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ABSTRACT
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing
niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic
structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersys-
tem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a
distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and there-
fore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial “free lunch”
in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can
count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time
to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges
are highlighted in this Perspective.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126216., s

I. INTRODUCTION

Quantum chemistry is expensive business. Even for mean-
field methods, the cost of electronic structure calculations grows
with system size as O(N3), and typically as O(N4) or worse
for wave function-based methods that include electron corre-
lation. For a method such as coupled-cluster theory with sin-
gle, double, and (perturbative) triple excitations [CCSD(T)] that
is capable of achieving ∼1 kcal/mol accuracy in thermochem-
ical applications, the cost is O(N7). Operationally, this means
that a 2× increase in system size equates to a 128× increase in
computational cost. Stated differently, and recognizing that 7

√
2

≈ 1.10, a doubling of computer speed equates to a 10% increase
in the system size that can be tackled (in a fixed amount of com-
puter time) using CCSD(T), and this 10% increase likely translates
into no more than a few additional atoms. Furthermore, even this
pessimistic estimate understates the problem somewhat, since the
bottleneck in CCSD(T) is often not floating-point operations but
rather storage limitations (memory and disk), which grow asO(N4).

At least since Pulay first discussed the “localizability of dynamic
electron correlation,”1–3 it has been recognized that the most
intractable parts of the electron correlation problem are also the
most short-ranged in real space. This idea was later enshrined by
Kohn as the “near-sightedness of electronic matter.”4,5 In principle,
it ought to be possible to design methods that treat electron cor-
relation effects over very short length scales at a high level theory
and then seamlessly transition to lower-level (eventually, classical)
approximations at longer length scales. Despite significant effort
and some progress,6–16 and a few single-point CCSD(T) calcula-
tions in proteins,17–19 one may judge by the paucity of hundred-atom
CCSD(T) calculations that the problem remains a formidable one,
with significant technical challenges.

An alternative (but complementary) approach to large-scale
quantum chemistry is parallelization. Technical challenges associ-
ated with designing massively parallel implementations of quantum-
chemical models are different from those faced in developing local
correlation methods, but once again the severity of the problem can
be inferred from the lack of widespread applications. To date, one of
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the largest examples of a massively parallel, post-Hartree-Fock cal-
culation is a MP2/cc-pVTZ calculation on a (C150H30)2 nanoscale
graphene dimer, which runs in under an hour on 71 288 pro-
cessors.20 CCSD(T)/cc-pVTZ single-point energies have also been
reported for a few isomers of (H2O)N , N = 16–20,21,22 each requiring
several hours’ wall time on 120 000 processors.22

Fragment-based quantum chemistry methods,23–39 in which
a large system is decomposed into small, tractable pieces more
amenable to electronic structure calculations, have sometimes been
advertised as an end-run around both the nonlinear scaling of tra-
ditional quantum chemistry as well as the technical complexities of
local correlation and massively parallel algorithm development. By
dividing a system of size N into a number of subsystems (Nsub),
each of size n, fragmentation reduces the formal complexity of the
problem according to

O(Np)→ Nsub ×O(np). (1)

The exponent p ranges from p = 3 (for density functional the-
ory, DFT) to p = 7 [for CCSD(T)], reflecting the inherent com-
plexity of the quantum-chemical model. The fragment size (n)
controls the cost of the correlated electronic structure problem.
Insofar as n reflects the length scale of electron correlation, it
is independent of the system size and therefore linear scaling is
achieved, provided that Nsub does increase faster than O(N). (In
practice, the latter requirement demands some sort of screen-
ing procedure for the subsystems.) To the extent that calcula-
tions on individual fragments are independent of one another,
fragment-based methods are straightforward to parallelize at the
level of a script or a driver program, without modification of
the underlying electronic structure program. This makes it rel-
atively easy to jump right into thousand-atom quantum chem-
istry calculations with very little start-up effort, and calculations
on systems larger than 20 000 atoms (equivalent to more than
164 000 basis functions) have been reported,40 using fragment-based
approaches. This ease of entry has occasionally created a tendency
to circumvent careful calibration of theoretical models in favor
of proceeding directly to large-scale applications with insufficient
validation.

As fragmentation methods begin to mature, it becomes time
for a reckoning of what problems they can and cannot be expected
to solve in the foreseeable future. The very large number of individ-
ual calculations required by the fragment-based approach imbues a
computational overhead whose magnitude is seldom discussed and
may not be widely appreciated, such that fragmentation methods
may not always constitute the “free lunch” that they are occasionally
portrayed to be. Furthermore, one needs to be clear-eyed about the
sorts of chemical applications that are accessible with these methods.
For example, what useful questions can be answered based on a few
CCSD(T) single-point energy calculations in a large system? To be
fair, the same criticism applies to local correlation methods as well,
but it is worth asking nonetheless.

With this context in mind, we embark on a survey of fragment-
based quantum chemistry methods that is intended to provide a
sense of what is feasible and what is not, and to tie together the
menagerie of fragmentation approaches by emphasizing similari-
ties among them. This Perspective is not intended as a compre-
hensive review of these methods, for which the reader is referred

to several overarching reviews,24–26 books,23,39 and overviews from
individual research groups.27–38 Instead, this article seeks to high-
light some success stories in the field but also to draw attention to
certain challenges that have not been widely discussed in the liter-
ature, and finally to offer opinions as to what directions this field
should take.

The remainder of this work is organized as follows. Section II
provides an overview of the litany of fragment-based methods in
quantum chemistry. These methods are numerous, but it is my
contention that they can be understood as relatively minor varia-
tions on several key ideas. The present work focuses on similarities.
Section III examines the performance of these methods in selected
applications to molecular clusters, molecular crystals, and liquids,
i.e., to systems where fragmentation does not sever covalent bonds.
By eliminating covalent fragmentation as a source of error, these
applications serve to highlight other issues intrinsic to the fragmen-
tation approach. The strengths and weaknesses revealed in nonco-
valent applications are then used to inform a succinct overview of
macromolecular applications, in Sec. IV. Finally, Sec. V concludes
with some open questions for the field.

II. OVERVIEW OF METHODS
The low entry barrier to doing fragment-based quantum chem-

istry by script has spawned a plethora of methods, but most of them
can be understood as variations on a small number of key ideas.
These main ideas are

● the many-body expansion (MBE);
● approximate functional group additivity; and
● multilayer composite approaches, in the spirit of the

“ONIOM” scheme.41–43

Two parallel lines of argument, based on different physical
ideas, have led to the development of two broad categories of
fragment-based approaches. The first of these is most readily under-
stood by considering systems in which the fragments are not cova-
lently bonded, such as a cluster or a molecular crystal. This leads
naturally to consideration of the MBE, a sequential approach in
which calculations are performed on monomers, dimers, trimers,
etc. Alternatively, by reflecting upon the approximate additivity of
bond enthalpies in thermochemical calculations, one is naturally led
to consider methods that decompose a macromolecular system into
small functional groups. This leads to an ostensibly distinct category
of fragment-based methods. These seemingly disparate ideas can in
fact be consolidated, within the unified framework of a generalized
(G)MBE.44–46

A. Many-body expansion
Consider a molecular liquid or a molecular crystal, in which

the fragments (monomers) suggest themselves naturally and where
the whole system can be envisaged as a large collection of small
monomers, whose interfragment interactions are noncovalent and
therefore relatively weak. Other examples might include a lig-
and nestled in the binding pocket of an enzyme, where each of
the nearby amino acids is considered as a separate fragment, as
depicted in Fig. 1. Alternatively, one might have in mind any
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FIG. 1. (a) Illustration of a ligand (the protease inhibitor indinavir) bound to HIV-2
protease. (b) Enlarged view of the binding pocket, consisting of indinavir (ball-
and-stick model) along with nearby amino acids.47 Panel (b) is reproduced with
permission from Ucisik et al., J. Chem. Phys. 135, 085101 (2011). Copyright 2011
AIP Publishing LLC.

calculation in which explicit solvent molecules are added around a
given solute.

In these situations, the many-body expansion (MBE),

E =
N

∑
I=1

EI +
N

∑
I=1
∑
J>I

ΔEIJ +
N

∑
I=1
∑
J>I
∑
K>J

ΔEIJK +⋯, (2)

provides a context in which the description of the ligand or the solute
(or simply the monomer units, more generally) can be systematically
improved by sequential introduction of additional fragments. The
first term in Eq. (2) represents the sum of the energies of N distinct
fragments, and subsequent terms are corrections for dimers, trimers,
etc. For example,

ΔEIJ = EIJ − EI − EJ (3)

is a two-body correction, where EIJ is the energy of dimer IJ, and

ΔEIJK = EIJK − ΔEIJ − ΔEIK − ΔEJK − EI − EJ − EK (4)

is a three-body correction. The expansion in Eq. (2) is trivially valid
insofar as each successive term subtracts out the terms that have
come before it; however, this approach is only useful if higher-order
n-body terms quickly become negligible, beyond n = 3 or perhaps
n = 4. Truncating Eq. (2) at n-body terms forms the basis of the
method that I will call MBE(n).

Neglect of terms beyond n = 2 affords a pairwise-additive
approximation that is known to fail badly for clusters of polar
monomers, despite being nearly ubiquitous in force-field devel-
opment.48 To put things quantitatively, the three-body polariza-
tion effect in isomers of (H2O)6 ranges from −9 kcal/mol to
−13 kcal/mol,49 and for representative trimers extracted from liq-
uid water, three-body interaction energies range from −6 kcal/mol
(attractive) to +1 kcal/mol (repulsive).48 The total four-body con-
tribution exceeds 1 kcal/mol even for water hexamer,50,51 and for
(H2O)16, the terms with n ≥ 5 contribute ≈2 kcal/mol to the total
interaction energy,52 although large-basis calculations suggest that
these five-body contributions may be artifacts of basis-set superpo-
sition error (BSSE).53 Consistent with that interpretation, MBE(n)
converges at n = 4 in calculations using a polarizable force field,54

which contains many-body effects but not BSSE, although five-body
terms are necessary to converge the forces.54

Fortunately, there is good numerical evidence that electron cor-
relation effects are nearly pairwise-additive in water clusters,53,55–58

as are counterpoise corrections.50,59–61 Nonadditivity is dominated
by classical polarization,62 although three-body charge-transfer
effects may be important in some ion–water clusters.63,64 That elec-
tron correlation is essentially a pairwise phenomenon makes sense
if one considers that the dispersion interaction, which is absent in
Hartree-Fock theory and arises solely from electron correlation, also
falls off very rapidly with distance, as R−6. Three-body dispersion
effects thus contribute ≲2%–3% of the total interaction energy in
clusters of small monomers.58 (Estimates of the three-body disper-
sion contribution to the lattice energy of benzene, which might be
considered a worst-case scenario due to the importance of dispersion
and smallness of the monomers, range from 0.6 to 1.6 kcal/mol,65–67

representing 5%–13% of the lattice energy.) The molecular electron
density decays even more rapidly (exponentially) with distance and
therefore so does the exchange interaction (i.e., Pauli repulsion), and
also the BSSE.

In contrast, many-body contributions to induction (i.e., polar-
ization) cannot be neglected and become increasingly important
in large systems. This is demonstrated in Fig. 2(a), which plots
errors in the MBE(n) approximation to the total energy for a
sequence of increasingly large water clusters.68 Two- and three-body
approximations quickly diverge from the exact result as cluster size
increases.

These many-body polarization effects are present already at the
Hartree-Fock level, or even at the classical level if the monomers
are polarizable. In an attempt to hasten convergence of the MBE,
it is therefore common to perform the subsystem electronic struc-
ture calculations embedded in some classical electrostatic represen-
tation of the rest of the system. In its simplest version, this electro-
statically embedded (EE)-MBE(n) approach68–72 might simply use
atomic point charges to represent the other fragments, in the style
of hybrid quantum mechanics/molecular mechanics (QM/MM) cal-
culations. For that reason, EE-MBE(n) has been called a “spatially
homogeneous” QM/MM method,73 since the entire system is treated
quantum-mechanically, one (or more) fragment(s) at a time. This
is equivalent to the generalized molecular fractionation (EE-GMF)
method of Liu and He.74–78

A version of the MBE that merits special attention is the frag-
ment molecular orbital (FMO) method.23,38,79–83 Historically, FMO
was the first fragment-based quantum chemistry method to be
identified as such,79 even if applications of the MBE in quantum
chemistry go back even further,84–88 and FMO is especially preva-
lent due to its long-standing implementation in the GAMESS pro-
gram.38,81 The FMOn method uses an n-body expansion for the
energy in conjunction with an electrostatic embedding that consists
of full electrostatic potentials (generated from the fragment densi-
ties) at short range and point charges at longer range.82,89 The vast
majority of FMO calculations reported in the literature are actu-
ally FMO2, which is not particularly accurate for total energies, but
FMO3 and FMO4 methods have been formulated and implemented
as well.90,91

Importantly, in FMOn only the one-body subsystems are iter-
ated to self-consistency, whereas the dimer energies [EIJ in Eq. (3)],
trimer energies [EIJK in Eq. (4)], etc., are evaluated using frozen
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FIG. 2. Errors in MBE(n) and GMBE(n) approximations to the total interaction
energy for a sequence of (H2O)N clusters, based on calculations performed at the
B3LYP/cc-pVDZ level. (a) MBE(n) results with one H2O per fragment, using nor-
mal vs tight convergence and integral-screening thresholds. (b) GMBE(n) results
with 3–4 water molecules per fragment. Adapted with permission from Lao et al.,
J. Chem. Phys. 144, 164105 (2016). Copyright 2016 AIP Publishing LLC.

fragment densities.79 In contrast, most other examples of MBE(n)
iterate all of the subsystems (dimers, trimers, etc.) to self-
consistency. This reduces the cost and enhances the parallel effi-
ciency of FMOn because no communication between n-body sub-
systems is required beyond n = 1, but it also has the undesirable
effect of limiting FMOn to small basis sets,92,93 as discussed in
Sec. III B. The self-consistent EE-MBE(n) approach suffers no such
limitation.

Although introduced here in the context of noncovalent sys-
tems, both FMOn and EE-MBE(n) can be extended to macro-
molecular systems by introducing “link atoms” to replace covalent
bonds that are severed by fragmentation, as in standard QM/MM
calculations.94–98 Alternatively, frozen hybrid orbitals can be used
to saturate the severed valencies,92,99,100 again following QM/MM
protocols.

B. Inclusion/exclusion principle
There also exist fragment-based methods whose origins are not

rooted in the MBE at all but can be understood (in the context of

FIG. 3. Three possible H2 addition reactions for the molecule 1-bromobutan-2-one,
which has been divided into three color-coded fragments. Reaction energies ΔU
are defined in Eqs. (5)–(7).

macromolecular applications) in terms of the thermochemical con-
cept of approximate additivity of bond or functional-group ener-
gies. To illustrate this idea, consider the CH3CH2C(O)CH2Br
molecule, divided into functional groups CH3–, –CH2C(O)–, and
–CH2Br. Figure 3 suggests three possible hydrogenation reactions
involving this molecule, the first two of which involve cleavage
of a single C–C bond, with the H2 reagent serving to cap the
two carbon valencies that are created when this bond is sev-
ered. The corresponding energy changes for these two reactions
are

ΔU1 = E(H3CH) + E(HCH2COCH2Br)
− E(CH3CH2COCH2Br) − E(H2) (5)

and

ΔU2 = E(CH3CH2COH) + E(HCH2Br)
− E(CH3CH2COCH2Br) − E(H2). (6)

The third reaction in Fig. 3 cleaves both of the C–C bonds simulta-
neously, corresponding to a reaction energy

ΔU3 = E(H3CH) + E(HCH2COH) + E(HCH2Br)
− E(CH3CH2COCH2Br) − 2E(H2). (7)

To the extent that bond energies are indeed additive, then
ΔU3 ≈ ΔU1 + ΔU2. Combining this approximation with Eqs. (5)–(7)
affords

E(CH3CH2COCH2Br) ≈ E(CH3CH2COH) + E(HCH2COCH2Br)
− E(HCH2COH). (8)

Notice that the molecules on the right side of Eq. (8) contain only
one or two functional groups, whereas the original molecule con-
tains three. Equation (8) therefore constitutes a fragment-based
approximation to the total energy of the original molecule.

This procedure can be applied sequentially until the energy of
any large molecule has been approximated in terms of the ener-
gies of small molecules consisting of a single functional group each
(with hydrogen caps), although it stands to reason that the accu-
racy is likely to be better if the fragments are larger. In the system-
atic molecular fragmentation (SMF) approach pioneered by Collins
and co-workers,31,101–105 three levels of approximation are suggested
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based on whether the fragmented bonds are separated by one, two,
or three intact bonds. Denoting a single functional group as Gk, with
the notation GkGk+1 understood to mean two functional groups con-
nected by a covalent bond, the SMFn schemes (for levels n = 1, 2,
or 3) can be written schematically as31,101,105

G1G2G3G4G5

LevelÐÐ→
1

G1G2 + G2G3 + G3G4 + G4G5 −G2 −G3 −G4 (9a)

LevelÐÐ→
2

G1G2G3 + G2G3G4 + G3G4G5 −G2G3 −G3G4 (9b)

LevelÐÐ→
3

G1G2G3G4 + G2G3G4G5 −G2G3G4. (9c)

The SMF3 scheme in Eq. (9c) corresponds to an energy expression

E(G1G2G3G4G5)
SMF3≈ E(G1G2G3G4) + E(G2G3G4G5)

− E(G2G3G4). (10)

Since fragment size increases with n, the SMFn framework
provides something of a systematically improvable hierarchy. This
is relatively straightforward for unbranched hydrocarbons such as
the one considered in Fig. 3, but more complicated molecules
require a more sophisticated decision tree. Multiple fragmenta-
tion strategies could be envisaged that are probably equally reason-
able, at least according to the crude metric of “chemical intuition.”
Collins104 has suggested systematic procedures to obtain approx-
imate energy formulas, but these prescriptions are certainly not
unique.

