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ABSTRACT
Nonadiabatic trajectory surface hopping simulations are reported for trans-C5H6NH+2 , a model of the rhodopsin chromophore, using the
augmented fewest-switches algorithm. Electronic structure calculations were performed using time-dependent density functional theory
(TDDFT) in both its conventional linear-response (LR) and its spin-flip (SF) formulations. In the SF-TDDFT case, spin contamina-
tion in the low-lying singlet states is removed by projecting out the lowest triplet component during iterative solution of the TDDFT
eigenvalue problem. The results show that SF-TDDFT qualitatively describes the photoisomerization of trans-C5H6NH+2 , with favorable
comparison to previous studies using multireference electronic structure methods. In contrast, conventional LR-TDDFT affords qual-
itatively different photodynamics due to an incorrect excited-state potential surface near the Franck–Condon region. In addition, the
photochemistry (involving pre-twisting of the central double bond) appears to be different for SF- and LR-TDDFT, which may be a
consequence of different conical intersection topographies afforded by these two methods. The present results contrast with previous
surface-hopping studies suggesting that the LR-TDDFT method’s incorrect topology around S1/S0 conical intersections is immaterial to
the photodynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062757

I. INTRODUCTION

Time-dependent density functional theory (TDDFT), in its
conventional linear-response (LR) formulation,1–3 fails to describe
the topology of any conical intersection (CX) that involves the ref-
erence state (typically the ground state), for which the branching
space is one-dimensional rather than two-dimensional.4,5 Depend-
ing on one’s point of view, this behavior arises either due to a lack of
double excitations in the ansatz for the TDDFT “wave function,”4

or else simply due to an imbalance in the nature of how LR-
TDDFT describes the variational ground state as compared to the
response (excited) states, leading to problems in regions of coor-
dinate space where the ground state becomes degenerate. A sim-
ple example is the H3 radical, which is a Jahn–Teller system in its

D3h geometry and for which LR-TDDFT predicts highly distorted
potential energy surfaces that fail to reproduce the ground-state
degeneracy.4,6

In contrast, CXs between two excited states are topologically
correct in LR-TDDFT, which can be understood by considering the
configuration interaction singles (CIS) method as a special case and
examining its wave function ansatz,

∣ΨCIS⟩ = c0∣Φ0⟩ +∑
ia

cia∣Φia⟩, (1)

where ∣Φia⟩ represents a singly excited Slater determinant formed
from ground-state molecular orbitals (MOs). The coefficients
cia are obtained by diagonalizing the orbital Hessian (“A
matrix”),3 and as such, the CIS excited states are variational
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with respect to one another. However, the ground-state coef-
ficient c0 is determined (if needed) by normalization rather
than by any variational calculation that involves the excited
states.

The “spin-flip” (SF) approach to TDDFT7,8 has been used as
a means to fix (or at least circumvent) the topology problem.4–6,9,10

SF-TDDFT starts from a ground-state calculation with higher spin
multiplicity as compared to the states of interest, e.g., a triplet state
if targeting singlet photochemistry or a quartet state for the afore-
mentioned doublet H3 radical. This high-spin state is used as a
reference for a LR-TDDFT calculation that also involves a one-
electron α→ β spin flip, thus affording states with the target mul-
tiplicity, at least in favorable cases. (As discussed later in this work,
SF-TDDFT is often beset by significant spin contamination.5,11–14)
The SF-TDDFT approach solves the topology problem around a CX
by introducing a limited set of double excitations that couple ground
and excited states or (from a different point of view) because all of
the states having the target multiplicity are generated by response
theory and are thus described in a balanced fashion. Challeng-
ing cases such as H3 in D3h symmetry are described correctly by
SF-TDDFT.6

Despite its topology problems, however, conventional
LR-TDDFT remains a widely used approach in the context of
trajectory surface hopping simulations of nonadiabatic molecular
dynamics (NMD).15–22 Provided that trajectories are halted before
they can undergo internal conversion (IC) to the ground state, prob-
lems associated with incorrect topology might be avoided, but this
constraint is rather limiting insofar as the timescale for IC is one of
the most basic questions that one might wish to answer using NMD
simulations. As a counterpoint, there might be a reason for opti-
mism, given that most nonadiabatic events likely occur near conical
seams, where the energy gap is small, as opposed to occurring at
a conical seam, where the energy gap is zero but which occupies a
vanishingly small volume in the coordinate space of a polyatomic
molecule. A recent side-by-side comparison of NMD simulations
using LR- and SF-TDDFT,23 for cis → trans photoisomerization
azobenzene, seems to corroborate the optimistic viewpoint. That
study found very little difference between the two approaches when
it comes to predicting either the IC timescale or the branching ratio
of cis vs trans photoproducts. It is worth noting, however, that the
excited-state trajectories in that study are significantly more oscil-
latory when LR-TDDFT is used, which may reflect warping of the
potential energy surfaces in the vicinity of the S1/S0 intersection. In
addition, 41 of the 300 LR-TDDFT trajectories had to be discarded
due to convergence failure,23 whereas none of the SF-TDDFT trajec-
tories suffered this problem. These observations are consistent with
the problematic description of CXs involving the ground state in
LR-TDDFT.6

In the present work, we contribute to this ongoing discussion
by comparing NMD simulations using both LR- and SF-TDDFT
for a well-studied photochemical problem: photoisomerization of
the protonated Schiff base C5H6NH+2 . This molecule has been sug-
gested24,25 as a minimalist model of the rhodopsin chromophore,26

namely, 11-cis-retinal protonated Schiff base (PSB11). The full
chromophore is depicted in Fig. 1(a), and the truncated model,
trans-C5H6NH+2 (PSB3), is shown in Fig. 1(b). PSB3 has become
something of a benchmark case for excited-state electronic structure
theory,27 and is used here to probe the difference between trajectory

FIG. 1. Chemical structures of (a) 11-cis-retinal protonated Schiff base (PSB11)
and (b) the truncated model, trans-PSB3.

surface-hopping results at the LR- and SF-TDDFT levels of
theory.

II. THEORY
A. Nonadiabatic couplings

We briefly review the formalism of nonadiabatic couplings in
both CIS and LR-TDDFT in order to demonstrate the origin of
the topology problem for CXs that involve the reference state. For
LR-TDDFT, we use a “pseudo-wave function” formalism in which
one treats the Kohn–Sham determinant as a wave function and
derivative couplings are obtained from analytic gradient theory,6,28,29

in analogy to the way in which nonadiabatic couplings are derived
for the CIS method. This approach sidesteps certain divergences
associated with the use of quadratic response theory to obtain
derivative couplings.30–33

In CIS, the electronic wave function is expressed as a linear
combination of singly excited Slater determinants ∣Φia⟩, as in Eq. (1).
The coefficients c0 and {cia} in Eq. (1) are determined by solving the
Schrödinger equation Ĥ∣Ψ⟩ = E∣Ψ⟩ after projecting the Hamiltonian
onto the single excitation space,

Ĥ = ∣Φ0⟩E0⟨Φ0∣ +∑
ijab
∣Φia⟩⟨Φia∣Ĥ∣Φjb⟩⟨Φjb∣. (2)

Here, E0 is the Hartree–Fock (HF) energy. We use i, j, . . . to indicate
occupied MOs and a, b, . . . for virtual MOs, as determined by the HF
reference state.

