that we will indicate
by i = 1 in what follows.) Superscripts “slow” versus “fast”
in Eq. (2.20) indicate which part of the solvent response is
considered: either the slow inertial part, representing nuclear
degrees of freedom (orientational and vibrational fluctuations
of the solvent), or else the fast electronic part. The quantity
Ĥvac

i is the molecular Hamiltonian that affords the solute’s vac-
uum internal energy Eint,i for state i, and the operators V̂ slow

i
and V̂ fast

i generate the indicated components of the solvent
polarization response, i.e., ϕslow

pol,i and ϕfast
pol,i, where

ϕslow/fast
pol,i (r) =

∫
dr′

ρslow/fast
pol,i (r′)

|r − r′ |
. (2.21)

As in previous work,48–50 we use the Marcus partition of
the fast and slow components of the polarization response. (See
Ref. 49 for a comparison to the common alternative, Pekar par-
titioning, with the conclusion that this choice makes essentially
no difference for solvation energies.) Within this approach, the
slow component of the reference-state polarization charge den-
sity, ρslow

pol,0(r), which affords ϕslow
pol,0(r) according to Eq. (2.21),

is computed according to48,49

ρslow
pol,0(r) =

(
χslow

χ

)
ρpol,0(r), (2.22)

where χ = χslow + χfast is the static susceptibility, partitioned
into slow and fast components,

χslow =
εsolv − ε∞

4π
, (2.23a)

χfast =
ε∞ − 1

4π
. (2.23b)

Here, εsolv is the static dielectric constant of the solvent and
ε∞ = n2 is its optical dielectric constant, where n denotes the
solvent’s index of refraction. The quantity ε∞ encodes the fast
electronic contribution to the solvent polarization response.

To obtain the fast components of the ionized state’s polar-
ization response, ϕfast

pol,1(r) and ρfast
pol,1(r), within the Marcus

partition,49 the Poisson equation is modified such that the total
source-charge density is the ionized solute’s charge density,
ρsol,1(r) + ρslow

pol,0(r), and the dielectric function is the optical
one. This modified form of Eq. (2.4) is

∇̂ ·
[
ε∞(r)∇̂ϕfast

tot,1(r)
]
= −4π

[
ρsol,1(r) + ρslow

pol,0(r)
]
. (2.24)

Here, ϕfast
tot,1(r) is the total fast component of the ionized

state’s electrostatic potential. To apply the equilibrium PEqS
procedure introduced in Sec. II A, Eq. (2.24) is rewritten as

∇̂2ϕfast
tot,1(r) = −4πρfast

tot,1(r), (2.25)

where ρfast
tot,1(r) and ϕfast

tot,1(r) are to be computed self-
consistently. The total nonequilibrium source charge density
is

ρfast
tot,1(r) = ρsol,1(r) + ρslow

pol,0(r) + ρfast
pol,1(r). (2.26)

For the Marcus partitioning scheme,49 ρfast
pol,1(r) takes the form

ρfast
pol,1(r) =

(
1 − ε∞(r)
ε∞(r)

) [
ρsol,1(r) + ρslow

pol,0(r)
]

+ ρiter,1(r),

(2.27)
where ρiter,1(r) is computed iteratively according to

ρ(k)
iter,1(r) =

1
4π

[
∇̂ ln ε∞(r)

]
·
[
∇̂ϕfast,(k)

tot,1 (r)
]
. (2.28)

Between iterations, we apply the damping procedure of Eq.
(2.14).

Finally, the nonequilibrium free energy is48,49

Gelst,1 = W0,1 +
∫

dr ϕsol,1(r) ρslow
pol,0(r)

+
1
2

∫
dr ϕsol,1(r) ρfast

pol,1(r)

−
1
2

∫
dr ϕsol,0(r) ρslow

pol,0(r). (2.29)

The term

W0,1 =
1
2

∫
dr ϕslow

pol,0(r)
[
ρfast

pol,1(r) − ρfast
pol,0(r)

]
(2.30)

arises within the Marcus partitioning scheme49 due to
Coulomb interactions between fast and slow components of
the solvent polarization response,19,46,48,49 in which the slow
components of the reference-state response affect the fast com-
ponents of the final-state response.45,60 The quantity Gelst,1

defined in Eq. (2.29) is added to the gas-phase internal energy
Eint,1 to generate the electrostatic interaction energy of the final
(ionized) state, Eelst,1. The state-specific nonequilibrium VIE
is then evaluated as the difference between the ionized- and
reference-state electrostatic energies, Gelst,1 � Gelst,0.48,49 The
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result is

VIE = ∆E1,0 + W0,1 +
1
2

∫
dr ϕsol,1(r) ρfast

pol,1(r)

+
∫

dr
[
ϕsol,1(r) − ϕsol,0(r)

]
ρslow

pol,0(r)

−
1
2

∫
dr ϕsol,0(r) ρfast

pol,0(r), (2.31)

where
∆E1,0 = Eint,1 − Eint,0 (2.32)

is the difference between the ionized- and reference-state
internal energies.

Operationally, the gas-phase Fock matrix for the ionized
state must be corrected for the solvent response using a matrix
∆h1 whose elements are

∆hµν,1 = −

∫
dr ϕµν(r)

[
ρslow

pol,0(r) + ρfast
pol,1(r)

]
. (2.33)

The state-specific nonequilibrium PEqS method is summa-
rized in Algorithm 2.

C. Dielectric function

This section describes the construction of the dielectric
function ε(r) that appears in Eqs. (2.4) and (2.24), for both
bulk solvation and the liquid/vapor interface.

1. Bulk environment

In conventional PCM calculations, the solute cavity is a
two-dimensional surface constructed from a union of atom-
centered spheres, possibly with additional surface elements
added to smooth the seams where those spheres intersect. In
any case, it is assumed that the dielectric constant changes
abruptly at the cavity surface, switching from its vacuum
value (ε = 1) inside the cavity to a value appropriate for

Algorithm 2. Nonequilibrium PEqS method.

1: Proceed with Algorithm 1 and save data to disk.
2: Reference data: E0, Gelst,0, ϕslow

pol,0(r), and ρslow
pol,0(r)

3: Initialize ∆h1 = 0
4: for j = 1, 2, . . . do until SCF error < τSCF

5: Diagonalize F(j) = F(j)
0 + ∆h(j)

1 to obtain P(j )

6: Compute ρsol,1(r) and ϕsol,1(r)
7: if j = 1 then
8: ρfast

tot,1(r) = ρsol,1(r) + ρslow
pol,0(r)

9: ϕfast
tot,1(r) = ϕsol,1(r) + ϕslow

pol,0(r)

10: else
11: ρfast

tot,1(r) = ρsol,1(r) + ρslow
pol,0(r) + ρfast

pol,1(r)

12: ϕfast
tot,1(r) = ϕsol,1(r) + ϕslow

pol,0(r) + ϕfast
pol,1(r)

13: end if
14: Initialize ρ(0)

iter,1(r) using ϕfast,(0)
tot,1 (r)

15: for k = 0, 1, . . . do until ∆ρiter,1 < τPEqS

16: Compute ϕfast,(k+1)
tot,1 (r)

17: Update ρ(k+1)
iter,1 (r), ρfast

pol,1(r), and ρfast
tot,1(r)

18: end for

19: Update ∆h(j)
1

20: Compute E1 = Eint,1 + Gelst,1

21: end for
22: Compute VIE = E1 � E0

bulk solvent (εsolv) outside. This abrupt change in ε poses
no problems within the PCM formalism but is problematic in
the present context, where it is necessary to discretize three-
dimensional space. As such, the sharp transition in ε(r) must be
smoothed.61

Several groups have proposed dielectric functions that are
functionals of the electron density and thus conform automat-
ically to molecular shape,40,62–64 analogous to using an iso-
density contour to define the cavity in a PCM calculation.65–67

Such cavities (or dielectric functions) must be self-consistently
updated at each self-consistent field (SCF) cycle. Instead, we
choose the rigid cavity model of Ref. 41 that uses a prod-
uct of spherically symmetric atomic switching functions sα to
smooth the discontinuous function ε(r) that is used (implicitly)
in PCM calculations and is based on atom-centered spheres.
The resulting dielectric function is

ε(r) = εvac + (εsolv − εvac)
atoms∏
α

sα
(
dα,∆; |r − Rα |

)
. (2.34)

For generality, we have written this in terms of an arbitrary
“vacuum” dielectric constant εvac inside the cavity. For any
choice εvac , 1, however, the electronic structure program
ought properly to be modified to use a Coulomb operator
(εvacr)−1 rather than r�1. All numerical calculations presented
here use εvac = 1.

The switching functions in Eq. (2.34) are defined as

sα
(
dα,∆; |r − Rα |

)
=

1
2

[
1 + erf

(
|r − Rα | − dα

∆

)]
, (2.35)

where dα is the radius of the atomic sphere centered at Rα.
With sα chosen in this way, the dielectric function transitions
smoothly from εvac to εsolv over a region whose length is ≈4∆
and is centered at a distance dα from nucleus α. Following
Ref. 41, we set ∆ = 0.265 Å, and following standard PCM
convention we take dα = 1.2 rvdW,α,19,22,56 where the atomic
van der Waals (vdW) radii rvdW,α are taken from Bondi’s set,68

except that for hydrogen we use the updated value of 1.1
Å.69 As such, Eq. (2.34) mimics the dielectric function that
is used implicitly in PCM calculations, except that the former
is continuous everywhere.

