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ABSTRACT
Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn–Sham orbitals, or SAPT0(KS), can
be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately
for each monomer. As in other contexts, correct asymptotic behavior can be enforced via “optimal tuning” based on the ionization energy
theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence
on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on
the size of the exchange hole. In conjunction with “extended” (X)SAPT methods that improve the description of dispersion, this procedure
achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific
tuning.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059364

I. INTRODUCTION

Symmetry-adapted perturbation theory (SAPT) is the foremost
ab initio theory of intermolecular interactions.1–5 It provides a phys-
ically meaningful energy decomposition analysis (EDA) for inter-
molecular interactions, yet one that is capable of benchmark-quality
interaction energies if extended to sufficiently high order. The
lowest-order variant, known as “SAPT0,”5,6 uses Hartree–Fock wave
functions for the monomers in conjunction with second-order per-
turbation theory to describe the intermolecular interactions. Com-
bined with appropriate basis sets, SAPT0 provides a semiquantita-
tive treatment of noncovalent interactions at O(N5) computational
cost.6 The description of strong hydrogen bonds can be improved
through the use of Kohn–Sham orbitals from density functional the-
ory (DFT), albeit at the expense of (further) degrading the descrip-
tion of dispersion,7,8 which is already the least accurate component
of SAPT0.6–8 For this reason, the “SAPT0(KS)” approach, mean-
ing SAPT0 with Kohn–Sham orbitals, was considered and rejected
a long time ago.9–13 The method can be salvaged, however, through
the use of exchange-correlation functionals with correct asymptotic
behavior.8,14

Benchmark-quality interaction energies can be achieved using
alternative combinations of DFT with SAPT that replace second-
order dispersion with a more accurate formulation. Of these alter-
natives, the most widely used is DFT-SAPT,3,15 also known as
SAPT(DFT),2,16 which employs frequency-dependent density sus-
ceptibilities for the monomers (computed using DFT) to obtain the
dispersion energy. In conjunction with density fitting techniques,
DFT-SAPT is an O(N5) method,15,17 albeit one with a much larger
prefactor as compared to SAPT0. Less costly alternatives include
ab initio dispersion potentials18–22 (SAPT+aiD) or the many-body
dispersion method23,24 (SAPT+MBD), which also avoid second-
order dispersion. Both of the latter methods achieve accuracies of
≲ 1 kcal/mol for benchmark noncovalent problems,21–23 withO(N3)
scaling.22 All of these DFT-based SAPT methods require the use
of density functionals that are asymptotically correct. What that
entails is described in Sec. II, and a convenient means to achieve this
behavior is the topic of the present work.

II. THEORY
The asymptotic behavior of the exchange-correlation (xc)

potential ought to be
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vxc(r) ∼ vxc(∞) −
1
r

(1)

for large r. The limiting value as r →∞ is

vxc(∞) = IE + εHOMO, (2)

where IE = E(N − 1) − E(N) is the ionization energy and εHOMO
is the energy level of the highest-occupied molecular orbital
(HOMO).25 In the context of DFT-SAPT, correct asymptotic behav-
ior has generally been grafted onto a standard semilocal approxima-
tion for vxc,25–27 whereas in SAPT0(KS) it has usually been achieved
using long-range corrected (LRC) density functionals.8,14 The cor-
rect asymptotic shape, i.e., the condition vxc(r) ∼ −1/r, is achieved
automatically if the exchange functional is 100% Hartree–Fock
exchange in the limit r →∞. We use the term LRC-DFT to indi-
cate the subset of range-separated hybrid functionals that satisfy this
asymptotic condition.28–33

The use of LRC-DFT does not guarantee that the asymptotic
value vxc(∞) is correct, but this can be set by adjusting the range-
separation parameter ω such that IE(ω) = −εHOMO(ω), according to
the ionization energy theorem in DFT.34,35 In the context of time-
dependent (TD-)DFT, this procedure has come to be called “optimal
tuning”33 and is widely used to correct the behavior of TD-DFT
for charge-transfer excitations.33–36 The same tuning procedure has
been used for SAPT0(KS) calculations,8,14,18–22 and we denote the
range-separation parameter that satisfies the IE criterion as ωIE,

IE(ωIE) = −εHOMO(ωIE). (3)

Although widely used, this “optimal” or IE-tuning procedure
has two significant problems, one practical and the other funda-
mental. Fundamentally, it is problematic in small-gap systems, as
demonstrated by the results presented herein. This is a more seri-
ous limitation than one might at first imagine because semilocal
functionals tend (anomalously) toward vanishing gaps for large sys-
tems.37–42 More pragmatically, the procedure is time-consuming and
therefore acts as a deterrent to potential users of SAPT0(KS) and
related methods.