Now suppose that two electronic states ∣ΨI⟩ and ∣ΨJ⟩ become
degenerate at a geometry RCX. It is possible to define the so-called
“crude” adiabatic basis,34

{∣ΨI(RCX)⟩, ∣ΨJ(RCX)⟩, ∣Ψ̃K(RCX)⟩},

in which ∣Ψ̃K(RCX)⟩ is orthogonal to the two degenerate states. If
we further project the Hamiltonian onto the two-dimensional sub-
space spanned by ∣ΨI(RCX)⟩ and ∣ΨJ(RCX)⟩ at an arbitrary geometry
R, then the energies of the two intersecting states can be obtained
through first order34 by diagonalizing the 2 × 2 Hamiltonian

H(R) =
⎛
⎜
⎝

HII(R) HIJ(R)

HJI(R) HJJ(R)

⎞
⎟
⎠

, (3)

where

J. Chem. Phys. 155, 124111 (2021); doi: 10.1063/5.0062757 155, 124111-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

HIJ(R) = ⟨ΨI(RCX)∣ Ĥ(R)∣ΨJ(RCX)⟩. (4)

This 2 × 2 Hamiltonian becomes diagonal, with degenerate eigenval-
ues, at the point R = RCX:

H(RCX) =
⎛
⎜
⎝

EI 0

0 EI

⎞
⎟
⎠

. (5)

One can also expand H(R) around RCX to first order as

H(R) = H(RCX) + ∇̂RH(RCX) ⋅ δR, (6)

where δR = R − RCX. To locate another crossing point R′CX in the
vicinity of RCX, one may require that

HII(R′CX) = HJJ(R′CX), (7a)

HIJ(R′CX) = 0. (7b)

Using Eq. (6), the two conditions in Eq. (7) can be rewritten as

gIJ(RCX) ⋅ δR = 0, (8a)

hIJ(RCX) ⋅ δR = 0 (8b)

by introducing the gradient difference vector gIJ and the nonadia-
batic coupling vector hIJ . The former is defined as

gIJ(R) = ∇̂R[EI(R) − EJ(R)], (9)

where

∇̂REI(R) = ⟨ΨI(R)∣ ∇̂RĤ(R)∣ΨI(R)⟩. (10)

The nonadiabatic coupling is defined as

hIJ(R) = ⟨ΨI(R)∣ ∇̂RĤ(R)∣ΨJ(R)⟩. (11)

The vectors gIJ and hIJ span a two-dimensional branching plane at
the CX,35 and the degeneracy between the two intersecting states is
preserved through first order (δR), provided that δR is restricted
to the space orthogonal to the branching plane, i.e., to the seam
space.34

If the CX involves the reference state (meaning the HF
ground state for conventional CIS), then the derivation presented
in Appendix A shows that the nonadiabatic coupling vector can be
written as

hCIS
0I = −(EI − E0)∑

ia
⟨a∣i[R]⟩cI

ia, (12)

where the parameters cI
ia are the CIS coefficients for excited state

∣ΨCIS
I ⟩ and the superscript [R] denotes a nuclear derivative. The

quantity ⟨a∣i[R]
⟩ represents the overlap between an unperturbed vir-

tual orbital ∣a⟩ and a perturbed occupied orbital, ∣i[R]
⟩. It is clear

from Eq. (12) that the nonadiabatic coupling h0I vanishes at any
crossing point between the HF ground state and a CIS excited state
(E0 = EI); hence, the degeneracy is lifted in the direction of g0I only

and the branching space is one-dimensional. So long as the excita-
tion energy gap EI − E0 is not exactly zero, however, the coupling h0I
does not generally vanish. This makes the topology of the potential
surface rather complicated in regions close to crossing points RCX;
see Appendix B.

It should be noted that the nonadiabatic coupling defined in
Eq. (11) is slightly different from the one defined by Yarkony,34 the
latter of which has the following form:

hIJ(R) = cI
(R)† ∇̂RH(R) c J

(R). (13)

The difference comes from the fact that the crude adiabatic basis
in Ref. 34 is defined in such a way that only the CI coefficients
are fixed, whereas in our definition, both the CI coefficients and
the Slater determinants are fixed. As a result of Brillouin’s theorem,
the definition in Eq. (13) makes the nonadiabatic couplings van-
ish between the HF ground state and the CIS states at any geo-
metric coordinates R. This choice is not convenient for examining
the topology of potential energy surfaces at approximate crossing
points; see Appendix B. When applied to compute nonadiabatic
couplings between two CIS excited states, the use of Eq. (11) vs
Eq. (13) affords couplings that differ by the so-called electronic
translation factors,36 equivalent to non-Hellmann–Feynman terms
in the analytic gradient expression for the coupling.6

As shown in Appendix A, the nonadiabatic coupling between
the Kohn–Sham DFT ground state and LR-TDDFT excited states
can be defined as

hDFT
0I = −(EI − E0)∑

ia
⟨a∣i[R]⟩(xI

ia − yI
ia), (14)

where xI
ia and yI

ia are the usual LR excitation (xI
ia) and de-excitation

(yI
ia) amplitudes for the Ith excited state.2,3 If the Tamm–Dancoff

approximation (TDA) is invoked,3 corresponding to neglecting the
de-excitation amplitudes, then xI

ia coincides with cI
ia in Eq. (12).

Importantly, however, while the expressions for hCIS
0I and hDFT

0I are
formally very similar, the latter might be nonzero even at a cross-
ing point. This is more clear in the complete-basis limit, where hDFT

0I
reduces to the Chernyak–Mukamel expression,37–39

hDFT
0I (R) = ∫ ρ0I(r; R) ∇̂R vne(r; R) dr. (15)

The quantity ρ0I(r; R) is the transition density, which is a para-
metric function of the nuclear coordinates R, and vne(r; R) is the
nuclear–electron Coulomb (or “external”) potential. Upon invoking
the TDA, one finds that hDFT

0I in Eq. (14) vanishes whenever EI = E0,
just like the situation for CIS (see Appendix A).