An important step toward systematizing the panoply of
fragment-based methods was the recognition that the details of how
the molecule is partitioned into fragments can be separated from
the manner in which the energy formula is obtained.44 Notice that
the SMFn schemes in Eq. (9) possess a certain symmetry wherein
the large molecule G1G2G3G4G5 is divided into overlapping frag-
ments, e.g., G1G2G3G4 and G2G3G4G5, and the terms that are sub-
tracted correspond precisely to the energies of additional fragments
formed from intersections. In the SMF3 energy expression, for
example, there are two fragments and one intersection, the latter
being

G2G3G4 = G1G2G3G4 ∩G2G3G4G5. (11)

This idea was discovered independently by Zhang and co-
workers,30,106–109 in the context of a method that they introduced
specifically for proteins called molecular fractionation with conju-
gated caps (MFCC). As illustrated in Fig. 4, the MFCC procedure
consists in fragmenting a protein across the peptide bond, introduc-
ing amino (–NH2) and formyl (–CHO) groups to cap the severed
valencies. The intersections between overlapping fragments are for-
mamide molecules, NH2CHO. Denoting this “conjugate” pair of
functional groups as a “cap” and “cap∗,” the approximation that is
inherent to MFCC can be expressed succinctly as

E(GkGk+1)
MFCC≈ E(Gk–capk) + E(cap∗k+1–Gk+1) − E(capk–cap∗k+1).

(12)

These principles can be generalized to encompass several
other seemingly disparate methods. The generalization uses the

FIG. 4. Illustration of the MFCC fragmentation scheme for proteins, developed by
Zhang and co-workers.30,106–109

set-theoretical inclusion/exclusion principle, which is a theorem
about the cardinality of sets. Let F = F1 ∪ F2 ∪ ⋯ ∪ FN be a union
of subsets Fi that need not be disjoint. Then the cardinality |F| of
the superset can be expressed in terms of the cardinalities |Fi| of the
subsets according to

∣F∣ =
N

∑
i=1
∣Fi∣ −

N

∑
i=1
∑
j>i
∣Fi ∩ Fj∣ +

N

∑
i=1
∑
j>i
∑
k>j
∣Fi ∩ Fj ∩ Fk∣ −⋯

+ (−1)N−1∣F1 ∩ F2 ∩⋯ ∩ FN ∣. (13)

Setting aside (for now) the theoretical justification, let us equate the
subsets Fi with fragments of a large molecule, and replace cardinality
with energy. An approximation to the total energy is then obtained
from Eq. (13), in the form

E ≈
N

∑
α=1

Eα, (14)

where

Eα = Eα −∑
β>α

Eα∩β +∑
β>α
∑
γ>β

Eα∩β∩γ +⋯. (15)

The quantity Eα has been called the “intersection-corrected” energy
for fragment α.44 Terms such as Eα∩β represent the energy of a frag-
ment constructed from the intersection Fα ∩ Fβ (with appropriate
caps), and Eq. (15) terminates when the intersections vanish, i.e.,
when Fα ∩ Fβ ∩ Fγ ∩ ⋯ = ∅.

Together, Eqs. (14) and (15) form the basis of several differ-
ent methods whose formal similarity was noted only after each was
introduced independently.44,45,110 In addition to the aforementioned
MFCC scheme,30,106–109 these methods include the molecular tailor-
ing approach (MTA) developed by Gadre and co-workers,29,111–118

the generalized energy-based fragmentation (GEBF) method of Li
and co-workers,27,37,119–121 and the molecules-in-molecules (MIM)
method developed by Raghavachari and co-workers.110,122–124 SMFn
is very similar but was developed in a more ad hoc way and includes
only a subset of the terms suggested by the inclusion/exclusion
principle.44

The inclusion/exclusion principle is invoked as justification
in early papers describing molecular tailoring112 and MIM,110
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but in other cases the methods mentioned above were introduced
by way of a fragmentation strategy, from which an energy formula
was subsequently deduced, consisting of fragment energies multi-
plied by coefficients ±1 whose values were determined by count-
ing arguments.105,119,120 Thus, the connection between these meth-
ods is not immediately obvious from the GEBF and SMF papers,
and continues to be downplayed (by omission) in the recent lit-
erature. Each of these methods (MFCC, GEBF, MTA, MIM, and
SMFn) differs in how fragments are selected, a choice that cer-
tainly affects the accuracy; nevertheless, it is satisfying that a shared
energy formula can be found to unite these ostensibly disparate
methodologies.

The leap from the inclusion/exclusion principle in Eq. (13) to
the energy formula in Eqs. (14) and (15) can be formally justified by a
careful rewriting of the supersystem’s Hamiltonian.44–46 Specifically,
Eq. (14) derives from an exact partition

Ĥ =
N

∑
i=1

Ĥ(Fi) −
N

∑
i=1
∑
j>i

Ĥ(Fi ∩ Fj) +⋯ (16)

that is analogous to Eq. (13). This is an exact expression for the
supersystem’s Hamiltonian Ĥ, and its expectation value ⟨Ψ|Ĥ|Ψ⟩
would afford the exact energy if ∣Ψ⟩ were the wave function for
the entire supersystem. To obtain a tractable approximation, one
instead evaluates expectation values of individual terms using wave
functions computed for localized subsystems, e.g.,46

⟨Ψ∣Ĥ(Fi ∩ Fj)∣Ψ⟩ ≈ ⟨ΨFi∩Fj ∣Ĥ(Fi ∩ Fj)∣ΨFi∩Fj⟩. (17)

The energy expression in Eqs. (14) and (15) follows from this
approximation.

Setting aside the thermochemical motivation discussed above,
imagine now that the molecule G1G2G3⋯ in Eq. (9) is a protein
or other macromolecule that is large enough so that its confor-
mational preferences are interesting. The fragmentation strategy
suggested by Eq. (9) is concerned only with primary (sequence)
structure, and makes no allowance for the noncovalent interac-
tions that control molecular conformation (secondary structure).
Within the context of SMFn, Addicoat and Collins103 suggest incor-
porating nonbonded interactions by adding interfragment disper-
sion corrections a posteriori, but a first-principles approach is
desirable.

The inclusion/exclusion principle that underlies Eq. (16) is
agnostic as to how the system is partitioned into fragments, and
one can take advantage of this flexibility to introduce a generalized
(G)MBE, defining GMBE(n) to be the method that considers inter-
actions between n (possibly overlapping) fragments at a time. The
procedure is:44,46

1. Tesselate the system into fragments {Fi}, which may or may
not overlap, capping valencies wherever fragmentation severs
covalent bonds.

2. Generate a new set of fragments {F(n)α } consisting of the
unique n-mers formed from the original set of fragments {Fi}.

3. Apply the energy expression in Eq. (14), where Eα in Eq. (15)
is the intersection-corrected energy for a fragment drawn from
the set {F(n)α }.

If the fragments {Fi} are disjoint (e.g., if each Fi is one H2O molecule
in a water cluster), then the instructions in the second step are to
consider all unique dimers (for n = 2), trimers (for n = 3), etc. In that
case, the MBE(n) and GMBE(n) methods are completely equivalent,
so the latter is a true generalization of the former. If the primitive
fragments {Fi} do overlap, e.g., because we chose fragments G1G2,
G2G3, G3G4, . . ., then the GMBE(n) approach is useful already start-
ing at n = 1. In fact, the method that my group calls GMBE(1) uses
precisely the same energy expression as the GEBF, MTA, and “MIM
level 1” (MIM1) methods.44 The SMFn approach is similar in spirit
although GMBE(1) is formally more complete in the sense of the
inclusion/exclusion principle.

There is no unique prescription for choosing fragments in the
first step of the procedure, and various methods differ on this point.
In the context of the GEBF approach, Li and co-workers119,125–127

have suggested an automated procedure based on a single dis-
tance cutoff parameter, Rcut. The primitive fragments {Fi} are gen-
erated by looping through all of the nonhydrogen atoms, group-
ing into fragments any atoms that lie within Rcut of one another,
with hydrogen atoms assigned based on distance or covalency
requirements. This procedure generates a relatively large number
of fragments but can be used to provide extremely accurate results
at the n = 2 level, for both noncovalent clusters46,68 and macro-
molecules.128 This is demonstrated in Fig. 2(b) for the same set of
water clusters used to evaluate the efficacy of MBE(n), only this
time with 3–4 H2O molecules per fragment Fi, corresponding to
Rcut = 3.0 Å. Absolute errors in the GMBE(2) approximation remain
quite small even in clusters as large as (H2O)55, while requiring
electronic structure calculations on subsystems Fi ∪ Fj that are
no larger than (H2O)8. For applications to macromolecules, the
GMBE(2) approach includes both “through-bond” interactions (due
to the use of overlapping fragments) and “through-space” interac-
tions (from the dimers of fragments), even if the fragments G1G2,
G2G3, G3G4, . . . are selected strictly based on the primary amino
acid sequence of a protein. The “through-space” terms are not
included at the level of GMBE(1), which is why methods such as
SMFn must incorporate noncovalent interactions in a more ad hoc
way.

C. Composite approaches
As discussed in Sec. II A, electrostatic embedding of the

subsystem calculations is designed to capture many-body induc-
tion without the need for high-order n-body electronic structure
calculations. Even so, for large water clusters it is found that
EE-MBE(4) is necessary to achieve a fidelity of ∼1 kcal/mol between
the supersystem calculation and its fragment-based approxima-
tion.53,68 At the four-body level, however, the number of distinct
subsystems increases in a catastrophic way with respect to system
size. A system with N = 50 fragments has 230 300 distinct tetramers,
for example, as compared to 19 600 trimers. Partly due to con-
cerns over finite precision,33,72 which are discussed in Sec. III A,
the latter number is probably tractable, but the former number may
not be.

Higher-order polarization effects are essentially classical, how-
ever, so there is no physical reason why three- and four-body terms
need to be described at a high level of theory. Composite approaches
take advantage of this physics by performing low-order n-body
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calculations (perhaps only for n ≤ 2) at the highest feasible level
of quantum theory, then using a lower-level method to describe
higher-order n-body interactions. In practice, this means that the
higher-level method is operational at short length scales and the
lower-level method at longer length scales. A straightforward exam-
ple of this idea is to describe the many-body interactions (n ≥ 3)
using a polarizable force field. This forms the basis of the hybrid
many-body interactions (HMBI) method developed by Beran and co-
workers.36,66,73,129–132 The force field can be parameterized on-the-
fly using atomic polarizabilities derived from fragment electronic
structure calculations.66

Force-field calculations are essentially zero-cost in this con-
text, hence there is little reason to truncate the n-body expansion
if the many-body terms are described classically. Instead, one per-
forms the force-field calculation on the entire (super)system and
uses the result to sum the n-body interactions from n = 3 to n = N
at the classical level of theory. This is the same idea used in the
“ONIOM” method,41–43 which was originally developed to combine
different levels of theory, e.g., for QM/MM calculations. In the tra-
ditional ONIOM approach, a small model system is carved out of
a larger system of interest, the latter of which is known as the “real
system” in ONIOM terminology.43 A low level of theory is selected
that is affordable enough to be applied to the real system, while the
higher level of theory is applied only to the smaller model system.
The energy of the whole system is then approximated as

E
ONIOM≈ Ehigh(model) − Elow(model) + Elow(real). (18)

Figure 5(a) provides a pictorial illustration.
To connect this idea to the HMBI approach, one could imagine

the polarizable force field serving as the low level of theory with some
QM model as the higher-level theory, as in a traditional QM/MM
application of ONIOM. However, the spatially homogeneous nature
of the fragmentation approximation allows the QM method to be
applied to the entire real system (albeit over short length scales),
by means of a low-order GMBE(n) approximation. A lower-level
method, applied to the entire supersystem, corrects for errors intro-
duced by fragmentation, including higher-order induction effects
missing from the truncated n-body expansion.

The idea of an ONIOM-style composite with MBE(n) used in
the high-level component was originally put forward by Tschumper
and co-workers,133–138 who called it the “n-body:many-body”
method. This approach is illustrated in Fig. 5(b) and corresponds
to the approximation

Ehigh(super) MIM2≈ Ehigh(GMBE)−Elow(GMBE)+ Elow(super). (19)

Here, E(super) indicates a supersystem calculation, whereas
E(GMBE) denotes a GMBE(n) approximation of some sort. As
with the original ONIOM approach, this could be systematically
improved by inserting intermediate levels of theory applied to larger
fragments,110 as in the three-layer approach that is illustrated in
Fig. 5(c). A version based on overlapping fragments has also been
suggested.139–141

As indicated by the notation in Eq. (19), the n-body:many-
body approach is equivalent to a two-layer molecules-in-molecules

FIG. 5. Schematic illustrations of (a) the ONIOM composite approach;41–43 (b)
its fragment-based analog, the two-layer MIM2 method;110 and (c) the three-layer
MIM3 extension.110 Orange, green, and blue represent low (L), medium (M), and
high (H) levels of theory, respectively. In traditional ONIOM, the high level of theory
is confined to a small “model” system, whereas the low level of theory is applied
to the entire (“real”) system. The multilayer MIM schemes employ one or more
fragmentation methods to apply higher levels of theory to the entire system in a
homogeneous way, in conjunction with a low-level calculation applied to the entire
supersystem. This supersystem calculation captures many-body induction effects
and corrects for other errors introduced by fragmentation.

or MIM2 method.110,122 The MIM1 approximation is essentially
GMBE(1) but has seldom been used on its own. Instead, it con-
stitutes the fragment-based component of a multilayer MIM2
[Fig. 5(b)] or MIM3 [Fig. 5(c)] approach. The basic strategy can
be understood as a sort of telescoping sum, in which each lower-
level layer attempts to correct errors introduced by the fragmenta-
tion approximation at the level above, and which ultimately termi-
nates with a calculation performed on the entire supersystem. In
order to target large systems, Raghavachari and co-workers tend
to perform the supersystem calculation using Hartree-Fock theory
or DFT with a small basis set (e.g., M06-2X/6-31+G∗∗),122,124,142

or else a semiempirical method such as PM6-D3.143,144 In con-
trast, Tschumper and co-workers have focused on achieving high
accuracy in clusters,133–138 and their calculations typically consist
of MBE(2) at the CCSD(T) level combined with a supersystem
calculation at the MP2 level.

A multilayer FMO method has also been proposed wherein
two- and three-body terms are computed at different levels of the-
ory.145 Despite similar semantics, however, this is actually quite dif-
ferent from the multilayer MIMn strategy that relies on a supersys-
tem calculation and therefore abrogates any chance at O(N) scaling.
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Nevertheless, methods such as PM6 or even Hartree-Fock/6-31G∗

can nowadays be applied quite readily to systems with hundreds of
atoms. If the goal is to use a very accurate (and therefore expensive)
method for the fragmentation part of the calculation, then a low-
level supersystem calculation may be worth the effort, to clean up
residual errors introduced by fragmentation.

One variant of MIM2 is a method in which the high- and
low-level methods differ only in the use of a large or a small basis
set, respectively. This strategy was developed by Gadre and co-
workers29,117,118,146–150 (who call it “grafting”) as a correction for
their own GMBE(1)-type method. The procedure, which can be
considered a special case of Eq. (19), is captured by the formula118

Elarge(super) ≈ Elarge(GMBE) + δfrag, (20)

where

δfrag = Esmall(super) − Esmall(GMBE) (21)

is a correction for errors introduced by fragmentation, evalu-
ated using a small-basis calculation on the entire supersystem,
Esmall(super). This strategy has most often been deployed for MP2-
level geometry optimizations and vibrational frequency calcula-
tions,29,147–149 using a combination of large-basis Hartree-Fock and
small-basis MP2. In that context, the relevant approximation is

Elarge(super) ≈ Elarge
HF (super) + Elarge

corr (GMBE) + δfrag
corr, (22)

where Ecorr = EMP2 − EHF is the correlation energy and the correction
term is

δfrag
corr = Esmall

corr (super) − Esmall
corr (GMBE). (23)

The grafting idea brings to mind the notion of a MBE(n)
approximation for the correlation energy only, applied on top of
a Hartree-Fock calculation for the entire system.151 This is some-
what similar to Stoll’s method of increments.86–88,152,153 The latter is
an “incremental” expansion for the correlation energy consisting, for
example, of two-body corrections

Δεij = εij − εi − εj, (24)

where i and j are molecular orbital indices. This idea is an old
one,84 but it has been revived in recent years as a means to com-
pute near-exact energies for small molecules,154–164 approaching full
configuration interaction. It also forms the basis of a more general
“cluster-in-molecule” approach to local correlation.12,165–169 This is
conceptually apart, however, from the manner in which the MBE is
used in the fragmentation methods that are the focus of this Per-
spective. The incremental correlation approach is not discussed any
further here.

