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ABSTRACT
We report an implementation of periodic boundary conditions for mixed quantum mechanics/molecular mechanics (QM/MM) simulations,
in which atomic partial charges are used to represent periodic images of the QM region. These charges are incorporated into the Fock matrix
in a manner that preserves the variational nature of the self-consistent field procedure, and their interactions with the MM charges are
summed using the conventional Ewald technique. To ensure that the procedure is stable in arbitrary basis sets, the atomic charges are derived
by least-squares fit to the electrostatic potential generated by the QM region. We formulate and implement analytic energy gradients for the
QM/MM-Ewald method and demonstrate that stable molecular dynamics simulations are thereby obtained. As a proof-of-concept applica-
tion, we perform QM/MM simulations of a hydrated electron in bulk liquid water at the level of Hartree-Fock theory plus empirical dispersion.
These simulations demonstrate that the “cavity model” of the aqueous electron, in which the spin density of the anionic defect is localized
within an excluded volume in the liquid, is stable at room temperature on a time scale of at least several picoseconds. These results vali-
date cavity-forming pseudopotential models of e−(aq) that have previously been derived from static-exchange Hartree-Fock calculations, and
cast doubt upon whether non-cavity-forming pseudopotentials are faithful to the underlying Hartree-Fock calculation from which they were
obtained.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5089673

I. INTRODUCTION

The importance of long-range electrostatics in classical molec-
ular dynamics (MD) simulations of condensed-phase systems is
by now well established.1–5 The Ewald summation procedure,6–13

along with its “particle-mesh” variants,9–16 is a standard tech-
nique for summing the long-range charge-charge interactions in
MD simulations performed under periodic boundary conditions
(PBC). Ewald summation has also been extended to mixed quan-
tum mechanics/molecular mechanics (QM/MM) simulations,17–23

under the assumption that the MM region is large compared to the

QM region. In that case, it makes sense to approximate the interac-
tion of the QM region with its periodic images by means of classical
point charges that are derived from the wave function. With an
appropriate correction to the Fock matrix, a fully variational self-
consistent field (SCF) procedure is obtained for this QM/MM-Ewald
method.17,18,21

It remains to specify precisely how the atomic charges are
derived from the wave function. The first implementations of
the QM/MM-Ewald method relied on Mulliken charges,17–20,24

which is reasonable for semi-empirical QM calculations in mini-
mal basis sets but leads to serious SCF convergence problems in

J. Chem. Phys. 150, 144115 (2019); doi: 10.1063/1.5089673 150, 144115-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5089673
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5089673
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5089673&domain=aip.scitation.org&date_stamp=2019-April-9
https://doi.org/10.1063/1.5089673
https://orcid.org/0000-0002-1663-2278
mailto:herbert@chemistry.ohio-state.edu
https://doi.org/10.1063/1.5089673


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

larger basis sets.21 To circumvent this problem, and to facilitate
periodic QM/MM calculations in arbitrary basis sets, we reformu-
lated the QM/MM-Ewald method to use charges derived from the
electrostatic potential on a grid,21 i.e., “CHELPG” charges.25,26

Because these charges are based on a genuine (in principle, observ-
able) molecular property rather than the atomic orbital overlap
matrix, CHELPG charges are stable in large basis sets and in basis
sets containing diffuse functions.21 Our group has used CHELPG
charges in a variety of contexts where self-consistent electrostatic
embedding charges are required,27–35 but the analytic gradient of
the CHELPG-based QM/MM-Ewald procedure has not yet been
reported.

The CHELPG charges are defined via a least-squares fit-
ting problem,21,26,28 which significantly complicates the QM/MM-
Ewald analytic gradient as compared to the version based on
Mulliken charges.22 In the end, however, we obtain a QM/MM
method that is far more robust. As a proof-of-concept appli-
cation, we consider short MD simulations of the aqueous (or
“hydrated”) electron,36 e−(aq), where the need for diffuse basis func-
tions renders previous versions of the QM/MM-Ewald procedure
unusable.

The hydrated electron is one of the primary radicals gener-
ated by radiolysis of water,36–41 and despite its definitive exper-
imental identification more than 50 years ago,42–45 its detailed
structure has been a recurring subject of debate.36,46–50 Prior
to 2010, a consensus had seemingly emerged around a “cavity”
or “excluded-volume” model,36 resulting from an electron–water
interaction potential that is net repulsive when averaged over all
space.51,52 More recently, however, Schwartz and co-workers have
developed an electron–water interaction potential that does not
behave in this way,53 and predicts instead a delocalized e−(aq)
wave function. This has led Schwartz et al. to question the con-
ventional “cavity model” in a series of papers53–58 that remain
controversial.52,59–61

While limited in scope, the simulations presented herein pro-
vide strong support for the cavity model. Using only a Hartree-
Fock (HF) description of the QM region—the same level of theory
used by Schwartz et al. to parameterize their electron–water pseu-
dopotential model53—our simulations support an excluded volume
that is stable in liquid water for >5 ps at T = 300 K. As com-
pared to previous density functional theory (DFT) simulations of
this species,62–66 Hartree-Fock calculations are free from questions
regarding self-interaction artifacts that afflict calculations of weakly
bound anions,67,68 as well as those of open-shell solutes in aque-
ous solution.69,70 As such, our results provide an important new
perspective on the structure of e−(aq).

II. BACKGROUND REVIEW
In this section, we review the standard Ewald sum and its ana-

lytic gradient,9,10,13 as well as the basic idea behind the QM/MM-
Ewald method.17–19,21,22 This will set the stage for deriving the
analytic gradient of the CHELPG-based QM/MM-Ewald method in
Secs. III and IV. Detailed derivations of the equations summarized
here can be found in the extensive set of Appendixes included in
Ref. 22.

Throughout this work, the vector-valued operator ∇̂i generates
the derivative with respect to the Cartesian coordinates of the ith

nucleus, ri = (xi, yi, zi),

∇̂if (r) = ux(
∂f
∂xi

) + uy(
∂f
∂yi

) + uz(
∂f
∂zi

). (2.1)

The quantities ux, uy, and uz are the unit vectors in the indicated
directions. For functions f (rij) of the inter-particle distances

rij = ∥rij∥ = ∥ri − rj∥, (2.2)

the vector-valued gradient is

∇̂if (rij) = (
∂f
∂rij

)
rij
rij

= −∇̂j f (rij). (2.3)

A. Ewald sum and its gradient
We wish to solve the usual Ewald problem,10–12 namely, evalu-

ation of the infinite sum

Eelst =
1
2∑n

∑
i,j

′ qiqj
∥rij + n∥2 , (2.4)

in which the sums over i and j represent all particles in the unit cell
(n = 0) and the primed summation means that i = j is excluded when
n = 0, to avoid self-interaction. The quantity

n = nxLxux + nyLyuy + nzLzuz (2.5)

is a lattice vector of the orthorhombic Lx × Ly × Lz unit cell, with
(nx,ny,nz) ∈ Z3. We use atomic units throughout this work, to avoid
factors of (4πε0)

−1 in Eq. (2.4) and elsewhere. Our notation largely
follows that in Ref. 12 and is slightly modified with respect to our
own previous work.21,22

According to the usual Ewald procedure, the total electrostatic
energy is partitioned into five terms,11,21,22,71

Eelst = Ereal + Erecip + Eself + Echarge + Edipole. (2.6)

The real- and reciprocal-space energies (Ereal and Erecip, respectively)
partition the sum in Eq. (2.4) into short- and long-range contribu-
tions, with a self-energy correction Eself whose origin is discussed
below. The final two terms are corrections in cases where the sim-
ulation cell has a non-zero net charge or net dipole moment. The
rest of this section introduces these terms one by one, along with
the analytic gradient of each.

The real-space energy Ereal is computed using an attenuated
Coulomb interaction erfc(ηr)/r that decays to zero on a length scale
∼η−1, where η is the usual Ewald “splitting” parameter. This term is
given by10–12,22,71

Ereal =
1
2∑n

∑
i,j

′qiqj
⎛

⎝

erfc(η ∥rij + n∥)
∥rij + n∥

⎞

⎠
. (2.7)

As in Eq. (2.4), the primed summation excludes i = j when n = 0.
If η is chosen such that η−1

≪ L/2 (the “minimum-image conven-
tion”72), then terms with n ≠ 0 make negligible contributions to Ereal
and the sum over n can be omitted from Eq. (2.7). We leave this sum
in place for generality, as the selection of η for QM/MM calculations
may be subject to different considerations as compared to purely

J. Chem. Phys. 150, 144115 (2019); doi: 10.1063/1.5089673 150, 144115-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

classical Ewald summation.21 The gradient of Ereal is straightforward
to obtain,11,22

∇̂iEreal =∑
n
∑
j≠i

qiqj
⎡
⎢
⎢
⎢
⎢
⎣

erfc(η ∥rij + n∥)
∥rij + n∥

+ (
2η
√π

)e−η
2
∥rij+n∥2

⎤
⎥
⎥
⎥
⎥
⎦

rij + n
∥rij + n∥2 .

(2.8)

The restriction j ≠ i arises from the fact that the i = j case is already
excluded for n = 0 in Eq. (2.4), lest we count an atom’s Coulomb
interaction with itself, whereas for n ≠ 0 and i = j, the distance rij + n
is equal to n, which does not depend on ri.

We next wish to consider the reciprocal-space energy Erecip and
its gradient. These will be expressed in terms of the crystallographic
structure factor9,12

S(k) =∑
i
qi eı k⋅ri . (2.9)

The quantity k is a reciprocal lattice vector with components
kα = 2πmα/Lα, for α ∈ {x, y, z}, and mα ∈ Z. The quantity S(k)
is sometimes denoted ρ̃(k), as it is a Fourier component of the
periodically-replicated charge density ρ(r) arising from the point
charges {qi}.11,13,73 Note that

∣S(k)∣2 =∑
i,j
qiqj eı k⋅rij . (2.10)

As discussed below, we will eventually need to make a distinc-
tion between QM charges (derived from the wave function) and
MM charges (obtained from a force field),21 because this distinction
affects how Eq. (2.10) is handled. Assuming that the indices i and j
are equivalent, which is indeed the case for strictly classical Ewald
summation, then Eq. (2.10) can be rewritten as

∣S(k)∣2 = Γs(k)2 + Γc(k)2, (2.11)

where

Γs(k) =∑
j
qj sin(k ⋅ rj), (2.12a)

Γc(k) =∑
j
qj cos(k ⋅ rj). (2.12b)

The reciprocal-space energy can now be written in a compact
form,10–12,17,22

Erecip =
1
2 ∑k≠0

ω(k)∣S(k)∣2, (2.13)

where k = ∥k∥ and

ω(k) = (
4π
Vk2 )e

−k2
/4η2

. (2.14)

The quantity V is the volume of the unit cell. Note that ω(k) is inde-
pendent of the coordinates of the particles {qi}, so the gradient of
Erecip is simply11,22

∇̂iErecip =
1
2 ∑k≠0

ω(k) ∇̂i∣S(k)∣2. (2.15)

The requisite gradient of |S(k)|2 is

∇̂i∣S(k)∣2 = −2qik∑
j
qj sin(k ⋅ rij). (2.16)

Note that the summand in this equation vanishes when i = j.