In summary, the nonadiabatic coupling at an approximate con-
ical intersection that involves the reference state does not vanish, in
general, for either CIS or LR-TDDFT, meaning that the branching
space is not solely determined by the vector g0I , as shown in detail
in Appendix B along with a numerical example. Nevertheless, the
magnitude of these couplings remains small, which is a direct conse-
quence of the absence of proper interactions between the reference
state and the response states. The practical consequence is incorrect
local topology and large curvature of potential energy surfaces in
the vicinity of CXs that involve the reference state. Presumably, this
should have consequences for NMD simulations.
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B. SF-TDDFT
Unlike LR-TDDFT, the SF-TDDFT approach treats electron

correlation on a consistent footing for both the ground and excited
states of the target multiplicity and, in particular, affords correct
topology in the vicinity of any CX, including ones that involve
the ground state of the target multiplicity.5,6 However, the usual
SF-TDDFT approach contains only single spin flips, which often
leads to significant spin contamination, especially as one moves
away from the Franck–Condon region of the excited state and
starts to explore bond-breaking geometries. The more pervasive
spin contamination in SF-TDDFT as compared to (spin-conserving)
LR-TDDFT can be understood using the simple model that is shown
in Fig. 2.5,14 Here, a high-spin triplet configuration is used as the ref-
erence determinant in order to target states of singlet multiplicity via
single excitations combined with a single α→ β spin flip. Figure 2
depicts the SF-TDDFT excitation manifold that is generated in this
manner.

Among the Slater determinants contained in this manifold,
only the four that are depicted in Fig. 2(b) are able to form spin-
pure states, i.e., eigenfunctions of Ŝ2, and these can be combined to
form three singlet states and one triplet. These states include both
the nominal S0 configuration and the two determinants necessary
to form the properly spin-adapted open-shell S1 configuration, cor-
responding to excitation between frontier MOs. Also present in the
“o-o” space of Fig. 2(b) is a double excitation that couples S0 and
S1 and is needed in order to obtain proper topology at the S1/S0
CX.4 The determinants shown in Figs. 2(c)–2(e) are also part of the
SF-TDDFT excitation manifold, however, and each of these is miss-
ing one or more of its “spin complements,” meaning the determi-
nants that are necessary to form a Ŝ2 eigenstate with S = 0. The
missing determinants cannot be formed by any single excitation and
single spin flip from the high-spin triplet reference state in Fig. 2(a).
Any SF-TDDFT state that has a significant contribution from one or
more of the determinants in Figs. 2(c)–2(e) will exhibit significant
spin contamination.

FIG. 2. SF-TDDFT excitation manifold for a four-electron, four-orbital model with
a high-spin triplet reference configuration that is shown in (a). The excitation sub-
space in (b) is spin-complete, but those in (c)–(e) are not. Reproduced from X.
Zhang and J. M. Herbert, J. Chem. Phys. 143, 234107 (2015) with the permission
of AIP Publishing.

The spin contamination problem becomes severe for photo-
chemical simulations and makes SF-TDDFT challenging to apply
in a general way for NMD. In our experience, when starting from
a triplet reference configuration, states that manifest as singlets
upon vertical excitation (⟨Ŝ2

⟩ ≈ 0) quickly become highly mixed as
the molecule moves away from the Frank–Condon region (typi-
cally ⟨Ŝ2

⟩ ≈ 1, in atomic units). As a result, it becomes difficult to
distinguish singlets from triplets, and to proceed without human
intervention requires some kind of a state-tracking procedure.14,40,41

Although some NMD simulations using SF-TDDFT have been
reported using this approach,9,10,23,41–46 a more reliable remedy is
to remove the spin contamination directly. This can be done either
exactly, by construction,11–14 or else approximately,47–51 but these
procedures are not yet in widespread use.

Fortunately, photoisomerization of the PSB3 molecule that
is considered herein involves only the two lowest singlet states.24

Instead of using a fully spin-adapted version of SF-TDDFT,14 for
which the analytic gradient is not yet available, we instead aim to
obtain only approximately spin-pure S0 and S1 states. To achieve
this, we simply enforce that the two open-shell Slater determi-
nants in Fig. 2(b) must form a singlet configuration state function
when solving the SF-TDDFT eigenvalue equations, meaning that
their coefficients must be equal in magnitude and opposite in sign.
For PSB3, the S0 and S1 states that we obtain in this way typi-
cally have ⟨Ŝ2

⟩ < 0.5 and are thus easy to distinguish from triplet
states. As discussed below, we do observe some exceptions in which
S1 is significantly spin contaminated (with ⟨Ŝ2

⟩ ≈ 1); this occurs
in cases where one of the single bonds in PSB3 is significantly
twisted. However, the manifold of excited states is sparse enough
that we are nevertheless able to perform consistent NMD simula-
tions via trajectory surface-hopping without resort to state-tracking
algorithms.

III. COMPUTATIONAL DETAILS
NMD simulations for trans-PSB3 were performed using the

augmented fewest-switches surface hopping (aFSSH) algorithm,52–54

a modification of the original fewest-switches algorithm55 to account
for decoherence effects.54 Separate simulations were performed
using LR-TDDFT (both with and without the TDA) and also
SF-TDDFT. For the LR-TDDFT simulations, we used the ωB97X
functional,56 and for SF-TDDFT we used BH&HLYP.57,58 (Early
benchmarks of SF-TDDFT demonstrated that a functional with 50%
exact exchange works well,7 a fact that was later justified theoreti-
cally,59 and BH&HLYP has become the de facto standard for use with
SF-TDDFT.9,10,23,41–45,47–50,60) The 6-31G∗ basis set was used for all
aFSSH simulations. All calculations were performed using a locally
modified copy of Q-Chem, v. 4.61

A set of 200 aFSSH trajectories was computed at each level of
theory. The initial nuclear configurations and momenta were sam-
pled according to the Wigner distribution for the quantum har-
monic oscillator, with harmonic frequencies and normal modes
obtained from ground-state MP2 calculations. At t = 0 in the simula-
tions, the S1 state is populated at the ground-state geometry and each
trajectory was then propagated in time for 9000 a.u. (≈218 fs), using
a time step of 20 a.u. (≈0.484 fs). These trajectories are intended to
model photoexcitation of PSB3. For reasons described below, we also
propagated a second batch of 200 trajectories (at each of three levels
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of theory) in which the central C2=C3 bond is twisted by 25○ at t = 0.
These “activated” trajectories were propagated in the same way and
analyzed separately.

Nonadiabatic coupling vectors are required for the aFSSH sim-
ulations and are available in analytic form in Q-Chem,6,31 for both
LR-TDDFT and SF-TDDFT. Whereas calculation of the derivative
couplings is sometimes (incorrectly) perceived as being significantly
more expensive than analytic gradients, in reality the calculation of
hIJ for TDDFT adds only about 10% overhead on top of the cost of
computing the gradients ∇̂REI(R) and ∇̂REJ(R).6,22

IV. RESULTS AND DISCUSSION
A. Potential energy surfaces along the reaction
pathways

Gozem et al.27 reported photoisomerization reaction pathways
for PSB3 at the complete active space self-consistent field (CASSCF)
level of theory, and also using CASSCF plus second-order perturba-
tion theory (CASPT2). These pathways connect the cis and trans iso-
mers of PSB3 with a CX seam between the S0 and S1 states. The most
important geometric parameters that characterize these pathways
are the bond-length alternation (BLA) coordinate, the C1–C2 single-
bond torsion, and the C2=C3 double-bond torsion. [See Fig. 1(b) for
the PSB3 structure.] The reaction pathway computed at the CASSCF
level shows a decrease in the BLA as the molecule moves away from
Frank–Condon region on the S1 potential surface. Following that,
the central double bond (C2=C3) starts to twist and the BLA coordi-
nate increases again until the CX region is reached, at which point a
nonadiabatic transition returns the system to the ground state. For
the CASPT2 reaction path, however, the same BLA change in the
Frank–Condon region leads to a shallow local minimum (called
“MINtrans” in what follows), which corresponds to a structure with a
rotated C1–C2 single bond.27 According to the CASPT2 calculations,
the C2=C3 torsion is activated by overcoming a small barrier.