However, this dielectric function poses a problem when
explicit solvent molecules are included as part of the solute.
An egregious example is the case of the hydrated electron,
e�(aq),70 represented in the following example as a (H2O)−28
cluster model extracted from a condensed-phase simulation.71

As shown in Fig. 1, this cluster model consists of approx-
imately two solvation shells of water molecules coordinated
around an unpaired electron. Cluster models of this type, com-
bined with a PCM to capture long-range solvation effects, have
previously been used to estimate the VIE of e�(aq),72 but this
is potentially problematic because the vdW cavity that is con-
ventionally used in PCM calculations places high-dielectric
regions in between water molecules.

This can be seen explicitly by plotting the dielectric func-
tion ε(r) in Eq. (2.34), for a vdW cavity corresponding to the
water configuration shown in Fig. 1. (We emphasize that up
to a switching function to smooth the transition between ε = 1
and ε = 78, this is the dielectric function that is used, implicitly,
in PCM calculations.) A two-dimensional slice through ε(r) is
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FIG. 1. Singly occupied molecular orbital of a (H2O)−28 cluster model of
e�(aq). The opaque and translucent isosurfaces encapsulate 50% and 95% of
the probability density, respectively. Positive values of the orbital are shown
in blue, and the very small negative regions are shown in green. The latter are
only visible in the 95% isoprobability contour.

plotted in Fig. 2(a). Although the cavity correctly conforms to
the molecular shape of the water cluster, the dielectric function
is problematic in the region near the cluster’s center of mass
(c.o.m.). There, blue and green regions indicate a solvent-like
value of ε that penetrates into the region of space occupied by
the unpaired electron that, as part of the solute, ought instead to
experience ε = 1. While e�(aq) might seem like an unusual case
due to the esoteric nature of the solute, the problem is a general
one, as illustrated by the dielectric function for a F−(H2O)31

cluster that is plotted in Fig. 3. High-dielectric regions can
once again be found inside of the atomistic QM region.

To address this problem, we pursue an approach used
also in the context of PCMs, in which a fictitious spherical
“solvent probe” is rolled along the surface of the vdW cavity
(constructed from unscaled Bondi radii); the locus of points
traced out by the center of this probe sphere defines the solvent-
accessible surface (SAS).73 Equivalently, the SAS is simply a
vdW surface constructed using radii dα = rvdW,α + rprobe that
are equal to vdW (Bondi) radii augmented by the probe radius.
For aqueous solvation, the standard choice is rprobe = 1.4 Å,19,73

representing half the distance to the first peak in the oxygen–
oxygen radial distribution function of liquid water.74 Using
dα = rvdW,α + rprobe in Eq. (2.34) successfully removes values
ε > 1 in the interstices between water molecules, however,
the resulting VIEs are quite poor and in some cases the PEqS
procedure is difficult to converge. A “modified” SAS (mSAS)
construction, using the reduced value rprobe = 0.7 Å, allevi-
ates the convergence problems and affords more reasonable
VIEs but does not entirely eliminate artifactual high-dielectric
regions between water molecules, as shown in Fig. 2(b).

To rectify this, we introduce a “hybrid” cavity that retains
the conformity to molecular shape exhibited by the vdW
and SAS cavities but eliminates problematic high-dielectric
regions in this e�(aq) test case. The hybrid cavity is built upon
the mSAS cavity (rprobe = 0.7 Å), adding a geometric con-
straint that exploits the roughly spherical nature of the solute
configurations to ensure that the dielectric function assumes
the value ε = 1 inside the solute region. To this end, we adapt a
procedure from Ref. 75 that was used to characterize binding

FIG. 2. Two-dimensional slices through the function ε(r), for the (H2O)−28
cluster that is shown in Fig. 1, which was extracted from a simulation of e�(aq).
The dielectric function is constructed using either (a) the vdW solute cavity,
Eq. (2.34) with parameters dα set to scaled Bondi radii; (b) a “modified” SAS
construction, created by setting dα = rvdW,α + 0.7 Å, which differs from the
usual SAS choice, rprobe = 1.4 Å; or (c) a “hybrid” cavity, which is described in
the context of Eq. (2.36). Each panel plots ε(r) in the xz plane that contains the
cluster center of mass (c.o.m.). The dielectric function transitions smoothly
from ε = 1 inside the cavity to ε = 78.39 outside.

motifs of excess electrons in (H2O)−n clusters. The shape of
each solute configuration (water cluster) is approximated as
an ellipsoid centered at the cluster c.o.m. (x0, y0, z0), whose
surface is defined by the equation S(x, y, z) ≡ 1, where

S(x, y, z) =
(x − x0)2

a2
+

(y − y0)2

b2
+

(z − z0)2

c2
. (2.36)

The volume enclosed by S(x, y, z) is treated as the solvent-
excluded region, and the hybrid cavity, whose dielectric func-
tion is plotted in Fig. 2(c), is constructed from a mSAS cavity
by enforcing the condition that ε(r) = εvac if S(x, y, z) < 1.
The parameter a is set equal to the maximum atomic-to-c.o.m.
distance along the x axis, plus a distance dα � 2∆ that centers
the switching function in Eq. (2.35) at a distance dα from the
nucleus. This furthermore ensures that ε(r)≈ εvac at a distance
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FIG. 3. Two-dimensional slices through the function ε(r) for a cluster
F−(H2O)31 extracted from a simulation of F�(aq). The vdW cavity is used
to construct the dielectric function, so this plot is analogous to that shown in
Fig. 2(a) for the hydrated electron.

2∆ from any atomic center. The parameters b and c are defined
similarly, for the y and z directions.

Figure 2(c) illustrates the hybrid cavity dielectric function
for (H2O)−28 that is obtained using this procedure. This model
affords a satisfactory description of the dielectric environ-
ment, in the sense that high-dielectric regions between water
molecules are eliminated. As such, we use this definition of
the cavity and corresponding dielectric function for all PEqS
calculations reported in Sec. V.

2. Interfacial environment

The dielectric function for the liquid/vapor interface is
defined as in our previous work.42 Specifically, we interpo-
late ε(r) from εsolv = 78.4 to εvac = 1.0 across the Gibbs
dividing surface (GDS). The periodic slabs used for molecular
dynamics (MD) simulations at the interface extend infinitely
in the x and y directions, and the location zGDS of the GDS
is determined over the course of the simulation by computing
ensemble-averaged solvent density profiles. These are com-
puted individually, for each solute, using 0.5 Å bins along the
z direction, and the resulting density profiles are then fit to the
following functional form:32,76,77

ρ(z) = 1
2 ρsolv

{
1 ± tanh

[
α(z − zGDS)

]}
. (2.37)

Here, ρsolv is the bulk liquid density (treated here as a fitting
parameter) and α is a parameter such that the thickness of the
liquid/vapor interface is ≈4/α. The hyperbolic tangent term in
Eq. (2.37) is positive if z > zGDS and negative if z < zGDS.

Best-fit parameters ρsolv, α, and zGDS are listed in Table I
for each solute considered in this work. Fitted values of ρsolv

TABLE I. Parameters for Eq. (2.37), obtained by fitting ensemble-averaged
solvent density profiles from MD simulations.

Solute ρsolv (g/cm3) α (Å�1) zGDS (Å)

Li+ 0.976 0.652 �9.205
Na+ 0.979 0.604 �9.154
H2O 0.986 0.724 �8.963
e� 1.016 0.668 �1.508
F� 0.976 0.635 �9.105
Cl� 0.969 0.626 �9.328

FIG. 4. Two-dimensional slice through ε(r) for a (H2O)−24 cluster represent-
ing e�(aq) at the liquid/vapor interface. A hybrid cavity is first constructed,
as described in the discussion surrounding Eq. (2.36), and then Eq. (2.38) is
used to interpolate the dielectric from εsolv → εvac across the GDS, which is
indicated by the dashed black line (zGDS = �1.508 Å). Out of 24 explicit H2O
molecules inside the cavity, only 2–3 lie above the GDS.

are in reasonable agreement with the actual density of liquid
water at 298 K. Fitted values of α demonstrate that the inter-
facial region for the ionic solutes is discernibly thicker than
the liquid/vapor interface for neat water, an observation that is
also reported in other studies of anions at interfaces.77,78 Tak-
ing parameters from Table I, we describe the z-dependence of
the interfacial dielectric function as in previous work,32,42,76

ε(z) = 1
2εsolv

{
1 ± tanh

[
α(z − zGDS)

]}
. (2.38)

Figure 4 illustrates the dielectric function ε(r) for a (H2O)−24
cluster extracted from an interfacial configuration of e�(aq),79

with the c.o.m. placed at the origin.