The expression in Eq. (2.16) can be used regardless of whether
qi and qj are QM or MM point charges. If both i and j represent MM
atoms, however, then both summations in Eq. (2.10) run over the
same set of atoms, which provides opportunity for some simplifica-
tion. In this case, a more computationally efficient form of Eq. (2.16)
is

∇̂i∣S(k)∣2 = 2qik[Γs(k) cos(k ⋅ ri) − Γc(k) sin(k ⋅ ri)], (2.17)

which makes use of the same equivalence between summation
indices i and j that was used to derive Eq. (2.11) from Eq. (2.10). In
strictly classical simulations, Eq. (2.17) is used rather than Eq. (2.16)
because the sums in Eq. (2.12) can be computed once per time step
and reused. This eliminates a double summation over atomic indices
that would otherwise be required to evaluate the reciprocal-space
gradient in Eq. (2.15). For QM/MM simulations, however, one must
consider cases where qi in Eq. (2.10) is an MM charge but qj is the
charge on a QM atom, and in such cases, Eq. (2.16) must be used
rather than Eq. (2.17).

The remaining contributions to the electrostatic energy in
Eq. (2.6) are the self energy (Eself), charge correction (Echarge), and
surface-dipole correction (Edipole). We will describe each in turn,
starting with

Eself = −
η

√π∑i
q2
i . (2.18)

In a careful derivation of Ewald summation using a Gaussian screen-
ing potential for each of the charges qi, this term arises from the need
to eliminate the interaction between qi with its compensating Gaus-
sian background charge.73 Stated differently, by including Eself in the
total electrostatic energy [Eq. (2.6)], we guarantee that the electro-
static potential at the point ri does not contain a contribution from
the point charge qi that is located there.74

If all of the charges qi are fixed, then Eself has zero gradient
with respect to displacements of the nuclei and does not contribute
to the dynamics, though it obviously needs to be included if for
some reason the charges are modified during a simulation, e.g.,
in the “charging” (particle insertion) step of a free energy calcu-
lation. In the present context, the charges on the QM nuclei are
not fixed and certainly have non-vanishing gradients with respect
to displacements of the nuclear positions. That said, a self-energy
term involving the QM charges does not arise in our approach
due to the manner in which the QM/MM interactions are han-
dled.18,22 The summation in Eq. (2.18) thus includes MM charges
only, unlike the other equations in this section where the charges
{qj} include both QM and MM point charges. This point is dis-
cussed further in Sec. II B, where we introduce our QM/MM
approach.

The charge correction

Echarge = −
πQ2

2 Vη2 (2.19)

arises whenever the unit cell contains a non-zero net charge,
Q = ∑iqi.11,22 This correction amounts to a uniform shift in the
potential such that the Ewald potential averages to zero over the
unit cell, even when Q ≠ 0.75 This corresponds to zeroing out
the contribution from the divergent k = 0 Fourier mode that is
excluded in Erecip [Eq. (2.13)], which is the only meaningful way to
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set the condition of “zero potential at infinite separation” in a peri-
odic system.76 Equivalently, Echarge is the electrostatic interaction
energy of a compensating background charge −Q, whose uniformity
ensures that the charge-correction term engenders no force on the
nuclei.11,77

Due to its dependence on V−1, what we call Echarge has also been
interpreted as a correction for the finite volume of the simulation
cell.71,76 Even in QM/MM simulations this correction has a vanish-
ing gradient provided that the total charge Q is fixed. Care must be
taken when using Ewald summation in a simulation where either the
total charge Q or else the volume of the simulation cell V is modi-
fied, but isobaric simulations with fixed total charge should not be
problematic.

Finally, there is the dipolar correction Edipole in Eq. (2.6),8

which is known synonymously as the “surface term”74,78–80 or
sometimes the “polarization term.”5 It arises from the neglected k
= 0 term in the reciprocal-space sum [Eq. (2.13)], in cases where the
simulation cell has a non-vanishing dipole moment M =∑iqiri. The
form of this dipole correction is

Edipole = −
2π∥M∥

2

(2ε + 1)V
, (2.20)

where ε is the dielectric constant of a medium that is assumed to sur-
round a supercell consisting of the unit cell and its periodic images.
(See Ref. 80 for a detailed discussion.) The gradient of Edipole is12,78

∇̂iEdipole =
4πqiM

(2ε + 1)V
. (2.21)

Both Edipole and its gradient vanish under “tin-foil” boundary con-
ditions, corresponding to the limit ε → ∞. We assume tin-foil
boundary conditions in this work and thus neglect Edipole.

B. QM/MM-Ewald method
The partition between real space and reciprocal space is slightly

different in the QM/MM-Ewald method as compared to that used
in the classical Ewald summation technique. In the traditional
approach, η is chosen to balance efficient convergence of the real-
and reciprocal-space sums,9 often resulting in values η−1

≈ L/2.
Coulomb interactions are then summed in real space within the
range of the attenuated Coulomb potential erfc(ηr)/r. In contrast,
the procedure used here involves a real-space sum of all QM-MM
interactions within the unit cell, using the QM density to compute
the electrostatic interaction with the MM point charges. To this we
then add a correction ∆EPBC that accounts for interactions between
the QM region and the periodic images of that cell.21 It is the latter
correction (only) that uses a point-charge approximation to the QM
electron density.

With this in mind, we write the total energy of the periodically
replicated QM/MM system as17,21

E = ERS
QM + ERS

QM-MM + EPBC
MM + ∆EPBC. (2.22)

The superscript “RS” means “real space” and refers to the unit cell
itself. The quantity ERS

QM is simply the electronic structure energy,

and ERS
QM-MM is obtained by direct evaluation of the interaction

between the QM density and the MM point charges that are con-
tained within the unit cell. The quantity EPBC

MM is simply the mutual
electrostatic energy of all the MM point charges under PBC, includ-
ing both the unit cell and the image cells. It is computed using
conventional Ewald summation and need not be discussed further.

It remains to account for the interaction of the QM region in
the unit cell with the periodic replicas of both the QM and the MM
regions, and this comprises the final term in Eq. (2.22). We separate
this correction into two parts,

∆EPBC
= ∆EPBC

QM-QM + ∆EPBC
QM-MM. (2.23)

The first term, ∆EPBC
QM-QM, represents the interaction of the QM

region with its own periodic images, whereas the second term rep-
resents the interaction between the QM region in the unit cell and
the MM charges in the replica cells. In either case, we replace the
QM region and its periodic images with a set of atom-centered
point charges for the purpose of computing these interactions; see
Fig. 1.

Whereas in Sec. II A, we presented the Ewald formalism in
terms of a generic set of charges, here we need to be precise about
the distinction between charges {qi} that are located on MM atoms
and assumed to be fixed, vs charges that are located on QM atoms.
The latter, which we will denote by {QA}, are derived from the QM
wave function in some way and thus have non-vanishing derivatives
as the nuclei are displaced.

Implicit in our approach is an assumption that the QM region
is small compared to the MM region, the latter of which has size L.

FIG. 1. Cartoon diagram illustrating how the electrostatic interactions are parti-
tioned in the QM/MM-Ewald method. The central (unit) cell contains a QM density,
depicted as an orange ellipse, from which a set of green charges {QA} are derived.
The MM point charges {qi } are shown in purple. We illustrate examples of the two
types of interactions that define ∆EPBC = ∆EPBC

QM-QM +∆EPBC
QM-MM, as well as those

that define EPBC
MM .
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It then makes sense to define17,21

∆EPBC
QM-QM =

1
2

NQM

∑
A,B

QAQB φ(rAB), (2.24a)

∆EPBC
QM-MM =

NQM

∑
A

NMM

∑
i
QA qi φ(rAi), (2.24b)

where '(r) is the effective pair potential arising from Ewald sum-
mation, with rAB = rA − rB and rAi = rA − ri. This potential is given
by8,12,17,22,71,72

φ(r) =∑
k≠0

ω(k) cos(k ⋅ r) −
erf(ηr)

r
+∑

n≠0

erfc(η∥r + n∥)
∥r + n∥

. (2.25)

(A detailed derivation can be found in Appendix D of Ref. 22.)
The quantities '(rAB) and '(rAi) that are needed in Eq. (2.24) each
depend on the coordinates of the atoms, but both are independent
of the details of the electronic structure. As such, the potential '(r)
needs to be evaluated, at all of the relevant points rAB and rAi, only
once per time step in a QM/MM simulation. This is done outside of
the SCF iterations.20,21

It should also be noted that nothing analogous to the self-
energy term Eself [Eq. (2.18)] is evident in Eq. (2.24). For interactions
between QM and MM charges, the two sums in Eq. (2.24b) run over
different sets of charges, so this issue simply does not arise; however,
there is no restriction on the summation that defines ∆EPBC

QM-QM in
Eq. (2.24a). For A = B in that equation, the Coulomb interaction is
given by

lim
r→0

erf(ηr)
r

=
2η
√π

. (2.26)

This is, in fact, the self-energy term, but it is included automatically
by the potential '(r).

The PBC correction to the energy gives rise to a corresponding
correction ∆FPBC to the Fock matrix,

∆FPBC
µν =

∂(∆EPBC
)

∂Pµν
=

NQM

∑
A

(
∂(∆EPBC

)

∂QA
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΘA

(
∂QA

∂Pµν
). (2.27)

For brevity, let us introduce a simplified notation

φAB = φ(rAB),
φAi = φ(rAi),

(2.28)

and note that 'BA = 'AB since '(r) = '(−r). We can then write21

ΘA =
∂(∆EPBC

)

∂QA
=

NQM

∑
B

QB φAB +
NMM

∑
i
qi φAi. (2.29)

In this expression, only the charges QB change from one SCF itera-
tion to the next. The potentials 'AB and 'Ai are fixed so long as the
nuclei do not move.