We performed single-point potential energy scans along the
same CASSCF and CASPT2 reaction pathways that were reported in
Ref. 27 using SF-TDDFT and LR-TDDFT. The results are compared
with the energies calculated from multireference configuration

interaction singles and doubles (MRCISD) with the Davidson cor-
rection (MRCISD+Q), taken from Ref. 27. The S0 and S1 potential
surfaces along the CASSCF and CASPT2 pathways are depicted in
Fig. 3.

For both pathways, energy profiles computed using SF-TDDFT
with the BH&HLYP functional (called “SF-BH&HLYP” hereafter)
agree well with the MRCISD+Q results, except that SF-BH&HLYP
predicts a larger energy gap in the CX regions due to the fact that
the intersection seams obtained by these two methods are located
in somewhat different regions of coordinate space. This is not sur-
prising, as MRCISD+Q fails to give the correct topology of the CX
because the Davidson correction (+Q) modifies the energy but not
the wave function.27

In the present study, the ωB97X functional is used for the
LR-TDDFT calculations and we abbreviate this as LR-ωB97X. Previ-
ously, Valsson et al. compared the performance of different density
functionals for the out-of-plane relaxations of the retinal protonated
Schiff base models PSB4 and PSB5.62 Taking the CASPT2 results
as the reference, they found that a particular long-range corrected
(LRC) functional, LRC-μBLYP,63,64 outperformed other functionals
including ωB97X. For the PSB3 reaction pathways considered here,
however, we find that the performance of ωB97X and LRC-μBLYP
is almost identical. This lends some credence to the idea that the LR-
TDDFT results reported here are unlikely to change qualitatively if
other functionals commonly used for LR-TDDFT are substituted in
place of ωB97X.

As shown in Fig. 3, LR-TDDFT energetics agree well with the
MRCISD+Q results within the CX region, but large differences are
found close to the Franck–Condon region, especially when the TDA
is invoked. For the CASSCF pathway, LR-ωB97X predicts a local
minimum close to the Franck–Condon point that does not exist in
either the SF-BH&HLYP or the MRCISD+Q calculations. In view of
the trajectory simulations reported below, we believe that this local
minimum connects directly to the C1–C2 single bond torsion reac-
tion pathway. Energy profiles in Fig. 3(b) show that the energy of
the MINtrans configuration is lower at the LR-ωB97X level of theory
as compared to other methods examined here, meaning that LR-
ωB97X trajectories must overcome a larger barrier to activate the
C2=C3 double bond torsion reaction.

FIG. 3. Potential energy scans along the (a) CASSCF or (b) CASPT2 photoisomerization pathway of PSB3. Both the pathway geometries and the MRCISD+Q energies are
from Ref. 27. All calculations employ the 6-31G∗ basis set.
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FIG. 4. Critical-point structures of PSB3, including S0 and S1 minima and the
S1/S0 MECP, optimized using SF-BH&HLYP (geometric parameters in bold),
LR-ωB97X/TDA (parameters in plain font), and LR-ωB97X (parameters in italics).
The bond lengths (in Ångstroms) are labeled in black, and the twist angles (in
degrees) are in red. MECP geometries were not optimized using full LR-TDDFT
but rather only with the TDA due to triplet instability problems.

B. Stationary points, vertical excitation energies,
and topography of conical intersections

Whereas the calculations discussed above were performed at
CASSCF and CASPT2 geometries, we have also optimized the
geometries of the local minima on S0 and S1, and the S1/S0
minimum-energy crossing points (MECPs), using SF-TDDFT, LR-
TDDFT, and LR-TDDFT/TDA; the results are depicted in Fig. 4.
For the local minima, these three methods predict almost iden-
tical geometries. Automated optimization of MECPs fails at the
LR-ωB97X level due to triplet instabilities; there is no such dif-
ficulty when the TDA is applied. (Other results suggest that

triplet instabilities are commonplace in bond-breaking regions of
the potential energy surface, making the TDA “a practical necessity”
for photochemical simulations.65) MECP geometries optimized at
the LR-ωB97X/TDA and SF-BH&HLYP levels agree with each other
very well and also agree qualitatively with multi-state (MS-)CASPT2
results.66 Note that the S1min(C1C2) structure was compared with
a previous single-state CASPT2 result,27 as this structure was not
predicted at the MS-CASPT2 level.66

Table I summarizes the relative energies of the various criti-
cal points shown in Fig. 4. Overall, the energies computed at the
three DFT levels agree qualitatively with each other and with MS-
CASPT2 results. The DFT methods overestimate the vertical exci-
tation energy as compared to MS-CASPT2, especially in the case
of LR-ωB97X/TDA. Among the three MECPs considered here, all
methods predict that the one with a twisted C2=C3 double bond
is lowest in energy; this is the structure labeled MECP(C2C3) in
Fig. 4 and Table I. The SF-BH&HLYP method places the three
MECPs a bit higher in energy as compared to LR-ωB97X/TDA.
However, if one considers the energetics relative to the S1 state at
the Franck–Condon geometry, the SF-BH&HLYP results are more
consistent with the MS-CASPT2 results. It is worth mentioning
that the S1 state at the S1min(C3C4) structure is significantly spin-
contaminated at the SF-BH&HLYP level. The actual energy of this
state is expected to be higher according to the LR-TDDFT results.