III. LARGE COLLECTIONS OF SMALL MOLECULES
Molecular crystals and liquids such as water practically cry out

for a fragment-based treatment, as does any large noncovalent clus-
ter composed of relatively small monomers. For this reason, the sur-
vey of applications that is presented herein focuses first and foremost
on noncovalent systems. While highlighting some successful appli-
cations, especially in the context of molecular crystals, we will also
use noncovalent systems as a platform to expose certain underlying

issues that limit how broadly applicable fragmentation methods can
be made, and at what cost. These lessons will then be carried into the
more complex realm of macromolecular fragmentation, applications
of which are surveyed in Sec. IV.

This work focuses exclusively on ground-state energies and
properties. For excited states, there have been only preliminary
applications of MBE(n),78,170 although FMOn has been formu-
lated for excited states171–174 and an overlapping-fragment approach
has been described as well.175,176 Clusters-in-molecules methods
have also been applied to excited states,177–180 as have exciton
models that couple together excited-state calculations on more
than one fragment, using these as a basis for describing collec-
tive (multifragment) excitations.178–183 Each of these methods is
far less mature as compared to ground-state fragmentation, and
the ground state suffices to illustrate the primary themes of this
Perspective.

A. Accuracy and precision issues
Clusters of water molecules are the quintessential test sys-

tems for fragmentation methods, due to the general importance
of water, the amenability of clusters to a fragmentation approach,
and the fact that many-body induction is significant in water
clusters.48–54,62 Examining the errors engendered by the MBE(n)
approximation, i.e., comparing the supersystem energy to the
n-body result computed at the same level of theory, one finds that
the errors are size-extensive.33,68 This is evident from the data in
Fig. 2(a). Even at the four-body level, the total error is several
kcal/mol for (H2O)N clusters of size N ≳ 45. Part of this error
is likely attributable to BSSE,53,59,60,68,184 and indeed, the many-
body convergence errors are smaller in calculations using polar-
izable force fields, e.g., an MBE(4) error of only 1.2 kcal/mol for
(H2O)216.54

Despite these inherent errors, Paesani and co-workers48,185,186

have parameterized a very accurate force field for water based on
dimer and trimer calculations performed at the CCSD(T) level in
the complete basis set (CBS) limit. The resolution of this apparent
paradox comes in noting that this “MB-pol” potential186 is polar-
izable, therefore many-body induction beyond the three-body level
is treated classically but is not truncated, in what is essentially an
example of the multilayer approach described in Sec. II C. (The
low-level supersystem method is a classical, polarizable force field.)
For ion–water clusters such as H3O+(H2O)5, four- and five-body
interactions remain on the order of ≈0.5 kcal/mol.187

More generally, embedding charges have been suggested as
a means to reduce the importance of higher-order n-body terms.
Figure 6 examines the same sequence of (H2O)N clusters as
in Fig. 2, this time using EE-MBE(3) and EE-MBE(4) approxi-
mations with various flavors of point charges derived from the
one-body wave functions. At the four-body level, these charges
do systematically reduce the error (as compared to a supersys-
tem calculation at the same level of theory), but the same is not
true at the three-body level. For EE-MBE(3), differences between
various charge schemes are insignificant in comparison with the
overall error in any one of these approximations, which increases
rapidly as a function of cluster size. These large, size-extensive
errors are sometimes masked by reporting errors in per-monomer
terms.
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FIG. 6. Errors in (a) EE-MBE(3) and (b) EE-MBE(4) approximations for a sequence
of (H2O)N clusters, using various types of atomic partial charges. All calculations
were performed at the B3LYP/cc-pVDZ level, and the error is measured relative
to a supersystem calculation at the same level of theory. Adapted with permission
from Lao et al., J. Chem. Phys. 144, 164105 (2016). Copyright 2016 AIP Publishing
LLC.

As compared to EE-MBE(n), the FMOn approach uses a more
sophisticated, hierarchical embedding that includes density-based
electrostatic embedding at short range.82,89 The accuracy of FMO2
and FMO3 approximations is considered in Fig. 7(a) for a different
set of water clusters.188 These data are plotted in units of binding
energy per water monomer, but the FMO3 results are accurate to
within ≈3 kcal/mol (on an absolute scale) for N = 64. The FMO2
data, on the other hand, are not accurate enough to be useful, with
absolute errors of ≈28 kcal/mol for N = 64.

Figure 7(b) plots binding energies for the same data set
obtained using SMF2 and SMF3,103,104 both of which are tantamount
to GMBE(1) but augmented with ad hoc intermolecular polarization
and dispersion potentials obtained from calculations performed on
the one-body wave functions.103,188 Fragments are selected based on
a distance criterion and include an average of ≈6 monomers per frag-
ment in the case of the more accurate SMF3 approach.188 This means
that a limited set of six-body interactions are included in these cal-
culations. Li and co-workers119,125–127 have reported accurate ener-
gies for (H2O)N clusters with only point-charge embedding, using
the EE-GEBF approach [equivalent to EE-GMBE(1)] in conjunction
with fragments of similar size.

Prediction of absolute binding energies is not the same as
accurate prediction of relative energies for different cluster iso-
mers, however, and it is unclear from Fig. 7 whether relative ener-
gies are preserved with good fidelity by fragmentation. In fact,

FIG. 7. Binding energies (BEs) per monomer for isomers of (H2O)N (N = 16, 20,
32, and 64), computed at the MP2 level in three different basis sets. The horizontal
axis provides the supersystem MP2 result, and the vertical axis affords the result
obtained from either (a) FMOn calculations or (b) SMFn calculations. The FMOn
calculations use one H2O monomer per fragment, whereas the SMF2 calculations
use fragments that range in size from 2 to 6 monomers (average size ≈3.2) and
the SMF3 calculations use fragments ranging from 4 to 11 monomers (average
size ≈6.4). Data are from Ref. 188.

the relative energy problem proves to be a very challenging one
for fragment-based methods. It can be surmounted using EE-
MBE(4) or GMBE(2),68,184 or GMBE(1) if the fragments are large
enough. GMBE(1) with 3–4 water molecules per fragment is clearly
not sufficient,68 as demonstrated by the large errors in Fig. 2(b),
although the accuracy of the GMBE(2) results in the same figure
suggests that 6–8 water molecules per fragment is likely sufficient.
Indeed, using EE-GMBE(1) with fragments no larger than (H2O)7,
Li and co-workers127 demonstrated errors that were consistently
<1 kcal/mol for isomers of (H2O)32 at the MP2/cc-pVTZ level,
although sub-kcal/mol accuracy for (H2O)64 required fragments as
large as (H2O)10. The same fragmentation strategy was then used
to compute otherwise unobtainable CCSD(T)/CBS benchmarks for
(H2O)64, and these benchmarks were used to evaluate the accuracy
of various density functionals.127

Methods based on smaller fragments have difficulty with rela-
tive energies, however. An example for isomers of (H2O)16 is shown
in Fig. 8, where FMO2 and FMO3 are applied at the MP2 level.189

[Results are also shown using the effective fragment molecular orbital
(EFMO) method, which will be discussed in Sec. III G.] Oddly, the
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FIG. 8. Relative energies for isomers of (H2O)16 computed with FMO2 and FMO3
at the MP2 level in (a) the 6-31++G(d, p) basis set and (b) the 6-311++G(3df, 2p)
basis set. Also shown are results from the EFMO approximation to FMO2.
The data labeled “MP2” (in black) are the supersystem results. Data are from
Ref. 189.

FMO2 results are actually more faithful to the supersystem MP2 cal-
culation than are the FMO3 results, the latter of which are quite
erratic. In contrast, MP2 itself predicts that all isomers lie within
≈3 kcal/mol of one another. Both FMO2 and FMO3 fail to predict
the correct energetic ordering of the isomers.

Figure 9 recasts the size-dependent EE-MBE(n) errors for water
clusters from Fig. 6 in per-monomer terms. This demonstrates con-
vincingly that the errors are size-extensive,33 or in other words that a
given n-body approximation can reduce the error only to a roughly
constant value per fragment. One might expect this intrinsic error
to be reduced as n increases, but the data in Fig. 9 suggest that this
is true only up to a point. Five-body calculations have seldom been
reported for systems with this many fragments, because nearly 1.4
× 106 separate subsystem calculations are required for (H2O)45, but
EE-MBE(5) results up to N = 45 are reported in Fig. 9. At this level
of approximation, the errors increase rapidly and dramatically with
system size, in contrast to results obtained using lower-order n-body
expansions.

The origin of these divergent errors can be traced to finite-
precision problems leading to error accumulation as the number
of subsystem calculations grows.33,68,72 One consequence is that
MBE(n) calculations are far more sensitive to the values of various

FIG. 9. Error per monomer in various EE-MBE(n) approximations to the total inter-
action energy, for a sequence of water clusters computed at the B3LYP/cc-pVDZ
level using TIP3P embedding charges. These calculations were performed with
the same thresholds as the “normal” threshold results in Fig. 2(a). Adapted with
permission from R. M. Richard, K. U. Lao, and J. M. Herbert, Acc. Chem. Res. 47,
2828–2836 (2014). Copyright 2014 AIP Publishing LLC.

thresholds than is a supersystem electronic structure calculation
for the same system.68,72,190 This is especially true for the self-
consistent field (SCF) convergence threshold (τSCF) and the inte-
gral screening threshold (τints), as seen by comparing MBE(n)
results using “normal” vs “tight” thresholds [Fig. 2(a)]. The impact
of τSCF and τints is detectable but small for two- and three-
body approximations, but for MBE(4) the tight-threshold results
diverge from the normal-threshold ones as the number of fragments
increases.

Finite-precision problems are even more pronounced when
embedding charges are employed. In the case that these charges are
computed on-the-fly from the fragment wave functions, EE-MBE(n)
results may be unreliable unless the charges are obtained from the
electronic structure program in full double precision,72 whereas the
text-based output of most quantum chemistry programs rounds the
atomic charges to a few digits of decimal precision. To guard against
catastrophic loss-of-precision error, the software that manages the
subsystem calculations should be tightly integrated with the elec-
tronic structure program itself, so that data can be passed between
the two in full double precision.72

Avoidance of this problem is a key advantage of GMBE(1) over
EE-MBE(n). In the former approach, the fragments are generally
larger but also overlapping, meaning that far fewer fragments are
needed in order to obtain reasonable accuracy. For example, the
SMF3 calculations on (H2O)64 that are shown in Fig. 7(b) used only
626 fragments in total,188 a number that is small enough to avoid
serious problems with roundoff error. In contrast, N = 64 corre-
sponds to 635 376 unique tetramers required for MBE(4), assuming
one H2O monomer per fragment.

B. Basis sets and basis-set superposition error
One important use for fragment-based approaches is to pro-

vide high-accuracy benchmark data in large systems, which can
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then be used to evaluate the accuracy of more affordable meth-
ods. For benchmark-quality results with correlated wave functions,
large basis sets are required. A minimalist procedure to obtain
CCSD(T)/CBS benchmarks would be to perform MP2 calculations
in triple- and quadruple-ζ basis sets, from which the MP2/CBS result
could be extrapolated and then combined with a correction

δCCSD(T) = ECCSD(T) − EMP2, (25)

evaluated using a smaller basis set. EE-(G)MBE(n) approaches
have been used to approximate the energies in these calculations
and thereby to obtain CCSD(T)/CBS-caliber benchmark interaction
energies.127,150,184,191

FMO calculations, in contrast, have proven problematic in large
basis sets, especially those containing diffuse functions.92,93 Errors
are considerably larger as compared to small-basis results, and in
some cases the embedded-fragment SCF calculation simply fails to
converge in large basis sets.92 These difficulties have been traced
to the use of electrostatic embedding based on the fragment den-
sities themselves,92 and is likely exacerbated by the fact that only
the one-body calculations are iterated to self-consistency in the
FMO approach. Because the molecular orbitals on different frag-
ments are not orthogonal to one another, there is no interfragment
Pauli repulsion to confine the fragment wave functions, and given
a sufficiently flexible basis set these wave functions will artificially
delocalize. One suggestion to avoid this problem is to use separate
basis sets for the FMOn energy calculations as compared to what
is used in the embedded-fragment SCF calculation, e.g., 6-31++G∗∗

for the former and 6-31G∗ for the latter,93 although neither of these
is a benchmark-quality basis set. Lack of stability in large basis
sets renders FMOn effectively unusable for high-accuracy, corre-
lated wave function calculations. It may offer a decent approxi-
mation to something such as the MP2/6-31G∗ energy of a large
system, and this might have some spectroscopic applications, but
such a calculation is of questionable utility for absolute or relative
energies.

One might wonder whether similar problems can afflict the
use of embedding charges that are derived from the fragment wave
functions, and indeed, convergence problems have sometimes been
noted for Mulliken or Löwdin charges.192,193 Problems are avoided
if the embedding charges are defined in a way that connects more
directly to the electron density. Examples include the “ChElPG”
charges that are derived from the molecular electrostatic poten-
tial192–195 and also “natural” charges obtained from natural bond
orbital population analysis.196

Another issue that bears on basis-set selection is that of BSSE,
which can lead to serious overestimation of interaction energies
not only for noncovalent clusters but also in the context of con-
formational preferences of flexible molecules,197–200 where com-
pact structures are artificially stabilized by BSSE relative to more
extended structures. This leads to an interesting conundrum because
dispersion interactions, which can be challenging to describe in
electronic structure calculations,201–204 also stabilize more compact
structures. This means that BSSE may masquerade as stabilization
by dispersion.

Bettens and co-workers205 have noted the sometimes oscilla-
tory nature of the convergence of MBE(n) as n → N, a limit in
which the supersystem energy ought to be recovered exactly. In

calculations on (H2O)16, they identified cases where 10- and 11-
body terms were as large as ∼1 mEh in small basis sets, with the
problem becoming less severe in larger basis sets and disappearing
entirely when the full cluster basis was used for all of the subsystem
calculations.205 These high-order n-body terms turn out to be arti-
facts of BSSE.53,59 “Errors” in the n-body expansion that persist to
high orders n originate in an imbalance between how BSSE man-
ifests in supersystem vs subsystem calculations, which makes the
definition of “error” somewhat questionable when evaluated order-
by-order with MBE(n).60,184 A more robust definition would first
remove the BSSE from both calculations, but this requires a BSSE
correction that is compatible with MBE(n).

Several generalizations of the Boys-Bernardi “function counter-
poise” (CP) correction,206,207 which are compatible order-by-order
with MBE(n), have been suggested.59,61,191,208,209 To understand these
generalizations, note first that the Boys-Bernardi correction for
dimers can be generalized to a cluster of monomers by defining a
CP-corrected interaction energy,202

ESSFC
int = EIJK⋯ −

N

∑
i=1

EIJK⋯
i . (26)

Here, EIJK⋯
i indicates the energy of monomer i computed in the full

cluster (IJK⋯) basis set. The correction in Eq. (26) is sometimes
called the “site-site function counterpoise” (SSFC) correction,210–213

although it is a natural generalization of the original Boys-Bernardi
procedure wherein both monomer energies are computed using the
dimer basis,

ECP
int = EIJ − EIJ

I − EIJ
J . (27)

A many-body counterpoise (MBCP) procedure is obtained by
applying the MBE(n) approximation to each individual energy in
Eq. (26).191 This procedure is called MBCP(n),191 and a version for
use with the GMBE has also been reported, called GMBCP(n).68

Other alternatives have been suggested,59,61,208,209 but these tend to
be equivalent or nearly equivalent in leading order, which is the
only significant contribution.60,61,212–214 Similar relative energies are
obtained from these various CP corrections, even if absolute energies
differ.61

The Boys-Bernardi procedure has sometimes been criticized
as an “overcorrection” (see Ref. 207 for a discussion and a refu-
tation) and also for failing to offer a systematic improvement to
the uncorrected results.215 Much of this supposed conventional wis-
dom, however, seems to trace back to older literature using basis
sets that (by modern standards) do not seem adequate for bench-
mark purposes. Results are more consistent when aug-cc-pVXZ
basis sets are employed, as shown in Fig. 10 for MP2 calculations on
(H2O)6.191 Both the CP-corrected and uncorrected MP2 energies
converge smoothly to the CBS limit, albeit from different direc-
tions. Moreover, EE-MBCP(3) provides an approximation to the
CP-corrected MP2 result that is consistently accurate across this
sequence of basis sets, just as EE-MBE(3) accurately approximates
the uncorrected MP2 energy. The fact that both energies can be
approximated in a consistent way is especially important for larger
systems where extrapolations are unreliable due to basis-set limi-
tations. As illustrated by the aug-cc-pVDZ results in Fig. 10, CP
correction in a small basis set may indeed overcorrect the result, but
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FIG. 10. Convergence of MP2/aug-cc-pVXZ energies for an isomer of (H2O)6,
using EE-MBE(3) to approximate the MP2 total energy and EE-MBCP(3) to
approximate the CP-corrected energy. The shaded region delineates ±1 kcal/mol
of the MP2/CBS result from Ref. 216. Adapted with permission from R. M. Richard,
K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674–2680 (2013). Copyright
2013 American Chemical Society.

averaging the corrected and uncorrected results achieves much bet-
ter balance. For aug-cc-pVTZ, this average is quite close to the CBS
limit.