To complete the correction ∆FPBC in Eq. (2.27), one must
specify how the QM charges are obtained from the wave function
and then evaluate the derivatives ∂QA/∂Pµν. This is discussed in
Sec. IV.

III. QM/MM-EWALD GRADIENT
In this section, we develop the analytic gradient of the

QM/MM-Ewald method that was introduced in Ref. 21 and sum-
marized above. Detailed derivations of the results presented in this
section can be found in an extensive set of Appendixes in Ref. 22.

A. Ewald gradient
The gradient of ∆EPBC with respect to a nuclear displacement

is different depending upon whether it is a QM or an MM nucleus
that is displaced. We first consider the derivative ∂∆EPBC/∂xi with
respect to a Cartesian coordinate xi for the MM charge qi. Note that
∂qj/∂xi = 0 for i ≠ j, because the MM charges have fixed values,
but that ∂QA/∂xi does not vanish, because the wave function is per-
turbed by displacement of qi. A straightforward calculation based on
Eqs. (2.23) and (2.24) affords

∂∆EPBC

∂xi
=

NQM

∑
A

[qiQA(
∂φAi
∂xi

) + ΘA(
∂QA

∂xi
)], (3.1)

where ΘA was defined in Eq. (2.29).
We next consider displacement of a QM nucleus along Carte-

sian coordinate xA. Given that the {qi} are fixed, one obtains

∂∆EPBC

∂xA
=

NQM

∑
B

QAQB(
∂φAB
∂xB

)(1 − δAB/2) +
NMM

∑
i
QA qi(

∂φAi
∂xA

)

+
NQM

∑
B,C

(
∂QB

∂xA
)QC φBC +

NMM

∑
i

NQM

∑
B

qi(
∂QB

∂xA
)φBi. (3.2)

With regard to the first term, note that δAB = 0 unless A = B, but
the function 'AA ≡ '(0) is a constant so ∂'AA/∂xA = 0. The δAB-
dependent term in Eq. (3.2) therefore vanishes. Use of this fact, along
with the definition of ΘA in Eq. (2.29), affords

∂∆EPBC

∂xA
=

NQM

∑
B

QAQB(
∂φAB
∂xA

) +
NMM

∑
i
qiQA(

∂φAi
∂xA

) +
NQM

∑
B

ΘB(
∂QB

∂xA
).

(3.3)

Expressions for the charge derivatives ∂QB/∂xA are not universal
and depend upon how the QM charges are obtained from the wave
function. These derivatives are taken up in Sec. IV.

In contrast, the derivative of the Ewald potential with respect to
xA is universal and is given by

∇̂A φAi =
⎡
⎢
⎢
⎢
⎢
⎣

erf(η rAi)
rAi

− (
2η
√π

)e−η
2r2
Ai

⎤
⎥
⎥
⎥
⎥
⎦

rAi
r2
Ai
−∑

k≠0
k ω(k) sin(k ⋅ rAi)

−∑
n≠0

⎡
⎢
⎢
⎢
⎢
⎣

erfc(η∥rAi + n∥)
∥ri + n∥

+ (
2η
√π

)e−η
2
∥rAi+n∥2

⎤
⎥
⎥
⎥
⎥
⎦

rAi + n
∥rAi + n∥2 .

(3.4)

The function ω(k) is defined in Eq. (2.14), and for generality we have
opted for the use of Eq. (2.16), rather than Eq. (2.17). (Regarding
this point, see the discussion in Sec. II.) The gradient ∇̂A φAB can be
obtained from Eq. (3.4) simply by replacing i with B as there is noth-
ing in the form of '(r) that depends on the identity of the charges.
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The derivative of'(r) with respect to displacement of an MM charge
is easily obtained from Eq. (3.4) by recognizing that

∇̂A φAi = −∇̂i φAi. (3.5)

B. SCF energy gradient
The derivative of the Hartree-Fock energy EHF with respect to a

perturbation x is denoted ExHF ≡ ∂EHF/∂x, and we use similar nota-
tion for other derivatives such as Hx

µν ≡ ∂Hµν/∂x, where Hµν rep-
resents the one-electron (or “core”) Hamiltonian. The Hartree-Fock
energy gradient can be expressed as81

ExHF = E[x]HF +∑
µν

Px
µνFµν, (3.6)

where

Fµν = Hµν +∑
λσ

(µν∣∣λσ)Pλσ (3.7)

is the Fock matrix and

E[x]HF =∑
µν

PµνHx
µν +

1
2 ∑µνλσ

Pµν(µν∣∣λσ)xPλσ + Vx
nuc (3.8)

is the Hellmann-Feynman part of the energy gradient, which has the
same form as the Hartree-Fock energy but with differentiated inte-
grals. (What we call the “Hellmann-Feynman” contribution has also
been called a “skeleton” derivative.82) These equations are adaptable
to DFT in a straightforward way, so for brevity we do not include
the exchange-correlation term in the derivation that follows. DFT is
included in our implementation, however.

It was shown long ago that Eq. (3.6) is needlessly expen-
sive81 because the density matrix derivatives Px

µν ≡ ∂Pµν/∂x can be
eliminated in favor of the energy-weighted density matrix

Wµν =
occ
∑
i
�i c∗µi cνi. (3.9)

The occupied orbital eigenvalues �i and coefficients cµi are solutions
of the SCF equation

Fc = �Sc, (3.10)

where S is the atomic orbital overlap matrix. The Hartree-Fock
energy gradient is then

ExHF = E[x]HF −∑
µν

WµνSxµν. (3.11)

Derivation of Eq. (3.11) from Eq. (3.6) relies on the condition
c†Sc = 1, in addition to Eq. (3.10).81

C. Total gradient
Now let us consider the energy

E = EHF + ∆EPBC (3.12)

under PBC. The gradient ∂E/∂x contains additional terms with
respect to the usual Hartree-Fock gradient, whose form can be seen
in Eq. (3.2). The result can be regrouped into a Hellmann-Feynman
part E[x] and a “response” part, à la Eq. (3.6). For a perturbation
along QM nuclear coordinate xA, the total energy gradient is

∂E
∂xA

= E[xA] +∑
µν

(
∂Pµν
∂xA

)Fµν +
NQM

∑
B

(
∂(∆EPBC

)

∂QB
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΘB

(
∂QB

∂xA
). (3.13)

The Hellmann-Feynman part is

E[xA] = E[xA]HF +
NMM

∑
i
qiQA(

∂φAi
∂xA

) +
NQM

∑
B

QAQB(
∂φAB
∂xA

). (3.14)

We next use the chain rule to rewrite the charge derivative
∂QB/∂xA in Eq. (3.13) in the form

∂QB

∂xA
=∑

µν
(
∂QB

∂Pµν
)(
∂Pµν
∂xA

) +∑
M
(
∂QB

∂M
)(
∂M
∂xA

). (3.15)

The quantity M represents anything on which the QM charge QB
depends except for the density matrix, since dependence on Pµν is
included explicitly in Eq. (3.15). When Mulliken charges are used,
for example, then QB depends on the overlap matrix so M ≡ Sµν in
that case. These “M-derivatives,” which encode an implicit, charge-
response contribution to the gradient, will be evaluated in Sec. IV,
for both Mulliken and CHELPG charges.

By separating out the density matrix dependence, the Pµν-
dependent part of the final term in Eq. (3.13) can be written as

NQM

∑
B
∑
µν

ΘB(
∂QB

∂Pµν
)(
∂Pµν
∂xA

) =∑
µν

(
∂Pµν
∂xA

)∆FPBC
µν (3.16)

using Eq. (2.27). The total gradient in Eq. (3.13) then becomes

∂E
∂xA

= E[xA] + Θ[xA] +∑
µν

(
∂Pµν
∂xA

)(Fµν + ∆FPBC
µν ), (3.17)

where

Θ[xA] =

NQM

∑
B

ΘB∑
M
(
∂QB

∂M
)(
∂M
∂xA

) (3.18)

is a charge-response term evaluated for a fixed density matrix. The
crucial observation from Eq. (3.17) is that the derivation of the
response terms in the normal SCF gradient, i.e., the −WSx term
in Eq. (3.11), can be carried over to describe the term containing
Fµν + ∆FPBC

µν in Eq. (3.17). The Fock matrix is modified, to reflect
the modified energy EHF + ∆EPBC that includes the PBC correc-
tion, but otherwise all of the formalism of the SCF gradient carries
over, without the need to evaluate explicit density matrix derivatives
∂Pµν/∂xA. As such, the cost to evaluate the QM/MM-Ewald gradient
remains comparable to the cost of the normal SCF energy gradi-
ent. In particular, solution of coupled-perturbed SCF equations81

(to obtain ∂Pµν/∂xA) is not required.
For definiteness, we go one step further in explicating the final

gradient expression,

∂E
∂xA

= ExAHF + Θ[xA] +
NQM

∑
B

QAQB(
∂φAB
∂xA

) +
NMM

∑
i
qiQA(

∂φAi
∂xA

). (3.19)

The quantity ExAHF is the traditional Hartree-Fock energy gradi-
ent [Eq. (3.11)], evaluated using the PBC-corrected Fock matrix F
+ ∆FPBC. Of the three additional terms in Eq. (3.19) that arise from
the PBC, two of them simply involve derivatives of '(r) and can be
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evaluated using Eq. (3.4). The charge-response term Θ[xA] involves
derivatives of the QM atomic charges that are discussed in Sec. IV,
once we have defined how the QM charges QB are to be obtained
from the wave function. Without that information, this is as far as
we can take the derivation of the analytic gradient.

In comparison with Eq. (3.19), the energy derivative for dis-
placement of an MM charge is much simpler. For the displacement
of qi along Cartesian coordinate xi, the analogue of Eq. (3.15) is
simply

∂QB

∂xi
=∑

µν
(
∂QB

∂Pµν
)(
∂Pµν
∂xi

). (3.20)

The “M-derivative” term in Eq. (3.15) is absent here because quan-
tities such as Sµν that are needed to evaluate the QM charges are
independent of the positions of the MM atoms. (The same is true
of other quantities needed to evaluate CHELPG charges, such as
electrostatic potential grid points that may be tied to the location
of the QM atoms but are independent of the positions of the MM
charges.) This also means that there is no WSx term in the derivative
∂EHF/∂xi. Perturbation of xi only affects the core Hamiltonian and
the internuclear potential. The analytic gradient is

∂E
∂xi

=∑
µν

Pµν(
∂Hµν

∂xi
) +

∂Vnuc

∂xi
+

NQM

∑
B

qiQB(
∂φBi
∂xi

). (3.21)

Again, no explicit derivatives of Pµν are required.