We also examined the topography around the CXs, which is
believed to correlate with the efficiency of nonadiabatic transitions.
Here, we only consider MECP(C2C3) because most of the nonadia-
batic S1 → S0 transitions in NMD simulations discussed below occur
near this particular CX. Yarkony67 introduced several parameters
that characterize the topography of a CX. Denoting the lengths of
the branching-plane vectors introduced in Sec. II A as g = ∥g∥ and
h = ∥h∥, these topographical parameters include

dgh =
√

g2 + h2 (16)

and

Δgh =
g2
− h2

d2
gh

, (17)

which describe the sharpness and asymmetry of the CX. Defining a
“seam coordinate”

TABLE I. Relative energies (in eV) at stationary points of PSB3.a

SF-BH & HLYPb LR-ωB97X LR-ωB97X/TDA MS-CASPT2c

Structures S0 S1 S0 S1 S0 S1 S0 S1

trans-S0min 0.00 (0.04) 4.48 (0.17) 0.00 4.59 0.00 4.95 0.00 4.26
MECP(C2C3) 3.07 (0.03) 3.07 (0.02) 2.61 2.61 2.61
MECP(NC1) 4.29 (0.02) 4.29 (0.08) 4.09 4.10 3.81
MECP(C4C5) 3.31 (0.05) 3.31 (0.05) 3.22 3.22 3.59
S1min(C1C2) 1.85 (0.06) 3.86 (0.02) 1.78 3.63 1.77 3.64
S1min(C3C4) 1.00 (0.01) 3.82 (1.01) 0.92 4.10 0.92 4.11 3.69

aThe 6-31G∗ basis set is used for all calculations.
bThe value of ⟨Ŝ2⟩ (in atomic units) is given in parentheses.
cSA3-MS-CASPT2(6,6)/6-31G∗ results from Ref. 66.
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sIJ =
1
2
∇̂R[EI(R) + EJ(R)], (18)

one may then define dimensionless tilt parameters

sx = (sIJ ⋅ gIJ)/g, (19a)

sy = (sIJ ⋅ hIJ)/h. (19b)

Larger values of sx or sy indicate sloped rather than peaked charac-
ter along the direction of the corresponding branching-plane vec-
tor (gIJ or hIJ , respectively). If sx = sy = Δgh = 0, the CX is vertical
and cylindrically symmetric.67 Topographical parameters for the
MECP(C2C3) point of C5H6NH+2 are listed in Table II.

The two LR-TDDFT methods predict much larger values of dgh
as compared to either SF-BH&HLYP or CASSCF, indicating a much
more sharply peaked topography near the CX. Meanwhile, Δgh ≈ 1
for the LR-TDDFT methods, indicating that the CX is strongly
asymmetric. Along with the very large values of sy/h, this indicates
significant slope along the h direction, which is a direct consequence
of nearly vanishing coupling between S0 and S1 in LR-TDDFT. The
same conclusion can be reached by examining the g and h vectors,
which are plotted for MECP(C2C3) in Fig. 5. To have a point of com-
parison at the LR-ωB97X level, where the appearance of triplet insta-
bilities precludes a full optimization of the MECP, we started in that
case from the MECP(C2C3) structure located using LR-ωB97X/TDA
and minimized along the energy gap until an instability appeared.
The resulting structure has an energy gap < 0.01 eV and is likely very
close to a MECP structure.

The g vectors computed using LR-TDDFT are more than ten
times greater in length than those obtained with SF-BH&HLYP,
indicating a significantly larger slope along the potential surface in
the g direction when using LR-TDDFT. Small magnitude of the h
vectors, especially when the TDA is applied, is a sign of nearly zero
interaction between the reference state and the excited state. In con-
trast, SF-BH&HLYP predicts topography around MECP(C2C3) that
is similar to CASSCF, as can be seen from the parameters listed in
Table II. The same topography predicted at the MS-CASPT2 level
is slightly more peaked compared to SF-BH&HLYP and CASSCF
results but within a small range.

FIG. 5. Gradient difference vectors (g, on the left) and nonadiabatic coupling vec-
tors (h, on the right) at the MECP(C2C3) structure of PSB3, computed using (a)
SF-BH&HLYP, (b) LR-ωB97X, and (c) LR-ωB97X/TDA. Difficulties with triplet insta-
bilities preclude full optimization of the MECP at the LR-ωB97X level, but the
structure in (b) has an S1/S0 gap of only 0.0072 eV and is likely close to the true
MECP. For readability, the g vectors in (b) and (c) have been scaled by 0.1 and
0.2, respectively, as the LR-TDDFT g-vectors are significantly larger than what is
obtained at the SF-BH&HLYP level.

C. Trajectory surface hopping simulations
1. Photoexcitation initial conditions

We next discuss results of the aFSSH simulations of PSB3 start-
ing from photoexcitation initial conditions, in which internal coor-
dinates and velocities are sampled from a ground-state Wigner dis-
tribution and initiated on the S1 state at t = 0. Figure 6(a) shows

TABLE II. Parameters characterizing the topography at the MECP(C2C3) structure of PSB3, in atomic units.

TDDFTa

LR-ωB97X

Parameter SF-BH&HLYP Fullb TDA CASSCFc MS- CASPT2d

dgh 0.10 0.49 0.36 0.13 0.16
Δgh 0.15 1.00 1.00 0.29 0.70
sx −0.05 0.13 0.11 −0.02 −0.04
sy −0.13 −0.15 0.16 0.12 0.07
sx/g −0.67 0.26 0.32 −0.16 −0.24
sy/h −2.08 −7.67 >1000 1.63 1.15

a6-31G∗ basis set.
bSA3-CASSCF(6,6)/6-31G results from Ref. 66.
cSA3-MS-CASPT2(6,6)/6-31G∗ results from Ref. 66.
dUsing the geometry from Fig. 5(b).
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FIG. 6. Populations of the S0 state (dotted curves) and the S1 state (solid curves) for the photoisomerization dynamics of PSB3, averaged over aFSSH trajectories from
two different sets of initial conditions. (a) Initial conditions simulating S0 → S1 photoexcitation, with internal coordinates and velocities selected from a ground-state Wigner
distribution and placed on the S1 surface at t = 0. Populations p(t) are averages over 200 trajectories at each level of theory. (b) “Activated” trajectories in which the C2=C3
bond was rotated by 25○ for each of the initial structures in (a), and furthermore any trajectories that did not proceed through MECP(C2C3) were removed.

the time-dependent populations of the S0 and S1 states averaged
over 200 trajectories at each of the three levels of TDDFT that were
introduced above. The S1 population exhibits a delayed exponen-
tial decay, meaning that the system remains in the S1 state for a
certain amount of time before the population begins to decrease
exponentially. The lifetime of the S1 state can be obtained by fitting
the population p(t) using the function

p(t) =
⎧⎪⎪
⎨
⎪⎪⎩

1, t < τd,

e−(t−τd)/τe , t ≥ τd,
(20)

where τd represents the initial delay time for the system remaining
in the S1 state and τe is the time constant for the exponential decay.
The overall lifetime is τd + τe, which is technically the time required
for the S1 population to drop to 1/e of its initial value p(0) = 1. We
fit the data in Fig. 6(a) to this functional form, and the time con-
stants thus obtained (for each level of theory) are listed in Table III.
Uncertainties listed in the table were obtained using the bootstrap
method.68

The two LR-TDDFT methods predict much longer lifetimes for
the S1 state as compared to SF-BH&HLYP and CASSCF. In the LR-
TDDFT methods, most of the trajectories are trapped at the local
minimum S1min(C1C2), where the molecules have to overcome a
large barrier before the conical seam at MECP(C2C3) can be reached;
see Fig. 3(b). The fact that LR-ωB97X/TDA predicts a longer life-
time for the S1 state as compared to LR-ωB97X is also consistent
with the larger barrier predicted by the former as compared to the
latter.