III. NUMERICAL SOLUTION OF POISSON’S EQUATION

Solution of the linear equations that define PCMs is often
(though not always22,80–82) accomplished via matrix inver-
sion. Matrix diagonalization incurs a cost that is O(N3

grid) in

floating-point operations and O(N2
grid) in memory, for Ngrid

discretization points, and for PCMs this is typically trivial in
comparison to the cost of the QM calculation for the solute. An
exception is QM/MM/PCM calculations, where the QM/MM
solute is potentially quite large, and conjugate gradient (CG)
procedures have been developed to handle such cases.22,80 For
the PEqS method, however, direct inversion is prohibitively
expensive from the start, as ∼106 Cartesian grid points might
be required to discretize three-dimensional space, with a mem-
ory cost alone that would exceed 7 Tb to store the discretized
Laplacian. It is therefore essential to employ relaxation tech-
niques such as iterative CG procedures. Here, we discuss
finite-difference discretization schemes for solving Poisson’s
equation on large Cartesian grids and also discuss improving
the efficiency of PEqS using a multigrid method. Much of this
work, including the multigrid method, is new since the pilot
implementation of PEqS that was reported in Ref. 42.
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A. Finite-difference scheme

For the discussion that follows, let us rewrite Eqs. (2.10)
and (2.25) in a generic form

∇̂2ϕ(r) = ρ(r), (3.1)

where the factor of �4π that ordinarily appears in Poisson’s
equation is instead included in ρ(r). Writing out the Laplacian
operator explicitly, this is

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= ρ(x, y, z), (3.2)

subject to the Dirichlet boundary condition

ϕ(x, y, z) = 0, ∀(x, y, z) ∈ δΩ (3.3)

at the surface boundary δΩ (see below).
For a uniform rectangular grid centered at the origin, with

side lengths {Lx, Ly, Lz} containing {Nx, Ny, N z} grid points
(so that Ngrid = NxNyN z), the domain Ω is defined as

Ω =
[
(−Lx/2 < x < Lx/2), (−Ly/2 < y < Ly/2),

(−Lz/2 < z < Lz/2)
]
. (3.4)

The surface boundary is defined by the collection of rectangu-
lar planes

δΩ =
{
[±Lx, y, z], [x,±Ly, z], [x, y,±Lz]

}
. (3.5)

For convenience, we assume in what follows that the grid is
cubic, with equal spacing h in each direction. Cartesian coor-
dinates are then mapped onto grid coordinates as xi = �Lx/2 +
ih, where i = 0, . . ., (Nx � 1).

The value of the electrostatic potential ϕ(x, y, z) at the grid
point (xi, yj, zk) is denoted as

ϕi,j,k B ϕ(xi, yj, zk), (3.6)

with a similar notation for other discretized quantities. Expres-
sions for the discretized first and second derivatives of ϕi ,j ,k are
obtained using a central finite-difference scheme. A general
expression for an nth-order approximation to the mth-order
derivative, whose finite-difference approximation exhibits
error of O(h2n), is

∂mϕi,j,k

∂xm =

n∑
p=−n

cm,p

(ϕi+p,j,k

hm

)
, (3.7)

for certain coefficients cm ,p. We use an eighth-order (n = 4)
finite-difference approximation for the first (m = 1) and second
(m = 2) derivatives. Coefficients cm ,n for this approximation
are given in Table II.

TABLE II. Central finite-difference coefficients cm ,±p for the discretized first
(m = 1) and second (m = 2) derivatives in Eq. (3.7). These coefficients afford
an eighth-order approximation scheme whose accuracy is O(h8).

cm ,0 cm ,±1 cm ,±2 cm ,±3 cm ,±4

m = 1 0 ±4/5 ∓1/5 ±4/105 ∓1/280
m = 2 �205/72 8/5 �1/5 8/315 �1/560

B. Multigrid approach

We employ a multigrid method to improve the efficiency
of the iterative CG procedure. To facilitate the following dis-
cussion, let us rewrite Poisson’s equation [Eq. (3.1)] in a
discretized form involving a matrix–vector product,

Lhϕh = ρh. (3.8)

The Ngrid ×Ngrid matrix Lh contains the discretized Laplacian
operator, and the vectors ϕh and ρh contain the discretized val-
ues ϕh

i,j,k, and −4πρh
i,j,k,, respectively. The quantities ϕh and ρh

are subject to appropriate boundary conditions, and the super-
script h signifies the level (fineness) of the discretization. The
CG algorithm avoids the prohibitive memory cost associated
with forming Lh explicitly; only its action on the vector ϕh is
required.

Via Fourier analysis of the discretization errors

vh
i,j,k = ϕ

exact
i,j,k − ϕ

h
i,j,k , (3.9)

it has been shown that the spectrum of errors contains wave-
lengths λ that are comparable to, or larger than, the grid resolu-
tion, h.83 The CG routine efficiently eliminates discretization
errors with λ 'h but struggles with error components for which
λ > h.83 Iterative techniques such as CG therefore effectively
smooth out short-wavelength discretization errors, but they do
not perform well (or at least, efficiently) for obtaining a fully
converged solution due to long-wavelength error components.
To illustrate this, the CG routine was employed to compute ϕh

in Eq. (3.8) for a single H2O molecule placed at the center of
a (15 Å)3 cubic Cartesian grid with a resolution h = 0.074 Å.
Figure 5 shows the Euclidean norm of the residual error in the
electrostatic potential,

rh = ρh −Lhϕh, (3.10)

FIG. 5. Comparison of the performance of several iterative schemes for solv-
ing Eq. (3.8) to an accuracy τPEqS = 10�5 a.u. (indicated by the horizontal
black line), for a single water molecule whose c.o.m. resides at the center of a
(15 Å)3 Cartesian grid with h = 0.074 Å. The slow decay of the residual error
for the standard CG routine is indicative of λ > h, and over 250 iterations are
required for convergence. The multigrid methods achieve convergence more
rapidly, with the W-cycle implementation performing best. Both multigrid
algorithms exhibit an exponential decrease of rh with respect to the iteration
number, in stark contrast to results from the standard CG method.
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as a function of iteration number. There is a rapid decrease in
‖rh‖ during the first few iterations, but in the end more than
250 iterations are required to achieve convergence, defined as
‖rh‖ < 10�5 a.u. The inability of the CG routine to eliminate
the long-wavelength error components furthermore manifests
as a broad and slowly decaying shoulder, evident in iterations
10–110 in Fig. 5.

Since the charge density ρ(r) computed by the electronic
structure calculation is known essentially to arbitrary accuracy,
at least compared to the ∼10�5 a.u. residual convergence error
in the CG approach, we can safely assume that ρ(r) is free
of discretization error upon formation of ρh. Supposing that
Eq. (3.8) can be solved exactly for the electrostatic potential,
then ρh = Lhϕexact. Thus Eq. (3.10) can be written in terms of
vh [defined in Eq. (3.9)], even when the exact solution is not
known,83

rh = Lhϕexact −Lhϕh

= Lh(ϕexact − ϕh)

= Lhvh. (3.11)

Despite never actually acquiring ϕexact, Eq. (3.11) provides an
avenue for computing the quantity vh, which is an integral part
of the multigrid method.

The multigrid method seeks to obviate undesired compu-
tational effort spent eliminating long-wavelength error com-
ponents that results in the slow convergence exhibited by the
CG routine. The ultimate goal is a solution to Eq. (3.8) on a fine
rectangular grid, and we refer to this as the “target” grid reso-
lution, denoted by h. The schematic for a two-level “V-cycle”
multigrid approach83 is illustrated in Fig. 6. (The nomenclature
is explained below, where we introduce an alternative “W-
cycle” approach as well.) The multigrid method is designed to
relax the iterative solution on the target grid, where the compu-
tational cost is highest, as few times as possible. This is step 1
in the algorithm outlined in Fig. 6, and it serves to reduce short-
wavelength errors. The resulting residual rh obtained using the
target grid is then restricted to a grid with only half as many
grid points in each Cartesian direction. The resolution of this
grid is denoted as H = 2h, and the iterative solution on the
coarser grid serves to reduce longer-wavelength components
of the error. The restriction rh → rH is illustrated in step 2 of
Fig. 6 and is accomplished using a restriction matrix IH

h ,

rH = IH
h rh. (3.12)

In practice, IH
h is not formed and its action on rh to generate

rH is expressed as

rH
I ,J ,K =

1
8 rh

i,j,k + 1
16

(
rh

i+1,j,k + rh
i−1,j,k + rh

i,j+1,k + rh
i,j−1,k + rh

i,j,k+1 + rh
i,j,k−1

)
+ 1

32

(
rh

i+1,j+1,k + rh
i+1,j−1,k + rh

i−1,j+1,k + rh
i−1,j−1,k

)
+ 1

32

(
rh

i+1,j,k+1 + rh
i+1,j,k−1 + rh

i−1,j,k+1 + rh
i−1,j,k−1

)
+ 1

32

(
rh

i,j+1,k+1 + rh
i,j+1,k−1 + rh

i,j−1,k+1 + rh
i,j−1,k−1

)
+ 1

64

(
rh

i+1,j+1,k+1 + rh
i+1,j+1,k−1 + rh

i+1,j−1,k+1 + rh
i+1,j−1,k−1

)
+ 1

64

(
rh

i−1,j+1,k+1 + rh
i−1,j+1,k−1 + rh

i−1,j−1,k+1 + rh
i−1,j−1,k−1

)
. (3.13)

The notation (I, J, K) in rH
I ,J ,K is introduced to denote that a

different mapping scheme for the coarse-grid coordinates is
required, namely, xI = �Lx/2 + IHx for I = 0, . . ., (Nx � 1)/2
and Hx = 2hx. Equation (3.13) is valid for three dimensions
and shows that a coarse grid point takes its value from all
neighboring points on the target grid, with a weight determined
by its proximity to rH

I ,J ,K .