This may prove useful in applications to macromolecules, in
order to address cases where certain conformations might be arti-
ficially stabilized by BSSE.197–200 As an alternative, it has been sug-
gested in the context of FMO2 that one could simply apply a stan-
dard Boys-Bernardi correction [Eq. (27)] to each ΔEIJ in Eq. (3).217

This approach has not yet been widely tested.

C. Cluster spectroscopy
The discussion up to now has focused on total energies, which

are important as benchmarks but often not the most chemically or
physically relevant quantities. (An exception is that accurate pre-
diction and interpretation of intermolecular interaction energies
occupies an important niche that is discussed in Sec. III E.) Pre-
diction of spectroscopic observables, on the other hand, affords a
direct point of contact with experiment and in this section we dis-
cuss one success story and one illustrative failure, each involving
the application of fragment-based quantum chemistry to cluster
spectroscopy.

Numerous spectroscopic observables can be formulated as
energy derivatives,218–220 so it is worth noting explicitly that
GMBE(n) energy formulas can be differentiated term-by-term to
afford fragment-based approximations to various energy gradi-
ents. These include the nuclear gradients dE/dx that are needed
for geometry optimizations and ab initio molecular dynamics
(MD) simulations, but also electric-field (F) derivatives such as
d2E/dFαdFβ, which define polarizabilities. More exotic derivatives
include d2E/dμαdBβ, where μ is the magnetic moment for a given

nucleus and B is an applied magnetic field. These derivatives define
the magnetic shielding tensor needed to compute nuclear magnetic
resonance (NMR) chemical shifts.218–220

Considering the MBE, one might be tempted to express the
energy gradient in the form

dE
dx
=

N

∑
I=1

dEI

dx
+

N

∑
I=1
∑
J>I
(dEIJ

dx
− dEI

dx
− dEJ

dx
) +⋯, (28)

which looks as if it can be evaluated by means of separate gradi-
ent calculations for monomers (dEI/dx), dimers (dEIJ/dx), etc. This
is strictly correct only in the absence of any electrostatic embed-
ding, however. Otherwise, there are additional terms in the analytic
gradient that describe how the embedding potential on fragment I
changes when fragment J is perturbed.221,222 This significantly com-
plicates the formulation of analytic gradients for most EE-GMBE(n)
approaches, a fact that has not always been recognized. The present
author has recently introduced a variational formulation that avoids
this complexity,222 which is discussed in Sec. III F. This issue does
not affect the examples presented in this section, which eschew the
use of electrostatic embedding.

In the context of vibrational spectroscopy of clusters, there have
been numerous efforts to extend the reach of high-level ab initio
methods by focusing on two-layer approaches that require a super-
system calculation but apply the most expensive level of theory
using either the GMBE(1) approximation,29,113,148,149,223,224 or else
MBE(2).137,138 A successful example is depicted in Fig. 11, illustrating
harmonic vibrational spectra for one isomer of (H2O)16, computed
at the MP2/aug-cc-pVDZ level using the MTA method developed by
Gadre and co-workers.148 The spectrum in red is the result of a tra-
ditional supersystem calculation, whereas the spectrum overlaid in

FIG. 11. Harmonic vibrational spectra (using 10 cm−1 broadening) for an isomer
of (H2O)16 computed at the MP2/aug-cc-pVDZ level of theory. The supersys-
tem result is shown in red in both panels, whereas the spectrum in black (upper
panel) is obtained using the MTA approximation at the same level of theory. The
blue spectrum (lower panel) is computed by “grafting” MP2/aug-cc-pVDZ onto
MP2/6-31G according to Eq. (22), and is essentially indistinguishable from the
supersystem MP2/aug-cc-pVDZ spectrum in red. Adapted with permission from N.
Sahu and S. R. Gadre, J. Chem. Phys. 142, 014107 (2015). Copyright 2015 AIP
Publishing LLC.
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black is computed using MTA [equivalent to GMBE(1)], with 11 pri-
mary fragments ranging in size from (H2O)6 to (H2O)8, along with
22 intersections that are smaller still. The MTA calculation thus con-
sists in computing a Hessian for 33 different subsystems, none larger
than (H2O)8. The spectrum obtained in this way is in good agree-
ment with that obtained from the full-cluster Hessian computed at
the same level of theory, except for an error in the relative intensities
of a pair of peaks around 3300 cm−1.

Even this small error disappears upon application of the “graft-
ing” correction in Eq. (22), using 6-31G as the small basis set; see
Fig. 11(b). Differentiating Eq. (22) twice with respect to nuclear
coordinates, one obtains an approximation for the correlated Hes-
sian matrix in the large basis set, namely,

Hlarge(super) ≈ Hlarge
HF (super) + Hlarge

corr (GMBE)
+ Hsmall

corr (super) −Hsmall
corr (GMBE), (29)

where Hcorr represents the difference between the MP2 and Hartree-
Fock Hessians. (A similar multilevel scheme is used for the dipole
moment derivatives needed to compute infrared intensities.148)
Application of Eq. (29) does require the Hessian for the entire clus-
ter, computed at the MP2/6-31G level in this particular case, but
the resulting spectrum is indistinguishable from the full-system MP2
result computed in the larger basis set.

Even for strongly interacting systems such as the hydrated
bisulfate cluster HSO−4 (H2O)12, MP2 frequencies obtained in
this manner differ from supersystem results by no more than
1–2 cm−1.148 The grafting procedure affords essentially exact
infrared spectra for a variety of other cluster systems,149,225 and has
also been used as a basis-set correction for DFT calculations, e.g.,
with 6-311++G∗ as the large basis and 6-31G as the small basis in
Eqs. (20) and (21).149

As a counterbalance to this highly successful application, we
next discuss an unsuccessful attempt to use MBE(n) to model chi-
roptical spectra of solution-phase molecules,226,227 the failure of
which poses some interesting questions for the field. The scien-
tific issue of interest is theoretical prediction of the specific optical
rotation, [α]ω, for chiral molecules such as methyloxirane (C3H6O)
and methylthiirane (C3H6S). In both of these molecules, the sign
of the specific rotation is wavelength-dependent in the gas phase
and solvent-dependent in solution.228 These are examples in which
the solute imposes a “chiral imprint” on its solvation environ-
ment,229,230 an effect that is not reproduced by continuum sol-
vation models.231 The sign of [α]ω can be sensitive to the level
of quantum theory that is employed, and theoretical calculations
of electronic circular dichroism spectra are generally found to be
sensitive to high-level electron correlation effects, basis-set effects,
and solvation effects.228 As such, there is incentive to employ the
very highest (and costliest) levels of ab initio theory, but at the
same time these calculations must include some explicit solvent
molecules.

This seems like a perfect situation in which to use MBE(n)
in order to introduce explicit solvent effects in a tractable way,
but in practice it is found that convergence of the MBE(n)
sequence of approximations is dramatically worse for specific rota-
tion as compared to properties such as the total energy or the
static dipole moment, or even a response property such as the

frequency-dependent polarizability, α(ω).226,227 Each of the latter
properties converges to <1% error (as compared to the supersystem
result) by n = 3 in the MBE,226 whereas the specific rotation exhibits
wildly oscillatory behavior, as seen in Fig. 12(a) for C3H6O(H2O)13.
Convergence is not achieved until n = 10. (The n = 14 result is exact
by definition.)

It is worth noting that specific rotation can be written as a
derivative of the time-averaged quasi-energy,227 which satisfies both
a variational principle and a Hellmann-Feynman theorem,219,220

meaning that application of MBE(n) to this property is theoretically
justified, in principle. Evidently, however, not all molecular prop-
erties are similar in their many-body convergence properties. That
said, the rotatory strength (mixed electric-dipole/magnetic-dipole
polarizability) tensor that controls chiroptical properties is known
to be more sensitive, as compared to other properties, to molecular
vibrations, solvation effects, and other small changes in electronic
structure.220

Slow convergence for specific rotation has been traced to a BSSE
effect.227 As discussed in Sec. III B, the MBE(n) sequence of approx-
imations is oscillatory even for total energies205 although the energy

FIG. 12. Convergence of the MBE(n) sequence of approximations as applied to
compute the specific rotation [α]ω at four different excitation wavelengths, for the
C3H6O(H2O)13 cluster that is shown. (a) Normal MBE(n) approach, using the
subsystem basis set for each subsystem calculation. (b) Results using the full
cluster basis set for each subsystem calculation. All calculations were performed
at the CAM-B3LYP/aug-cc-pVDZ level. Adapted with permission from B. G. Peyton
and T. D. Crawford, J. Phys. Chem. A 123, 4500–4511 (2019). Copyright 2019
American Chemical Society.
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oscillations are quite small in percentage terms, as compared to what
is plotted in Fig. 12(a) for [α]ω, and may therefore go unnoticed. In
contrast, oscillations in [α]ω are dramatic and unmistakable. These
oscillations are significantly damped, however, if the subsystem cal-
culations are each performed using the full cluster basis set, as shown
in Fig. 12(b). The n-body sequence continues to oscillate, reflect-
ing the inherent sensitivity of [α]ω to small changes in the electronic
structure, but the magnitude of the oscillations is much reduced so
that semiquantitative results might be obtainable with a low-order
n-body approximation. It remains unclear whether the counterpoise
corrections discussed in Sec. III B, and/or a GMBE(n) approxi-
mation with overlapping fragments, might be enough to tame the
highly oscillatory nature of the many-body contributions to specific
rotation.

D. Molecular crystals
Perhaps even more so than molecular clusters, molecular crys-

tals cry out for a fragment-based approach. In contrast to solid-
state inorganic materials, molecular crystals naturally decompose
into weakly interacting monomer units and are essentially nothing
more complicated than periodically replicated noncovalent molec-
ular clusters. If the monomers are small, then high-accuracy quan-
tum chemistry can be deployed rather easily despite the extended
nature of the system, and there is a growing list of examples in
which cohesive energies of crystals have been computed using
the very best levels of theory [e.g., CCSD(T)/CBS] for the one-,
two-, and (sometimes) many-body interactions.65,129,152,232–239 One
example is a theoretical prediction of the lattice energy of ben-
zene that is precise enough (at −55.90 ± 0.76 kJ/mol) to warrant
revisiting assumptions used to extrapolate the experimental data
to 0 K.236

To obtain this level of quantitative agreement requires QM
calculations at the four-body level, which remains challenging
with highly correlated wave function approaches. However, sig-
nificant progress on other properties can be made by combin-
ing multiscale frameworks with two-body electronic structure. This
is exemplified by the HMBI scheme developed by Beran and
co-workers,36,129,131,239–241 which involves one- and two-body QM
calculations under periodic boundary conditions in conjunction
with either a polarizable force field or else a periodic Hartree-
Fock or DFT calculation, in order to capture higher-order induc-
tion. Closely related is the binary interaction method (BIM) of
Hirata et al.,242,243 which is a periodic version of EE-MBE(2). Both
approaches take advantage of the fact that periodic boundary condi-
tions are relatively straightforward to incorporate into a monomer-
based treatment of a molecular crystal,244 especially if the far-field
interactions (between distant subsystems) are already described
using classical multipoles. The energy expression for periodic
EE-MBE(2) is243

EBIM = ELR +∑
I

EI(0) +
1
2∑I,J

∑
k
[EI(0)J(k) − EI(0) − EJ(k)], (30)

where k indexes a sum over lattice vectors. The quantity EI (0)J (k) is
the energy of a dimer in which monomer I resides in the unit cell (0)
and monomer J is in replica cell k. The quantity ELR is an Ewald-type
long-range electrostatic correction.

As noted by Hirata et al.,243 the fragment-based approach to
crystals is only weakly dependent on the periodic boundary condi-
tions as compared to plane-wave methods. As a result, a reasonable
approximation to the force constants needed in the Hessian, and
in the dynamical force-constant matrix that is used to compute the
phonon dispersion curve, is

∂2E
∂xI(0)∂yJ(k)

≈
∂2EI(0)J(k)
∂xI(0)∂yJ(k)

. (31)

This greatly facilitates calculation of phonon densities of states
and thus thermal properties of crystals.243 It is worth noting that
if the embedding potential ELR in Eq. (30) is derived on-the-fly
from the monomer wave functions (e.g., in the form of atomic
partial charges), then the gradient ∂ELR/∂x is nontrivial;222 see
Sec. III F.

Fragmentation methods can be used to predict finite-
temperature properties of molecular crystals by performing geom-
etry optimizations on either the Helmholtz (A) or Gibbs (G) free
energy surface,243

A = Eelec + Uvib − TSvib, (32a)
G = Eelec + PV + Uvib − TSvib. (32b)

The electronic energy Eelec(V) depends on the volume of the unit
cell, and the vibrational energy (Uvib) and entropy (Svib) depend on
both volume and temperature. These vibrational quantities can be
estimated from harmonic partition functions, or better yet within a
quasi-harmonic approximation (QHA).245–248

Even at 0 K, vibrational zero-point corrections have a signifi-
cant effect on the structure of the solid, as shown for ice Ih in Fig. 13.
Minimizing Eelec(V) without consideration of vibrations affords
V̄ ≈ 18.3 cm3/mol (the “no QHA” result in Fig. 13), when the one-
and two-body terms are described at the MP2/CBS level within the

FIG. 13. Molar volume V̄(T) for ice Ih, computed using the HMBI formalism with
one- and two-body terms described at the indicated levels of theory.246 The molar
volume is obtained by minimizing the free energy A(V, T) with respect to V, using
a quasi-harmonic approximation (QHA) for the vibrations. The “no QHA” result
minimizes Eelec(V) at T = 0 K. Experimental data are from Ref. 249. Adapted with
permission from Y. N. Heit and G. J. O. Beran, Acta Crystallogr., Sect. B: Struct.
Sci., Cryst. Eng. Mater. 72, 514–529 (2016). Copyright 2016 International Union of
Crystallography.
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composite HMBI scheme.246 Staying at absolute zero but including
zero-point energy [Uvib in Eq. (32)] increases the MP2/CBS
molar volume to 18.9 cm3/mol, which is closer to experiment
(19.3 cm3/mol at T = 0 K249) but not in quantitative agreement.
Thermal expansion effects are smaller than zero-point effects and are
described reasonably well within the QHA. Results for CO2(s)246 and
CH3OH(s)239 show similar trends: MP2/aug-cc-pVQZ results are in
good agreement with experiment, but the extrapolated MP2/CBS
volume is systematically too small. CCSD(T)/CBS results are avail-
able but these offer little additional correction in the case of CO2,246

and move the results slightly farther from experiment in the case of
CH3OH.239

Hirata and co-workers243,250–252 have used the periodic EE-
MBE(2) approach to explore the finite-temperature properties of
ice Ih. Figure 14(a) shows the unusual phenomenon of negative
thermal expansion.252 Upon warming from absolute zero, ice Ih ini-
tially undergoes a volume contraction, with the more typical thermal
expansion observed only for T ≳ 70 K.249 The calculations are in
good agreement with experiment up to temperatures high enough to
see this compression-to-expansion turnover. The calculations also
provide a molecular-level explanation for the observed anomaly:
bending modes of the hydrogen-bond network, once thermally pop-
ulated, function to collapse the hexagonal cagelike voids in the struc-
ture of ice Ih, leading to an initial contraction of the volume with
respect to temperature. This collapsing motion leads to a decrease in
the frequencies of these modes upon thermal excitation, unlike most
of the other hydrogen-bonding modes whose frequencies shift in the
opposite direction.243

Figure 14(b) compares the inelastic neutron scattering spec-
trum of ice Ih to a calculated phonon density of states.243,250 In the

original experimental work,253,255 the existence of two peaks in the
translational density of states, labeled “3” and “4” in Fig. 14(b), was
interpreted as evidence of two distinct forms of hydrogen bonds,
one strong and one weak. This interpretation proved to be con-
troversial.256,257 Fortunately, the good agreement between theory
and experiment in Fig. 14(b) lends credence to the molecular-level
interpretation of the phonon spectrum obtained from the calcu-
lations, which can put the hypothesis to the test. EE-MBE(2) cal-
culations suggest that there is no difference between the hydrogen
bonds; rather, in proton-disordered ice, the hydrogen-bond stretch-
ing frequencies along the crystallographic axes of ice Ih are sim-
ply not equivalent.243 Periodic DFT calculations support the same
conclusion.258

As compared to water ice, CO2(s) seems like a much simpler
crystal, but one whose high-temperature and high-pressure phase
diagram are nevertheless relevant to planetary geochemistry. In fact,
our understanding of the extreme regions of CO2’s phase diagram
continues to evolve, with several (putative) new phases having been
reported since the late 1990s,259 including polymeric or “nonmolec-
ular” phases.260 However, experiments under extreme thermody-
namic conditions (such as Raman spectroscopy in a diamond anvil
cell) sometimes provide only indirect evidence for phase transitions,
and theoretical calculations may help to reduce the ambiguity asso-
ciated with such measurements. There have been several attempts
to compute the phase diagram for CO2 using fragment-based quan-
tum chemistry,261–263 and one example is shown in Fig. 15.261 The
pressure-induced transition between phase I (ambient dry ice) and
phases II, III, and VII is reproduced quantitatively by calcula-
tions at the MP2/aug-cc-pVDZ level, using the periodic EE-MBE(2)
methodology.