In Fig. 7, we plot the averaged BLA coordinate values during
the simulations. For LR-ωB97X, either with or without the TDA, the
BLA does not decrease to an extent such that the reaction coordinate
(corresponding to C2=C3 torsion) can be activated, therefore only a
few of the trajectories manage to return to the S0 state via nonadi-
abatic transitions at MECP(C2C3). This is more clear in Fig. 8(a),
where the distribution of the torsion angle around C2=C3 is plotted
for each of the three DFT methods. In the case of SF-BH&HLYP,
about 90% of the trajectories returned to the S0 state on the timescale
of the simulation, with 56% of them forming the cis photoproduct.
For LR-ωB97X, however, only 40% of the trajectories underwent

TABLE III. Time constants τd and τe and the total lifetime of the S1 state of PSB3 (all in fs), obtained by fitting the population data in Fig. 6 using Eq. (20).

Photoexcitation initial conditionsa Activated initial conditionsb

Method τd τe Lifetime τd τe Lifetime

SF-BH&HLYP 35.1 ± 1.4 89.6 ± 6.3 124.8 ± 6.1 26.2 ± 1.4 34.4 ± 2.7 60.6 ± 2.4
LR-ωB97X 44.1 ± 2.4 320.6 ± 42.4 364.8 ± 42.2 26.0 ± 1.5 48.5 ± 3.4 74.5 ± 3.5
LR-ωB97X/TDA 15.8 ± 7.5 1264 ± 269 1280 ± 269 29.4 ± 1.0 45.3 ± 3.9 74.7 ± 3.9
MS-CASPT2c

≈50 ≈150
aPopulation data plotted in Fig. 6(a).
bPopulation data plotted in Fig. 6(b).
cSA3-MS-CASPT2(6,6)/6-31G results from Ref. 66.
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FIG. 7. Bond length alternation (BLA) coordinate as a function of time for PSB3
photoisomerization dynamics, averaged over 200 trajectories (starting from pho-
toexcitation initial conditions) at each of three levels of theory. These coordinate
dynamics correspond to the population dynamics shown in Fig. 6(a).

S1 → S0 deactivation within the 218 fs timescale that we simulate,
and among those that do return to the ground state, 43% relaxed
to the cis isomer. Even fewer transitions were observed at the LR-
ωB97X/TDA level, which amounts to 14% of the total number of
trajectories, and 25% of the nonadiabatic transitions lead to the cis
isomer. If we further plot the distribution of the torsion angle for
the C1–C2 single bond [Fig. 8(b)], we find that most of the trajecto-
ries computed by the two LR-TDDFT methods follow the reaction
pathway of C1–C2 twisting, especially at the LR-ωB97X/TDA level.
This corresponds either to trapping at S1min(C1C2) or hopping at
MECP(NC1). The latter explains the observation of fewer cis pho-
toproducts in the LR-TDDFT trajectories and the smaller delay time
τd, as compared to SF-BH&HLYP simulations.

In NMD simulations reported previously at the MS-CASPT2
level,66 about 20% of the trajectories were trapped at the S1min(C3C4)
local minimum. Besides the trappings at S1min(C1C2), however,
we did not observe significant activation of the C3–C4 bond tor-
sion along the LR-TDDFT trajectories. This is consistent with the
much lower S1 state energy at S1min(C1C2) vs S1min(C3C4). At the
SF-BH&HLYP level, 7% of the trajectories were trapped in
S1min(C1C2) and 2% in S1min(C3C4).

FIG. 8. Distributions of the torsion angles (a) γ(C1C2C3C4) and (b) γ(NC1C2C3) for aFSSH simulations of PSB3, each at three different levels of theory. These trajectories
correspond to “photoexcitation” initial conditions, in which coordinates and velocities sampled from ground-state harmonic oscillators are propagated on the S1 surface
starting from t = 0. [The corresponding population dynamics are plotted in Fig. 6(a).] The probability density ranges from 0 to 1 as the color varies from black to red. The
red dots in (a) indicate hopping events.
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2. Activated initial conditions

The main goal of this work is to study the effect of incorrect CX
topography on NMD simulations within the framework of TDDFT,
and for a side-by-side comparison of LR- and SF-TDDFT, we would
ideally like to have a set of trajectories from either method that
undergo the same reaction pathway, namely, nonadiabatic transi-
tion at MECP(C2C3). In order to achieve this, we have performed
an entirely new set of aFSSH simulations starting from “activated”
initial conditions. By this, we mean that the same set of starting coor-
dinates and velocities was used as in the simulations described above
(where they were sampled from ground-state harmonic oscillators),
but in the present case, the C2=C3 bond was twisted by an additional
25○ in each individual starting structure. This can be seen in the
plots of the time-dependent torsion angle γ(C1C2C3C4), which are
presented in Fig. 9(a), where it can be seen that the distributions at
t = 0 are peaked narrowly around γ = 25○, unlike the corresponding
“unactivated” distributions in Fig. 8(a), for which γ ≈ 0 at t = 0.

Even with this activation step, we find that quite a few of the
LR-TDDFT trajectories fail to proceed through MECP(C2C3) on

the timescale that we simulate. Many of them become trapped at
S1min(C1C2), and a few others access the ground state via either
MECP(NC1) or MECP(C4C5). In order to have a side-by-side com-
parison of similar dynamical pathways at different levels of theory,
we discarded all but the trajectories that return to the ground state
via MECP(C2C3). This corresponds to 189 trajectories retained for
the SF-BH&HLYP simulation, 112 retained for LR-ωB97X, and 85
for LR-ωB97X/TDA. All of the analysis below corresponds to these
subsets of the 200 trajectories. Population decays from S1 are plot-
ted in Fig. 6(b) for this subset of trajectories, and then, p(t) was
fit to Eq. (20). Time constants and S1 lifetimes are reported in
Table III.

Similar delay times τd are obtained for all three TDDFT meth-
ods, indicating similar reaction pathways toward the MECP(C2C3)
seam. However, the time constant τe is 30% smaller at the
SF-BH&HLYP level as compared to the two LR-TDDFT meth-
ods, the latter of which are quite similar. This is likely due to the
peaked topography near the MECP(C2C3) seam that is predicted by
SF-BH&HLYP, whereas the LR-TDDFT methods afford sloped
CXs due to the lack of proper coupling between S0 and S1 as

FIG. 9. Distributions of the torsion angles (a) γ(C1C2C3C4) and (b) γ(NC1C2C3) for aFSSH simulations of PSB3, each at three different levels of theory, starting from
“activated” initial conditions in which γ(C1C2C3C4) is twisted by 25○ at t = 0 and retaining only those trajectories that pass through MECP(C2C3). The corresponding
population dynamics are plotted in Fig. 6(b). The probability density ranges from 0 to 1 as the color varies from black to red. The red dots in (a) indicate hopping events.
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FIG. 10. Minimum-energy intersection seam between the S0 and S1 states of
PSB3, obtained by scanning the twist angle of the C2=C3 double bond at two
different levels of theory, as indicated.

discussed in Sec. IV B. Note that a peaked CX usually facilitates more
efficient transitions than a sloped CX.