After forming rH , a Poisson-like equation is solved to
obtain the coarse grid discretization error, vH ,

LHvH = rH . (3.14)

This is illustrated in step 3 of Fig. 6. Relaxing vH on the
coarse grid reduces the problematic long-wavelength error
components with which the primitive CG routine struggles;
consequently, vH provides a better correction to ϕh. How-
ever, vH cannot be used directly to correct ϕh because the
former is defined only on the coarser grid and must be inter-
polated back to the target grid. This process of inverse restric-
tion is illustrated in step 4 of Fig. 6. Interpolation of vH

to form vh is accomplished via the inverse iteration matrix
Ih

H ,

vh = Ih
HvH . (3.15)

The action of Ih
H is expressed by the following set of

equations:

vh
i,j,k = v

H
I ,J ,K , (3.16a)

vh
i+1,j,k =

1
2

(
vH

I ,J ,K + vH
I+1,J ,K

)
, (3.16b)

vh
i,j+1,k =

1
2

(
vH

I ,J ,K + vH
I ,J+1,K

)
, (3.16c)

vh
i,j,k+1 =

1
2

(
vH

I ,J ,K + vH
I ,J ,K+1

)
, (3.16d)

vh
i+1,j+1,k =

1
4

(
vH

I ,J ,K + vH
I+1,J ,K + vH

I ,J+1,K + vH
I+1,J+1,K

)
,

(3.16e)

vh
i+1,j,k+1 =

1
4

(
vH

I ,J ,K + vH
I+1,J ,K + vH

I ,J ,K+1 + vH
I+1,J ,K+1

)
,

(3.16f)

vh
i,j+1,k+1 =

1
4

(
vH

I ,J ,K + vH
I ,J+1,K + vH

I ,J ,K+1 + vH
I ,J+1,K+1

)
,

(3.16g)

vh
i+1,j+1,k+1 =

1
8

(
vH

I ,J ,K + vH
I+1,J ,K + vH

I ,J+1,K + vH
I ,J ,K+1

)
+ 1

8

(
vH

I+1,J+1,K + vH
I+1,J ,K+1 + vH

I ,J+1,K+1

+ vH
I+1,J+1,K+1

)
. (3.16h)

The interpolated discretization error vh corrects ϕh according
to

ϕh → ϕh + vh. (3.17)
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FIG. 6. Illustration of a two-level V-cycle multigrid algo-
rithm applied to solve Eq. (3.8). The input is a source
charge density ρh and the output isϕh, both of which are
discretized on a target grid whose resolution is h. Steps 1
and 2 show the formation of the residual error rh on the
target grid and subsequently its restriction to a coarser
grid whose resolution is H = 2h. On the coarser grid, rH

is used in a CG routine to compute a relaxed residual
vector rH in step 3. The relaxed residual is then interpo-
lated back to the target grid to form vh in step 4. In step
5, vh is used to correct the solution on the target grid,
and this process is repeated (starting from step 2) until
convergence.

FIG. 7. Flow diagrams illustrating four-level multigrid
algorithms of either the (a) V-cycle or (b) W-cycle variety.
Either approach uses a target grid of resolution h and three
coarser grids of resolutions H = 2h, 4h, and 8h. Downward
arrows represent the restriction of the residual error vector
from a finer to a coarser grid. After relaxing γ0 and γ1
times, the discretization error is then interpolated from
coarser to finer grids, indicated by an upward arrow. The
interpolated discretization error is further relaxed on the
finer gridsγ2 orγ3 times. Convergence of the solution on
the target grid is then tested, and the process is repeated
until the desired accuracy is achieved.

This is step 5 of Fig. 6. Convergence is achieved when ‖rh
new−

rh
old‖ falls below a desired threshold, at which point ϕh is

the fully relaxed solution to Eq. (3.8). Otherwise the process
shown in Fig. 6 repeats with step 2.

In contrast to the two-level algorithm outlined in Fig. 6,
the PEqS method implemented here actually uses a four-level
method that employs two additional coarse grids whose res-
olutions are H = 4h and H = 8h. These four-level schemes
improve upon the two-level scheme by eliminating error com-
ponents on multiple length scales, affording more effective
corrections at each grid level and resulting in a fully relaxed,
target-grid solution in fewer iterations.83 Schematics for “V-
cycle” and “W-cycle” variants of the four-level method are
provided in Fig. 7, which introduces parameters γ0, γ1, γ2, and
γ3 that control the maximum number of CG iterations spent
at various grid levels. The strategy is to always fully relax the
error vector vH =8h at grid level 3 (the coarsest grid), so we set
the parameter γ0 equal to the maximum number of allowed
iterations, γ0 = 500 here. The other parameters are set to γ1

= 2, γ2 = 3, and γ3 = γ1 + γ2, as in Ref. 83. Passing through
either cycle outlined in Fig. 7, one performs CG iterations of
the equation Lnhvnh = rnh in order to compute vnh, for n = 1,
2, 4, or 8 as appropriate. Iterations continue until the residual
rnh is reduced below threshold or until the maximum number
of iterations is reached. At grid levels finer than H = 8h, this
means that vnh need not be fully relaxed at each step. (Conver-
gence failure on the coarsest grid, however, implies the failure
of the whole algorithm, though we have not found this to be a

problem with the parameters described herein.) Proceeding in
this way, the solution ϕh on the target grid, which is the most
expensive to compute, is relaxed a total of γ1 + γ2 times, in
either the V- or W-cycle approach.

In more detail, the four-level algorithms proceed as fol-
lows. At the target grid level, the residual error rh correspond-
ing to ϕh after γ1 CG iterations is restricted to grid level
1, signified by a downward arrow in Fig. 7. Using rH =2h in
Eq. (3.14), vH =2h is relaxed γ1 times and is stored in memory.
This process of restriction is repeated for each downward arrow
until reaching the coarsest level of discretization (grid level
3), where the solution is then fully relaxed. Upward arrows in
Fig. 7 signify interpolation of the discretization error from a
coarser grid to a finer one using Eq. (3.15), and the resulting
error vector is then used to update the residual error at grid
levels 2 and 1, or the electrostatic potential on the target grid.
Each of these is relaxed γ2 times. Returning to the example in
Fig. 5, we note that the four-level methods require about 75
iterations (V-cycle) and 35 iterations (W-cycle) on the target
grid, a remarkable improvement over the standard CG routine.
We select the four-level W-cycle method for PEqS calculations
due to its superior performance in this example.

IV. COMPUTATIONAL METHODS

In this work, we compute VIEs for neat liquid water and
for five aqueous ions: F�, Cl�, Li+, Na+, and the hydrated
electron. Experimental VIEs are available for each of these
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species,11,15 and while we examine e�(aq) due mainly to
our group’s long-standing interest in this species,42,70,75,84–87

and because preliminary calculations on e�(aq) were previ-
ously reported using a perturbative version of PEqS,42 the
four atomic ions are selected because their simple structure
should eliminate any concerns about adequate MD sampling.
This is especially true given that an accurate polarizable force
field (amoeba) is available for these species.88,89 This allows
us to focus on the role of the continuum model in VIE
calculations.

A. Molecular dynamics simulations

Simulations of neat liquid water were performed with 222
water molecules in a periodic cell 18.8 Å on a side, correspond-
ing to a density of 0.9995 g/cm3 at T = 300 K, using the amoeba
force field88,89 as implemented in the tinker software pack-
age,90 v. 7.1.2. Electrostatic interactions were computed using
Ewald summation with a real-space cutoff of 9.4 Å. The neat
liquid water simulations were equilibrated for 1 ns with the
final 500 ps extracted for further use. For simulations of the
neat liquid/vapor interface, the final snapshot from the bulk
water simulation is used as a starting point and the simula-
tion box was extended to 90.0 Å in the z direction so that the
dimensions of the simulation cell measured 18.8 Å × 18.8 Å
× 90.0 Å. The resulting water “slab” was equilibrated for an
additional 1 ns at T = 300 K.

MD simulations for the aqueous halides and alkali cations
were initialized starting from the equilibrated neat liquid water
simulation, replacing either the H2O molecule nearest to the
center of the cell (in the bulk simulations) or that nearest to the
interface (in slab simulations) with an ion. The bulk simula-
tions were then equilibrated for an additional 250 ps at T = 300
K followed by a 500 ps production run with snapshots stored
every 5 ps. In contrast, simulations at the liquid/vapor inter-
face were not equilibrated, and a 500 ps production run began
immediately after insertion of the ion, again with a stride of 5
ps between saved snapshots. The snapshots for e�(aq) in liquid
water and at the air/water interface were taken from QM/MM
simulations reported in Refs. 71 and 79. They are the same
snapshots used in some of our previous studies of e�(aq).42,87

Solute configurations for subsequent PEqS and PCM cal-
culations were generated from the stored snapshots by select-
ing a QM region that includes all water molecules within a
sphere of radius 5.5 Å centered at the ion, or in the case of
e�(aq), centered at the centroid of the spin density. Extensive
convergence tests in previous work suggest that larger QM
regions are unnecessary for VIE calculations.42 For neutral
water, the H2O molecule nearest to the center of the simulation
cell is chosen as the center for the bulk liquid configurations,
whereas the water molecule nearest to the GDS is chosen for
the liquid/vapor configurations. VIEs reported here are aver-
ages over 101 snapshots, each separated in time by 5 ps, except
in the case of e�(aq) where we use 87 snapshots, each separated
in time by 100 fs.

