Supporting Information for: "Simplified tuning of long-range corrected density functionals for use in symmetry-adapted perturbation theory"

Montgomery Gray and John M. Herbert*

June 23, 2021

^{*}herbert@chemistry.ohio-state.edu

Dimer	$\omega_{\mathrm{GDD}A}$	$\omega_{\mathrm{IE}A}$	$\omega_{{\rm GDD}B}$	$\omega_{\mathrm{IE}B}$
Water-Water	0.505	0.513	0.503	0.513
Water-MeOH	0.505	0.513	0.430	0.445
$Water-MeNH_2$	0.504	0.512	0.412	0.403
Water-Peptide	0.505	0.512	0.351	0.357
MeOH-MeOH	0.429	0.446	0.430	0.445
$MeOH-MeNH_2$	0.428	0.445	0.412	0.403
MeOH-Peptide	0.429	0.446	0.352	0.345
MeOH–Water	0.429	0.446	0.503	0.513
$MeNH_2-MeOH$	0.411	0.403	0.427	0.446
$MeNH_2 - MeNH_2$	0.413	0.403	0.411	0.403
$MeNH_2$ -Peptide	0.413	0.403	0.352	0.345
$MeNH_2-Water$	0.412	0.403	0.505	0.512
Peptide-MeOH	0.352	0.363	0.429	0.445
$Peptide-MeNH_2$	0.351	0.366	0.410	0.403
Peptide-Peptide	0.350	0.358	0.350	0.358
Peptide-Water	0.351	0.356	0.507	0.513
Uracil-Uracil	0.341	0.305	0.342	0.307
Water-Pyridine	0.502	0.512	0.354	0.336
MeOH-Pyridine	0.428	0.446	0.355	0.337
AcOH-AcOH	0.391	0.383	0.391	0.383
$AcNH_2 - AcNH_2$	0.377	0.477	0.377	0.477
AcOH–Uracil	0.392	0.383	0.342	0.307
$AcNH_2-Uracil$	0.378	0.477	0.342	0.307
Benzene-Benzene	0.344	0.288	0.344	0.288
Pyridine-Pyridine	0.352	0.329	0.351	0.329
Uracil-Uracil	0.343	0.306	0.343	0.306
Benzene-Pyridine	0.339	0.287	0.353	0.329
Benzene-Uracil	0.345	0.287	0.343	0.306
Pyridine-Uracil	0.354	0.330	0.343	0.306
Benzene-Ethene	0.341	0.287	0.425	0.364
Uracil-Ethene	0.342	0.306	0.423	0.364
Uracil-Ethyne	0.342	0.306	0.438	0.403
Pyridine-Ethene	0.348	0.329	0.418	0.364
Pentane-Pentane	0.323	0.375	0.323	0.375
Neopentane-Pentane	0.323	0.375	0.328	0.296
Neopentane-Neopentane	0.329	0.297	0.329	0.297
Cyclopentane-Neopentane	0.338	0.346	0.327	0.281
Cyclopentane-Cyclopentane	0.337	0.346	0.338	0.346
Benzene-Cyclopentane	0.341	0.287	0.336	0.346
Benzene-Neopentane	0.342	0.287	0.328	0.281
Uracil–Pentane	0.341	0.306	0.322	0.375

Table S1: Range-separation parameters (in units of bohr⁻¹) for monomers A and B of the S66 data set.

