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ABSTRACT
Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These
include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s
transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF
calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type
methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is
competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average
error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only
initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient
x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious
state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.
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I. INTRODUCTION

X-ray photoelectron spectroscopy (XPS) is a widely used exper-
imental tool that provides element-specific information for both
molecules and solids, but the connection between spectra and struc-
tural information is not always straightforward.1–5 In many cases,
theoretical prediction of absolute core-electron binding energies
(CEBEs) is needed to resolve experimental ambiguities.6–14 For this
purpose, there are several approaches to compute CEBEs using self-
consistent field (SCF) methods, such as density functional theory
(DFT).15–18 Of these, the most widely used procedure is the “ΔSCF”
method,18 in which one explicitly computes a final-state determinant
containing a core hole.

The ΔSCF approach has been benchmarked and thoroughly
studied for both molecules and solids,19–24 yet is not without prob-
lems. For one, the core hole represents an unstable (saddle-point)
solution to the SCF equations and there is no guarantee that such
a solution can be located,25,26 although in our experience this is
more of a problem for core excitation than it is for core ioniza-
tion, meaning that the problem lies with the particle in the virtual
space rather than the hole in the occupied space. Sensitivity with
respect to the choice of exchange-correlation (XC) functional is an

altogether different issue.27–29 Recent studies have recommended the
semilocal SCAN functional30 for both XPS21 and x-ray absorption
spectroscopy (XAS).31 The latter technique is not considered here,
but for XPS of medium-size molecules, ΔSCF results based on the
SCAN functional exhibit mean absolute errors (MAEs) of ∼0.2 eV
with respect to the experiment.21 This represents the state-of-the-art
in DFT-based ΔSCF calculation of CEBEs.

Whereas the ΔSCF approach includes orbital relaxation via an
independent-particle framework, many-body interactions are only
included implicitly, via the XC functional. Many-body approaches,
such as coupled-cluster theory, incorporate these interactions
explicitly and can achieve errors as small as 0.2–0.5 eV for core-level
ionization,32,33 yet these methods are cost-prohibitive except for very
small molecules. In addition, the use of a core-hole reference state
for the description of dynamical correlation can sometimes lead to
singularities because there is a strongly bound orbital in the virtual
space.33–36

A popular many-body alternative, especially for periodic solids,
is the GW approach that is based on the single-particle Green’s func-
tion,37 for which errors of 0.2–0.5 eV for CEBEs (computed as quasi-
particle energies within the GW framework) are also typical.38–40

As with coupled-cluster theory, these calculations are inherently
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more expensive than DFT, scaling as O(N6
) with respect to sys-

tem size.41,42 This can be reduced to O(N4
) with a large prefactor in

some recent implementations,41 but the cost remains much higher
than O(N3

) DFT calculations and is higher still for GW calcu-
lations that target core states.38 In addition, GW calculations are
subject to arbitrary choices that include the choice of representa-
tion, leading to apparently unresolvable discrepancies of 0.1–0.2 eV
between different implementations.43,44 More significantly, “GW”
means not just one but a family of methods with various levels
of self-consistency.45,46 If the GW calculations are not fully self-
consistent (as is usually the case), then the XC functional that is used
to generate the orbitals must be chosen carefully,47,48 and partially
self-consistent approach may not afford continuous potential energy
surfaces.46 (Note that analytic gradients are not available for any of
these methods.42) Finally, GW calculations of core-ionized states are
prone to spurious solutions,39 such that GW cannot be considered a
black-box method in such cases.39,40

For all of these reasons, the ΔSCF approach remains the
workhorse tool for the low-cost calculation of CEBEs. Less atten-
tion has been paid to methods based on the Kohn–Sham orbital
energy levels. These include Koopmans-type approaches based on
asymptotically correct XC functionals,49–51 or alternatively self-
interaction-corrected eigenvalues,52–55 as well as methods based
on fractional occupations.56–63 The latter are the methods con-
sidered here. Fractional-occupancy SCF calculations have their
historical basis in Slater’s transition method (STM).18,56,57 The
formal basis for fractional-electron SCF theory was established
later,64–68 based on an ensemble expression for the chemical
potential of an open quantum system. Within DFT, fractional-
electron approaches are connected to problems at the heart
of modern functional development: self-interaction, delocaliza-
tion error, and derivative discontinuity.49,59,67–72 Fractional-electron
methods have also been used in the context of correlated wave
functions.73–75

The STM approach and its subsequent generalizations58–60

compute electron binding energies directly from Kohn–Sham
orbital eigenvalues. Because these one-particle energy levels
can directly measure chemical shifts, these methods may hold
some advantages for modeling complex systems or experiments,
including transient spectroscopy at x-ray or extreme ultraviolet
wavelengths.76–81 To model a pump-probe experiment with the
ΔSCF approach, where (for example) an optical pump pulse first
prepares a valence excited state, which is subsequently interrogated
using an x-ray probe, one would need to construct a core-hole within
a ΔSCF calculation of the optically excited state. In our experi-
ence,26 ΔSCF calculations for valence excited states are rather fragile,
and this composite calculation runs a significant risk of variational
collapse to the ground state.