FIG. 14. Theory vs experiment for ice Ih, with calculations performed using periodic EE-MBE(2) at the MP2/aug-cc-pVDZ level. (a) Vibrationally corrected volume
change at finite temperature, relative to V̄ at 0 K. Experimental data249 are shown in comparison to quasiharmonic calculations.252 (b) Experimental inelastic neu-
tron scattering spectrum (in red, from Ref. 253) compared to the MP2 phonon density of states (in blue, from Ref. 243, computed for a fully proton-disordered
structure). Bond-stretching parameters (in green, from Ref. 254 and to be read from the axis on the right) measure the amount of stretching character at a given
frequency. Panel (a) is adapted with permission from M. A. Salim, S. Y. Willow, and S. Hirata, J. Chem. Phys. 144, 204503 (2016). Copyright 2016 AIP Publishing
LLC. Panel (b) is from Hirata et al., Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, Ch. 9, pp. 245–296. Copyright 2017 John Wiley &
Sons.
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FIG. 15. Phase diagram for CO2 based on three sets of experimental mea-
surements.259,264–267 The putative coexistence boundary between phases II and
III is disputed,263 and the measurements are kinetic (based on Raman spec-
troscopy268) rather than thermodynamic.259 Also shown is a coexistence bound-
ary computed at the MP2/aug-cc-pVDZ level using the EE-MBE(2) approach.261

Adapted with permission from Li et al., Nat. Commun. 4, 2647 (2013). Copyright
2013 Springer Nature Publishing.

Periodic fragment-based methods can also be used for spec-
troscopic applications. NMR spectroscopy in particular can be use-
ful to discriminate between crystal polymorphs,36,132 and composite
strategies based on DFT exhibit good fidelity with respect to peri-
odic (plane-wave) DFT calculations.269 Perhaps more importantly,
the fragment-based approach facilitates the use of hybrid functionals
at negligible additional cost, assuming that the method is interfaced
with a Gaussian orbital electronic structure code, whereas the use of
hybrid functionals in plane-wave DFT is often prohibitively expen-
sive. Furthermore, MP2 theory is known to outperform even hybrid
DFT for NMR chemical shifts,270 but has not seen widespread use
in this capacity. MP2-based NMR calculations would be straightfor-
ward to implement for molecular crystals using a fragment-based
approach.

Raman spectra of CO2(s) have been reported based on
periodic EE-MBE(2) calculations.243,263,271,272 At the level of CP-
corrected MP2/aug-cc-pVDZ, these calculations afford a semi-
quantitative description of the pressure dependence of various
Raman bands,243,271 which provides the data necessary to determine
pressure-induced splitting of the ν1 + 2ν2 Fermi dyad.243,271,272 (This
pressure dependence is used as a geophysical barometer.243) Exper-
imentally, Raman spectroscopy of CO2(s) was used to establish the
“kinetic line” delineating phases II and III (see Fig. 15). Theoretical
calculations of these same spectra, using the HMBI approach with
MP2/CBS energetics, present a compelling case that the experiments
have not detected a genuine phase boundary and that phases III and
VII of CO2(s) have precisely the same structure.263

This success is encouraging but of course CO2(s) is the
very simplest of molecular crystals, with intermolecular interac-
tions limited to dispersion and quadrupole–quadrupole electro-
statics. Its monomers have little internal structure except possi-
bly in the most extreme regions of the phase diagram.259,260 In
contrast, CH3OH(s) presents the additional complexity of flexi-
ble internal degrees of freedom and an intermolecular hydrogen
bond. Figure 16(a) shows the phase diagram for methanol com-
puted using two-body calculations at the CCSD(T)/CBS level, in
conjunction with a periodic Hartree-Fock calculation to capture
higher-order induction. This represents the current state-of-the-art
in terms of what is routinely feasible from first principles and affords
a semiquantitative picture of the phase diagram below the melting
transition.

Figure 16(b) shows a close-up view of the α/β coexistence
curve for CH3OH(s), comparing MP2 and CCSD(T) results. This
comparison demonstrates that post-MP2 correlation effects are rel-
atively small but that basis-set effects are sizable. In the author’s
view, these results also suggest that the most likely path toward
better accuracy involves a better description of three-body inter-
actions, or perhaps improvements to the embedding scheme more
generally. That said, results for molecular crystals are extremely
promising, especially in comparison with the somewhat pessimistic
view of the accuracy of MBE-based methods that was presented in
Sec. III A.

To reconcile these two views, note that the periodic solids dis-
cussed here have rather small unit cells, meaning that the number
of individual n-body subsystems is much smaller than in typical
cluster or liquid calculations. The use of composite approaches fur-
thermore allows the n-body expansion to be truncated at low order,
while preserving sufficient accuracy to make useful predictions. Pre-
dictive accuracy does require the use of correlated wave functions
and large basis sets, which demonstrates the need for fragment-
based approaches that can handle the latter. This, in turn, appears to
require the n-body subsystems to be iterated to self-consistency in
the presence of interfragment exchange interactions. If these inter-
actions are absent, as in the FMO approach, then problems arise
with spurious delocalization of the fragment wave functions in large
basis sets.92,93 Methods that cannot handle large basis sets are of lim-
ited utility when correlated wave function calculations are desired or
required.

Results for methanol’s phase diagram also demonstrate the per-
niciousness of the polymorphism problem in crystal structure pre-
diction.247,273,274 Definitive prediction of the most stable polymorph
at a given thermodynamic state point requires calculation of free
energies to an accuracy of ∼1 kJ/mol. This is demonstrated in vivid
fashion by systematically shifting the predicted CCSD(T)/CBS free
energy Gα of α-CH3OH(s), by increments of just 0.5 kJ/mol. As
shown in Fig. 16(c), this alters the α/β coexistence boundary in a
qualitative way. A shift of ±0.5 kJ/mol in Gα changes the coexistence
temperature by almost 150 K at P = 1 GPa.

E. Intermolecular energy decomposition
In the realm of noncovalent quantum chemistry, the basic

theory of intermolecular interactions is fundamentally fragment-
based. That theory is known as symmetry-adapted perturbation
theory (SAPT),203,275–277 but unlike most other methods discussed in
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FIG. 16. (a) Experimental phase diagram for methanol (dashed curves) superimposed on a calculation of the solid/solid coexistence curves that is color-coded in the same
way as the experimental data. In the calculation, two-body interactions are described at the CCSD(T)/CBS level, in a composite method that uses a periodic Hartree-Fock
calculation to capture higher-order induction.240 (b) Closer view of the α/β boundary, showing results at several levels of theory. The CCSD(T)/CBS coexistence curve is the
same one shown in (a). (c) Results for the α/β coexistence curve, if the CCSD(T)/CBS free energy for the α phase is shifted by increments of 0.5 kJ/mol. The temperature
scale is the same in all three panels. Reprinted with permission from C. Cervinkă and G. J. O. Beran, Chem. Sci. 9, 4622–4629 (2018). Copyright 2018 Royal Society of
Chemistry.

this Perspective, which are designed as general-purpose (or at least,
broadly applicable) procedures for large systems, SAPT is intended
solely for the purpose of computing and analyzing intermolecular
interaction energies. At its heart is a direct perturbative expansion of
the interaction energy, Eint, meaning that SAPT is free of BSSE since
there is no energy difference to compute in a potentially unbalanced
basis set. Isolated-monomer wave functions serve as the unper-
turbed states and the perturbation consists of the intermolecular
Coulomb interactions along with an operator that antisymmetrizes
the monomer basis states, hence “symmetry-adapted.” The terms in
the perturbation series can be classified into physically meaningful
components including electrostatics, exchange, induction, and dis-
persion. As a result, SAPT comes equipped with a natural energy
decomposition analysis scheme:

ESAPT0
int = E(1)elst + E(1)exch + E(2)ind + E(2)exch-ind + E(2)disp + E(2)exch-disp +⋯. (33)

(Within this formalism, the charge-transfer energy is hidden in
the induction energy but can be separated with additional calcula-
tions.278–280)

Superscripts in Eq. (33) indicate orders in intermolecular per-
turbation theory. Intramolecular electron correlation can be intro-
duced at low cost by using Kohn-Sham DFT calculations for the
monomers, though care must be taken that the functionals exhibit
correct asymptotic behavior.281 With that proviso, the second-order
“SAPT0” expression that is explicated in Eq. (33) is comparable to
MP2 in both accuracy and cost. CCSD(T)-quality interaction ener-
gies can be obtained by including additional terms in the pertur-
bation series, as in the SAPT2+ and SAPT2+(3) methods,203,282 or
by solving coupled-perturbed Kohn-Sham equations to obtain the
dispersion energy from frequency-dependent density susceptibili-
ties, as in the SAPT(DFT) approach.275,276 Each of these methods
incurs increased cost with respect to the O(N5) scaling of SAPT0,
however.

At second order, the dispersion and exchange-dispersion terms,

Edispx = E(2)disp + E(2)exch-disp, (34)

are both the least accurate components of Eq. (33) and also the most
expensive, scaling as O(N4) and O(N5), respectively. As such, there
has been much effort to replace these terms with low-cost, ab initio
dispersion potentials of the damped atom–atom C6/R6 form:283–288

Edispx = −
atoms

∑
a,b

fdamp(Rab)
C6,ab

R6
ab

. (35)

Although similar in form to empirical dispersion corrections used
in DFT,289,290 an important distinction is that dispersion can be
cleanly separated from the other energy components in SAPT,
so there is no double-counting. The parameters C6,ab in Eq. (35)
can be fit to ab initio dispersion data (e.g., from SAPT2+ cal-
culations) to afford a method that Lao and Herbert have called
SAPT+aiD.287 An even more promising version,291 which is closer
to a first-principles approach, includes a self-consistent many-
body dispersion (MBD) correction based on atoms-in-molecules
polarizabilties.292

SAPT was originally construed to compute interaction ener-
gies of dimers. Although three-body extensions have been for-
mulated,293–295 they incur O(N7) cost as compared to O(N5) for
dimer SAPT0 or O(N3) for SAPT+aiD and SAPT+MBD. While
the fragment-based nature of two-body SAPT makes it amenable
to larger clusters, in keeping with the discussion in Sec. II A, pair-
wise application of SAPT (in any of its flavors) will omit important
many-body induction. To address this, my group has introduced
an extended version of SAPT called “XSAPT,”284–288,291,296 in which
the zeroth-order wave functions are obtained from a fragment-
based SCF procedure using atomic embedding charges. This is
essentially EE-MBE(2) with two-body interactions computed using
SAPT.
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For large supramolecular complexes, XSAPT is among the
most accurate quantum chemistry methods for noncovalent inter-
actions, approaching ∼1 kcal/mol with respect to CCSD(T)/CBS
benchmarks and rivaling the best-available DFT methods in com-
parison with interaction energies derived from experimental bind-
ing affinities.287,291 At the same time, the fragment-based nature
of XSAPT means that it is lower in cost even as compared to
traditional supramolecular DFT. For example, an XSAPT calcu-
lation on a 157-atom DNA intercalation complex, using an aug-
mented triple-ζ basis set (4561 basis functions), requires about 6 h
on a single compute node, vs 13 h for a DFT calculation with the
ωB97M-V functional.291,296 Furthermore, no basis-set extrapolation
or counterpoise correction is required in order to obtain an accu-
rate interaction energy from XSAPT, in contrast to supramolecular
calculations.

Two examples of pharmaceutical ligand binding are presented
to illustrate the results. The first is the aforementioned intercalation
complex consisting of the anticancer drug ellipticine (C17H14N2)
bound to a pair of dinucleotides representing double-stranded
DNA. The other system consists of the antiretroviral drug indinavir
(C36H47N5O4) bound to a model of the active site of HIV-2 pro-
tease; see Fig. 1(b). Interaction energies computed with several dif-
ferent approaches are listed in Table I, along with the XSAPT energy
decomposition. For the ellipticine/DNA complex, the XSAPT+MBD
interaction energy is similar to that obtained from the supramolec-
ular approach, using functionals such as ωB97M-V that perform
well for noncovalent interactions.297,298 (Analogous DFT calcula-
tions for indinavir/HIV have not been attempted because this system
involves 8346 basis functions.) Examining the energy decomposi-
tions, it is unsurprising to learn that the π-stacked intercalation
complex would be unbound in the absence of a −71 kcal/mol disper-
sion energy. It is interesting to note, however, that the HIV/indinavir
complex exhibits an even larger dispersion energy, −135 kcal/mol.

TABLE I. Interaction energies for two ligand/macromolecule complexes.a

Eint (kcal/mol)

Method Ellipticine/DNA Indinavir/HIV

B97M-V (+counterpoise)b −41.3 . . .

ωB97M-V (+counterpoise)b −43.7 . . .
HF-3cc −41.7 −132.8
PBEh-3cd −37.3 −119.1
XSAPT+MBDe −41.7 −125.4

XSAPT energy decomposition

Eelst −22.2 −114.9
Eexch 59.2 190.0
Eind −8.0 −65.9
Edisp −70.7 −134.6

aData are taken from Ref. 296.
bdef2-TZVPPD basis set.
cSemiempirical method of Ref. 299.
dSemiempirical method of Ref. 300.
edef2-hpTZVPP basis set.

The explanation is that dispersion is size-extensive and the HIV
complex has about twice as many atoms as the DNA complex. The
take-home message is that dispersion is no less important in a sys-
tem having no obvious π-stacking interactions but simply a large
number of electrons.

The energy decomposition that comes with SAPT is useful as a
means to construct transferrable intermolecular force fields,301–303

by fitting individual terms in the energy expression to empirical
functions with correct physical features, e.g., R−6 distance depen-
dence for dispersion and exponential distance dependence for
exchange repulsion.

It should also be noted that there are alternatives to SAPT
when it comes to fragment-based energy decomposition analysis.
The pair energy decomposition analysis (PIEDA) technique304 uses
the two-body nature of the FMO2 energy expression to generalize
the venerated (and also frequently maligned) Kitaura-Morokuma
energy decomposition scheme305 to many-body systems. The lat-
ter is an example of a “supramolecular” energy decomposition
approach, of which there exist other examples as well.277,306–308 In
principle, any of these can be applied within a fragment-based
formalism provided there is a means for describing many-body
polarization. An example can be found in how SAPT-style energy
decomposition was extended to many-body clusters within the
XSAPT formalism.285

F. Analytic gradients and ab initio molecular
dynamics

The possibility of performing ab initio MD simulations within
a fragment-based formalism is especially attractive for a system
such as liquid water where the use of very small fragments facil-
itates simulations beyond the DFT level. Several such simulations
have been reported recently using MP2 and coupled-cluster doubles
(CCD) for the electronic structure, in conjunction with variants of
periodic EE-MBE(2).76,77,243,309 Radial distribution functions (RDFs)
from the MP2 simulations are shown in Fig. 17(a), along with what
is arguably the best available DFT simulation, using a hybrid func-
tional and a self-consistent van der Waals correction.310 RDFs from
all three simulations compare quite well to experiment. Simulations
by Hirata and co-workers using the BIM approach [Eq. (30)] were
performed at T = 250 K in order to match the experimental RDFs
at T = 300 K,243 because MP2 water is known to be denser than
real water,311 thus requiring a lower temperature (at the same den-
sity) in order to maintain a stable liquid phase.312 The self-diffusion
coefficient computed at the MP2 level [Fig. 17(b)] is in much bet-
ter agreement with experiment than that obtained either from the
classical TIP3P potential or from Car-Parrinello DFT simulations,
the latter of which are known to predict dynamics that are much too
sluggish.

The basis set used in the fragment-based MP2 simulations
is aug-cc-pVDZ, selected so that MP2 interaction potentials for
(H2O)2 closely match CCSD(T)/CBS results, which is only the case
if the basis set contains diffuse functions.309 Although the use of
diffuse functions is common in molecular calculations, and evi-
dently necessary also for bulk water, these are ordinarily omitted
in condensed-phase simulations because their presence significantly
degrades the effectiveness of integral screening and is therefore
cost-prohibitive. Use of diffuse functions in the condensed phase
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FIG. 17. (a) Oxygen–oxygen radial distribution functions and (b) self-diffusion con-
stants for liquid water, from ab initio MD simulations. The EE-GMF simulations are
from Ref. 76, and the BIM simulations are from Ref. 309; both methods are vari-
ants of EE-MBE(2). The Car-Parinello MD simulations are from Ref. 310. Adapted
with permission from J. Liu, X. He, and J. Z. H. Zhang, Phys. Chem. Chem. Phys.
19, 11931–11936 (2017). Copyright 2017 The PCCP Owner Societies.

also engenders problematic linear dependencies.313 Neither of these
issues is particularly troublesome in fragment-based approaches,
where the linear dependency problem is no more severe than in
typical small-molecule calculations.

One interesting observation from the two MP2-based sim-
ulations is that despite the high degree of similarity between
the two approaches, both of which are variants of EE-MBE(2)
and both of which predict similar oxygen–oxygen RDFs, these
two studies predict rather different coordination environments for
the oxygen atoms in liquid water. BIM simulations at the level
of spin-component-scaled314 (SCS-)MP2/aug-cc-pVDZ predict an
average of 3.8 hydrogen bonds per water molecule,243 consistent
with the conventional tetrahedral view of the liquid.315 The most
probable oxygen coordination number is 4 (also consistent with
the tetrahedral picture), although the distribution has a long tail
and the average coordination number is 4.7.243 The fairly large
number of penta-coordinated oxygen atoms is offered to explain
the slightly higher density of liquid water (as compared to ice)
at 0 ○C.243

On the other hand, EE-GMF simulations by Liu et al.76,77 pre-
dict roughly equal fractions of “single-donor” and “double-donor”
water molecules, at both the MP2/and also the CCD/aug-cc-pVDZ
level. This brings to mind an old debate, seemingly put to rest,316

about a possible interpretation of liquid water in terms of “rings
and chains,” i.e., a two-coordinate picture rather than a four-
coordinate picture.317 Additional analysis is required to resolve this
discrepancy.