In Fig. 10, we compare the SF-BH&HLYP and LR-ωB97X/
TDA minimum-energy intersection seams around MECP(C2C3)
by scanning the C2=C3 twist angle. The two seams are quite
similar in shape except that the slope of the potential surface is
larger in the LR-ωB97X/TDA case, with an energy change that is
≈3 kcal/mol greater over the same range of the torsion angle. The
distribution of torsion angles around C2=C3 is plotted in Fig. 9(a) for
the subset of activated trajectories that decay through MECP(C2C3),
and the distribution around C1–C2 is plotted in Fig. 9(b). The sim-
ilarities among these distributions provide further evidence that
the trajectories produced by all three methods undergo the same
reaction pathway. The fractions of cis photoproduct are 54% (SF-
BH&HLYP), 53% (LR-ωB97X), and 47% (LR-ωB97X/TDA). The
difference in τe predicted by SF-BH&HLYP and LR-ωB97X may
therefore be only a consequence of different CX topographies. Nev-
ertheless, these similarities are borne out only by removing dissimi-
lar trajectories from the dataset. Left to its own devices, LR-TDDFT
(with or without the TDA) predicts rather different dynamics as
compared to SF-BH&HLYP.

V. CONCLUSIONS
We have carried out trajectory surface hopping simulations

for the Schiff base model system C5H6NH+2 in order to study the
effects of correct vs incorrect CX topography on photodynamics. By
comparing LR- and SF-TDDFT results, we observe that CXs pre-
dicted by the more traditional LR-TDDFT approach have sloped
rather than peaked character, which is an artifact of improper cou-
plings between ground (reference) and excited (response) states.
The sloped character of the CX leads to a slowdown in the nona-
diabatic dynamics and longer lifetimes in the S1 state, as com-
pared to the SF-TDDFT simulations where the relevant CX is more
strongly peaked. The SF-TDDFT results are generally in better
agreement with existing (MS-)CASPT2 estimates as compared to

LR-TDDFT, although the short lifetime of the S1 state of C5H6NH+2
limits the magnitude of the discrepancies.

The main result of this work is a proof-of-concept demonstra-
tion that warped topography around a CX, resulting from an incor-
rect description of the topology of intersections involving S0 when
LR-TDDFT is used, can have observable manifestations in photo-
dynamics simulations if those simulations are carried all the way
through to the final S1 → S0 deactivation event. Unless this problem
is rectified, using SF-based versions of TDDFT or other methods,
nonadiabatic simulations with LR-TDDFT should be halted prior to
the point where trajectories return to the ground state. Information
gained from the part of the trajectory that approaches the incorrectly
described CX is likely unreliable.
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APPENDIX A: NONADIABATIC COUPLINGS BETWEEN
THE REFERENCE AND RESPONSE STATES

Using Eq. (2) for Ĥ and Eq. (11) for hIJ , the nonadiabatic cou-
pling between the HF ground state and a CIS excited state can be
expressed as

hCIS
0I = ⟨Φ0∣ (∣Φ0⟩E0⟨Φ0∣)

[R]
∣ΨI⟩

+ ⟨Φ0∣
⎛

⎝
∑
ijab
∣Φia⟩⟨Φia∣Ĥ∣Φjb⟩⟨Φjb∣

⎞

⎠

[R]
∣ΨI⟩

= E0⟨Φ[R]0 ∣ΨI⟩ + EI∑
ia
⟨Φ0∣Φ[R]ia ⟩c

I
ia. (A1)

By direct differentiation of the creation operators,36 it is possible to
obtain the nuclear derivatives of the Slater determinants,

∣Φ[R]0 ⟩ = −∑
ia
⟨a[R]∣i⟩∣Φia⟩ (A2)

and

⟨Φ0∣Φ[R]ia ⟩ = −⟨i
[R]
∣a⟩. (A3)

Using the latter two results, Eq. (A1) can be simplified to afford the
result that was given in Eq. (12).

The first-order derivative coupling vector is defined as

dIJ = ⟨ΨI ∣Ψ[R]J ⟩. (A4)

The derivative coupling dCIS
0I between HF and CIS states can be

derived by proceeding as above, and this affords

dCIS
0I = −∑

ia
⟨a∣i[R]⟩cI

ia. (A5)
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Comparing this expression to Eq. (12), one may conclude that
the nonadiabatic coupling, as defined in Eq. (11), is related to the
derivative coupling according to

hCIS
0I = (EI − E0)dCIS

0I . (A6)

Although Eq. (A6) is a standard expression in exact quantum
mechanics, this relationship does not hold if the nonadiabatic cou-
pling is defined using Eq. (13), for which h0I vanishes identically as
a result of Brillouin’s theorem.

Similarly, the nonadiabatic coupling between a ground-state
Kohn–Sham determinant and a LR-TDDFT state may be defined as

hDFT
0I = ωI dDFT

0I , (A7)

where ωI = EI − E0 is the LR-TDDFT excitation energy. The deriva-
tive coupling dDFT

0I can be obtained using linear response theory.38

The result is
dDFT

0I = −∑
ia
⟨a∣i[R]⟩(xI

ia − yI
ia). (A8)

The amplitudes xI
ia and yI

ia can be collected into vectors xI and yI that
satisfy the LR-TDDFT eigenvalue equation,1–3

⎛
⎜
⎝

A B

B A

⎞
⎟
⎠

⎛
⎜
⎝

xI

yI

⎞
⎟
⎠
= ωI

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

⎛
⎜
⎝

xI

yI

⎞
⎟
⎠

. (A9)

The orbital Hessian matrices A and B have matrix elements

Aai,bj = δabδij(εa − εi) + (ai∣ jb)
− CHF(ab∣ji) + (1 − CHF)(ai∣κxc∣ jb) (A10)

and

Bai,bj = (ai∣bj) − CHF(aj∣bi) + (1 − CHF)(ai∣κxc∣bj), (A11)

where CHF indicates the fraction of exact exchange and
κxc = δ2Exc/δρ2 is the semilocal exchange–correlation kernel.