IV. CHARGE DERIVATIVES
The final missing contribution to the QM/MM-Ewald gradient

is the “M-derivative” (charge response with fixed density matrix)
term that is defined in Eqs. (3.15) and (3.18). The quantity M in
these equations represents any independent variable upon which QA
depends except for Pµν. The exception arises because dependence on
Pµν is already folded into the energy-weighted density matrix, i.e.,
the −WSx term of the traditional Hartree-Fock gradient.

To proceed further, we must decide how QA will be determined
from the QM calculation. The original minimal-basis formulation
of the QM/MM-Ewald method used Mulliken charges,17–20,24 but
these perform poorly in larger basis sets, sometimes leading to SCF
convergence failure.21 Even in modest (albeit non-minimal) basis
sets, we sometimes encounter problems with the Mulliken-based
procedure when the QM region is large. In the interest of complete-
ness, however, we will nonetheless present the formalism for Mul-
liken charges in Sec. IV A, followed by the much more complicated
formalism for CHELPG charges in Sec. IV B.

A. Mulliken charges
The Mulliken charge for atom A is

QA = ZA −∑
µ∈A
∑
ν
PµνSµν. (4.1)

The derivative ∂QA/∂Pµν that is required to construct ∆FPBC

[Eq. (2.27)] has been reported in previous work.21,27 In symmetrized
form, it is

∂QA

∂Pµν
= −

1
2
(Sµνδµ∈A + Sνµδν∈A), (4.2)

where δµ∈A = 1 if basis function µ is centered on nucleus A and is
zero if not.

The independent variables in Eq. (4.1) are Pµν and Sµν, so for
the purpose of computing the “M-derivatives” in Eq. (3.15), the sum
over M runs over all overlap matrix elements Sµν. The second term
in Eq. (3.15) therefore becomes

∑
M
(
∂QB

∂M
)(
∂M
∂xA

) =∑
µν

(
∂QB

∂Sµν
)(
∂Sµν
∂xA

)

= −∑
µ∈B
∑
ν
Pµν(

∂Sµν
∂xA

) (4.3)

so that the charge-response contribution to the gradient [Eq. (3.19)]
is

Θ[xA] = −

NQM

∑
B

ΘB∑
µ∈B
∑
ν
PµνSxAµν. (4.4)

Recall that ΘB is defined in Eq. (2.29). This completes the specifica-
tion of the gradient ∂E/∂xA in the case of Mulliken image charges.
Note that evaluation of Eq. (4.4) does not require any new quan-
tities that are not already needed to evaluate the QM/MM-Ewald
Hartree-Fock energy and the normal (non-QM/MM) Hartree-Fock
gradient.

B. CHELPG charges
CHELPG charges25,26 are determined by first evaluating the

electrostatic potential Φ(r) generated by the QM region on a set
of grid points {rα}. These points are intentionally excluded from
regions of space that lie within the van der Waals radius of any QM
nucleus, since the goal is to reproduce the potential at points exterior
to the molecule. Let us denote the electrostatic potential values used
in the fit as Φα = Φ(rα). These values are computed according to

Φα =∑
A

ZA

RαA
−∑

µν
(Iα)µνPµν, (4.5)

where

RαA = ∥RαA∥ = ∥rα − rA∥. (4.6)

The electronic contribution to Φα is expressed in terms of one-
electron integrals

(Iα)µν = ⟨µ∣
1

∥r − rα∥
∣ν⟩ (4.7)

that represent the electrostatic potential generated by the function-
pair µν at the point rα. [Note that r in Eq. (4.7) is the integration
variable, whereas rα is a parameter.]

CHELPG charges are computed via least-squares fit of the
values {�α} to the data points {Φα}, where �α = �(rα) and

φ(r) =
NQM

∑
A

QA

∥r − rA∥
(4.8)
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is the electrostatic potential generated by the atom-centered charges
{QA}. The fit is constrained to reproduce the net molecular charge,
which we denote as

Q =

NQM

∑
A

QA. (4.9)

Operationally, the CHELPG procedure amounts to minimization of
a Lagrangian28

L({QA}) =

Ngrid

∑
α
wα(Φα − φα)

2
− λ(Q −

NQM

∑
B

QB). (4.10)

As written, the fit uses weights {wα} assigned to the points {rα}. The
weights can be used, for example, to design a scheme whereby the
computed charges {QA} are rigorously continuous functions of the
molecular geometry,28 or else to prune the grid when atom-centered
grids are used, lest the fit put too little weight on regions far from the
nuclei.21 Alternatively, the weights can be set to wα = 1 and thereby
ignored, as in the original CHELPG algorithm.25

It is reported that the CHELPG least-squares problem may
be rank-deficient,26,83,84 and a variety of alternative procedures
have been devised to handle such instances.26 We have not found
these to be necessary. Indeed, the primary criticism of the CHELPG
procedure—that it uses atomic charges as fitting parameters and
may therefore sacrifice “chemically intuitive” charges in the inter-
est of better fitting the electrostatic potential—is immaterial here.
We use CHELPG charges precisely because they produce good
molecular electrostatic potentials.

An explicit formula can be given for the charges that minimize
L in Eq. (4.10),28 but we need some notation first. Define a NQM
× NQM matrix G whose matrix elements are

GAB =

Ngrid

∑
α

wα
RαA RαB

. (4.11)

Also define an NQM-dimensional vector e whose elements are

eA =
Ngrid

∑
α

wαΦα

RαA
. (4.12)

Then the charges {QA} that minimize L are given in vector form by

Q = G−1
(e −

λ
2
1), (4.13)

where

λ = 2(
−Q +∑A(eG

−1
)A

∑B,C(G−1)BC
) (4.14)

is the value taken by the Lagrange multiplier. After some manipula-
tion, Eq. (4.13) can be placed in a form that is more convenient for
the task at hand. This form,

QA =∑
B
(eB − λ/2)(G−1

)BA, (4.15)

lends itself to more straightforward differentiation. See Appendix G
of Ref. 22 for a detailed derivation of these expressions.

The derivatives ∂QA/∂Pµν that appear in ∆FPBC
µν [Eq. (2.27)]

have been discussed in our previous work,21 but the formulas are
repeated here for completeness. Despite the fact that only one-
electron integrals are involved, these quantities represent a compu-
tational bottleneck and their evaluation must be handled carefully.
We first define

ξαA =
NQM

∑
B

wα(G−1
)BA

RαB
(4.16)

and

γA =
∑B(G

−1
)AB

∑C,D(G−1)CD
, (4.17)

both of which are trivial to evaluate (given G−1). We also define
matrices

(ΩB)µν =

Ngrid

∑
α
ξαB(Iα)µν, (4.18)

which are relatively expensive to evaluate because they contain the
electrostatic potential integrals. The most efficient formulation of
the charge derivatives in question can then be written as21,22

∂QA

∂Pµν
=

NQM

∑
B

(ΩB)µν(γA − δAB). (4.19)

When this expression is used in Eq. (2.27), the result is that
construction of ∆FPBC requires evaluation of electrostatic poten-
tial integrals a total of NQM times,21 assuming that the primitive
integral array (Iα)µν is too large to store in core memory. Since
NQM ≪Ngrid, the formulation presented above is more efficient than
other ways of reordering the summations in question.21 The for-
mal scaling of Eq. (4.18), and thus the formal scaling to construct
∆FPBC, is O(NQM ×Ngrid ×Nfp), where Nfp ≤ N2

basis is the number of
non-negligible basis function pairs.

To obtain the QM/MM-Ewald analytic energy gradient, we
also need expressions for the derivatives Qx

A ≡ ∂QA/∂x with
respect to nuclear displacements. Upon differentiating Eq. (4.15),
one obtains22

Qx
A =∑

B,C
[exB(G

−1
)BC + eB(G−1

)
x
BC − (λ/2)(G−1

)
x
BC](δAC − γA).

(4.20)

The derivative λx of the Lagrange multiplier, which arises in straight-
forward differentiation of Eq. (4.15), has been rewritten in the form
of the γA-dependent terms in Eq. (4.20). (See Appendix H of Ref. 22
for a detailed derivation.) Still, Eq. (4.20) is deceptively compact
because while (G−1

)
x
BC and exB can be expressed in analytic form,

the expressions are rather involved. These derivatives are presented
below.

One complexity is the appearance of the grid points rα in the
definitions of e and G. As originally formulated,25,26 the CHELPG
algorithm relies on Cartesian grids, in which case the locations of the
{rα} are independent of any displacements of the QM nuclei. While
the computational overhead associated with CHELPG charges is
negligible when these charges are computed as an after-the-fact anal-
ysis tool, it becomes significant in QM/MM simulations because
the charges and their derivatives ∂QA/∂Pµν must be recomputed at
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each SCF cycle. To mitigate this cost, we have previously introduced
a modified CHELPG algorithm that uses atom-centered grids.21

While this significantly reduces the number of grid points required
to obtain a good fit, it increases the complexity of the terms in
Eq. (4.20). We will examine these two cases—atom-dependent vs
atom-independent grids—separately in what follows.

Before doing so, note that one can differentiate the identity
GG−1 = 1 to obtain

(G−1
)
x
= −G−1GxG−1. (4.21)

In view of this, the derivative (G−1
)
x in Eq. (4.20) is readily obtained

once Gx is known, so only the latter is discussed herein.

1. Fixed grids
In this section, we limit our discussion to the case where the

positions of the CHELPG grid points {rα} are independent of the
positions of the nuclei. In the simplest case, this would mean a rect-
angular Cartesian grid, though the formalism presented below does
not require the grid to be rectangular but simply independent of
the locations of the QM nuclei. The weights of the grid points may
or may not be independent of the nuclear positions, however. If all
grid points are weighted uniformly (wα = 1), then terms involving
the derivative of wα will vanish, but we will not assume this to be
the case. A non-uniform weighting scheme, in which wα({rA}) is a
function of the nuclear coordinates, has been used to ensure that the
charges QA are smooth functions of molecular geometry despite the
use of a Cartesian grid that is fixed in space.28 We return to this point
below.