Dimer	$\omega_{\mathrm{GDD}A}$	$\omega_{\mathrm{IE}A}$	$\omega_{\mathrm{GDD}B}$	$\omega_{\mathrm{IE}B}$
Uracil-Cyclopentane	0.343	0.306	0.338	0.346
Uracil-Neopentane	0.343	0.306	0.327	0.281
Ethene-Pentane	0.424	0.364	0.324	0.379
Ethyne-Pentane	0.435	0.403	0.324	0.386
Peptide-Pentane	0.351	0.353	0.323	0.383
Benzene-Benzene	0.338	0.288	0.340	0.288
Pyridine-Pyridine	0.350	0.331	0.353	0.329
Benzene-Pyridine	0.338	0.288	0.349	0.329
Benzene-Ethyne	0.342	0.287	0.437	0.403
Ethyne-Ethyne	0.435	0.100	0.437	0.403
Benzene-AcOH	0.337	0.288	0.391	0.386
${\rm Benzene-AcNH}_2$	0.339	0.287	0.379	0.470
Benzene-Water	0.341	0.287	0.502	0.513
Benzene-MeOH	0.343	0.287	0.429	0.446
$Benzene-MeNH_2$	0.343	0.288	0.411	0.403
Benzene-Peptide	0.344	0.288	0.351	0.348
Pyridine-Pyridine	0.355	0.332	0.355	0.332
Ethyne-Water	0.436	0.403	0.504	0.513
Ethyne-AcOH	0.437	0.403	0.391	0.386
Pentane-AcOH	0.322	0.375	0.394	0.387
$Pentane-AcNH_2$	0.323	0.382	0.377	0.472
Benzene-AcOH	0.340	0.288	0.391	0.388
Peptide-Ethene	0.350	0.347	0.424	0.364
Pyridine-Ethyne	0.353	0.333	0.437	0.402
$MeNH_2$ -Pyridine	0.412	0.403	0.349	0.331

Table S1 – continued from previous page

Dimer	$\omega_{\mathrm{GDD}A}$	$\omega_{\mathrm{IE}A}$	$\omega_{{ m GDD}B}$	$\omega_{\mathrm{IE}B}$
Coronene–Coronene (C2C2PD)	0.273	0.211	0.273	0.211
GC Base Pair–GC Base Pair (GCGC)	0.296	0.254	0.296	0.254
Guanine Trimer (GGG)	0.321	0.271	0.297	0.248
Octadecane–Octadecane (CBH)	0.260	0.254	0.260	0.254
Phenylalanine Trimer (PHE)	0.295	0.245	0.272	0.241
Circumcoronene–Adenine (C3A)	0.321	0.280	0.248	0.171
Circumcoronene–GC Base Pair (C3GC)	0.295	0.248	0.248	0.171

Table S2: Range-separation parameters (in units of bohr⁻¹) for monomers A and B of the L7 data set.

Table S3: Range-separation parameters (in units of bohr⁻¹) for monomers A and B of the DNA–ellipticine complex.

Dimer	$\omega_{\mathrm{GDD}A}$	$\omega_{\mathrm{IE}A}$
DNA Double Strand	0.242	0.308
Ellipticene	0.282	0.205

Table S4: Error statistics (in kcal/mol) for SAPT0(KS) methods applied to the S66 database and three subsets thereof, using the aug-cc-pVTZ basis set.

Mothod	H-Bonded		Displ	DispBound		Mixed		All S66	
Method	MAE^{a}	Max^b	MAE^{a}	Max^b	MAE^{a}	Max^b	MAE^{a}	Max^b	
SAPT0(HF)	1.00	3.26	0.72	2.02	0.34	0.87	0.70	3.26	
$SAPTO(HF) + \delta HF$	1.03	3.27	1.09	2.70	0.84	1.34	0.99	3.27	
SAPT(B3LYP)	0.64	2.66	3.89	8.32	1.82	3.34	2.13	8.32	
$SAPTO(B3LYP) + \delta HF$	1.91	4.77	4.27	8.91	2.32	3.98	2.86	8.91	
$SAPT0(LRC-\omega PBE)$	2.22	7.15	1.39	3.45	0.59	1.14	1.43	7.15	
$SAPTO(LRC-\omega PBE) + \delta HF$	0.28	0.63	1.77	4.03	0.85	1.77	0.97	4.03	

 a Mean absolute error, with respect to complete-basis CCSD(T) benchmarks.

 $^{b}\mathrm{Maximum}$ deviation with respect to the benchmarks.