B. Continuum solvation models

The dielectric function, charge densities, and electrostatic
potentials required for PEqS calculations were discretized on a
(25 Å)3 Cartesian grid with spacing∆x =∆y =∆z = 0.24 Å. The

hybrid cavity model described in Sec. II C 1 is used to construct
ε(r), and for the interfacial configurations the dielectric func-
tion is modified according to Eq. (2.38), with solute-specific
parameters taken from Table I. Concurrent acquisition of the
polarization response charge density and electrostatic poten-
tial through Eqs. (2.10) and (2.25) is accomplished using the
four-level W-cycle multigrid technique (Sec. III B), with relax-
ation parameters γ0 = 500, γ1 = 2, γ2 = 3, and γ3 = γ1 + γ2.
The iterative charge density is updated until the residual ∆ρiter

falls below a threshold τPEqS = 10�5 a.u.
To complement the PEqS calculations, we also compute

VIEs of the bulk water configurations using a nonequilibrium
version48–50 of IEF-PCM,91 the “integral equation formalism”
(IEF) version of PCM.22,91–93 The solute cavity in these calcu-
lations is defined in one of the two ways. One approach uses
a single sphere to encapsulate the QM region; this region was
carved out of the solution using a radius of 5.5 Å and we set
the spherical cavity radius to 7.5 Å. This sphere is then dis-
cretized using a Lebedev integration grid with 5294 points.
Alternatively, we use the SAS cavity constructed from a union
of atom-centered spheres with radii rvdW + rprobe, where rvdW

is an unscaled Bondi radius68,69 and rprobe = 1.4 Å. (This is
the standard SAS definition,19,73 not the modified one used in
Sec. II C 1 to define the hybrid cavity.) In this case, each atomic
sphere is discretized with a 302-point Lebedev grid using the
switching/Gaussian algorithm.94

For isotropic solvation in bulk water, we expect that the
PEqS and PCM methods should afford similar results, up to
discretization errors that can be made arbitrarily small,22,91

and neglecting charge penetration effects (i.e., volume polar-
ization95,96) arising from the part of the solute’s charge density
that extends beyond the cavity. The latter effects are mit-
igated within the IEF-PCM framework,92,97,98 and through
the inclusion of explicit water molecules around the anions.
Unfortunately, the PEqS method in its current implementa-
tion is sensitive to the Gaussian width parameter σ that is
used to blur the nuclear charges [Eq. (2.8)], so we exploit
the expected numerical equivalence with IEF-PCM to set this
parameter. Setting σ = 0.300 Å (F�), 0.525 Å (H2O), or
0.570 Å (Li+) affords PEqS and IEF-PCM solvation ener-
gies that are in good agreement, for a few test configura-
tions. The F� value of σ was used for all three anions and
the Li+ value was used for both cations. Values of σ deter-
mined in bulk water were used also for the interfacial PEqS
calculations.

C. Electronic structure calculations

The state-specific PEqS method has been implemented in
a locally modified version of the q-chem program99 and will be
released with v. 5.1. Electronic structure calculations were per-
formed at the level of second-order Møller-Plesset perturbation
theory (MP2) within the resolution-of-identity (RI) approxi-
mation.100 All electrons were correlated for the Li+(aq) and
Na+(aq) calculations, whereas other calculations use a frozen
core. The PEqS part of the calculation resides in the Hartree-
Fock iterations and uses the Hartree-Fock electron density.
(Nonequilibrium PCM results for excitation energies suggest
that a fully self-consistent use of the correlated electron density
has negligible effect on the results.50) The SCF convergence
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threshold is set to τSCF = 10�5 a.u. in all calculations, with an
integral and shell-pair screening threshold of 10�8 a.u.

We use the 6-311+G∗ basis set for all H2O molecules,
except in the case of e�(aq) where we use 6-311++G∗ instead,
to ensure that the interstices between the water molecules are
supported by basis functions. (We have previously concluded
that one set of diffuse functions on all atoms is sufficient to
support a hydrated electron that occupies an excluded volume
in the structure of liquid water.84,86) For Li and Na, we use
the cc-pCVTZ basis set, which includes functions to describe
core/valence correlation, whereas for F and Cl we use aug-cc-
pVTZ. In all cases, we employ the auxiliary basis set designed
for either cc-pVTZ or aug-cc-pVTZ,101 as appropriate.

The valence photoelectron spectrum of liquid water con-
sists of a broad absorption feature centered at 11.3 eV,102

attributed to ionization of a 1b1 MO localized on a single
H2O molecule.11,102–105 Experiments to determine the VIE of
F�(aq) are complicated by the fact that the fluoride signal is
embedded in the 1b1 band of water.11,16 When explicit water
molecules are included in the QM region, the corresponding
VIE calculation is problematic as well, not only for F�(aq)
but also for Na+(aq), Li+(aq), or any solute whose VIE lies
near or above that of water. In such cases, a simple calcula-
tion of the lowest-energy state of the ionized system results in
ionization of water rather than the desired solute,18 as shown
for Li+(aq) in Fig. 8(a) and for F�(aq) in Fig. 8(b). In these
examples, the VIE is computed for a system consisting of the
atomic ion surrounded by about 30 explicit water molecules
and spherical PCM boundary conditions. In both cases, how-
ever, it is a water molecule that is ionized rather than the atomic
ion. Figure 8(c) shows that even neat liquid water is problem-
atic, as in this case the lowest-energy ionized system places
the cation hole on an “edge” water molecule that lies near the
QM/continuum boundary and does not fully participate in the
hydrogen-bonding network. Computed VIEs are in very poor
agreement with experiment, e.g., 8.3 eV for neat liquid water.

To ionize F�, Cl�, Li+, or Na+ embedded in a water cluster,
one must remove an electron from an orbital other than the
HOMO of the full QM system. At the same time, one still wants
to include orbital relaxation effects upon ionization yet prevent
variational collapse of the wave function to the lowest-energy
solution, which is the one depicted in Figs. 8(a)–8(c). The
maximum overlap method106 (MOM) was designed precisely
for this purpose and has been used, for example, to compute
core-excited states (K-edge spectra) by moving an electron
from a core orbital into an extra-valence (virtual) orbital and
then relaxing the orbitals while searching for the maximum
overlap solution.107

Here, we start from an initial guess generated using the so-
called fragment MO (FragMO) procedure108 and then use the
MOM method to preserve the character of the initial orbitals
during subsequent SCF iterations. The FragMO procedure first
computes MOs on isolated fragments (here, either H2O or an
atomic ion), which affords an easy means to remove an elec-
tron from an MO associated with a particular fragment, e.g.,
the 1b1 orbital of a particular water molecule. A superposi-
tion of fragment density matrices is then used as the initial
guess for the supersystem SCF calculation. The converged
SCF solution obtained from this FragMO/MOM procedure

FIG. 8. Spin densities ρspin = ρα � ρβ following ionization of cluster con-
figurations representing (a) Li+(aq), (b) F�(aq), and (c) neat liquid water.
(Essentially 100% of ρspin is encapsulated within each surface.) In each case,
a standard SCF calculation of the ionized ground state results in a hole that is
localized on a water molecule near the continuum boundary and disconnected
from the hydrogen-bonding network. Computed VIEs are in poor agreement
with experiment. Panels (d)–(f) show the spin densities obtained from the
FragMO/MOM SCF approach, which ionizes the atomic ion in (d) and (e),
and a central water molecule in (f). In these cases, computed VIEs are in rea-
sonable agreement with measured values. All VIEs were computed using the
nonequilibrium IEF-PCM with a spherical cavity.

contains a “hole,” which manifests as a single virtual orbital
with an energy below that of the HOMO. For Li+(aq), the
core hole occasionally leads to accidental quasi-degeneracies
amongst the Hartree-Fock eigenvalues such that the MP2
energy denominator becomes very small. For this species only,
we therefore omit this “hole” orbital from the MP2 calculation
of the correlation energy.

VIEs recomputed using nonequilibrium IEF-PCM in con-
junction with this FragMO/MOM SCF procedure are shown in
Figs. 8(d)–8(f). It is first of all clear that this approach success-
fully ionizes the desired species, which is a centrally located
H2O molecule in the case of neat liquid water. The computed
VIEs are also in far better agreement with experiment, e.g., for
the snapshots shown in Fig. 8 they are 11.8 eV (computed) for
H2O(aq) versus 11.3 eV (experiment);102 11.3 eV versus 11.6
eV for F�(aq);11 and 62.0 eV versus 60.4 eV for Li+(aq).18 We
use the FragMO/MOM SCF procedure for all systems except
e�(aq), where the VIE lies well below that of liquid water and
a standard SCF procedure is adequate.

It is worth emphasizing that the use of the FragMO/MOM
procedure does not force the converged, singly occupied MO
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to be localized on any single monomer; only the initial-guess
MOs are localized and in subsequent SCF iterations the orbitals
are free to delocalize, as seen, for example, in Fig. 8(e). This is
likely to be important, e.g., to simulate the full valence photo-
electron spectrum of liquid water. Although the lowest-energy
feature is assigned to ionization of the 1b1 orbital localized
on a single water molecule, the higher-energy 3a1 feature is
broadened into an (unresolved) doublet,11,102–105 assigned to
ionization from bonding and anti-bonding combinations of the
3a1 orbitals on two hydrogen-bonded H2O molecules.105,109

In this work, we consider only the lowest VIE of each solute,
but in principle it should be possible to simulate the splitting
of the 3a1 feature by constructing the appropriate initial-guess
orbitals on a water dimer.