The operator ∇̂A representing the vector derivative with respect
to coordinates rA = (xA, yA, zA) is defined in Eq. (2.1). In what
follows, we will use a simplified notation

f∇A ≡ ∇̂Af (4.22)

for the vector-valued gradient of a function f (rA), with respect to
the coordinates of nucleus A. Using this notation, the gradient of the
matrix elements of G [Eq. (4.11)] is

G∇A
BC =

Ngrid

∑
α

[
w∇A
α

RαB RαC
+ (

δAB
RαC

+
δAC
RαB

)
wαRαA
R3
αA

]. (4.23)

The first term in Eq. (4.23) vanishes if the weights are uni-
form, as in the traditional CHELPG procedure.25,26 Inspired by
other work on smooth discretization schemes,85,86 however, we
have previously considered a more sophisticated implementation,28

in which switching functions are introduced in order to make sure
that wα({rA}) is a continuously differentiable function of the nuclear
coordinates, despite the use of a fixed Cartesian grid to evaluate the
electrostatic potential. In this approach, wα is written as the prod-
uct of a long-range weighting function wLR

α and atomic switching
functions {FA

α },

wα(rα,{rA}) = wLR
α (rα,{rA})

NQM

∏
A

FA
α (rα, rA). (4.24)

Gradients of Eq. (4.24) are straightforward,

∇̂Awα = (∇̂Aw
LR
α )

NQM

∏
B

FB
α +wLR

α (∇̂AFA
α )

NQM

∏
B≠A

FB
α . (4.25)

The switching functions are parameterized so that wα is signif-
icantly different from zero only in the usual CHELPG fitting region,
beginning at the atomic van der Waals radius and extending radi-
ally outward for a few Ångstroms. Correspondingly, ∇̂Awα → 0 as
rα moves outside of this region. In terms of the switching function
τ(R) that was defined in our previous work and used to construct the
functions FA

α ,28 this means that

∂FA
α

∂xA
=
∂τ
∂R

∣
R=RαA

(4.26)

is only non-negligible when evaluated in regions where τ(RαA) is
non-negligible. See Appendix H of Ref. 22 for additional details.

Returning to the evaluation of Qx
A in Eq. (4.20), we note that the

derivative of e is more complicated as compared to that of G, so we
separate the former into pieces for convenience

e∇A
B = Υ(1)

∇A ,B + Υ(2)
∇A ,B + Υ(3)

∇A ,B + Υ(4)
∇A ,B. (4.27)

The individual pieces can be read off term-by-term by inserting the
definition of Φα [Eq. (4.5)] into the definition of e [Eq. (4.12)], then
taking a derivative with respect to rA. They are,

Υ(1)
∇A ,B =∑

α
Φα(

wα
RαB

)
∇A

, (4.28a)

Υ(2)
∇A ,B =∑

α

wα
RαB

(∑
C

ZC

RαC
)

∇A

, (4.28b)

Υ(3)
∇A ,B = −∑

α

wα
RαB
∑
µν

(I∇A
α )µνPµν, (4.28c)

Υ(4)
∇A ,B = −∑

α

wα
RαB
∑
µν

(Iα)µν P∇A
µν . (4.28d)

The first two terms involve only the positions of the nuclei and
the CHELPG grid points, along with the precomputed values {Φα}
that were needed to compute the CHELPG charges in the first place.
These terms can be simplified to obtain

Υ(1)
∇A ,B =∑

α
Φα(

w∇A
α

RαB
+
wαδABRαA

R3
αA

) (4.29)

and

Υ(2)
∇A ,B =∑

α

wαZARαA
RαBR3

αA
. (4.30)

The term Υ(3)
∇A ,B is the computational bottleneck since it involves

derivatives of the electrostatic potential integrals,

Υ(3)
∇A ,B = −∑

α

wα
RαB
∑
µν

Pµν
⎡
⎢
⎢
⎢
⎢
⎣

⟨µ∇A ∣
1

∥r − rα∥
∣ν⟩ + ⟨µ∣

1
∥r − rα∥

∣ν∇A⟩

⎤
⎥
⎥
⎥
⎥
⎦

.

(4.31)

Note that Eq. (4.31) does not contain a derivative of the operator
∥r − rα∥−1 because we have assumed that rα is independent of the
position of nucleus A.

Finally there is Υ(4)
∇A ,B in Eq. (4.27). Note from Eq. (4.28d) that

this term explicitly involves the density matrix derivative ∂Pµν/∂xA,
whereas the desired “M-derivatives” in Eqs. (3.15) and (3.18) are
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evaluated at fixed density matrix. As such, the contribution from
Υ(4)
∇A ,B is already included in the energy-weighted density matrix term

in the gradient and should not be included here. With this in mind,
we define

ẽ∇A
B = Υ(1)

∇A ,B + Υ(2)
∇A ,B + Υ(3)

∇A ,B. (4.32)

Upon replacing e∇A
B in Eq. (4.20) with ẽ∇A

B , the requiredM-derivative
assumes the form

∑
M
(
∂QB

∂M
)(
∂M
∂xA

) =∑
C,D

[̃e∇A
C (G−1

)CD + eC(G−1
)
∇A

CD

− (λ/2)(G−1
)
∇A

CD](δBD − γB). (4.33)

The charge-response contribution Θ[xA] to the gradient [Eq. (3.18)]
can now be assembled from Eq. (4.33) and the other equations
derived in this section. Recall that the identity in Eq. (4.21) is used to
obtain (G−1

)
x from Gx, the latter of which is provided in Eq. (4.23).

2. Atom-centered grids
Atom-dependent grids add another layer of complexity to the

derivatives. We assume, as in our previous Lebedev grid-based
implementation of the CHELPG charges,21 that such grids consist of
concentric atom-centered radial shells. In such a case, the locations
of the grid points can be expressed as

rα = rA + rd,n, (4.34)

where the vector rd ,n comes from the Lebedev quadrature construc-
tion and depends upon the radial spacing (d) and the number of
angular grid points (n) but is independent of the nuclear positions
{rA} and is therefore absent from the gradient expressions presented
below.

The M-derivatives needed to evaluate Θ[xA] are still given by
Eq. (4.33), just as in the fixed-grid case, but with modified forms of
Gx and ex. For example, instead of G∇A

BC as given in Eq. (4.23), for
atom-centered grids the result is

G∇A
BC =∑

α

w∇A
α

RαBRαC
+∑
α∉A

(
δAB
RαC

+
δAC
RαB

)
wαRαA
R3
αA

−∑
α∈A

wα(1 − δBC)
RαBRαC

(
RαBδAB
R2
αB

+
RαCδAC
R2
αC

). (4.35)

The notation on the final sum (α ∈ A) indicates that this summation
should be performed over grid points rα whose origin lies on atom
A, in the sense of Eq. (4.34). The notation α ∉ A means the opposite,
that grid points generated from atom A are excluded. In the first
summation of Eq. (4.35), the grid point rα is unrestricted.

The terms Υ(1)
∇A ,B, Υ(2)

∇A ,B, and Υ(3)
∇A ,B that define ẽ∇A

B
[Eq. (4.32)] are also modified for atom-centered grids, as follows.
Equation (4.29) is replaced by

Υ(1)
∇A ,B =∑

α

Φαw
∇A
α

RαB
+∑
α∉A

ΦαwαRαAδAB
R3
αA

−∑
α∈A

ΦαwαRαB(1 − δAB)
R3
αB

.

(4.36)

Equation (4.30) is replaced by

Υ(2)
∇A ,B =∑

α∉A

wαZARαA
RαBR3

αA
−∑
α∈A

wα
RαB
∑
C

ZCRαC(1 − δAC)
R3
αC

. (4.37)

Finally, Eq. (4.31) is replaced by

Υ(3)
∇A ,B = −∑

α

wα
RαB
∑
µν

Pµν[⟨µ∇A ∣
1

∥r − rα∥
∣ν⟩

+ ⟨µ∣
1

∥r − rα∥
∣ν∇A⟩ − ⟨µ∣

1
∥r − rα∥3 ∣ν⟩]. (4.38)

See Appendix H of Ref. 22 for additional details.

V. NUMERICAL APPLICATION
The QM/MM-Ewald method outlined above has been imple-

mented in the Q-Chem electronic structure program,87 where it has
been available (with analytic gradients) since v. 4.4. The correct-
ness of the analytic gradient was verified term-by-term using finite-
difference calculations. Finite-difference derivatives ∂E/∂x differ
from our analytic gradient implementation by ≲10−7 a.u., if a five-
point stencil is used with a step size of 0.001 Å. (Finite-difference
results computed with a three-point stencil and displacements of
±0.001 Å sometimes differ from the analytic result by ∼10−5 a.u.,
even when tight thresholds are used.) We have also confirmed that
numerical results from our own implementation of classical Ewald
summation in Q-Chem match results obtained from the CHARMM
program.88

In what follows, we describe the application of the new method-
ology to perform MD simulations of e−(aq) in liquid water.

A. Ewald summation with net charge
Our simulations are carried out using a negatively charged

unit cell, whereas the mathematical proof that the electrostatic sum
defined in Eq. (2.4) can be converted into a pair of absolutely-
convergent sums (a short-range one in real-space and another in
reciprocal space) relies on charge neutrality in the unit cell.8 This
objection notwithstanding, we have in the past performed simu-
lations of e−(aq) using one-electron pseudopotential models com-
bined with Ewald summation,59,89,90 without apparent problems
other than the fact that the vertical ionization energy (VIE) depends
very strongly on the size of the periodic simulation cell.89

That said, a variety of classical MD studies have documented
artifacts resulting from Ewald summation when the net charge is
non-zero.71,75,78,91–97 Let us set aside the utterly unsurprising result
that there can be artifacts when Q ≠ 0 and the simulation cell is
small,93,94 and consider what artifacts may remain even when the
simulation cell is large. Issues with charged cells primarily man-
ifest in the following cases: when mobile ions are present and
the medium has a very inhomogeneous dielectric function (such
as proteins or membranes in water, for example);75 in calcula-
tions of the dielectric constant, which depends on fluctuations in
the dipole moment of the simulation cell;8,98 when the volume
of the simulation cell is changed or else when the derivative of
energy with respect to volume is required, as in a pressure calcu-
lation;71,78 or when the overall charge Q is changed, as when the
hydration free energy of an ion is computed via thermodynamic
integration.71,91–93,95,96
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These problematic cases might have been anticipated from the
nature of the charge correction Echarge in Eq. (2.19), which depends
on both the overall charge Q and volume V of the simulation cell,
and on the Ewald splitting parameter η. The charge correction shifts
the electrostatic energy such that the Ewald potential averages to
zero over the unit cell,75,96,97 and only when it is included (and then
only if both Q and V are fixed throughout the simulation) is the total
electrostatic energy computed using Ewald summation indepen-
dent of η.77 Under conditions of fixed charge and volume, however,
∇̂iEcharge = 0, consistent with a uniform background compensating
charge density.75 This is the case for the simulations presented here,
which are primarily microcanonical.