In the present work, we explore the use of a black-box alter-
native to set ω based on the size of the exchange hole, in what has
been called “global density-dependent” (GDD) tuning.43 Here, the
range-separation parameter is set to a value

ωGDD = C⟨d2
x⟩−1/2, (4)

in which d2
x is the second moment of the distance to the center of the

exchange hole44 and ⟨d2
x⟩ is a weighted average,

⟨d2
x⟩ = ∫

ρ(r)w(r) d2
x(r) dr

∫ ρ(r)w(r) dr
. (5)

The weighting function,43

w(r) =
⎧⎪⎪⎨⎪⎪⎩

1, t(r) ≤ μ
0, t(r) > μ,

(6)

is itself defined in terms of function

t(r) = τUEG(r)
τ(r) , (7)

where τ(r) is the kinetic energy density and τUEG(r)
= 3(6π2)2/3ρ(r)5/3/5 is its value for the uniform electron gas.
The orbital localization function t(r) was originally introduced by
Becke,45,46 who used it to construct both the electron localization
function45 and the “localized orbital locator.”46 In the present
context, t(r) furnishes a weighting function that makes w(r) ≈ 0 in
the region of localized orbitals so that ωGDD is set based on asymp-
totics.43 The parameter μ in Eq. (6) is determined self-consistently
such that the denominator in Eq. (5) equals unity. Finally, C in
Eq. (4) is an empirical parameter that is fit to reproduce the IE
tuning condition in Eq. (3) for a set of small molecules.22,43,47

Both w(r) and d2
x(r) are functionals of ρ(r). As described in

Ref. 43, the procedure is to first perform a self-consistent LRC-DFT
calculation, e.g., using LRC-ωPBE with ω = 0.3bohr−1. (This is an
empirically optimized “best guess” for the range-separation param-
eter.29–31) The self-consistent density thus obtained is then used to
evaluate ωGDD in Eq. (4). The results are found to be negligibly
different from a fully self-consistent procedure.43 In the context of
SAPT0(KS), the GDD tuning method obviates the need to perform
IE tuning separately for each monomer. Some isolated comparisons
of IE- vs GDD tuning for SAPT calculations were reported in Ref. 22,
but here we report systematic comparisons for standard benchmark
datasets of supramolecular complexes.

III. COMPUTATIONAL METHODS
We use the term SAPT0(KS) to refer to the second-order

method that is generally called SAPT0 when it is based upon
Hartree–Fock (HF) wave functions for the monomers.5,6 For consis-
tency, the traditional HF-based approach is labeled as SAPT0(HF)
herein and is compared alongside methods such as SAPT0(B3LYP)
and SAPT0(LRC-ωPBE) that use different self-consistent field (SCF)
methods to obtain the orbitals. Note that SAPT0(KS) is distinct from
DFT-SAPT,3,15 which is also known as SAPT(DFT).2,16

We will also test “extended” (X)SAPT methods,20–22 in which
the SCF monomer wave functions are computed via the charge-
embedded “XPol” procedure.7,48,49 In the XSAPT calculations pre-
sented herein, the second-order dispersion energy

Edisp = E(2)disp + E(2)exch−disp (8)

is replaced by either atom–atom dispersion potentials fitted to
ab initio dispersion data (XSAPT+aiD3)21 or else a version of the
many-body dispersion (MBD) model,50,51 XSAPT+MBD.23,24 The
XSAPT calculations reported here use CM5 embedding charges.24

For the underlying LRC-DFT functional, we use LRC-ωPBE30

unless stated otherwise. (Some calculations with LRC-μBOP29,32 are
reported in the supplementary material.) The parameter C = 0.885
in Eq. (4) was determined in previous work,22 following Ref. 43 and
using the same test set of small molecules. The best-fit value of C
varies significantly with the fraction of short-range Hartree–Fock
exchange but is only weakly sensitive to the basis set.47 Values
C ≈ 0.9 are appropriate when the self-consistent LRC-ωPBE calcu-
lation is performed using ω = 0.3bohr−1,22,43 which is used here.
Values of ωIE and ωGDD obtained for each monomer in each of
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the systems considered here can be found in the supplementary
material.