V. RESULTS
A. VIEs in bulk water

Configurationally averaged VIEs in bulk liquid water,
computed using the nonequilibrium PEqS and PCM meth-
ods, are shown in Table III along with experimental values
obtained from liquid microjet experiments.11,15,18,102 Also
listed is the average number 〈N〉 of explicit water molecules
in the QM region, which is about 30 in each case, amounting
to roughly two solvation shells. In previous work on e�(aq),42

we observed that increasing 〈N〉 up to 90, corresponding to an
increase in the radius of the QM region from 5.5 Å to 8.0 Å,
changed VIEs by ≤0.1 eV, both in bulk liquid water and at the
liquid/vapor interface. Amongst the solutes considered here,
we anticipate that e� is most acutely affected by the size of the
QM region and thus we regard the present calculations to be
adequately converged in this respect.

Agreement with experimental VIEs is excellent for the
anionic solutes and for H2O, especially for the PEqS treat-
ment of solvation. Although we do not expect exact agreement
between the PEqS and PCM calculations, primarily because
the solute cavities differ but also due to the approximate man-
ner in which IEF-PCM accounts for volume polarization,95–97

results from all three solvation models agree to within about

0.4 eV. (In fairness, the Gaussian widths for the PEqS nuclear
charges were determined in order to match IEF-PCM solvation
energies for a few snapshots.) For e�(aq), both PCM methods
underestimate the VIE by 0.5 eV, whereas the PEqS calcu-
lations are spot on, at 3.7 eV; arguably, this is the system for
which PCM boundary conditions are most questionable110 due
to the delocalized nature of the solute. For reasons that are not
clear, computed VIEs for Li+(aq) and Na+(aq) exhibit much
larger errors of 0.7–1.0 eV (PEqS) or 0.9–1.4 eV (PCM) with
respect to experiment.

Uncertainties on the calculated VIEs in Table III repre-
sent one standard deviation across MD snapshots and provide
an estimate of the inhomogeneous broadening arising from
thermal sampling of solvent configurations. We character-
ize the width of the computed spectrum in terms of the full
width at half maximum (FWHM = 2.355 × standard devi-
ation), assuming a Gaussian distribution of the computed
values, and comparison to experiment should provide some
insight regarding the quality of the underlying MD simula-
tions. Computed FWHMs for Li+ and Na+ are 0.9–1.1 eV, in
good agreement with experimental widths of 1.11–1.24 eV.18

Peak width measurements are not available for F�, but for Cl�

the measured width is 0.60 eV.18 Our computational uncer-
tainties for F�(aq) and Cl�(aq) correspond to a FWHM of
0.8–0.9 eV, slightly larger than what is observed experimen-
tally for Cl�(aq) but in keeping with the trend that the halide
anions have narrower photoelectron spectra as compared to
the alkali cations. The halides also have narrower photoelec-
tron spectra as compared to neat liquid water, with the lat-
ter at 1.45–1.47 eV (experiment102,104,105) versus 1.1–1.2 eV
(theory).

One note of caution is in order with regard to spectral
widths. Although the favorable comparison between the com-
puted VIEs and the experimental values demonstrates the suc-
cess of the FragMO/MOM approach, the effect of the lifting
of p-orbital degeneracy cannot easily be elucidated using this
approach. However, the magnitude of the p-orbital splitting
resulting from an asymmetric distribution of water molecules
has been estimated to be rather small,18 viz., 0.03 eV for
Na+(aq), 0.11 eV for F�(aq), and 0.12 eV for Cl�(aq).

TABLE III. Average VIEs computed with nonequilibrium PEqS and PCM methods at the (RI)MP2 level using
triple-ζ basis sets as described in Sec. IV C. Computed VIEs are averages over MD snapshots, and uncertainties
represent one standard deviation. Experimental error bars, which come from the references indicated, represent
uncertainty in the peak position and are not peak widths.

Computed VIE (eV)

Experimental
PEqS PCM

Solute 〈N〉 VIE (eV) Hybrid Spherical SAS

Li+ 30 60.40 ± 0.07a 61.41 ± 0.45 61.85 ± 0.45 61.59 ± 0.41
Na+ 29 35.40 ± 0.04a 36.09 ± 0.43 36.54 ± 0.44 36.34 ± 0.40
H2O 30 11.31 ± 0.04b 11.53 ± 0.51 11.64 ± 0.51 11.55 ± 0.45
e� 30 3.7 ± 0.1c 3.75 ± 0.55 3.16 ± 0.32 3.18 ± 0.28
F� 30 11.58d 11.66 ± 0.36 11.37 ± 0.39 11.52 ± 0.37
Cl� 32 9.60 ± 0.07a 9.65 ± 0.37 9.36 ± 0.38 9.41 ± 0.35

aReference 18.
bReference 102.
cReference 15.
dReference 11.
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TABLE IV. Nonequilibrium solvation correction to the VIE [Eq. (5.3)],
averaged over MD snapshots.

〈∆VIEnoneq〉 (eV)

PEqS PCM

Solute Hybrid Spherical SAS

Li+ 0.65 0.53 0.59
Na+ 0.65 0.53 0.59
H2O 0.11 0.55 0.62
e� 1.17 0.54 0.61
F� 0.88 0.53 0.58
Cl� 0.88 0.54 0.59

The magnitude of the nonequilibrium correction to the
VIE warrants consideration. It might be assumed that this cor-
rection, which comes from the boundary conditions, would
be rather small given the number of explicit water molecules
in our calculations, but in fact this is not the case. The
magnitude of the nonequilibrium correction is not available
directly from the solvation models (i.e., it is not separable
in the total nonequilibrium energy expression) but can be
deduced by considering two strategies by which a VIE might be
computed.

(1) Employ a nonequilibrium method that uses the optical
dielectric constant ε∞ for the ionized state and the static
dielectric constant εsolv for the initial state.

(2) Perform two equilibrium solvation free energy calcula-
tions, both of which use εsolv, and compute the VIE as
the difference between the free energies of the initial
and the ionized states.

The free energy of the ionized state computed using the
equilibrium strategy (2) includes within it the polariza-
tion effects resulting from both the slow (nuclear) and fast

(electronic) contributions from the solvent. We might express
this VIE as

VIEeq = Efinal(εsolv) − Einitial(εsolv), (5.1)

where the notation indicates that εsolv is the dielectric constant
of merit in both calculations. This differs from nonequilibrium
strategy (1), which accounts only for the fast component,

VIEnoneq = Efinal(ε∞) − Einitial(εsolv). (5.2)

The difference between these two calculations provides a
measure of the nonequilibrium correction to the VIE,

∆VIEnoneq = VIEnoneq − VIEeq

= Efinal(ε∞) − Efinal(εsolv).
(5.3)

The average value of ∆VIEnoneq from each set of calcu-
lations is listed in Table IV. This correction ranges from 0.5
to 1.2 eV, and this value characterizes the error that would be
made if only equilibrium solvation models were available. As
such, computational strategies for vertical ionization energies
that are based on equilibrium PCMs should not be trusted,
although they are sometimes encountered in the literature.

B. VIEs at the liquid/vapor interface

Figure 9 shows the time-dependent VIE, computed using
the nonequilibrium PEqS method, for a single MD trajectory
of Li+ and of Na+, initialized at the liquid/vapor interface.
Also plotted is the distance dGDS between the ion and the
instantaneous GDS.

Within 50 ps, Li+ moves away from the interface in favor
of a more bulk-like environment, and for the remainder of the
simulation its position fluctuates in the range 4.0 Å < dGDS

< 8.5 Å. Na+ departs the interface on a similar time scale
and dGDS then fluctuates from 6.0 to 9.0 Å for most of the
simulation, except when the ion briefly drifts back to the inter-
face around 250–300 ps, before quickly descending again into

FIG. 9. VIEs computed using the nonequilibrium PEqS method [Eq. (2.31)] along a single MD trajectory for (a) Li+(aq) and (b) Na+(aq), along with the distance
dGDS from the Gibbs dividing surface that defines the interface, again for (c) Li+(aq) and (d) Na+(aq). Also shown on the VIE plots is a best-fit line to the data
(in blue) and the average bulk VIE (in red).
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FIG. 10. VIEs computed using the nonequilibrium PEqS method [Eq. (2.31)] along a single MD trajectory for (a) F�(aq) and (b) Cl�(aq), along with the distance
dGDS from the Gibbs dividing surface that defines the interface, again for (c) F�(aq) and (d) Cl�(aq). Also shown on the VIE plots is a best-fit line to the data
(in blue) and the average bulk VIE (in red).

a bulk-like solvation environment by 350 ps. Linear regres-
sions of the VIE(t) data (shown in blue in Fig. 9) are nearly
flat and almost indistinguishable from the average bulk VIE
(shown in red), demonstrating the extent to which the VIE is
insensitive to the position of the ion relative to the liquid/vapor
interface.

Figure 10 presents the same data for representative tra-
jectories of F�(aq) and Cl�(aq) initialized at the interface. The
fluoride ion remains within 2–4 Å of the interface for the first
50 ps but then moves away, with dGDS fluctuating from 6 to
8 Å. This behavior is similar to the cation data in Fig. 9. In
contrast, the migration of Cl� away from the interface is notice-
ably slower and occurs over 350 ps, with the ion then returning
rapidly to within 2 Å of the GDS near the end of the simulation.
Linear fits to the instantaneous VIE data are not quite as flat
as in the case of the cations, indicating that the VIE exhibits a
minor dependence on the location of the anion relative to the
interface.