It is indeed true for e−(aq) that finite cell-size effects can have
a dramatic influence (>1 eV) on the VIE, when Ewald summation
is used in conjunction with a negatively charged unit cell.89 (The
manner in which continuum boundary conditions are implemented
can have a similarly large effect in non-periodic calculations of the
VIE.89,90,99) In the present work, we focus on structural rather
than energetic aspects of electron solvation. Both the charge and
the volume of the simulation cell are fixed, and the simulation cell
is reasonably large (1024 water molecules). Ewald summation, with
its implicit reliance on a compensating background charge,6,9,10,13

mimicking an isotropic distribution of counter-ions when Q ≠ 0,75

seems appropriate for our purposes.

B. Simulation details
Previous simulations of e−(aq) using cavity-forming pseudopo-

tential models89,100,101 predict spontaneous electron localization
and subsequent cavity formation in <1 ps following injection of a
delocalized electron into neat liquid water.36 This is consistent with
experimental estimates of the localization time scale.102–104 Unfor-
tunately, the presence of a QM/MM interface in our calculations
makes it impossible to simulate the injection process directly because
O–H moieties in the QM region that are hydrogen-bonded to MM
water molecules will artificially stabilize the electron at the QM/MM
interface, which lacks adequate Pauli repulsion interactions between
the wave function and the MM water molecules. As such, our sim-
ulations are initiated using snapshots from a previous DFT-based
QM/MM simulation of e−(aq),64 so the electron is initially local-
ized in a pre-existing cavity. In previous work,59 we demonstrated
that pre-existing cavities immediately collapse in simulations using
the non-cavity-forming pseudopotential model of Ref. 53, so the fact
that a cavity is present at t = 0 is certainly no guarantee that it will
persist.

The QM region in our simulations consists of the 24 H2O
molecules that lie within a radius of 5.5 Å of the centroid of the spin
density, for the DFT-based trajectory data obtained from Ref. 64.
The full, periodic simulation cell contains 1024 water molecules with
L = 31.3192 Å, affording a bulk water density of 0.997 g/cm3. Simu-
lations were propagated under conditions of constant energy using
the velocity Verlet algorithm with a time step of 42 a.u. (= 1.016 fs),
consistent with the fact that all water molecules were treated as fully
flexible. Initial nuclear velocities were selected at random from a
Maxwell-Boltzmann distribution characteristic of T = 300 K. MM
water molecules were described using the modified TIP3P water
model that is part of the CHARMM27 force field.105 In princi-
ple, one probably ought to re-optimize the MM Lennard-Jones

parameters for use in QM/MM calculations,106–108 but we have not
done so here. This is probably justified over the short time scales of
the simulations reported here.

We use different Ewald splitting parameters for the MM-MM
and QM-MM interactions, as described in Ref. 21 and in Appendix
D of Ref. 22. Setting

C =
√
− ln(τSCF/Eh), (5.1)

where τSCF = 10−8 Eh is the SCF convergence threshold, we set ηMM
= 2C/L ≈ 0.274 Å−1 for the MM-MM interactions. For the QM-
MM interactions, the optimal value ηQM is obtained as a root of the
equation

2CL3η3
QM

π3/2 +
L2η2

QM

π1/2 − LηQM − 2C = 0. (5.2)

For C and L as described above, the solution is ηQM ≈ 0.06 Å−1.
The QM region, consisting of (H2O)

−
24, is described at the

HF+D3/3-21++G∗ level, meaning Hartree-Fock (HF) theory com-
bined with Grimme’s third-generation “D3” empirical dispersion
potential.109 To avoid energy drift caused by violation of time-
reversal symmetry,110 the SCF guess is regenerated at every time
step from a superposition of atomic densities.

Regarding the choice of basis set, we have previously shown that
a single set of atom-centered diffuse functions is sufficient to support
a cavity-bound electron in the condensed phase.61,111 (Such a basis
set is not adequate for gas-phase hydrated-electron clusters, where
additional diffuse functions are necessary to avoid artifacts.68,112)
Even so, the use of diffuse basis functions significantly increases
the cost of the calculations by muting the effectiveness of integral
thresholding.

That said, the present calculations provide an excellent test to
verify that our CHELPG-based QM/MM-Ewald procedure is appli-
cable to arbitrary basis sets. Both Mulliken and Löwdin charges
are badly behaved in the presence of diffuse functions, and while
that fact is widely known, the presence of ∂QA/∂Pµν in the Fock
matrix [Eq. (2.27)] makes this far more problematic than sim-
ply obtaining charges {QA} whose values are non-intuitive and
basis-set dependent. In our experience, use of Mulliken or Löwdin
charges in the QM/MM-Ewald procedure21 (and the related “XPol”
method27,28,113,114) often leads to SCF convergence failure when
diffuse basis functions are employed. In contrast, we have encoun-
tered no such problems with CHELPG charges. For the calculations
reported here, the QA are CHELPG charges computed using atom-
centered Lebedev grids with 50 angular grid points per radial shell,
with radial shells that begin at the atomic van der Waals radius of
each atom and extend outward for another 3.0 Å, in 0.5 Å intervals.

Calculation of the requisite charge derivatives ∂QA/∂Pµν does
incur significant computational expense when CHELPG charges are
used, as is clear from the timing data presented in Table I. As com-
pared to a QM/MM simulation without periodic boundary con-
ditions, the QM/MM-Ewald simulations are about six times more
expensive, with most of the increased cost incurred by the afore-
mentioned charge-derivative contributions to the gradient. We are
currently working to reduce this cost.

C. Results
The QM region used in these simulations contains approxi-

mately two solvation shells around the centroid of the spin density.
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TABLE I. Average timings for a single MD time step, for HF+D3/3-21++G∗ simula-
tions of e−(aq) with 24 QM and 1000 MM water molecules in the simulation cell. The
data labeled “QM/MM” represent non-periodic calculations with the same simulation
cell, so comparison to the QM/MM-Ewald timings demonstrates the cost of the peri-
odic boundary conditions. All calculations were parallelized over 20 cores on a single
compute node, with thresholds and CHELPG grid parameters as described in the text.
The SCF energy and gradient timings contain all of the QM/MM terms in addition to
the purely QM part.

Time per MD stepa (s)

QM/MM QM/MM-Ewald

Wall CPU Wall CPU

MM energy 0.2 3.9 1.0 19.4
MM gradient 0.3 0.3 0.7 13.4
SCF energy 26.5 523.7 59.5 1057.1
SCF gradient 9.1 99.7 106.2 1373.6

Totalb 41.2 661.8 172.8 2507.1

aDell PowerEdge C6420 server, 2.4 GHz Intel Xeon 6148 Skylake processor.
bTotal time per step is slightly larger than the combined energy + gradient time, due to
minor additional overhead.

In general, this sort of QM/MM simulation of an aqueous solute, in
which certain solvent molecules are included in the QM region, is
bound to be problematic over sufficiently long time scales because
the mean residence time of a water molecule in the first solva-
tion shell is rather short, e.g., ≲13 ps for I−(aq),115–118 which has a
cavity size similar to that of e−(aq). The trajectories reported here
are at most 5 ps in length, however, so what is more problematic
is the very rapid diffusion of e−(aq), which occurs via librational
motions of the water molecules.36 One solution would be to use
an “adaptive” QM/MM procedure,119 in which solvent molecules
are allowed to transition smoothly (but dynamically) between the
QM and MM regions. Such methods are both technically and com-
putationally more involved, however, and are not implemented in
our code. Alternatively, a confining potential can be used when
only structural or thermodynamic (rather than dynamical) infor-
mation is of interest,120 but given the controversy surrounding the
structure of e−(aq), we prefer not to complicate the issue in this
way.

As a result, we must live with the fact that any room-
temperature trajectory in which e−(aq) is cavity-centered (at t = 0)
in a QM region with a radius of 5.5 Å will evolve, within a few
picoseconds, to one where the spin density resides near the QM/MM
interface. At that point, the trajectory in question is no longer usable
or interpretable. We can easily monitor this evolution since our code
sets the coordinate origin at each time step to be equal to the center
of mass of the QM nuclei. Let r0 denote the distance between this
coordinate origin and the centroid of the spin density, defined as

ρspin(r) = ρα(r) − ρβ(r). (5.3)

The quantity r0(t) monitors the drift of the unpaired electron away
from the center of the QM region. Meanwhile the radius of gyration
of the spin density (rgyr), which is defined by the equation

r2
gyr = ⟨∥r − ⟨r⟩∥2

⟩ = ∫ (r2
− ⟨r⟩ ⋅ ⟨r⟩)ρspin(r) dr, (5.4)

provides a measure of the size of the electron. The quantity
r0(t) + rgyr(t) then reports on how the position of the outer edge
of the spin density evolves with time. When r0(t) + rgyr(t) reaches
values approaching 5.5 Å, the trajectory is no longer usable.

As an example, Fig. 2 plots r0(t) + rgyr(t) for two different tra-
jectories. In one of these, the spin density begins to migrate away
from the center of the QM region starting around t ≈ 1.0 ps, and
by t ≈ 1.5 ps, it has breached the QM/MM interface, which is evi-
dent upon examination of the spin density. The time propagation is
halted at this point, as this particular trajectory is no longer usable.
In contrast, for the second trajectory depicted in Fig. 2 the quantity
r0(t) + rgyr(t) only once goes above 5.0 Å (briefly, around t ≈ 3.6 ps),
and stays under 5.5 Å for the entire 5 ps of dynamics. This means that
ρspin(r) remains safely within the QM region over this entire trajec-
tory, as is evident from the plot of ρspin(r) at t = 5 ps that is depicted
in Fig. 2. Notably, even in trajectories that migrate quickly to the
QM/MM boundary, we do not observe any collapse of the excluded
volume that is present at t = 0.