All calculations were performed using Q-Chem,52 v. 5.3. For
XSAPT calculations, we use the Karlsruhe “def2” basis sets,53,54

whose convergence will be systematically tested. For SAPT0(KS) cal-
culations, we use the jun-cc-pVDZ basis set,55 which is a partially
augmented version of cc-pVDZ.56 This is a compromise choice that
affords reasonable error cancellation in the second-order dispersion
term.6 Some SAPT0(KS) results using aug-cc-pVTZ56,57 are reported
in the supplementary material.

IV. RESULTS AND DISCUSSION
A. IE tuning for small-gap systems

We first demonstrate a looming problem with the IE-based tun-
ing procedure for small-gap systems, using a homologous sequence
of linear acenes: benzene, naphthalene, anthracene, tetracene, etc. As
the number of rings increases, the Kohn–Sham gap for these one-
dimensional nanoribbons decreases much faster than that of their
saturated (cyclohexane-based) analogs, the perhydroacenes.58

Figure 1 compares tuned values ωIE and ωGDD obtained for
acenes with up to 40 rings, demonstrating that both tuning proce-
dures predict an optimal value of ω that decreases monotonically
with system size. In the context of IE tuning, similar trends with
increasing system size have been noted previously for conjugated
π systems,43,59–61 for linear alkanes,43 for pentacene/C60 clusters,62

and for (H2O)n
− clusters.63 In the present data, we note that the

asymptotic value of ωGDD is much larger than the asymptotic value
of ωIE. For the 40-ring acene, we obtain ωIE = 0.046 bohr−1, corre-
sponding to a functional in which full HF exchange is activated on a
length scale of ∼ 1/ωIE = 22 bohrs. While this is much shorter than
the length of the 40-acene ribbon, it is much longer than the length
scale of a chemical bond, so from the standpoint of the dynamical
correlation that contributes to thermochemistry, the LRC functional
in question is operationally semilocal. In contrast, the GDD proce-
dure converges to ωGDD ≈ 0.20 bohr−1 for the longest nanoribbon,

FIG. 1. Tuned values of ω for the linear acenes (benzene, naphthalene,
anthracene, etc.), computed at the LRC-ωPBE/def2-TZVP level of theory. The
results for LRC-μBOP are similar (see Fig. S1).

which is within the range of statistically optimized values of ω for
LRC functionals.29–31

Note also what appears to be a small discontinuity in the pro-
gression of ωIE values between nonacene and decacene, such that the
data for n < 10 rings appear to extrapolate to a smaller asymptotic
value of ωIE as compared to the data for n ≥ 10. This discontinu-
ity appears also (at the same system size) when LRC-μBOP is used
instead of LRC-ωPBE (see Fig. S1). This small jump may be related to
the emergence of an open-shell singlet biradicaloid ground state of
the linear acenes as the number of rings increases.64,65 In any case, in
combination with the vanishing of the HOMO/LUMO gap for large
systems described by semilocal functionals,37–42 these data present
compelling evidence of an imminent problem with the IE tuning
procedure as system size increases.
B. Evaluation of SAPT0(KS) methods

As a baseline and starting point for further discussion, Table I
reports error statistics for the S66 dataset of small dimers,66 obtained

TABLE I. Error statistics (in kcal/mol) for SAPT0(KS) methods applied to the S66 database and three subsets thereof.