These interfacial simulations were initialized by replacing
a water molecule with an ion in a previously equilibrated sim-
ulation of neat liquid water, so the early-time dynamics reflect
the rearrangement of the solvent to accommodate the ion. We
therefore attribute the slope in the linear VIE fits for F� and
Cl�, which is not observed for Li+ or Na+ (where the slopes are
essentially zero) as evidence of greater disruption of the water
network when the larger and more polarizable halide ions are
inserted. Following an equilibration period of roughly 100 ps,
however, the interfacial VIEs fluctuate around mean values of
11.63 eV (for F�) and 9.62 eV (for Cl�), which are nearly iden-
tical to the average bulk values of 11.66 eV and 9.65 eV. As
such, the slight difference in the early-time dynamics of the
anions relative to that of the cations seems insignificant and
mostly an artifact of the simulation procedure, i.e., the fact that
the ion is not equilibrated at the interface at t = 0.

Table V compares the average VIEs and average value
of dGDS for nonequilibrium PEqS calculations of neat liquid

water and e�(aq). In contrast to the calculations for the inter-
facial halide anions and alkali cations (e.g., Figs. 9 and 10),
where the ion starts at the interface at t = 0 but quickly diffuses
deeper into the liquid, the simulations leading to Table V are
more truly interfacial. The average VIE for liquid water that is
reported in Table V is obtained by ionizing the H2O molecule
that is closest to the instantaneous GDS at each time step. For
e�(aq), an electron initialized at the interface remains there
long enough to generate a meaningful interfacial trajectory,79

and for the snapshots used to compute the average e�(aq) VIE
in Table V the centroid of the spin density is no farther than
2.5–3.0 Å from the liquid surface. In contrast, halide anions
and alkali cations initialized at the interface sample values of
dGDS in the range 6–8 Å even in the early-time dynamics,
as can be seen from the representative trajectories in Figs. 9
and 10.

Average VIEs for water and for e�(aq) reported in Table V
can thus be cleanly identified as interfacial VIEs for these
species, and the interfacial VIE for liquid water (11.61 ± 0.52
eV) is indistinguishable from the bulk value (11.53± 0.51 eV).
For e�(aq), the interfacial VIE of 3.35 ± 0.46 eV is discernibly
lower than the bulk value of 3.75 ± 0.55, albeit not by much.
The latter simulations, which are based on the same trajectory
data as our previous ones in Ref. 42 but with a slightly better
treatment of the electronic structure (including a state-specific
PEqS approach rather than a perturbative one) generally

TABLE V. Average distance 〈dGDS〉 between the c.o.m. of the solute and
the GDS, along with the corresponding average VIE, for configurations
extracted from a liquid/vapor MD simulation. Uncertainties reflect one
standard deviation.

Solute 〈dGDS〉 (Å) 〈VIE〉 (eV)

H2O 0.28 ± 0.31 11.61 ± 0.52
e� 1.82 ± 0.35 3.35 ± 0.46
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support our previous conclusion that the hydrated electron at
the air/water interface would be difficult to distinguish from its
counterpart in bulk water using liquid microjet photoelectron
spectroscopy.

VI. DISCUSSION

Winter et al.18 have used liquid microjet photoelectron
spectroscopy, in conjunction with a variety of computational
strategies, to investigate the VIEs of aqueous halide anions and
alkali cations. In the following discussion, we consider the
QM/MM equilibrium PCM calculations reported in Ref. 18
alongside results from the present work. Errors relative to
experiment, for the calculations reported in Ref. 18 and for
the present work, are listed in Table VI.

Due to complications arising from water ionization in
the presence of explicit solvent molecules, as discussed in
Sec. IV C, the equilibrium PCM calculations in Ref. 18 include
only the bare ion in the QM region. The equilibrium nature
of the PCM used in that work affords an adiabatic ioniza-
tion energy (AIE) because all solvent degrees of freedom
are (implicitly) relaxed following ionization. (For a molec-
ular solute, or if explicit solvent molecules are included in the
QM region, the use of an equilibrium PCM without geometry
optimization in the ionized state affords something in between
a VIE and an AIE because the implicit solvent degrees of
freedom are relaxed but the explicit nuclear degrees of free-
dom are not.) QM/MM calculations reported in Ref. 18 also
include only the solute in the QM region, surrounded by clas-
sical point charges representing water molecules. Unlike the
equilibrium PCM calculations, ionization energies computed
using this approach are indeed VIEs, albeit ones that lack any
electronic polarization contribution from the solvent because
the point charges cannot be polarized upon ionization of the
solute.

For the alkali cations, VIEs computed at the QM/MM
level err by 6.4 eV (Li+) and 4.2 eV (Na+) and are clearly unac-
ceptable. AIEs computed with the equilibrium PCM approach
are larger than experimental VIEs, by 1.8 eV for Li+(aq) but
only by 0.05 eV for Na+(aq). This large discrepancy in accu-
racy is puzzling and is likely fortuitous, but in any case the

TABLE VI. Errors in computed VIEs, relative to experimental values from
Table III. Positive values indicate that the theoretical result is larger than the
experimental VIE.

Signed error vs. experiment (eV)

PEqS (noneq.)a PCM (noneq.)a PCM (eq.)

Solute Hybrid Spherical SAS Isodensityb QM/MM

Li+ 1.01 1.45 1.19 1.83c 6.43c

Na+ 0.69 1.14 0.94 0.05c 4.15c

H2O 0.22 0.33 0.24 . . . . . .

e� �0.0 �0.5 �0.5 . . . . . .

F� 0.08 �0.21 �0.06 �3.78d
�0.39d

Cl� 0.05 �0.24 �0.19 �2.75d
�0.93d

aMP2 results from this work.
bSolute cavity determined as an isocontour of the electron density.
cCCSD(T)/cc-pV5Z results from Ref. 18.
dCCSD(T)/aug-cc-pVTZ results from Ref. 18.

juxtaposition of calculated AIEs with experimental VIEs is
not reasonable, especially for the halides where the hydration
structure of X� differs considerably from that of neutral X.
Overall, the enormity of the errors for this approach and for
the QM/MM calculations suggests that a proper description
of “specific” solvent effects, by means of explicit QM water
molecules, is essential, even when using a PCM. (This fact is
well known, e.g., in pKa calculations.111) With respect to the
nonequilibrium PCM results with explicit solvent, for which a
direct comparison to experiment is appropriate, errors for both
Li+(aq) and Na+(aq) are 0.94–1.45 eV, which we consider to be
surprisingly large given the rather simple electronic structure
of these solutes.

MP2/PEqS calculations including ≈30 explicit QM water
molecules represent our best attempt for these systems, yet
these calculations still overestimate the cation VIEs by 1.0 eV
(Li+) and 0.7 eV (Na+). (That the error for Na+ is more compa-
rable to that for Li+, as compared to the calculations reported
in Ref. 18, suggests that the accuracy of the equilibrium PCM
result for Na+ is indeed fortuitous.) The reasons behind this
remaining error remain a topic for further study; a more thor-
ough examination of cavity construction is probably warranted
at the very least.

As compared to the alkali cations, where all methods con-
sidered here and in Ref. 18 overestimate the experimental VIE,
both positive and negative errors are observed for the halide
ions, perhaps simply because the errors are closer to zero.
(Exceptions are the AIEs computed with an equilibrium PCM,
which are much too small.) The QM/MM results are much
more accurate than they were for the cations, but this seems
fortuitous given that an anionic QM solute likely suffers more
from overpolarization by the point charges than does a cation
solute due to the more diffuse nature of the wave function.
Notably, the equilibrium PCM results for the anions are far less
accurate than those for the cations, but the relative accuracy
for cations represents a form of error cancellation as suggested
in Ref. 18. Namely, for the cations, only minor reorientation of
the solvent molecules is required to accommodate the resulting
divalent ion, due to the pre-existing favorable alignment of the
solvent dipoles in the monovalent state, but ionization of the
anions results in a charge-neutral solute and thus significant
reorientation of the solvent. As a result, one expects the AIE to
be much smaller than the VIE for the anions, but more similar
to the VIE for the cations.

Considering e�(aq), we note that the experimental VIE
of 3.7 ± 0.1 eV15 that is provided in Table III represents an
upward revision of many previously reported VIEs in the range
3.3–3.4 eV.14,112–116 The newer value has been called the “gen-
uine” binding energy of e�(aq),15 as it includes corrections
for scattering of the ejected electron that lead to wavelength
dependence in the photoelectron spectrum.14,15 MP2/PEqS
calculations also afford a VIE of 3.7 eV, which is rather remark-
able given the complexity of this species though not out of
line with the accuracy that we obtain for the halide anions.
(Our calculation also represents an upward revision of the
MP2/6-31++G∗ value that we reported previously, based on
a perturbative version of the nonequilibrium PEqS method.42)
Assuming that the new experimental VIE withstands further
scrutiny, then the present MP2/PEqS calculation would seem
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to affirm the simulation procedures71,79 used to generate the
MD snapshots for this species. It also adds to the ongoing
debate regarding the detailed structure of the aqueous elec-
tron,70,71,117–124 and in particular the question of whether this
species is cavity-forming or not; the MD snapshots used here
correspond to a cavity-forming electron, as can be seen in
Fig. 1. Finally, we note that amongst the solutes examined
here e�(aq) affords the largest discrepancy between PEqS and
PCM values of the VIE. This may represent a failure of IEF-
PCM to adequately describe volume polarization by this highly
delocalized non-classical solute.110

Finally we consider the 1b1 state of liquid water. Errors
in the VIE, obtained with nonequilibrium methods, are
0.2–0.3 eV. Crucial to the success of this method is the
FragMO/MOM SCF technique, in order to ionize a central
H2O molecule not too near the QM/continuum boundary.
This approach will require some care if the full photoelec-
tron spectrum is desired, to select the appropriate orbitals for
ionization, and may be hopeless in cases where the MO picture
of photoionization completely breaks down.125 Unfortunately,
alternative electronic structure techniques that afford ioniza-
tion energies directly,126–130 and can deal with “shake-up”
ionization events,125,126,130 are considerably more expensive.
Alternatively, a simple technique to correct the Kohn-Sham
eigenvalue spectrum has recently been shown to afford valence
photoelectron spectra that compare well with experiment131

and is no more expensive than standard density-functional
calculations. In our estimation, however, this “potential adjus-
tors” technique131 is unlikely to work across the entire
(core + valence) photoelectron spectrum.