The longer of the two trajectories plotted in Fig. 2, during which
ρspin(r) remains within the QM region for the full 5 ps of time propa-
gation, is used for all subsequent analysis. Figure 3 shows a close-up
view of ρspin(r) at the end of this trajectory. As is typical for this sys-
tem, the spin density closely resembles the singly-occupied molecu-
lar orbital (SOMO). As reported elsewhere,61,111 a basis set with only
a single set of atom-centered diffuse functions clearly has no diffi-
culty describing a SOMO that is not associated with any particular
water molecule but instead inhabits a void in the solvent.

Figure 4 demonstrates stable energy conservation, albeit with
a slight drift following the initial equilibration period in which the
system is mostly adjusting to the change in force field with respect

FIG. 2. Time evolution of the quantity r0(t) + rgyr(t) for two different trajectories,
with snapshots depicting the spin density ρspin(r) at the ending point of each. The
quantity rgyr is the radius of gyration of ρspin(r) [Eq. (5.4)], and r0 is the distance
between the centroid of ρspin(r) and the center of mass of the QM region. The quan-
tity r0(t) + rgyr(t) thus measures the time evolution of the “edge” of the spin density
as compared to the center of the QM region. Once this quantity reaches 5.5 Å (the
initial radius of the QM region, indicated by a horizontal line), the trajectory is no
longer usable.
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FIG. 3. Spin density of e−(aq) at the conclusion (t = 5 ps) of the longer trajectory
shown in Fig. 2. The QM water molecules are shown in a ball-and-stick represen-
tation and the MM water molecules in a tubular representation. The isocontour
that is plotted (ρspin = ±0.0015 a.u.) encompasses 92% of ρspin(r). Extremely small
regions of green mesh indicate where ρspin(r) < 0; these regions are confined to
the O–H moieties that are coordinated directly to e−(aq).

to that used in Ref. 64. The rate of drift is slightly larger than what
is typically observed in Born-Oppenheimer MD simulations,121

consistent with our larger time step of 42 a.u. (1.016 fs) as com-
pared to the more standard value of 20 a.u. (0.484 fs).121–123 Short

FIG. 4. Energy fluctuations ∆E over the course of a trajectory initialized either with
or without prior geometry optimization. In either case, the running average of the
energy (relative to its value at t = 0) is plotted as well. The non-optimized trajec-
tory corresponds to the longer of the two trajectories plotted in Fig. 2, for which
the initial geometry was taken directly from Ref. 64. The standard deviation in ∆E
over this 5 ps trajectory is σ = 0.031514 Eh in a total energy whose time-averaged
value is ⟨E⟩ = −1823.738097 Eh. For the optimized case, we took the same snap-
shot from Ref. 64 but performed 128 optimization steps (at the QM/MM level of
theory described here) prior to beginning the MD trajectory. In this case, we obtain
σ = 0.004681 Eh and ⟨E⟩ = −1831.978635 Eh.

trajectories run with ∆t = 21 a.u. exhibit much smaller energy fluc-
tuations; see Fig. S3 in the supplementary material. This is consistent
with very large initial velocities arising from the change in water
force field, as discussed in the supplementary material.

Figure 4 also demonstrates that much smaller energy fluctua-
tions are obtained if the geometry is first relaxed at the QM/MM level
of theory that is used for the subsequent MD simulation, rather than
simply starting from the structure obtained from Ref. 64. Geometry
optimization lowers the total energy by ≈8.8 Eh, nearly all of which
comes from relaxing the bond-stretching terms in the water force
field. This relaxation eliminates the energy drift in the subsequent
MD simulation (see Fig. 4), meaning that the drift that we observe
starting from an unrelaxed geometry would likely disappear upon
further equilibration of the simulation. The lack of pre-equilibration,
however, does mean that we may effectively be operating well above
T = 300 K in these simulations, since the system is initialized with
significant energy in the classical O–H bonds. Despite the elevated
temperature, a well-defined cavity persists in every trajectory that
we have examined.

Even with the larger time step of ∆t = 42 a.u. and lack of pre-
equilibration in the trajectory of Fig. 4, the overall energy drift is
small. Defining relative fluctuations

δ(t) =
E(t) − E(0)

E(0)
, (5.5)

the drift amounts to only ⟨δ⟩ = 1.36 × 10−5 when averaged over the
whole trajectory. Use of Cartesian grids vs atom-centered Lebedev
grids to compute the CHELPG charges makes essentially no dif-
ference (see Fig. S4), although the Lebedev grids are vastly more
efficient. The Lebedev grid parameters specified here (∆r = 0.5 Å
and rmax = 3.0 Å) result in ≈850 grid points for the electro-
static potential fitting, vs ≈60 000 in the case of a regular Carte-
sian grid with a comparable spacing (∆x = 0.5 Å) and radial
extent.

It is clear from Figs. 2 and 4 that the first 2 ps of dynamics in
our 5 ps trajectory constitutes an equilibration period. In terms of
impact on the total energy, the primary result of this equilibration is
readjustment of the bond lengths of the classical water molecules.
Around the time that the energy fluctuations stabilize (t ≈ 2.0–
2.5 ps), one can observe a pronounced shift in the value of r0(t); see
Fig. 5(a). This indicates that the center of the spin density has sta-
bilized in a location (r0 ≈ 2 Å) that is not quite at the center of the
QM region, the latter of which defines r0 = 0. At the same time, the
size of the spin density, as measured by rgyr, fluctuates about its mean
value ⟨rgyr⟩ = 2.15 Å essentially from the outset of the simulation; see
Fig. 5(b). It is evident from Fig. 2, which depicts the same trajectory,
that the sum r0(t) + rgyr(t) remains well within the 5.5 Å radius of
the QM region.

Several isosurface plots of ρspin(r) along this trajectory are pre-
sented in Fig. 6. These snapshots demonstrate that the excluded vol-
ume from which water molecules are expelled remains stable both
during and after the initial equilibration period of ∼2 ps. In fact,
there is really no qualitative change in ρspin(r) even with respect to
the initial, unrelaxed snapshot taken at t = 0, where the cavity comes
from a separate DFT-based QM/MM simulation using a rather dif-
ferent computational approach.64 The cavity remains stable through
the end of the trajectory at t = 5 ps. It is also stable (for at least several
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FIG. 5. Plots of (a) the distance r0 between the centroid of ρspin(r) and the center
of mass of the QM region, and (b) the radius of gyration of ρspin(r). The horizontal
line in (b) indicates the average value, ⟨rgyr⟩ = 2.15 Å. These data are taken from
the non-optimized trajectory whose energy fluctuations are plotted in Fig. 4, which
is also the 5 ps trajectory from Fig. 2.

more picoseconds) if we spontaneously switch the level of theory to
B3LYP+D3/3-21++G∗ and simultaneously switch from propagation
at constant energy to propagation at constant temperature, enforced
using a Nosé-Hoover thermostat124 set at T = 300 K. Spin densities

FIG. 7. Radial distribution functions (RDFs) for e− ⋯ O and e− ⋯ H, where the
electron coordinate is the centroid of ρspin(r). Both RDFs were computed from a
single 5 ps trajectory and were smoothed with a Gaussian windowing function
whose width is 0.055 Å for e− ⋯ O and 0.090 Å for e− ⋯ H. The ensemble-
averaged radius of gyration, ⟨rgyr⟩ = 2.15 Å, is also indicated.

from this B3LYP+D3 simulation are depicted in the lower part of
Fig. 6.

Returning to the constant-energy HF+D3 trajectory, further
evidence of the cavity-bound nature of the spin density comes in
the form of radial distribution functions (RDFs) g(r) for the e− ⋯ H
and e− ⋯ O coordinates (Fig. 7), which demonstrate that hydrogen
atoms are completely excluded for r ≲ 0.7 Å, and oxygen atoms for
r ≲ 1.8 Å. This also affirms the coordination motif that is suggested
in Fig. 3, and found in many other theoretical studies,36 in which a
single O–H moiety from each water molecule is coordinated to the
electron’s charge cloud. This is also the coordination motif that has
been inferred from resonance Raman studies of e−(aq) in mixtures
of H2O and D2O.125

FIG. 6. Time evolution of ρspin(r) show-
ing only the QM water molecules in
each snapshot. The upper trajectory,
labeled “HF+D3,” corresponds to the
trajectory of Fig. 5. In an accompany-
ing calculation, the level of theory was
spontaneously switched to B3LYP+D3 at
t = 2.0 ps, and the constant-energy
(NVE) time propagation switched to
constant-temperature (NVT) propaga-
tion at the same time. The result is shown
in the lower part of the figure. Spin den-
sity isosurfaces closely resemble those
of the singly-occupied molecular orbital
(SOMO). They are plotted using an iso-
surface value of 0.002 a.u. that encom-
passes >90% of ρspin(r).
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These RDFs were computed by averaging over the 5 ps duration
of the trajectory, taking the position of the electron to be the centroid
of ρspin(r). RDFs obtained from a 1 ps trajectory whose structure was
relaxed prior to the MD simulation exhibit a somewhat more well-
defined cavity structure as compared to those in Fig. 7, in the sense
that the peaks in the RDF are narrower and g(r) goes completely to
zero in between its first and second maxima, unlike the RDFs shown
in Fig. 7. (See Fig. S2 in the supplementary material for a comparison
of RDFs obtained for these two trajectories.) Both trajectories exhibit
well-defined first and second local maxima in both the e− ⋯ H and
e− ⋯ O RDFs, and these maxima occur at precisely the same values
of r in both trajectories. This supports our contention that the initial
∼2 ps of equilibration in our 5 ps trajectory does not substantially
bias the resulting structure.

In view of the average radius of gyration that we obtain for the
5 ps trajectory, ⟨rgyr⟩ = 2.15 Å, essentially the entire first peak in
the e− ⋯ H RDF is contained inside of the spin density, although
very little of the first peak in the e− ⋯ O g(r) lies within this
radius. As we have argued for some time,36,89,126,127 the spin den-
sity of e−(aq) penetrates into the second solvation shell of water
molecules, even for cavity-bound structures. This behavior is seen
even in one-electron pseudopotential models,89 where it can be char-
acterized either in structural terms (changes in the average number
of hydrogen bonds per water molecule that disappear only in the
third solvation shell) or in dynamical terms (autocorrelation func-
tions for H2O librational dynamics that return to bulk-like behavior
only in the third solvation shell). A detailed analysis of these metrics
can be found in Ref. 89. Penetration of ρspin(r) beyond the excluded-
volume region is by no means limited to many-electron (e.g.,
DFT) descriptions of e−(aq), as has sometimes been erroneously
suggested.