H-bonded Disp.-bound Mixed All S66

Methoda MAEb Maxc MAEb Maxc MAEb Maxc MAEb Maxc

SAPT0(HF) 2.20 6.14 0.95 1.93 0.78 1.77 1.33 6.14
SAPT0(HF)+δHF 0.35 0.85 0.64 1.54 0.40 1.41 0.48 1.54
SAPT0(B3LYP) 1.49 4.24 1.49 3.93 0.66 1.36 1.24 4.24
SAPT0(B3LYP)+δHF 0.64 2.14 1.74 4.51 0.78 1.73 1.07 4.51
SAPT0(LRC-ωPBE)d 2.87 7.69 0.91 2.04 0.71 3.60 1.53 7.69
SAPT0(LRC-ωPBE)d+δHF 0.97 2.27 0.95 2.04 0.50 2.66 0.82 2.66
XSAPTd+aiD3 2.01 5.76 0.15 0.54 0.25 0.64 0.83 5.76
XSAPTd+aiD3+δHF 0.19 0.42 0.42 1.05 0.50 1.04 0.36 1.05
XSAPTd+MBD 2.00 5.76 0.15 0.54 0.25 0.64 0.83 5.76
XSAPTd+MBD+δHF 0.18 0.75 0.46 1.11 0.53 1.07 0.39 1.11
aThe basis set is jun-cc-pVDZ for SAPT0(KS) and def2-TZVPPD for XSAPT.
bMean absolute error, with respect to complete-basis CCSD(T) benchmarks from Ref. 66.
cMaximum absolute deviation with respect to the benchmarks.
dUses LRC-ωPBE with ωGDD tuning.
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using a variety of SAPT0(KS) methods. (Additional error statistics,
including percentage errors, can be found in Table S5.) The results
are tabulated both with and without a “δHF” correction,5,21

δHF = EHF
int − (E(1)elst + E(1)exch + E(2)ind, resp + E(2)exch−ind, resp). (9)

This correction consists of a counterpoise-corrected dimer HF cal-
culation (to obtain EHF

int ), from which the non-dispersion parts of
the second-order SAPT0(HF) interaction energy are subtracted. The
result is an approximate correction for infinite-order induction.
Note that the correction in Eq. (9) should use HF theory even for
SAPT0(KS) methods based on DFT because only in the HF case can
this correction be strictly classified as induction. A supramolecular
DFT calculation mixes together different energy components in a
manner that is difficult to separate.

Error statistics in Table I are separated into three subsets of
S66: hydrogen-bonded dimers, dispersion-dominated dimers, and
dimers where the interactions are mixed. This classification is based
upon benchmark values of the electrostatic energy (Eelst) and the
dispersion energy (Edisp).66 The hydrogen-bonded subset consists of
dimers for which ∣Eelst∣ ≥ 2∣Edisp∣, which includes dimers composed
of water, methanol, methylamine, and acetic acid. The dispersion-
dominated complexes are characterized by ∣Edisp∣ ≥ 2∣Eelst∣, which
includes dimers drawn from benzene, pyridine, ethene, ethyne, and
some larger hydrocarbons. Other dimers such as benzene–ethyne,
ethyne–water, and benzene–acetic acid are classified as “mixed,”
meaning that they do not satisfy either of the aforementioned cri-
teria. There are 23 dimers categorized as hydrogen-bonded, 23
categorized as dispersion-dominated, and 20 classified as mixed.66

The SAPT0(HF) and SAPT0(HF)+δHF results in Table I estab-
lish a baseline for what can be accomplished at low cost with tradi-
tional second-order SAPT. We also consider SAPT0(B3LYP), which
was the lone representative of SAPT in a side-by-side comparison
of different EDAs.67 Although SAPT0(B3LYP) does offer a modest
reduction in errors for hydrogen-bonded complexes, as compared
to SAPT0(HF), those gains are wiped out once the δHF correction
is added to both methods. Furthermore, the incorrect asymptotic
behavior of B3LYP increases the errors for the dispersion-bound
complexes, relative to the traditional SAPT0(HF) approach. This
is especially noticeable if one expands the basis set from jun-cc-
pVDZ to aug-cc-pVTZ; see Tables S4 and S6 for a summary of
SAPT0(KS) error statistics in the larger basis set. For the dispersion-
bound subset of S66, SAPT0(B3LYP)/aug-cc-pVTZ exhibits mean
absolute errors greater than 110% (Table S6), whereas the HF-based
method is less strongly affected by this change.