For applications to water, EE-MBE(n) calculations that use
embedding charges have sometimes taken these charges to be fixed
quantities, taken for example from classical water model. This is rea-
sonable for neat water but for more complex and heterogeneous
systems, the embedding charges should be determined on-the-fly
using the fragment wave functions. This seemingly straightforward
modification significantly complicates the formulation of analytic

energy gradients, however. To understand why, consider the analytic
gradient of the MBE(n) energy as written in Eq. (28). This simple
“sum of fragment gradients” expression is valid only if the deriva-
tives dEI/dx and dEIJ/dx include response terms that express how
the embedding charges change with respect to perturbation of x.222

Such terms do not exist within the standard machinery needed for
most QM/MM calculations.193,195 Consequently, the analytic gradi-
ent of the EE-MBE(n) energy with wave function-derived charges
cannot be obtained simply by performing a sequence of subsys-
tem gradient calculations with an off-the-shelf electronic structure
program.

This fact has not always been recognized, and often the requisite
response terms are simply neglected.27,105,108,119–121,243,318 Collins105

argues that the magnitude of the neglected contributions to the gra-
dient is comparable to a typical stopping criterion for geometry opti-
mizations. Other calculations suggest that the neglected response
terms have little effect on geometry optimizations and introduce
errors of <50 cm−1 in vibrational frequencies.222 Be that as it may,
energy conservation in MD simulations is highly sensitive to the
quality of the forces, and neglect of charge-response contributions
to the gradient is likely the cause of catastrophic energy drift that is
observed in ab initio MD simulations of polypeptides using the EE-
GEBF approach.319 Those simulations used atomic partial charges
derived from natural population analysis, without consideration of
the requisite charge derivatives, and encountered energy drift in
excess of 0.6 Eh over just 5 ps of dynamics!

Proper analytic gradients are now available for FMO,320–322

along with analytic second derivatives323,324 and other response
properties.325,326 Prior to 2011, however, a number of “approx-
imate analytic gradients” were reported for this method.327–332

Because the FMOn energy expression is not variational, its analytic
gradient requires solution of coupled-perturbed equations for the
fragments, even when the underlying electronic structure model is
variational.320 This adds not only to the cost but also to the for-
mal complexity of the method, leading, for example, to incom-
plete implementations of the analytic gradient for FMO in combi-
nation with polarizable continuum solvation models (PCMs).333,334

As a result, analytic and numerical Hessians for the FMO + PCM
approach afford slightly different vibrational frequencies.335

An alternative approach is to use a variational formulation of
EE-GMBE(n),222 which sidesteps the need for coupled-perturbed
equations when used with an SCF level of electronic structure theory.
The variational approach is based on the “XPol” charge-embedded
SCF procedure194,336–338 and requires minimal modification to the
Fock matrix and analytic gradient, although these modifications
cannot be made from outside of the electronic structure program.
The variational form of the charge-embedded Fock matrix for sub-
system K is194,222

FK
μν = f K

μν −
1
2∑j∉K
⟨μ∣ qj

∥r − Rj∥
∣ν⟩ +∑

k∈K

∂Eemb

∂qk

∂qk

∂PK
μν

, (36)

where fK is the Fock matrix in isolation and Eemb is a classical embed-
ding potential. Equation (36) requires expressions for the derivatives
∂qk/∂PK

μν of the embedding charges with respect to the fragment
density matrices, which have so far been formulated for Mulliken,336

Löwdin,192 ChElPG,194 and Hirshfeld296 embedding charges. Unlike
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FMOn, in which only the monomers are iterated to self-consistency,
a variational EE-GMBE(n) calculation requires self-consistent itera-
tions on each subsystem, up to and including n-mers of fragments.
The procedure is illustrated by the flow chart in Fig. 18.

By deleting the charge-derivative term in Eq. (36), along with
its companion terms in the energy gradient, it can be shown defini-
tively that the charge-response terms are necessary to obtain energy-
conserving dynamics with EE-MBE(n).222 (The same result has been
demonstrated by deliberately omitting the coupled-perturbed equa-
tions in the FMOn analytic gradient.339) As a matter of philosophy,
it is the author’s view that whatever approximations may have gone
into the design and formulation of a fragment-based ansatz for the
total energy, one should insist that the analytic energy gradient be
the exact derivative of that energy expression. The variational for-
mulation of EE-GMBE(n) provides a general framework for doing
so, and one that is agnostic to the details of the fragmentation
procedure.

G. Computational cost and ways to reduce it
Curiously, the cost of fragment-based quantum chemistry cal-

culations is discussed only sporadically in the literature. More
often, the parallelizability is emphasized without providing detailed
timing information to illustrate what the calculations really cost in

FIG. 18. Flow chart for the variational EE-GMBE(n) approach. The dashed box
contains the iterative XPol procedure that determines the self-consistent embed-
ding charges. Adapted with permission from Liu et al., J. Phys. Chem. Lett. 10,
3877–3886 (2019). Copyright 2019 American Chemical Society.

comparison with a supersystem calculation, at the same level of the-
ory,190 but a few glimpses are available. For example, ab initio MD
simulations of liquid water, using EE-MBE(2) at the CCD/aug-cc-
pVDZ level, took a reported 3.5 min per time step running on 30
nodes with 28 cores each.77 With a simulation time step of 1 fs, this
means that the 15.0 ps of simulation time reported in Ref. 77 rep-
resents 36.5 days of “wall time,” i.e., the time-to-solution according
to the clock on the wall. Multiplying by the total number of pro-
cessors, this comes out to a staggering 84 central processing unit
(CPU)-years of computing time.

In evaluating the efficacy of fragment-based approaches, it is
important to consider total CPU time and not simply wall time.
Although the latter represents a particular user’s time-to-solution,
at a shared computing facility it is the total CPU time that is a fixed
resource. Moreover, from a sustainability perspective, the best met-
ric by which to measure the cost of a calculation may not have
units of time at all but rather power consumption (“performance
per watt”). It is important to note that the use of CPU throttling
(i.e., dynamic frequency and/or voltage scaling) in modern proces-
sors means that power consumption is generally very low when the
processor is idle, which largely negates the “might as well use them
for something” mentality about computing. Efficient resource uti-
lization often seems to be forgotten or ignored in the computational
science community’s march toward exascale computing.

The aforementioned ab initio MD simulations of liquid water
used a relatively large QM system of about 140 water molecules, with
an O(N6) electronic structure method.77 At present, such a simu-
lation is only possible by means of fragmentation. Especially with
lower-scaling methods, however, the crossover point at which the
fragment-based approach actually becomes cheaper than the super-
system calculation that it aims to approximate occurs later than one
might guess.

Figure 19 presents timing data for resolution-of-identity
(RI-)MP2/aug-cc-pVTZ calculations on (H2O)20, from a study
whose goal was to determine whether fragmentation methods could
accurately predict relative energies for different cluster isomers.68

This has proven to be a challenging problem, in part because BSSE
is markedly larger in certain families of isomers than for others.184

For this reason, timing data for various counterpoise corrections
are also reported, including a full supersystem counterpoise cor-
rection [SSFC, Eq. (26)], as well as the MBCP(4) and GMBCP(2)
corrections that are commensurate to MBE(4) and GMBE(2) energy
calculations, respectively.

According to these data, the fragmentation approaches are sig-
nificantly more expensive, in terms of aggregate CPU time, as com-
pared to a conventional RI-MP2 calculation for the full cluster.
The total CPU time for the MBE(4) calculation is about 8× the
supersystem cost, and MBCP(4) is about twice as expensive as the
full-system counterpoise correction. The GMBE(2) calculation is
74× more expensive than the supersystem calculation, and
GMBCP(4) is 34× more expensive than SSFC. The power of frag-
mentation only becomes evident upon switching to a metric of cost
per subsystem, which is shown on the right in Fig. 19. The largest sub-
systems in MBE(4) are water tetramers, and the cost per subsystem is
reduced by more than 1000× as compared to the cost of a calculation
on (H2O)20. The GMBE(2) calculations use 3–4 water monomers
per fragment and therefore subsystems as large as (H2O)8, so the
cost reduction per subsystem is smaller.
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FIG. 19. Total computer time required for a single-point energy calculation on
(H2O)20 at the RI-MP2/aug-cc-pVTZ level, showing the cost of a full supersys-
tem calculation along with its MBE(4) and GMBE(2) approximations. Hatched bars
show the time required for the counterpoise correction that is commensurate to
each energy calculation. On the right, the timings are divided by the number of
subsystem calculations that are required. Supersystem calculations were multi-
threaded across 20 cores, whereas subsystem calculations for the fragment-based
methods were run in serial but distributed across processors. All calculations were
performed using the Q-Chem program.340 Data are from Ref. 68.

To understand these data, it helps to enumerate the number of
subsystems that are required for each calculation, which is done in
Table II for both (H2O)20 and (H2O)55. Application of MBE(4) to
the smaller cluster generates 6175 distinct subsystem calculations,
which is reduced to 4263 for GMBE(2), although the subsystems
are somewhat larger. The corresponding counterpoise corrections
engender about a fourfold increase in the number of terms although
other work has concluded that only two-body counterpoise correc-
tions are important.59–61 These data make it clear that one should
not assume that the fragment-based calculation will actually reduce
the total wall time that is required, and furthermore, the total CPU
time may very well increase upon fragmentation.

That said, the fact that one large calculation has been reduced
to a (very large) number of smaller calculations is still useful because
the fragment-based approach may be more readily restartable as
compared to the supersystem calculation, and easier to perform in
small segments. Segmentation is especially important when it comes
to storage costs. Whereas the CPU cost of a RI-MP2 or CCSD(T)
calculations scales as O(N5) or O(N7), respectively, both methods
require O(N4) storage (memory and/or disk), and it is the storage
cost that is often the practical limitation in correlated wave function
calculations. The use of fragmentation as a form of checkpointing
in massively parallel applications represents a trivial, scalable, and
fault-tolerant way to divide the computational effort over a large
number of processors, possibly over a very long calendar time.

That said, it is worth considering ways to bring down the cost,
by neglecting or approximating the smallest n-body terms. In keep-
ing with the notion that quantum mechanics is operative only at
short length scales, a natural idea is to describe all of the many-body
effects classically, with only one- and two-body terms computed at a
QM level. This is the approach that is taken in the HMBI method,73

with good success for molecular crystals (Sec. III D).36 The EE-GMF
method developed by Liu et al.74–77 also routinely uses screening on
top of what is otherwise EE-MBE(2) or EE-MBE(3).

An alternative version of this idea is the effective fragment
molecular orbital (EFMO) method,32,189,341–345 originally designed
as an approximation to FMO2 in which QM calculations for well-
separated dimers are replaced by calculations using the effective
fragment potential (EFP).346–348 The latter is a polarizable force field
that is parameterized in an automated way based on electronic struc-
ture calculations. EFP can be applied to the entire supersystem at
negligible cost, thus EFMO amounts to a multilayer method in
which short-range, two-body interactions (only) are described using
QM calculations. Operationally, the EFMO procedure amounts to
an energy expression189

EEFMO = ∑
I

E(0)I +∑
I
∑
J>I

RIJ≤Rcut

(ΔE(0)IJ − E(ind)
IJ )

+ ∑
I
∑
J>I

RIJ>Rcut

EEFP
IJ + E(ind)

total , (37)

TABLE II. Number of subsystem calculations required for several different fragmentation methods, for two different water clusters. Adapted with permission from Lao et al.,
J. Chem. Phys. 144, 164105 (2016). Copyright 2016 AIP Publishing LLC.

(H2O)20 (H2O)55

Size MBE(n)a MBCP(n)b GMBE(2)a GMBCP(2)b MBE(n)a MBCP(n)b GMBE(2)a GMBCP(2)b

n = 2 190 380 . . . . . . 1 485 2 970 . . . . . .
n = 3 1140 3 420 . . . . . . 26 235 78 705 . . . . . .
n = 4 4845 19 380 . . . . . . 341 055 1 364 220 . . . . . .
n = 4–6 . . . . . . 4113 16 040 . . . . . . 17 883 78 650
n = 6–9 . . . . . . 150 1 110 . . . . . . 1 469 11 275

Total 6175 23 180 4263 17 150 368 775 1 445 895 19 352 89 925

aCalculations involving n monomers in an n-mer basis.
bCalculations involving one monomer in an n-mer basis.
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in which ΔE(0)IJ is a two-body correction evaluated at the QM level,
akin to that in Eq. (3) but based on isolated (rather than embed-
ded) monomer energies E(0)I and dimer energies E(0)IJ . The quantities
EEFP

IJ are the pairwise EFP energies, which replace the QM calcula-
tion when the intermolecular distance is large (RIJ > Rcut). The final
term, E(ind)

total , is the total EFP induction energy for the supersystem.
It serves to sum the many-body polarization to all orders, like other
multilayer methods discussed in Sec. II C.

Because FMO2 is not a particularly good approximation for
energies, it is not surprising that EFMO also fails in this regard, e.g.,
with errors for water clusters that are ∼1 kcal/mol/monomer at the
Hartree-Fock/6-31G∗ level.341 Whereas Eq. (37) suggests an approx-
imation to FMO2, results for isomers of (H2O)16 in Fig. 8 suggest
that the approximation is inconsistent, especially in the larger 6-
311++G(3df, 2p) basis set. In fact, EFMO is sometimes advertised as
being more accurate than FMO2,32,189 which may be objectively true
but is a rather weak endorsement. Errors in total binding energies for
isomers of (H2O)32 span a considerable range, from 204 kcal/mol
for FMO2, to 116 kcal/mol for FMO3, to 48 kcal/mol for EFMO.189

Moreover, the efficacy of distance-based screening is likely to
suffer in heterogeneous systems, especially if the fragments are con-
siderably larger than H2O. In polyalanine α-helices, for example, the
secondary structure is stabilized by conformations characterized by
long-range, cooperative alignment of the alanine dipole moments,
and many-body effects for these geometries remain significant at
much longer length scales as compared to water clusters.349 These
long-range cooperative interactions are also much more significant
in α-helices as compared to β-strands,349 so neglecting them outright
will have a detrimental effect on the prediction of relative conforma-
tional energies for polypeptides and proteins. One way to account
for these long-range interactions is by means of a low-level super-
system calculation, in which case aggressive distance-based cutoffs
might still be acceptable for the high-level fragment calculations,
which are needed only to describe short-range QM interactions
while the supersystem calculation takes care of long-range classical
interactions.

In an attempt to avoid the need for a supersystem calcula-
tion, energy-based screening has been suggested as an alternative
to distance-based screening of MBE(n).60,349,350 Figure 20(a) pro-
vides a proof-of-concept demonstration for water clusters of various

FIG. 20. Proof-of-principle demonstration of the efficacy of energy-based screen-
ing, for three-body interactions in water clusters. (a) Distribution of three-body
interaction terms ΔEIJK for water clusters of different sizes vs the maximum three-
body polarization interaction |εmax| estimated using classical polarization theory.
(b) Error introduced when three-body terms with |ΔEIJK | < Ecut are neglected, as
a function of the cutoff threshold. Adapted with permission from J. F. Ouyang and
R. P. A. Bettens, J. Chem. Theory Comput. 12, 5860–5867 (2016). Copyright 2016
American Chemical Society.

sizes, showing that the three-body energy corrections ΔEIJK obtained
from QM calculations are highly correlated with classical estimates
based on dipole polarizabilities. (The same is true of the four-body
corrections.349) By using an energy cutoff rather than a distance
cutoff, the overwhelming majority of three- and four-body inter-
actions can be neglected while remaining faithful to MBE(n) ener-
getics. This is demonstrated for n = 3 in Fig. 20(b), where a cutoff
Ecut = 0.2 kJ/mol introduces an overall error of <0.1 kJ/mol in the
total energy predicted by the MBE(3) approach.

As shown in Fig. 21(a), this cutoff reduces the number of
three-body terms to a value that appears to grow only linearly
with respect to cluster size. The same is true for the four-body
terms, and this makes energy-screened MBE(n) a genuinely O(N)
approach, whereas in the absence of screening this method incurs
a prefactor Nsub ∝ O(Nn) in Eq. (1). Energy-based screening also
proves to be more effective and less erratic than the distance-based
alternative, despite the fact that water is probably a best-case sce-
nario for the latter. Changes in the ring structures within the data
set of (H2O)N isomers, at N = 23 and again at N = 29,351 are

FIG. 21. (a) Total number of three-body terms before and after application of either a distance-based cutoff (Rcut = 7 Å) or else an energy-based cutoff (Ecut = 0.25 kJ/mol),
for a sequence of clusters (H2O)N. (b) Timings (on a single 40-core node) for MP2/aug-cc-pVDZ calculations on (H2O)N, along with those for an energy-screened MBE(3)
approximation at the same level of theory combined with a supersystem Hartree-Fock/aug-cc-pVDZ correction. Data are from Ref. 350.