Table S5: Error statistics for SAPT0(KS) methods applied to the S66 database and three subsets thereof. (These are complementary to the statistics presented in Table 1, encompassing the same set of methods.)

Mathada	H-Bonded		DispBound		Mixed		All S66	
Method	$MAPE^{b}$	Std. Dev. ^{c}						
	(%)	(kcal/mol)	(%)	(kcal/mol)	(%)	(kcal/mol)	(%)	(kcal/mol)
SAPT0(HF)	24	1.47	31	0.81	22	0.44	26	1.14
$SAPT0(HF) + \delta HF$	5	0.24	22	0.41	12	0.36	13	0.38
SAPT0(B3LYP)	17	1.02	40	1.43	19	0.43	26	1.12
$SAPT0(B3LYP) + \delta HF$	7	0.64	48	1.58	22	0.59	26	1.19
$SAPT0(LRC-\omega PBE)^d$	31	2.01	29	1.26	19	0.81	27	1.64
$SAPTO(LRC-\omega PBE)^d + \delta HF$	12	0.55	30	0.61	14	0.60	19	0.62
$XSAPT^d + aiD3$	21	1.49	6	0.87	7	0.16	11	1.24
$XSAPT^d + aiD3 + \delta HF$	2	0.12	12	0.19	15	0.27	10	0.24
$XSAPT^d + MBD$	10	1.12	7	0.22	9	0.18	9	0.80
$XSAPT^d + MBD + \delta HF$	10	0.66	13	0.27	21	0.29	14	0.49

^aBasis set is jun-cc-pVDZ for SAPT0(KS) and def2-TZVPPD for XSAPT.

 $^b\mathrm{Mean}$ absolute percentage error, with respect to complete-basis CCSD(T) benchmarks.

 $^c\mathrm{Standard}$ deviation in kcal/mol.

 $^d \text{Uses LRC-}\omega\text{PBE}$ with ω_{GDD} tuning.

Table S6: Error statistics for SAPT0(KS) methods applied to the S66 database and three subsets thereof, using the aug-cc-pVTZ basis set. (These are complementary to the statistics presented in Table S4, encompassing the same set of methods.)

Method	H-E	Bonded	DispBound		Mixed		All S66	
	$MAPE^{a}$	Std. Dev. ^{b}	$MAPE^{a}$	Std. Dev. ^b	$\overline{MAPE^a}$	Std. Dev. ^{b}	$MAPE^{a}$	Std. Dev. ^b
	(%)	(kcal/mol)	(%)	$(\rm kcal/mol)$	(%)	(kcal/mol)	(%)	(kcal/mol)
SAPT0(HF)	10	0.86	19	0.67	10	0.28	13	0.71
$SAPTO(HF) + \delta HF$	10	0.97	30	0.81	24	0.31	21	0.76
SAPT0(B3LYP)	8	0.59	114	1.88	52	0.95	58	1.88
$SAPTO(B3LYP) + \delta HF$	21	1.31	126	2.04	65	0.94	71	1.82
$SAPT0(LRC-\omega PBE)^{c}$	22	1.85	39	1.00	17	0.35	26	1.42
$SAPT0(LRC-\omega PBE)^{c} + \delta HF$	4	0.20	51	1.14	24	0.52	26	0.96

^aMean absolute percentage error, with respect to complete-basis CCSD(T) benchmarks.

 b Standard deviation.

 $^c\text{Uses}$ LRC- ωPBE with ω_{GDD} tuning.

Fig. S1: Tuned values of ω for the linear acene sequence of benzene, naphthalene, anthracene, ..., computed at the LRC- μ BOP/def2-TZVP level of theory. As with the analogous results using LRC- ω PBE (Fig. 1), the IE-tuning procedure tends toward a very small value of ω_{IE} in the large-system limit, such that the functional in question is essentially a GGA on the length scale of dynamical correlation in chemical bonds.