Overall, the B3LYP-based approach is outperformed by
SAPT0(HF)+δHF. Whereas the authors of Ref. 67 concluded that
the “best” EDAs are those based on supramolecular DFT, this assess-
ment is based on a skewed evaluation of SAPT methods that fails to
consider SAPT0(HF)+δHF or any SAPT0(KS) approach with proper
asymptotic behavior. While “best” is a highly subjective assessment,
the separation of energy components is better defined in SAPT0(KS)
as compared to supramolecular DFT.68–70

The larger errors for dispersion-dominated dimers are mostly
mitigated by using tuned SAPT0(LRC-ωPBE), bringing them more
in line with dispersion errors incurred by the traditional SAPT0(HF)
approach. One may therefore conclude that it is the second-order

treatment of dispersion, rather than anything related to the den-
sity functional approximation, that represents the primary source
of error at the SAPT0(LRC-ωPBE)+δHF level. This confirms ear-
lier results suggesting that ω-tuning can put SAPT0(KS) on par with
SAPT0(HF),8 so that the former is not nearly as problematic as early
reports suggested.9–13 That said, SAPT0(KS) does not appear to offer
a significant advantage over the traditional HF-based approach, and
in particular both require the δHF correction in order to achieve
∼ 1 kcal/mol accuracy for hydrogen bonds.

To move beyond second-order dispersion within the confines
of perturbation theory requires methods with triple excitations and
O(N7) scaling.5,6 Alternatively, the perturbative treatment of disper-
sion can be supplanted altogether, which is the unifying concept that
underlies both DFT-SAPT2,3 and XSAPT.20–23 Whereas DFT-SAPT
exhibits O(N5) scaling with a sizable prefactor,15,17 XSAPT is cubic-
scaling method whose cost resembles the monomer DFT cost.18,22

The performance of two variants, XSAPT+aiD3 and XSAPT+MBD,
is characterized for the S66 dataset in Table I. Without the δHF
correction, these methods exhibit mean errors < 1 kcal/mol, but
the performance for hydrogen-bonded systems is worse than that,
with outliers approaching 6 kcal/mol. With the δHF correction,
the maximum error for the hydrogen-bonded complexes is reduced
below 1 kcal/mol. Both of these variants clearly outperform other
low-cost SAPT methods, although SAPT0(KS)+δHF/jun-cc-pVDZ
is surprisingly competitive. As will be seen below, that is an artifact
of the small size of the S66 dimers, which suppresses the dispersion
term.22

C. IE vs GDD tuning
The main purpose of this work is to provide a side-by-

side comparison of ωIE- and ωGDD-based results. We select
XSAPT+MBD+δHF to make this comparison because it affords
the highest overall accuracy among the variants considered in
Table I, despite its reduced computational scaling as compared to
SAPT0(KS). Table II compares error statistics for S66 using either
IE or GDD tuning in several different basis sets. Previous work
has demonstrated that triple-ζ basis sets are required to converge
the electrostatic interactions,21 so it is not surprising to observe
that the errors for hydrogen-bonded complexes decrease when the
double-ζ basis is replaced by a triple-ζ one, but it is pleasing to
see that this also decreases both mean and maximum errors for the
dispersion-dominated dimers. This situation should be contrasted
with the use of jun-cc-pVDZ for SAPT0 calculations, for which elec-
trostatic interactions are not fully converged (cf. Tables S5 and S6).
The choice of jun-cc-pVDZ is a compromise intended to avoid large
errors in second-order dispersion as the basis set limit is approached,
but such compromises are not required if second-order dispersion
is avoided. The data in Table II also highlight the benefit of diffuse
functions. In our experience, users frequently decline to employ dif-
fuse functions, presumably for reasons of cost, but the concomitant
sacrifice in accuracy is undeniable.

The key observation in the present work is the fact that errors
incurred by GDD tuning are nearly identical to the IE-tuned results.
On the basis of the S66 data, there would seem to be no reason
to perform the more tedious IE tuning procedure, which is also
rather expensive for the larger systems that are considered below.
As a counterpoint, the ansatz for ωGDD in Eq. (4) was fitted to
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TABLE II. Error statistics for S66,66 computed at the XSAPT+MBD+δHF level using the tuned LRC-ωPBE functional.