J. Chem. Phys. 151, 170901 (2019); doi: 10.1063/1.5126216 151, 170901-22

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

TABLE III. Timing data and energy errors (ΔE) for GMBE(1) “molecular tailoring” calculations, including the basis-set grafting
procedure of Eq. (20). Adapted with permission from S. S. Khire, L. J. Bartolotti, and S. R. Gadre, J. Chem. Phys. 149, 064112
(2018). Copyright 2018 AIP Publishing LLC.

aug-cc-pVDZa aug-cc-pVTZa

Nbasis
b ΔE Wall time (min)c

Nbasis
b ΔE Wall time (min)c

System Method (mEh) Fragment Standard (mEh) Fragment Standard

Taxol ωB97X-D 1885 2.38 168 361 4025 1.44 1439 4 044
α-cyclodextrin B3LYP 2058 0.78 61 174 4416 0.28 577 2 035
γ-cyclodextrin B3LYP 2744 0.23 110 345 5888 0.13 1107 10 054
Vancomycin B3LYP 3006 0.74 384 517 6379 0.08 3437 10 568
(H2O)64 ωB97X-D 2624 0.85 173 385 5888 0.08 1324 2 844
(H2O)32 MP2 1312 1.02 202 675 2944 0.33 4897d 22 414d

(H2O)16 MP2 656 0.26 10 78 1472 0.35 202 1 178d

aGrafting procedure uses aug-cc-pVXZ as the large basis and cc-pVXZ as the small basis.
bNumber of functions in the large basis set.
cCalculations were run on a single 16-core node except where otherwise indicated. The “fragment” time includes the cost of the
small-basis supersystem calculation, whereas the “standard” time is the cost of the large-basis supersystem calculation.
dSupersystem calculations were performed on a 20-core node.

evident in the distance-based screening data in Fig. 21(a) and result
in sudden changes in the efficacy of the procedure. In contrast,
energy-based screening smoothly interpolates through these struc-
tural transitions.

A practical implementation of energy-based screening for
MBE(n) has recently been developed using the EFP force field to
make a priori estimates of the subsystem energies.350 QM calcula-
tions of the n-body energy corrections ΔEI J⋯ are performed only
if ∣ΔEEFP

IJ⋯ ∣ > Ecut. When combined with a supersystem EFP calcu-
lation (MIM2-style), this amounts to an energy-screened MBE(n)
analog of EFMO. At the three-body level, however, this method
is still not accurate enough to handle the challenging problem of
relative isomer energies in water clusters, even with the supersys-
tem EFP correction.350 Accuracy of ±1 kcal/mol with respect to
supersystem MP2 can be achieved by adding a supersystem Hartree-
Fock correction to the energy-screened MBE(3) energy computed
at the MP2 level.350 This composite approach remains significantly
faster than supersystem MP2, as shown by the timing data in
Fig. 21(b). Notably, these data represent wall times for calculations
performed on a single 40-core node, meaning that the fragment-
based calculation is more efficient even when measured in aggre-
gate CPU time and does not require massive parallelization to be
feasible.

As compared to MBE(3), and certainly as compared to
the high-accuracy GMBE(2) and MBE(4) methods, the GMBE(1)
approximation typically requires a vastly smaller number of sub-
systems. As a result, GMBE(1) is often cheaper than a supersystem
calculation even without the need for screening. In some cases, this
is true even for composite methods that require a supersystem cal-
culation at a low level of theory, as Gadre and co-workers have
consistently demonstrated.112,113,117,118,148,149

Some timing data from Gadre’s recent work are presented
in Table III, including both water clusters and macromolecules.118

These calculations employ the “grafting” correction of Eqs. (20)

and (21), with aug-cc-pVXZ as the large (target) basis set and the
corresponding cc-pVXZ as the small basis set. The fragment-based
calculation thus requires a full-system calculation in the smaller
basis set; nevertheless, this composite approach systematically out-
performs a supersystem calculation in the target basis set, even
with both calculations performed on a single computer node, with-
out resorting to large-scale parallelization to rescue the fragmenta-
tion method. This is especially true at the MP2 level; however, the
fragment-based approach remains less expensive even for DFT cal-
culations, while introducing errors ≲2 × 10−3Eh in the total energy.
It remains to be seen whether GMBE(1) can consistently handle the
challenging problem of relative energies.

IV. MACROMOLECULAR FRAGMENTATION
Molecular clusters and crystals are sufficient to highlight

many of the strengths and limitations of fragment-based quan-
tum chemistry, without introducing the complexity of fragmenta-
tion across covalent bonds. The full power of fragmentation, how-
ever, is only unleashed once these methods are brought to bear
on macromolecular systems. This section briefly highlights appli-
cations along these lines, without delving into the details of how
the severed bonds should be capped. This same issue is faced in
the well-established context of QM/MM calculations,94–98 so will
not be discussed here. The need for link atoms,96,97 hybrid orbital
caps,92,99,100 or “pseudobonds”98 certainly introduces an additional
layer of complexity, but issues of accuracy and cost that were doc-
umented above for noncovalent applications are equally relevant in
macromolecules.

What should be clear from the noncovalent applications sur-
veyed in Sec. III is that high accuracy is achievable (both in an
absolute sense and also in the sense of high fidelity to the underlying
quantum-chemical model), but at appreciable cost in many cases. In
view of this, when it comes to condensed-phase and macromolecular
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applications, it is worth noting that within the statistical mechan-
ics community, there is a general feeling that when faced with a
choice between an accurate-but-expensive potential energy surface
and a cruder model that can be sampled effectively, the latter option
is almost always preferable. (Call it the “primacy of entropy” men-
tality, whereas quantum chemists tend to adopt an enthalpy-centric
viewpoint.) Recognizing that fragment-based approaches have not
yet advanced to the point of providing good sampling, except possi-
bly when combined with semiempirical quantum chemistry,352–354

this section aims to discover whether there are macromolecular
applications where fragmentation can yet be useful. Only a few
highlights are provided, to give an appreciation for what is real-
istically feasible at a level of accuracy that might solve practical
problems.

A. Energetics
Accurate prediction of relative conformational energies is chal-

lenging in clusters, as for example in the case of isomers of (H2O)16
for which FMO-based methods fail badly (Fig. 8). As compared
to FMOn, MBE(n)-based methods that iterate the subsystems to
self-consistency fare much better and in fact show great promise
for the difficult problem of predicting relative energies of crystal
polymorphs (Sec. III D), which is the solid-state analog of the con-
formational landscape problem. With a heavy-atom fragmentation
criterion of ≈3 Å, the GMBE(2) approach has proven to be essen-
tially exact for clusters even without resort to electrostatic embed-
ding,46,68 so it is natural to inquire how this method performs for
macromolecules.

Proteins represent a straightforward test case, and calcula-
tions using two amino acids per fragment afford good fidelity with
the macromolecular calculation, if used in conjunction with the

overlapping-fragment GMBE(2) approach that can describe both
“through-bond” and “through-space” interactions.128 A sequence-
based fragmentation scheme can be used, with caps that are either
hydrogen link atoms or else more sophisticated “conjugated caps”
that terminate the severed peptide bonds with amino acid functional
groups, as in the MFCC approach of Zhang and co-workers30,109 that
is illustrated in Fig. 4.

Figure 22(a) examines the conformational energy landscape for
two small proteins, comparing supersystem energies at the level of
M06-2X/6-31G∗ with EE-GMBE(2) results at the same level of the-
ory.128 These calculations use a “pair-pair” algorithm to generate a
set of fragments consisting of all pairs of amino acids that are either
covalently bonded or else hydrogen-bonded to one another. Subsys-
tems consist of pairs of fragments (Fi ∪ Fj) and their mutual intersec-
tions (Fi ∩ Fj), which are therefore no larger than four amino acids.
Relative energy profiles are computed for 20 conformations of each
protein, obtained by gas-phase geometry optimization of a solution-
phase ensemble of structures. Relative energy profiles obtained
from an EE-GMBE(2) calculation are nearly indistinguishable from
those obtained by performing a DFT calculation on the entire
protein.

The same is true for some larger proteins (e.g., 4DP1 with 99
residues and 1A4A with 258 residues), as shown in Fig. 22(b), where
the fragment-based calculations use a form of EE-GMBE(1) in which
dimers are constructed from all pairs of amino acids within 4.5 Å of
one another.355 Essentially, this approach uses the two-body energy
correction in Eq. (3) in conjunction with conjugated caps and the
MFCC energy formula of Eq. (12) that subtracts out the energies of
the overlapping caps, GMBE(1)-style.

Both sets of calculations in Fig. 22 suggest that it is possible to
approximate biomolecular quantum chemistry with extremely high
fidelity using fragment-based methods. That said, the accuracy of

FIG. 22. Relative conformational energies of proteins, comparing supersystem calculations (in blue) to fragment-based results (in orange). Results are shown using (a) the
EE-GMBE(2) method, with a “pair-pair” algorithm for generating fragments,128 and (b) the MFCC approach,355 which is a form of EE-GMBE(1). PDB codes for each protein
are indicated, and the ensembles of conformations used in (a) are shown. All calculations were performed at the M06-2X/6-31G∗ level of theory. The data plotted in (a) are
from Ref. 128 and those in (b) are from Ref. 355.
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these calculations (with respect to the corresponding supersystem
DFT calculation) raises some interesting questions. One question
is how the accuracy can be so good, given that both fragmentation
approximations are limited to short-range pairs of fragments. The
answer is likely that all of the calculations in Fig. 22 are performed
on conformations derived from the compact, native structure of the
protein, such that long-range interactions are largely similar within
the ensemble of structures, and errors associated with neglecting
the long-range interactions largely cancel across the conformational
profiles in Fig. 22. A more challenging test would be to compute the
relative energies of compact structures vs elongated “random coil”
structures. It is possible that distance cutoffs of 4.0–4.5 Å really are
sufficient, especially once the first elements of secondary structure
have begun to form, but it is unclear whether this has been rigorously
tested.

A second issue is the choice of density functional. Despite its
popularity in noncovalent applications, M06-2X does not include
nonlocal electron correlation and therefore it lacks proper long-
range dispersion,356 which is necessary to describe the full spectrum
of noncovalent interactions.357 In the present context, this means
that some of the genuine long-range interactions that are discarded
due to fragmentation were already absent from the supersystem
M06-2X calculations that were used as benchmarks. Benchmark cal-
culations using functionals that include long-range dispersion would
help to address this issue. These could be empirical DFT+D meth-
ods,289,290 or else proper nonlocal correlation functionals such as
ωB97M-V.297,298

Some DFT+D benchmarks for proteins have been reported and
used to assess the MIM2 and MIM3 fragmentation schemes.144 With
the three-level MIM3 strategy [Fig. 5(c)], a semiempirical method
such as PM6-D3 can be used for the supersystem component of
the composite calculation, while staying within a target accuracy
of 2 kcal/mol with respect to a full-protein DFT calculation.144

Although timing data are not provided in Ref. 144, it is indicated
that the supersystem PM6 calculation is the most expensive part of
the composite strategy, which is therefore no more expensive than
standard semiempirical methods but with potentially much better
(and more controllable) accuracy.

Also useful would be benchmarks at correlated levels of wave
function theory that include long-range dispersion. Such calcula-
tions generally demand larger basis sets than 6-31G∗, consideration
of which raises another question about the protein data in Fig. 22:
why isn’t BSSE a larger problem? As discussed in Sec. III B, BSSE
manifests rather differently in a supersystem calculation than it does
in the subsystem calculations, which can artificially hamper con-
vergence of MBE(n) because higher-order n-body interactions are
intertwined with BSSE.184,205 In addition, BSSE can artificially stabi-
lize compact structures of biomolecules as compared to more open
ones.197–199 Part of the reason why this imbalance does not cause
a problem here is that all of the structures that are considered are
relatively compact.

In general, it would be useful to have additional benchmarks
to assess how faithful the fragmentation methods are for the sub-
tle problem of energy differences in biomolecules, including lig-
and/protein binding energies. Chloride ion binding to some organic
macrocycles has been examined recently,142 using a two-layer
strategy with CCSD(T) as the high-level method, applied GMBE(1)-
style, and M06-2X-D3 as the low-level method applied to the entire

supersystem. This strategy affords good agreement with supersys-
tem CCSD(T) interaction energies.142 For protein/ligand interaction
energies, a MIM3 approach has been tested with PM6-D3 as the
lowest-level method.143 Calculated interaction energies (ΔU) cor-
relate reasonably well with experimental free energies (ΔG), but
additional testing is needed to understand where the error cancel-
lation arises since the target level of theory (B97-D3 in Ref. 143)
is of modest accuracy and the entropy change was not considered
except by means of a continuum solvation model to include a desol-
vation penalty for the ligand. Ligand binding to macromolecules has
also been considered using FMO, but these studies have tended to be
more qualitative in nature,358–363 as befitting the limitations of that
method.

Both sets of protein calculations in Fig. 22 use subsystems that
are 50–60 atoms in size,128,355 meaning that these calculations should
be feasible (albeit nontrivial) even in larger basis sets and with cor-
related wave function levels of theory. That said, it is worth consid-
ering the cost of applying fragmentation to proteins, even at modest
levels of theory. Figure 23 presents timing data for GMBE(2) cal-
culations on proteins as large as 70 amino acids (1142 atoms), at
the Hartree-Fock/6-31G∗ level of theory.128 Immediately evident is
the fact that a Hartree-Fock calculation on the entire protein is sig-
nificantly cheaper than the fragment-based calculation, if that cost
is measured in aggregate CPU time [Fig. 23(a)]. This fact is some-
times disguised in the literature by comparing to timings from a slow
quantum chemistry code, or one whose parallel efficiency is poor,
as these limitations tilt the comparison toward the smaller and triv-
ially parallelizable calculations in the fragment-based approach. The
full-protein timings reported in Fig. 23, however, are parallelized
across a modest 12 cores, using an efficient DFT code.340 Zhang
and co-workers355 have also reported that fragment-based approx-
imations can be more expensive than full-protein DFT calculations
although the fragmentation approach used in Ref. 355 includes far
fewer terms as compared to GMBE(2), hence the crossover point (at
which the fragment-based calculation becomes lower in cost) occurs
in a smaller protein.

The crossover will occur much earlier if a correlated wave func-
tion method is used instead of DFT, as demonstrated in a recent
application of GMBE(1) to ionic liquid clusters containing 10 ion
pairs (250–270 atoms).75 At the M06-2X/6-31G∗ level of theory, the
fragmentation approach is more expensive than the corresponding
supersystem calculation, but this is reversed at the MP2/6-31+G∗

level. The latter calculations involve 2690 basis functions, and the
fragmentation approximation requires only 1%–2% as much CPU
time as the supersystem calculation.

The power of fragmentation thus lies mostly in its paralleliz-
ability, viz., the fact that the time-to-solution can be made almost
arbitrarily small, down to the cost of a single subsystem calculation.
The same is true for storage requirements, which is a significant
consideration in correlated wave function calculations. Finally, for
calculations that are to be distributed across a great many proces-
sors, checkpointing (in case of hardware failure) quickly becomes
a necessity, and the natural divisibility of fragment-based calcula-
tions makes this easier as well. These are tremendous advantages
in the context of high-performance computing, but one should not
lose sight of the tremendous amount of computer time that will
nevertheless be required in order to extend quantum chemistry to
macromolecular systems. This consideration, in turn, must serve to
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FIG. 23. Timing data for Hartree-Fock/6-31G∗ calculations on a set of proteins, comparing a calculation on the full protein to a “pair-pair” (pp)-GMBE(2) calculation.128 The
data are separated into (a) aggregate computer time summed across all processors vs (b) time-to-completion or “wall time.” All supersystem calculations were performed on
a single 12-core node, whereas the pp-GMBE(2) calculations (with two amino acids per fragment) used 10 nodes, but each subsystem calculation was performed on only
one node. Adapted with permission from J. Liu and J. M. Herbert, J. Chem. Theory Comput. 12, 572–584 (2016). Copyright 2016 American Chemical Society.

guide what applications are selected for these methods. In a system
with thousands of atoms, fragment-based approaches can certainly
facilitate single-point energy and gradient computations at hun-
dreds (or possibly thousands) of geometries, but 106 evaluations of
the gradient (as required for 1 ns of MD) is probably not feasible
except using semiempirical quantum chemistry,352–354 or possibly
with multilayer GMBE(1)-style methods if these can be reduced to
semiempirical cost.144

B. Spectroscopy
As compared to accurate calculation of energetics, spectro-

scopic applications may be an area where there is a clearer path
forward for fragment-based approaches because direct contact with
experiment can be made based on a modest number of energy and
gradient evaluations, as compared to what would be required for
ab initio MD. Spectroscopic applications might involve full or partial
geometry optimization to relax the system at an ab initio level of the-
ory, followed by calculation of appropriate derivatives representing
molecular properties.218–220

For example, composite strategies have been developed for
computing vibrational spectra of large molecules. One of these is
the grafting-corrected GMBE(1)-style molecular tailoring method of
Gadre and co-workers, which has proven very successful for clus-
ter spectroscopy148,149,225 (see Fig. 11) and has also been adapted for
macromolecules.148,149,224 Using fairly large fragments (≈100 atoms
in some cases) and a full-system calculation of the Hessian at a low
level of theory (e.g., BP86/6-31G or MP2/6-31G), essentially exact
results can be obtained at a higher level of theory (BP86/TZVP or
MP2/6-31G∗∗), with the higher-level method applied only to frag-
ments. To date, this method has not been coupled to a geometry
optimization at the same level of theory, so full-system geometry
optimization at the higher level of theory is required and the geom-
etry is not quite stationary at the level of theory used to compute
frequencies. In contrast, macromolecular geometry optimizations

have been reported using FMOn,329,334,364 and also MIMn123 or its
equivalent.134,136,138

MIM2-based approaches to vibrational spectroscopy, devel-
oped by Jose and Raghavachari,123,124,365,366 are more promising
in terms of their extensibility to large systems and their ability
to optimize the geometry and compute harmonic frequencies at
a consistent level of approximation. Various combinations have
been considered, in which a high-level method is applied to frag-
ments, GMBE(1)-style (in what the authors call MIM1), in com-
bination with a low-level supersystem calculation. The high-level
method is typically DFT in a triple-ζ basis set, since this is gener-
ally good enough for quantitative or semiquantitative vibrational
spectroscopy within the harmonic approximation, while the low-
level method might be double-ζ DFT or better yet a semiem-
pirical method. Vibrational frequencies are generally accurate to
within a few cm−1 as compared to supersystem benchmarks at
the higher level of theory, while the low-level supersystem calcula-
tion helps to correct relative intensities.123 These trends are illus-
trated in Fig. 24(a), which reports harmonic vibrational spectra for
α-(glycine)10.