VII. CONCLUSIONS

We have presented a detailed description of the theory
and implementation of the state-specific nonequilibrium PEqS
method and its application to compute aqueous-phase VIEs.
In contrast to PCMs, which are the de facto implicit solva-
tion models in electronic structure calculations, PEqS calcu-
lations require discretization of three-dimensional space and
not simply a two-dimensional cavity surface. This makes PEqS
considerably more expensive than PCM calculations despite
the efficient multigrid approach described here. Computational
expense notwithstanding, the PEqS approach has the advan-
tage that it treats volume polarization (charge leakage outside
of the QM region) exactly, up to discretization errors. That said,
among the solutes considered here this seems to matter only
for e�(aq). For more “classical” solutes, nonequilibrium PCM
calculations with the solvent accessible surface construction73

are within 0.2 eV of PEqS results, thus validating the more
affordable PCM approach in bulk solution.

A more important advantage of the PEqS approach is that
it is naturally applicable to arbitrary (and therefore anisotropic)
dielectric environments, defined by a dielectric function ε(r).
This function could be defined based on the electron den-
sity,40,62–67 but here we adopt an approach analogous to PCM
calculations and define a surface to delineate the boundary
between the atomistic QM region and its continuum envi-
ronment. The usual PCM prescription using atom-centered
vdW spheres, however, proves to be problematic when explicit

water molecules are included in the QM region, leading to
unphysical high-dielectric regions between these explicit sol-
vent molecules. Oddly, this problem is not often discussed in
the quantum chemistry literature although a similar problem
in biomolecular simulation has been widely discussed,132–136

where in the context of Poisson-Boltzmann electrostatics
calculations the vdW cavity construction may leave high-
dielectric regions in the hydrophobic interior of a protein. In
this work, we introduced a “hybrid” cavity model that avoids
this problem.

Here, we used the PEqS approach, in conjunction with
QM regions containing ≈30 explicit water molecules, to com-
pute VIEs for neat liquid water as well as F�(aq), Cl�(aq),
Na+(aq), Li+(aq), and e�(aq), both in bulk liquid water and at
the air/water interface. Ionization energies for most of these
systems lie below (or are similar to) that of liquid water itself,
and a naı̈ve calculation of the lowest-energy ionized state
thus results in ionization of H2O rather than the solute of
interest. We circumvent this problem by means of a fragment-
based initial guess combined with the maximum overlap
method.106

We find that nonequilibrium corrections to VIEs, which
are missing from continuum models based only on the static
dielectric constant, amount to 0.5–1.2 eV for each system
investigated in this work. VIEs computed at the MP2/PEqS
(noneq.) level for liquid water, F�(aq), Cl�(aq), and e�(aq)
agree with experimental results to within 0.2 eV, with slightly
larger errors when nonequilibrium PCMs are used as a sub-
stitute for PEqS. For reasons that remain unclear, however,
errors for alkali cations are larger, e.g., 1.0 eV for Li+(aq) at
the MP2/PEqS (noneq.) level. Consistent with our previous
work on e�(aq),42 there is very little difference between VIEs
computed at the air/water interface versus those in bulk water,
for any of the solutes considered here. For liquid water, the
same conclusion has recently been reported based on G0W0

calculations.137

All of the QM calculations in this work were performed
at the MP2 level, but the PEqS method works equally well
in the context of density functional theory, and also for
other correlated wave functions, if the Hartree-Fock density
is used in Poisson’s equation. A nonequilibrium treatment
of vertical excitation energies within the PEqS framework
could be accomplished by adapting PCM algorithms described
previously in the context of time-dependent density func-
tional theory48,49 and the algebraic diagrammatic construc-
tion.50 Finally, it should be possible to adapt this methodol-
ogy to develop nonequilibrium versions of density-dependent
dielectric solvation models in which ε(r) is a functional of
ρ(r).40,62–64,138 This would eliminate some of the arbitrariness
in construction of the QM/continuum boundary. We hope to
address this, along with the sensitivity of PEqS results to the
Gaussian smearing of the nuclear charges, in future work.
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I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E.
J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht,
E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brand-
horst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S.
H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasi,
Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghy-
sels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P.
H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau,
H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger,
D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K.
V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan,
A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A.
V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya,
D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek,
A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada,
S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J.
W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson,
J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost,
Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D.
M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre,
A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-
D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu,
Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Ras-
solov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A.
I. Krylov, P. M. W. Gill, and M. Head-Gordon, “Advances in molecular
quantum chemistry contained in the Q-Chem 4 program package,” Mol.
Phys. 113, 184 (2015).
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https://doi.org/10.1063/1.5132808., s

Arecent paper1 introduced a generalized Poisson equation solver (PEqS) as a means to perform implicit solvation calculations in quan-
tum chemistry. Due to a programming error involving mishandling of factors of 4π that accompany the solute’s charge density, our original

TABLE III. Average VIEs computed with nonequilibrium PEqS and PCM methods at the (RI)MP2 level using triple-ζ basis
sets as described in Sec. IV C. Computed VIEs are averages over MD snapshots, and uncertainties represent one standard
deviation. Experimental error bars, which come from the references indicated, represent uncertainty in the peak position and
are not peak widths.

Computed VIE (eV)

Experimental PEqS PCM

Solute ⟨N⟩ VIE (eV) Hybrid Spherical SAS

Li+ 30 60.40± 0.07a 61.23 ± 0.39 61.85 ± 0.45 61.59 ± 0.41
Na+ 29 35.40± 0.04a 36.02 ± 0.38 36.54 ± 0.44 36.34 ± 0.40
H2O 30 11.31± 0.04b 11.49 ± 0.39 11.64 ± 0.51 11.55 ± 0.45
e− 30 3.7± 0.1c 3.38 ± 0.29 3.16 ± 0.32 3.18 ± 0.28
F− 30 11.58d 11.74 ± 0.33 11.37 ± 0.39 11.52 ± 0.37
Cl− 32 9.60± 0.07a 9.68 ± 0.32 9.36 ± 0.38 9.41 ± 0.35

aReference 5.
bReference 6.
cReference 7.
dReference 8.
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TABLE VI. Errors in computed VIEs, relative to experimental values from Table III. Positive values indicate that the theoretical
result is larger than the experimental VIE.

Signed error vs experiment (eV)

PEqS (noneq.)a PCM (noneq.)a PCM (eq.)

Solute Hybrid Spherical SAS isodensityb QM/MM

Li+ 0.83 1.45 1.19 1.83c 6.43c

Na+ 0.62 1.14 0.94 0.05c 4.15c

H2O 0.18 0.33 0.24 . . . . . .
e− −0.32 −0.5 −0.5 . . . . . .

F− 0.16 −0.21 −0.06 −3.78d −0.39d

Cl− 0.08 −0.24 −0.19 −2.75d −0.93d

aMP2 results from this work.
bSolute cavity determined as an isocontour of the electron density.
cCCSD(T)/cc-pV5Z results from Ref. 5.
dCCSD(T)/aug-cc-pVTZ results from Ref. 5.

implementation erroneously underestimates electrostatic solvation energies, Gelst. The error largely cancels in the calculation of vertical ion-
ization energies (VIEs), which were the primary topic of Ref. 1. For the hydrated electron, however, the effect is large enough to warrant
pointing out. For e−(aq), we originally reported a VIE of 3.75 eV,1 a value that has since been highlighted elsewhere,2,3 but which is modified
to 3.38 eV when the aforementioned error is corrected. For simplicity, we provide corrected versions of Tables III and VI in their entirety
here, although the polarizable continuum model (PCM) results in those tables are completely unaffected by this change. For Li+(aq), the PEqS
value of the VIE is modified by 0.2 eV relative to what was reported in Ref. 1, whereas VIEs for Na+(aq), F−(aq), Cl−(aq), and neat liquid water
change by < 0.1 eV.

We have verified that the corrected version of the PEqS method affords the analytical value of Gelst for the Born ion model, when the
discretization grid is dense and the dielectric boundary is spherical and sharp. The error described above has been fixed in the Q-Chem
software since v. 5.2 (May 2019) and does not affect recent extensions of the PEqS method.4 Furthermore, correct treatment of the 4π factors
obviates the need for Gaussian blurring of the nuclear contribution to the electrostatic potential, as was done in Ref. 1. For consistency,
Gaussian blurring is included in the corrected version of Table III that is reported here. However, foregoing the blurring changes the VIEs for
Li+(aq) and Na+(aq) by only 0.06 eV, with even smaller changes for the other species.
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