Error (kcal/mol)

H-bonded Disp.-bound Mixed All S66

Tuning Basis set MAEa Maxb MAEa Maxb MAEa Maxb MAEa Maxb

ωIE def2-SVPD 1.13 3.21 1.62 2.98 1.33 2.36 1.37 3.21
ωGDD def2-SVPD 1.07 3.35 1.67 3.16 1.37 2.48 1.37 3.35
ωIE def2-TZVP 0.71 2.13 0.55 1.43 0.80 1.31 0.68 2.13
ωGDD def2-TZVP 0.65 1.20 0.55 1.60 0.85 1.41 0.68 1.60
ωIE def2-TZVPP 0.94 2.78 0.43 1.31 0.67 1.22 0.69 2.78
ωGDD def2-TZVPP 0.89 2.43 0.47 1.48 0.75 1.32 0.70 2.43
ωIE def2-TZVPD 0.25 0.81 0.40 0.94 0.50 0.91 0.38 0.94
ωGDD def2-TZVPD 0.21 0.57 0.45 1.18 0.57 1.06 0.40 1.18
ωIE def2-TZVPPD 0.24 1.36 0.42 0.97 0.47 0.93 0.37 1.36
ωGDD def2-TZVPPD 0.18 0.75 0.46 1.11 0.53 1.07 0.39 1.11
aMean absolute error, with respect to complete-basis CCSD(T) benchmarks from Ref. 66.
bMaximum absolute deviation.

reproduce ωIE for small molecules, and the monomers that com-
prise the S66 dimers are quite small, with the largest being pyri-
dine (C5H5N), uracil (C4H4N2O2), and pentane (C5H12). We next
consider some larger systems.

The L7 dataset71 consists of dispersion-bound complexes rang-
ing in size from (guanine)3 up to coronene dimer, (C24H12)2, and
also circumcoronene (C54H18) partnered with either adenine or else
a guanine–cytosine base pair. Because the induction energies are
small for these systems, the δHF correction makes little difference
(≲ 0.5 kcal/mol), and in the absence of this correction, no
supramolecular calculations are required for XSAPT. Interaction
energies for L7, computed at the XSAPT+MBD/def2-TZVPPD level,
are reported in Table III and compared to the newest set of
complete-basis CCSD(T) benchmarks.72

The maximum discrepancy between the ωIE- and ωGDD-based
results is 0.7 kcal/mol, for the complex between circumcoronene and
guanine–cytosine, although the difference between the two XSAPT
calculations amounts to a mere 2% of the benchmark interaction
energy (Eint = −28.63 kcal/mol). The final column of Table III lists
the difference between ωIE- and ωGDD-based interaction energies
as a percentage of the benchmark value, and these differences are
each ≲ 3% except for the most weakly bound complex, (guanine)3,
for which the difference is 5% of the benchmark. For comparison,
both sets of XSAPT+MBD calculations for L7 exhibit a mean abso-
lute error of 6% with respect to the benchmarks, so the difference
between tuning schemes is smaller than the inherent accuracy of
either method.

In terms of absolute accuracy, the maximum XSAPT+MBD
errors are 3.6 kcal/mol (ωIE) and 3.0 kcal/mol (ωGDD), both for
the phenylalanine trimer, while the mean absolute errors (MAEs)
are 1.3 kcal/mol (ωIE) and 1.0 kcal/mol (ωGDD). To put these
numbers in perspective, the MAE for SAPT0(HF)/jun-cc-pVDZ as
applied to the L7 dataset is 4.8 kcal/mol and the maximum error is
10.3 kcal/mol.22 As compared to the S66 results, this represents a
stark divergence in the performance of SAPT0 relative to XSAPT,
and it occurs due to the much larger dispersion energies for the
L7 complexes. These complexes reveal the failure of second-order
dispersion, especially for π–π interactions.21,22

As a final example, we consider a DNA intercalation com-
plex with the antitumor drug ellipticine, which has become a stan-
dard benchmark problem.22–24,72,73 Interaction energies computed

TABLE III. XSAPT+MBD/def2-TZVPPD interaction energies for the L7 dataset of
large dispersion-bound dimers.