The first maxima in the two RDFs shown in Fig. 7 occur at
≈1.5 Å for e− ⋯ H and at ≈2.5 Å for e− ⋯ O. These distances are
≈0.5 Å smaller than those obtained in bulk water simulations using
the cavity-forming pseudopotential model of Turi and Borgis,101 but
much closer to the values obtained using the cavity-forming pseu-
dopotential model of Jacobson and Herbert.89 (Both models were
parameterized in much the same way, but the Jacobson-Herbert
model uses a polarizable force field for water, whereas the Turis-
Borgis model uses a fixed-charge force field.) A comparison of the
RDFs obtained from both of these pseudopotential models, along-
side those obtained from the non-cavity-forming pseudopotential
model of Schwartz and co-workers,53 can be found in Ref. 61. RDFs
obtained in the present work, and in that of Jacobson and Herbert,89

agree reasonably well with DFT results from Uhlig et al.64

Figure 8 plots the time-dependent Hartree-Fock eigenvalues
for several of the frontier MOs. The quantity −�SOMO(t) is the
Koopmans’ approximation to the time-dependent vertical ioniza-
tion energy (VIE), and the present simulations afford a time-
averaged Koopmans’ VIE of 2.96 ± 0.42 eV. Considering that the
accuracy limits of Koopmans’ theorem are ∼0.5 eV at best,68,128

this is at least qualitatively consistent with the most recent exper-
imental value of VIE = 3.7 ± 0.1 eV for e−(aq).129 It should
also be noted that long-range polarization effects—well beyond the
24 QM water molecules used here—are extremely important to
obtaining a converged VIE.89,90,99 Notably, we have previously com-
puted an accurate ab initio VIE of 3.75 eV taking snapshots from
a DFT/MM simulation of e−(aq) then computing the VIE at the

FIG. 8. Time-dependent fluctuations in the Hartree-Fock eigenvalues for the
frontier MOs, for the trajectory analyzed in Figs. 4 and 5.

MP2 level along with a careful treatment of continuum boundary
conditions.99

D. Discussion
In contrast to the stable cavities that are observed in our

simulations, a pre-existing cavity immediately collapses in simula-
tions performed using the non-cavity pseudopotential model devel-
oped by Larsen, Glover, and Schwartz (LGS).53 This is true even
for geometry optimization, that is, even at T = 0.59 The result-
ing RDFs exhibit very little structure, and the value of g(r) at
r = 0 is considerably different from zero,61 in sharp contrast to the
RDFs for cavity-forming models. The latter are exemplified by those
shown in Fig. 7. The present results strongly suggest that Hartree-
Fock theory alone is sufficient to stabilize an excluded-volume
structure.

This is interesting in view of the fact that the LGS electron–
water pseudopotential was actually parameterized using Hartree-
Fock theory,53 as was an alternative, cavity-forming pseudopoten-
tial developed by Turi et al.51,101 that was mentioned above. Both
Turi et al.51 and Larsen et al.53 perform a “static exchange” Hartree-
Fock (SE-HF) calculation on (H2O)

− contained within a confining
potential, which is necessary because the anion of a single water
molecule is unbound. Within the SE-HF approximation, the molec-
ular orbitals of H2O are frozen and only the lowest unoccupied
molecular orbital (LUMO) is optimized self-consistently.51,89,130–132

(Relaxing the H2O molecular orbitals amounts to the incorpora-
tion of electron–water polarization interactions, and the intention
is to include these separately, by means of an ad hoc polarization
potential.89,131,132) Because the SE-HF calculation contains only a
single active electron, the pseudopotential is not uniquely defined,
but this ambiguity is removed by an additional constraint of kinetic
energy minimization.130 The outcome of this procedure is a pseudo-
orbital that is free of the LUMO’s large oscillations in the core
molecular region but matches the LUMO asymptotically (at large
electron–molecule separation), and which reproduces exactly the
same eigenvalue, �LUMO.51,89,130

As a final step, the real-space potential corresponding to this
pseudo-orbital is computed on a grid and fit to an analytic poten-
tial for use in simulations.53,89,101 It appears, however, that the
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qualitative outcome of these simulations is sensitive to very subtle
details in the fitting procedure.59 Of three pseudopotential mod-
els developed so far based on SE-HF and related calculations for
(H2O)

−,53,89,101 two of them predict spontaneous cavity formation
in bulk water.89,101 The LGS pseudopotential is the exception, and
we note that Larsen et al. do make use of a smoothing procedure
in order to eliminate high-momentum components of the poten-
tial.53 (This reduces the cost of subsequent grid-based QM/MM
simulations.)

Simulations reported here suggest that the fitting procedure
used to construct the LGS pseudopotential may not be faithful to the
underlying Hartree-Fock model. Similar concerns have been raised
by Turi et al.,52,132 albeit on entirely different grounds. In particu-
lar, in Ref. 52 it was noted that the ground-state eigenvalue of the
LGS model Hamiltonian (�LGS) is smaller than the pseudo-orbital
eigenvalue computing using only the confining potential, without
a water molecule present at all: �LGS < �conf. The LGS electron–
water pseudopotential therefore stabilizes the electron with respect
to the background confining potential. In reality, however, the SE-
HF pseudo-orbital eigenvalue for (H2O)

− in a confining potential
(�SE-HF+conf) is known to be larger than the eigenvalue obtained using
the confining potential alone,52

�LGS < �conf < �SE-HF+conf. (5.6)

The inequality �conf < �SE-HF+conf indicates that the electron–water
interaction potential is net repulsive within the SE-HF model. In
other words, when averaged over all of three-dimensional space, the
presence of the H2O molecule in the one-electron SE-HF calculation
raises the energy, relative to that of a single electron trapped in the
confining potential alone. This is true despite the fact that there cer-
tainly exist regions of space around a water molecule that are highly
favorable to an electron, e.g., near the hydrogen atoms at the positive
end of the O–H bond dipoles.

The fact that �LGS < �conf means that the LGS interaction poten-
tial for (H2O)

− lowers rather than raises the energy of the electron,
relative to the bare confining potential. The LGS pseudopotential is
net attractive rather than net repulsive, attributable to fitting errors
that render the LGS potential overly attractive near the hydrogen
atoms.132 This provides a means to understand the collapse of the
cavity in the LGS model vs its persistence in other one-electron mod-
els, and importantly, its persistence in Hartree-Fock theory itself,
as evidenced by the simulations presented here. Simulations with
several slightly modified versions of the LGS potential actually do
predict spontaneous cavity formation,52,56,59 suggesting that this
interaction potential lies on the cusp of being cavity-forming or not,
depending on small details.

VI. CONCLUSION
We have formulated and implemented analytic energy gradi-

ents for a robust version of the QM/MM-Ewald method that uses
CHELPG atomic charges rather than Mulliken charges to represent
the periodic images of the QM region. This facilitates QM/MM cal-
culations with periodic boundary conditions based on proper Ewald
summation rather than with cutoffs or minimum-image convention.
The procedure maintains the variational nature of the SCF descrip-
tion of the QM region and works for arbitrary basis sets, as demon-
strated here with simulations involving a plethora of diffuse basis

functions. We have implemented the QM/MM-Ewald method for
both Hartree-Fock and DFT descriptions of the QM region. Cor-
related wave function calculations are also possible using CHELPG
charges computed from the Hartree-Fock density.

Calculation of CHELPG charges does require evaluation of the
electrostatic potential on a real-space grid. By itself this is rather
trivial, but to compute the analytic gradient of the QM/MM-Ewald
energy requires derivatives of the electrostatic potential integrals,
evaluated at the same set of grid points. Despite the fact that these
are one-electron integrals, this can create a significant bottleneck.
(In fact, even the derivatives ∂QA/∂Pµν that are needed to construct
the Fock matrix for single-point energy calculations can constitute
a significant bottleneck when the QM region is large.35) The cost
is considerably reduced using a version of the CHELPG procedure
based on atom-centered Lebedev grids,21 rather than the Cartesian
grids used in the original CHELPG procedure.25,26 Nevertheless,
this remains a major computational bottleneck and work is currently
underway to reduce this cost.

As a rigorous test of the method, we presented MD simula-
tions of the aqueous electron at the HF+D3/3-21++G∗ level, using
a QM region consisting of (H2O)

−
24 in a large box of classical water

molecules at T = 300 K. Starting from existing DFT-based QM/MM
trajectories,64 we find that “cavity-bound” structures of e−(aq) are
stable on a time scale of at least 5 ps at the HF+D3/3-21++G∗ level.
Preliminary calculations at the B3LYP+D3 level do not change this
result in a qualitative way. Simulation of longer time scales is limited
by rapid diffusion of e−(aq), which will require either a significantly
larger QM region or else adaptive QM/MM boundary conditions.119

However, despite the relatively short time scales examined here, our
results are entirely consistent with the idea that the electron–water
interaction potential is net repulsive52 and that e−(aq) occupies an
excluded volume in the structure of liquid water.

Historically, studies of electron localization in polar fluids con-
sidered two competing paradigms to describe the transition from a
delocalized, quasi-free electron in the conduction band to a localized
species e−(aq).102,133–137 The question posed in the early literature
was one of whether the electron is “trap-seeking” or “trap-digging.”
It has since been established that the structure of liquid water and
simple alcohols contain pre-existing “traps” that facilitate the ini-
tial steps of electron localization.136–139 These are instantaneous
defects in the liquid structure, where dangling O–H moieties cre-
ated by transiently broken hydrogen bonds expose the attractive
parts of the electron–water interaction potential, facilitating for-
mation of what has sometimes been called the “pre-solvated” or
“wet” electron.103,140–146 This has been observed in some calcula-
tions,104 and the results presented here are not inconsistent with
that picture, although we have not attempted to simulate the ini-
tial steps of electron localization. At the same time, however, the
often-overlooked net repulsive nature of the electron–water inter-
action potential should be considered.52 This suggests that the sol-
vated electron quickly transitions from a trap-seeker to a trap-digger,
where the hydrogen-bond network rearranges to accommodate the
electron and the overall repulsive nature of the electron–water inter-
action takes over, pushing out water molecules to form an excluded
volume during the transition from the initial pre-solvated state
to the final, thermalized species, e−(aq). Our simulations are the
first to make extensive use of diffuse basis functions, yet nowhere
do we find evidence for a non-cavity species. Recent, fully QM
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ab initio MD simulations also support the cavity-bound picture of
this species.66,147

SUPPLEMENTARY MATERIAL

See the supplementary material for additional simulation data
related to the choice of time step, energy conservation, and equili-
bration.
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