The accuracy of fragment-based vibrational frequencies and
intensities is consistent with the notion that the frequencies are
largely dictated by local chemical structure. Typically, vibrational
normal modes are delocalized only in the sense that they do not
correspond to individual chemical bonds; they do tend to local-
ize within individual chemical moieties or functional groups. There
are exceptions, for example in the case of the amide I band in
proteins,369 where quasidegeneracies and transition dipole cou-
pling amongst the carbonyl oscillators causes the excitation to
delocalize over several residues.370 However, these effects emerge
naturally from diagonalization of a Hessian that is constructed
from local information. The α-(glycine)10 spectra in Fig. 24(a)
that are computed from fragment-based approaches are in excel-
lent agreement with the supersystem result, the latter of which
includes the full effects of excitonic coupling. Raman spectra of
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FIG. 24. Vibrational spectra from MIMn calculations. (a) Infrared spectra of (glycine)10 shown in an α-helix configuration, computed at the supersystem B3LYP/6-311G∗∗

level (upper panel) and its GMBE(1)-style MIM1 approximation (middle panel). The lower panel depicts the MIM2 spectrum obtained by adding a supersystem PM6 correction
[Eq. (19)] to the MIM1 calculation.123 (b) Raman spectra for polystyrene, comparing the experimental (surface-enhanced) spectrum367 (top) to the MIM2 spectrum (bottom).365

The latter is computed using B3LYP/6-311+G∗∗ as the high-level method and Hartree-Fock/6-31G as the low-level method. (c) Vibrational circular dichroism spectra of
perhydrotriphenylene, comparing experiment368 (top) and a MIM2 calculation (bottom, for the particular enantiomer that is shown). The calculation uses MPW1PW91/aug-
cc-pVTZ-f as the high-level method and MPW1PW91/6-31+G∗ as the low-level method.366 Panel (a) is adapted with permission from K. V. J. Jose and K. Raghavachari, J.
Chem. Theory Comput. 11, 950–961 (2015). Copyright 2015 American Chemical Society. Panel (b) is adapted with permission from K. V. J. Jose and K. Raghavachari, Mol.
Phys. 113, 3057–3066 (2015). Copyright 2015 Taylor & Francis. Panel (c) is adapted with permission from K. V. J. Jose, D. Beckett, and K. Raghavachari, J. Chem. Theory
Comput. 11, 4238–4247 (2015). Copyright 2015 American Chemical Society.

α-(alanine)10 computed using FMO2 are also in excellent agree-
ment with supersystem calculations.324,335 On the other hand,
infrared and Raman intensities depend on derivatives of the
dipole moment and polarizability, respectively, and these quanti-
ties are presumably sensitive to induction effects. This is why the
MIM2 approach improves the intensities relative to MIM1 [see
Fig. 24(a)].

In contrast to the very challenging problem of accurate energy
predictions, vibrational frequencies compare well to experiment
even at relatively low levels of theory such as DFT. In combina-
tion with a fragmentation approach, this allows quantum chem-
istry to make direct contact with experiment in complex systems, at
tractable cost.124 Examples depicted in Figs. 24(b) and 24(c) show
that DFT-based MIM2 vibrational spectra compare well enough
with experiment to make assignments, both for the Raman spectrum
of polystyrene365 and for the vibrational circular dichroism spec-
trum of perhydrotriphenylene.366 The latter can be used to assign
the absolute stereochemistry of this molecule.368 Note that these cal-
culations include a careful treatment of the link-atom contributions
to the gradient and Hessian.123,365,366

In terms of cost, it is reported that the FMO2 Hessian for a
molecule with 400 atoms can be evaluated in 16 h on 72 cores at
the B3LYP/6-31G∗ level of theory, with a total memory requirement
of 1.6 Gb.335 Raman spectra on full proteins have been reported at
the FMO2 level,326 which run in a matter of several days on 228
processors with 2 Gb of memory per processor. The parallel effi-
ciency of these calculations is as high as 90% in some cases,324 mean-
ing that wall-clock times could be reduced considerably by further
parallelization. Additional parallelization could be obtained by com-
puting frequencies as finite differences of analytic first derivatives,
which introduces essentially no error in the fingerprint region of
the spectrum,371 and reduces the memory requirement to that of a
single-point energy calculation.

NMR is arguably the single most important spectroscopic tech-
nique in all of chemistry and is considered here as a final exam-
ple. Calculation of chemical shielding tensors has been imple-
mented within FMO2, and results at the Hartree-Fock/6-31G∗ level
were shown to be in good agreement with supersystem results.325

However, response properties have notoriously onerous basis-set
demands and 6-31G∗ results for chemical shieldings cannot be con-
sidered reliable. In polypeptides, 13C chemical shieldings computed
with 6-31G∗ differ by up to 36 ppm with respect to converged
results,372,373 with even larger deviations for 17O.372,374 The basis-
set demands make FMOn problematic for this particular property
although some cancellation of errors may occur when chemical
shifts are computed, by subtracting the shieldings in a reference
compound such as trimethylsilane.

To obtain converged results while keeping the basis size
tractable, conventional NMR calculations often rely on “locally
dense” basis sets,375 which saturate the atoms whose chemical shifts
are desired while using a smaller basis set for the rest of the molecule.
(Multiple separate calculations are then required in order to obtain
chemical shifts for the entire molecule.) For polypeptides, reason-
able agreement with supersystem calculations is obtained using as
few as three amino acids, with a dense basis set only on the central
one.372 This “tripeptides-in-molecules” approach, combined with
the dense psSeg-3 basis set that is specifically designed for NMR cal-
culations,376 achieves an accuracy of 0.20 ppm for 1H and 0.76 ppm
for 13C shieldings in a particular decapeptide,372,373 with respect to
a supersystem calculation at the same level of theory and using the
psSeg-3 basis set for the entire molecule. SMF3 calculations applied
to the same decapeptide afford errors of 0.26 ppm (1H) and 0.87 ppm
(13C).373 Although the SMF3 results are quite good, the success of the
tripeptides-in-molecules approach suggests that fragmentation may
not actually be necessary for low-cost chemical shift calculations in
large molecules.
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In general, the correlation between fragment-based and super-
system chemical shifts is outstanding.372,373,377 The use of locally
dense basis sets may be incompatible with methods that employ
overlapping fragments, and attempts to generalize this idea for use
with SMF did not improve the results.373 That said, in a fragment-
based approach, the individual calculations are inherently smaller, so
it may be possible to saturate the basis set on a fragment in a way that
is not feasible in a macromolecule. It remains to be seen whether the
subsystem approaches can reproduce subtle differences in chemical
shifts in different environments, e.g., to discriminate between crystal
polymorphs whose chemical shifts might differ by 1–5 ppm or even
less.36,132 To go from ab initio chemical shifts at a particular protein
geometry to data that can be used to assign an NMR spectrum will
require configurational averaging and perhaps a treatment of solvent
effects.

Solvent effects have been considered in other studies where
subsystem or fragmentation approaches were applied to compute
NMR chemical shifts in full proteins.378–381 Results often corre-
late well with experiment, even when modest basis sets are used.
Examples include a pentapeptides-in-proteins QM/MM approach
using either an implicit solvent approach379 or else a combined
implicit and explicit solvent approach.380 MIM2 has also been

FIG. 25. Theory vs experiment for 1H (top) and 13C (bottom) chemical shifts in
ubiquitin. The two panels on the left show results from pentapeptides-in-proteins
QM/MM calculations, performed either in the gas phase (red symbols) or else in
implicit solvent (blue symbols).379 Calculations were performed at the B3LYP/6-
31G∗∗ level except for the carbonyl 13C atoms, for which a locally dense combi-
nation of 6-311++G∗∗ and 4-31G∗ was used. The two panels on the right show
MIM2 results obtained with a combined implicit/explicit solvation approach.381 The
high-level method in the MIM2 calculations is MPW1PW91/6-311++G(2d, 2p), and
the low-level method is MPW1PW91/6-31G. Panels (a) and (b) are adapted with
permission from T. Zhu, X. He, and J. Z. H. Zhang, Phys. Chem. Chem. Phys.
14, 7837–7845 (2012). Copyright 2012 The PCCP Owner Societies. Panels (c)
and (d) are adapted with permission from K. V. J. Jose and K. Raghavachari, J.
Chem. Theory Comput. 13, 1147–1158 (2017). Copyright 2017 American Chemical
Society.

applied to protein chemical shifts, using both implicit and explicit
solvent.381 These methods are compared for the same protein in
Fig. 25, where the 1H and 13C chemical shifts obtained from the
subsystem calculations are plotted against the experimental data
set of chemical shifts. The agreement is very good, and in fact the
correlations with experiment are surprisingly good even for the
pentapeptides-in-proteins calculation with no solvent. Subtle differ-
ences in chemical shifts can easily hide in these correlation plots,
however, and it will be interesting to see whether NMR spectra for
macromolecules can be assigned using fragment-based calculations,
as has been done for NMR spectra of molecular crystals.36,132

V. LESSONS AND QUESTIONS
I will summarize this work with a set of lessons, which attempt

to distill this Perspective into a few key points, then add some open
questions that may serve as a starting point for thinking about future
directions for this field.

• Lesson #1: For high accuracy calculations, the subsystems must
be iterated to self-consistency in the presence of exchange interac-
tions. In the presence of favorable electrostatic interactions with
neighboring nuclei but in the absence of Pauli repulsion to pre-
vent spurious electron delocalization, fragment-based calculations
are only viable when compact basis sets confine the electrons to
molecules. The noniterative procedure used for the n-body sub-
systems in FMOn makes this method fast and scalable,324,341,382–384

but also limits its applicability to small basis sets.92,93 These may
not be appropriate for use with correlated wave functions, espe-
cially where high accuracy is desired. Embedded MBE(n) methods
that iterate the n-body subsystems to self-consistency do not suffer
this limitation, and numerous applications using MP2 or CCSD(T)
with aug-cc-pVXZ basis sets (up to quadruple-ζ) have been
reported.

• Lesson #2: A focus on very small fragments obscures the
performance for other applications. Water clusters have been a ubiq-
uitous test bed for MBE(n)-based methods, perhaps to a fault. The
water monomer is small enough, yet many-body interactions in
(H2O)N are important enough, that by selecting H2O as the funda-
mental fragment, one has effectively dug a very deep hole (in terms
of accuracy) that requires a very tall n-body ladder in order to escape.
A noteworthy exception is the case of molecular crystals, where the
unit cell often consists of no more than a few molecules and periodic
boundary conditions make the situation much more tractable.

For large but finite systems, or for liquids where sizable
periodic simulation cells are required, the need for high-order
n-body interactions has profoundly deleterious consequences for
the efficacy of the method, introducing serious finite-precision and
error-accumulation issues.33,68,72 Furthermore, the combinatorics of
four-body approximations quickly renders these approaches cost-
prohibitive as the number of fragments grows,68 although energy-
based screening is a promising strategy to curtail the number of sub-
system electronic structure calculations that is required.349,350 Com-
plementary to these screening approaches are ONIOM-style com-
posite methods such as MIMn,110 which obviate the need for high-
order n-body terms by summing the many-body effects to infinite
order at a low level of theory.

Using somewhat larger fragments is usually advantageous
despite the higher cost per subsystem, because more of the
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short-range interactions are treated exactly (at the specified level of
QM theory) and classical embedding approximations are pushed to
longer length scales. Overlapping fragments appear to be superior to
disjoint ones, even for noncovalent clusters, and the overlapping-
fragment approach is practically mandatory for macromolecules.
Using overlapping fragments, good fidelity with supersystem calcu-
lations is achieved with only a relatively small numbers of fragments,
using GMBE(1)-style approximations such as GEBF,27 MFCC,30 and
molecular tailoring.29 These methods achieve dramatic reduction in
the overall cost of the calculation, even (in favorable cases) when a
low-level supersystem calculation is required for accuracy.118

• Lesson #3: Accurate energy calculations are particularly
challenging. For large water clusters, quantitative accuracy can be
achieved using subsystems as large as (H2O)10.46,68,127 Short of this,
however, accurate prediction of relative energies remains beyond the
capability of many fragment-based methods.68,350 This problem is
solvable using composite methods that combine a high-level method
applied to fragments with a low-level supersystem calculation, albeit
at the price of abrogating O(N) scaling. That said, well-chosen
composite methods afford orders-of-magnitude cost reduction with
respect to application of correlated wave functions to large systems,
and therefore have a useful domain of applicability in “medium-size”
systems that would otherwise be unreachable by high-level quan-
tum chemistry. A focus on linear scaling at all costs obscures other
potential applications that can have an impact on chemistry right
now.

• Lesson #4: Spectroscopic applications may be less demanding
and more directly relatable to experiment. Energy gradients may be
more forgiving than absolute or relative energies, in terms of the
need for high-order induction and/or electron correlation effects. In
favorable cases, spectroscopic predictions may also place less strin-
gent demands on basis sets as compared to accurate prediction of
energies. As such, it may be possible to predict spectroscopic observ-
ables in large systems, to an accuracy that is useful to experimen-
talists, while maintaining the treatment of electron correlation and
the fragmentation approximation at tractable levels. In contrast to
ab initio MD simulations, prediction of spectra may require only
tens or hundreds of energy gradient calculations, not millions or
tens of millions. That said, the sampling problem remains unsolved.
In other words, how should one obtain the geometries to be used
in a high-level calculation of the spectroscopy? If the cost of the
fragment-based component of a multilayer method can be reduced
below the cost of a semiempirical calculation for the entire system,
then the combination of the two could serve as a next-generation
semiempirical methodology, with improved (and systematically
improvable) accuracy.

Finally, let us ponder the future of fragment-based quantum
chemistry by means of some existential questions for the field.

• Question #1: Do we need (or want) the MP2/6-31G∗ answer
for a large system? That level of theory is chosen largely as a rhetor-
ical device although it is the level used in some parallel scalabil-
ity tests for FMO.383,384 One might just as well ask, in the context
of the calculations in Fig. 22, whether the M06-2X/6-31G∗ energy
for a protein is a genuinely useful quantity. Either level of theory
is relatively crude as ab initio quantum chemistry calculations go,
so one needs to be clear-eyed about what (if any) practical infor-
mation is gleaned from such a calculation. Are there genuine sci-
entific questions that can be answered at these levels of theory?

Are these questions that cannot be answered by semiempirical cal-
culations? It is possible that the semiempirical and fragment-based
ab initio approaches are complementary, with the latter serving to
spot-check or correct the former.

• Question #2: What scientific questions are answerable with
these methods? Long timescale, fragment-based ab initio MD simula-
tions will not be routine any time soon; ergo, the sampling problem
is not solvable at a strictly ab initio level of theory. The difficulty
in predicting relative energies with fragment-based approaches fur-
thermore suggests that one cannot always trust the potential energy
surface generated by fragmentation to be completely faithful to
the underlying quantum-chemical model. Classical force fields and
semiempirical quantum chemistry are in no danger of being dis-
placed as the workhorse methods for doing sampling, so in view
of that fact, what is the role of higher-level methods in large sys-
tems? One possible answer is spectroscopy, which is only indirectly
accessible (at best) via classical simulations.

Outside of molecular crystals, there have been very few
fragment-based studies that can claim quantitative or predictive
accuracy for thermochemical properties, i.e., for energies. This is
especially true for the difficult problem of relative conformational
energies, which are often dictated by subtle noncovalent interactions
requiring high levels of electron correlation. The situation seems
more favorable for spectroscopy. In the author’s opinion, the future
is promising for overlapping-fragment strategies that are applied to
make spectroscopic predictions, possibly in combination with low-
level supersystem embedding. Application of low-level (but ab ini-
tio) electronic structure methods to large systems may also have
qualitative utility, e.g., in terms of energy decomposition analysis,
force-field validation, or screening of candidate structures in large
systems.
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238C. Červinka, M. Fulem, and K. Růžička, “CCSD(T)/CBS fragment-based cal-
culations of lattice energy of molecular crystals,” J. Chem. Phys. 144, 064505
(2016).
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