Eint (kcal/mol)

Systema Tuning XSAPT Errorb ΔEint(ω)c (%)

(cor)2
ωIE −20.11 0.82 2.3ωGDD −20.60 0.33

(circor)⋅ ⋅ ⋅(Ade) ωIE −16.01 0.90 2.5ωGDD −16.43 0.58

(circor)⋅ ⋅ ⋅GC ωIE −26.43 2.20 2.4ωGDD −27.13 1.50

(octadecane)2
ωIE −12.31 1.31 0.3ωGDD −12.35 1.35

(GC)2
ωIE −13.61 0.07 2.8ωGDD −13.99 0.45

(Gua)3
ωIE −2.08 0.00 4.9ωGDD −2.19 0.11

(Phe)3
ωIE −21.84 3.62 2.3ωGDD −22.42 3.05

MAEd ωIE 1.28 2.5ωGDD 1.04

Std. dev.e ωIE 1.18 1.2ωGDD 0.95
acor = coronene, circor = circumcoronene, Ade = adenine, GC = guanine:cytosine base
pair, Gua = guanine, Phe = phenylalanine.
bECCSD(T)

int − EXSAPT
int , using benchmarks from Ref. 72.

cDifference between ωIE and ωGDD versions of EXSAPT
int , expressed as a percentage of

ECCSD(T)
int .

dMean absolute error.
eStandard deviation.
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TABLE IV. Interaction energies for ellipticine bound to double-stranded DNA, com-
puted using XSAPT+MBD.

Eint (kcal/mol)

Tuning Basis XSAPT Errora

ωIE def2-SVPD −54.22 15.62
ωGDD def2-SVPD −54.07 15.47
ωIE def2-TZVP −43.14 4.54
ωGDD def2-TZVP −42.89 4.29
ωIE def2-TZVPP −42.91 4.31
ωGDD def2-TZVPP −42.62 4.02
ωIE def2-TZVPD −40.64 2.04
ωGDD def2-TZVPD −40.44 1.84
aWith respect to a complete-basis CCSD(T) benchmark, Eint = −38.6 ± 2.2 kcal/mol.72

at the XSAPT+MBD level are presented in Table IV, using several
different basis sets and comparing ωIE and ωGDD versions in each
case. The two tuning schemes never deviate from one another
by more than 0.3 kcal/mol. In terms of accuracy, the errors are
reduced as the quality of the basis set is improved, and these cal-
culations once again highlight the important role of diffuse func-
tions: The XSAPT+MBD/def2-TZVPD interaction energies lie just
within the estimated uncertainties of the benchmark, Eint = −38.6
± 2.2 kcal/mol.72 For comparison, the best-available supramolecular
DFT results for this system are Eint = −41.3 kcal/mol (B97M-V/def2-
TZVPPD) and Eint = −43.7 kcal/mol (ωB97M-V/def2-TZVPPD),24

corresponding to errors of 2.7 and 5.1 kcal/mol, respectively. As
compared to supramolecular DFT, XSAPT+MBD is therefore more
accurate,24 but also cheaper,23 as no supersystem calculation is
required.

V. CONCLUSIONS
In the context of SAPT0(KS) and XSAPT methods, we find

that the GDD tuning scheme works equally well as compared to IE-
based tuning, but sidesteps the series of monomer calculations that
are required for the latter. The GDD approach also avoids the size-
dependent tuning catastrophe that afflicts IE tuning for small-gap
systems, making it more robust in addition to being more conve-
nient. Differences in interaction energies, when using one tuning
scheme vs the other, are small in comparison to the inherent accu-
racy of the SAPT0(KS) and XSAPT methods themselves. Given its
ease of use, GDD tuning should replace IE tuning for (X)SAPT cal-
culations based on Kohn–Sham DFT, and indeed, our group has
mostly relied on the GDD scheme in recent work.22–24,74

This work also highlights (and reiterates8) the fact that
SAPT0(KS) methods should be based on asymptotically correct
functionals for best results. Methods such as SAPT0(B3LYP), held
up as an exemplar of a SAPT-based EDA,67 actually misrepre-
sent the accuracy of low-cost SAPT approaches. Correct asymptotic
behavior is easily (and automatically) enforced using LRC func-
tionals in conjunction with the tuning schemes examined herein.
In conjunction with alternatives to second-order dispersion such
as XSAPT+MBD,23,24 this affords a cubic-scaling method with
∼ 1 kcal/mol accuracy for noncovalent interaction energies, in sys-
tems large and small.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional error statistics
and other data including tuned values of ω.
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