In order to compute dDFT
0I , the nuclear derivative of the MO

coefficients needs to be evaluated:

C[R]μi =∑
a

CμaU[R]ai −
1
2∑j

CμjS[R̄]ji . (A12)

Here, the superscript [R̄] represents a “skeleton” derivative,70

and U[R] satisfies the coupled-perturbed Kohn–Sham (CPKS)
equation:71

(A + B)U[R] = −Q[R̄]. (A13)

The right side of Eq. (A13) can be written as

Q[R̄]ai = F[R̄]ai − εiS[R̄]ai −∑
kl
{(1 − CHF)(ai∣κxc∣lk) + (ai∣lk)

− CHF[(ak∣li) + (al∣ki)]}S[R̄]kl , (A14)

where F is the Fock matrix.
Using Eq. (A13), the derivative coupling dDFT

0I in Eq. (A8) can
be recast as

dDFT
0I = −∑

ia
(xI

ia − yI
ia)(U

[R]
ai + ⟨a∣i

[R̄]
⟩). (A15)

From Eq. (A9), one may obtain

(A + B)(xI
+ yI
) = ωI(xI

− yI
). (A16)

In conjunction with Eq. (A13), it is possible to show that38

− (xI
− yI
)
†U[R] = ω−1

I (x
I
+ yI
)
†Q[R̄]. (A17)

Substituting this expression into Eq. (A15), the derivative coupling
dDFT

0I is finally expressed as38

dDFT
0I =∑

ia
[ω−1

I (x
I
ia + yI

ia)Q
[R̄]
ia − (x

I
ia − yI

ia)⟨a∣i
[R̄]
⟩]. (A18)

The nonadiabatic coupling defined in Eq. (A7) therefore takes the
following form:

hDFT
0I =∑

ia
[(xI

ia + yI
ia)Q

[R̄]
ia − ωI(xI

ia − yI
ia)⟨a∣i

[R̄]
⟩]. (A19)

Even if ωI = 0, the first term on the right side of Eq. (A19) remains,
and does not appear to vanish. In the complete basis limit

Q[R̄]ai = (a∣v
[R]
ne ∣ i), (A20)

where vne denotes the nucleus–electron Coulomb potential. Thus

hDFT
0I = tr[(xI

+ yI
)v[R̄]ne ]. (A21)

Because the transition density matrix xI
+ yI is generally nonzero

even at a crossing point, the nonadiabatic coupling hDFT
0I does not

vanish either.
In the case of the CIS method, or if the TDA is applied to LR-

TDDFT (by setting yI
ia = 0), then the derivative coupling becomes

dCIS/TDA
0I = −∑

ia
xI

ia(U
[R]
ai + ⟨a∣i

[R̄]
⟩). (A22)

Note that Eq. (A17) does not have a counterpart within the TDA,
i.e.,

− (xI
)
†U[R] ≠ ω−1

I (x
I
)
†Q[R̄]. (A23)

As such, the nonadiabatic coupling hTDA
0I = ωIdTDA

0I vanishes when
ωI = 0.

APPENDIX B: TOPOLOGY OF CXs BETWEEN HF
AND CIS STATES

In this section, we use a numerical example to demonstrate
that the gradient difference vector g ≡ g01 [Eq. (9)] is not sufficient
to determine the branching space at an approximate CX between
the HF ground state and a CIS excited state. Consider an arbitrary
nuclear geometry R and construct a unit vector z as follows:

z =
(1 − ĝĝ†

)R
∥(1 − ĝĝ†)R∥

(B1)
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in which
ĝ = g/∥g∥. (B2)

Thus, z is a normalized projection of the vector R onto the space
orthogonal to g01. If the branching space were determined solely by
the g vector, then we would expect that an intersection seam should
exist along the direction of z.

We have located the MECP along the conical seam between
the S0 and S1 states of PSB3 at the CIS/6-31G∗ level of theory. The
energy difference between the two states is less than 10−7 Ha. Taking
this MECP as the origin, we carried out single-point energy scans
for an arbitrary choice of R, with z constructed from R according to
Eq. (B1). The S1/S0 energy gap is plotted in Fig. 11 as the red curve.
It can be seen that the degeneracy between the two states is lifted
even in the very near vicinity of the MECP. This indicates that the g
vector itself is not sufficient to determine the branching space.

As shown in Appendix A, hCIS
0I may be nonzero if EI − E0 ≠ 0,

which implies that the h vector can also contribute to the branching
space at an approximate CX. To determine whether this is numer-
ically significant, we carried out the same energy scan described
above (i.e., using the same vector R), except that we make z per-
pendicular to both g and h:

z =
(1 − ĝĝ†

− ŷŷ†
)R

∥(1 − ĝĝ† − ŷŷ†)R∥
, (B3)

where
ŷ = y/∥y∥, (B4a)

y = (1 − ĝĝ†
)h, (B4b)

with h ≡ hCIS
01 defined in Eq. (12). The results are plotted as the blue

curve in Fig. 11. This time, degeneracy between the S0 and S1 states is
preserved along the z direction. Even at a distance of 0.02 bohr from
the MECP geometry, the energy gap between the two states remains
quite small (≈0.0003 eV).

Finally, starting from the MECP geometry, we performed two-
dimensional potential energy scans along the directions ĝ and ŷ, with

FIG. 11. Energy gaps between the S0 and S1 states of PSB3 computed at the
CIS/6-31G∗ level. Two different director vectors z are used, corresponding to
Eqs. (B1) and (B3) with the same choice of R, and these are plotted in red and
in blue, respectively. The value z = 0 corresponds to the S0/S1 MECP geometry.

FIG. 12. Potential energy surfaces of the S0 and S1 states of PSB3 computed at
CIS/6-31G∗ level of theory. Energies are measured relative to the S0 energy at the
MECP geometry, which is taken as the coordinate origin. The intersection seam is
highlighted in black.

the results plotted in Fig. 12. It can be seen that the intersection seam
forms a closed curve encompassing a small area around the MECP,
which is located at the origin. This behavior results from the fact
that the HF reference state is unstable in the vicinity of the CX, lead-
ing to negative excitation energies. (In the absence of instabilities,
one would expect a double-cone shape around the MECP.) Although
these results are computed at the CIS level, one can expect the same
behavior for intersections between the Kohn–Sham ground state
and the LR-TDDFT excited states, at least within the pseudo-wave
function formalism for DFT derivative couplings that is described
herein.

When the excitation energy is small, we observe that the slope
of the potential surfaces becomes unrealistically large near the seam

FIG. 13. Potential energy surfaces of the S0 and S1 states of PSB3 calculated at
the SF-BH&HLYP/6-31G∗ level of theory. Energies are measured relative to the
S0 energy at the MECP structure, which is taken as the coordinate origin. This plot
exhibits the correct double-cone topology around the CX, whereas the analogous
plot at the CIS level (Fig. 12) does not.
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because the energy gradient has contributions that vary as ω−1
I .72

This is clear by comparing Figs. 12 and 13, where the latter provides
the analogous plot computed using SF-TDDFT around the same
MECP. Here, a proper double cone is obtained. We conclude that
the potential surfaces close to a crossing point involving the ground
state generally exhibit incorrect topologies at both the CIS level and
at the LR-TDDFT level. This can be expected to have consequences
in NMD simulations.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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