The aim of this work is to benchmark Slater-type approaches
for core-level XPS. With the introduction of one functional-specific
parameter, we find that an empirically shifted STM provides accu-
racy that is competitive with contemporary many-body methods.
Because this method connects CEBEs directly to one-particle energy
levels, it may provide direct chemical insight into the nature of
chemical shifts, e.g., in time-resolved XPS experiments.81 As an
example of more complicated spectroscopy, we apply this method
to compute valence-to-core (VtC) emission for a benchmark set of
small molecules.

II. THEORY
We begin with a brief review of the ΔSCF method (Sec. II A)

before introducing Slater’s method (Sec. II B) and its generalizations
(Sec. II C).

A. ΔSCF approach
Within the ΔSCF method, the electron binding energy (BE)

obtained by ionizing the ith molecular orbital is

BEi = Efinal
i (N − 1) − Einitial

0 (N), (1)

where Einitial
0 (N) is the energy of the initial N-electron state and

Efinal
i (N − 1) is the energy of the ionized state. This expression

assumes that one can converge a non-aufbau Slater determinant
that resembles ionization from the indicated orbital. This often
requires some type of specialized convergence algorithm,25,26,82,83

although core-level ionization is perhaps the simplest and most
robust non-aufbau case.

B. Original Slater method
Slater’s transition state concept56,57 can be used to compute

electron BEs in a manner that relies on molecular orbital (MO)
energy levels εi rather than a difference of total SCF energies, requir-
ing only a single SCF calculation per BE. As such, we omit N from
the notation in Eq. (1) and let E denote the ground-state energy
of the initial state. Slater considered this energy to be a continu-
ous function of the MO occupation numbers ni.18,56,57 We follow
a slightly different formulation,58 taking E(q) to be a function of
a single continuous variable q, equal to the fraction of an electron
that is removed from whichever MO is to be ionized. [The index of
this MO, corresponding to i in Eq. (1), will be implicit.] The energy
required to completely ionize this MO can be expressed as58

ΔE = ∫
0

1

∂E(q)
∂q

dq. (2)

For later convenience, we define the integrand to be

F(q) = ∂E(q)/∂q. (3)

The Slater–Janak theorem84 states that the MO eigenvalues are
derivatives of the SCF energy with respect to orbital occupation
numbers: ∂E/∂ni = εi. For the ionized MO, ni = 1 − q so that

F(q) = −εi(q). (4)

Inserting this result into Eq. (2), the original STM is obtained using
a midpoint approximation for the integral, in which the integrand is
evaluated at q = 1/2:

ΔESTM = −εi(1/2). (5)

The notation means that the SCF calculation is performed with
ni = 1/2, i.e., with half an electron in the MO that is to be ionized.
The resulting orbital energy level directly approximates BEi.

Long ago, Williams et al.58 proposed a slightly different ver-
sion of Slater’s method, based on an alternative quadrature applied
to Eq. (2). The resulting expression for BEi is

ΔESTM′ = −εi(2/3), (6)
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TABLE I. Definition of various Slater-type approximations for BEi .

Name Scheme n
Leading

error
No. SCFs
required Expression for BEi

STMa F[n] 2 − 1
4 E(3) 1 −εi(1/2)

STMb F[n] 3 1
3 E(2) 1 −εi(2/3)

STM F[n] 4 1
2 E(2) 1 −εi(3/4)

GSTMc F[0; n] 3 − 1
9 E(4) 2 − 1

4 [εi(0) + 3εi(2/3)]
GSTM F[0; n] 4 1

8 E(3) 2 − 1
3 εi(0) − 4εi(3/4)

GSTMc F[0; n] + F[1; n] 2 1
24 E(5) 3 − 1

6 [εi(0) + εi(1) + 4εi(1/2)]
GSTMc F[0; n] + F[1; n] 3 1

54 E(5) 4 − 1
8 [εi(0) + εi(1) + 3εi(2/3) + 3εi(1/3)]

aOriginal Slater method.57

bMethod of Williams et al.58

cProposed by Hirao et al.59

meaning that a different fractional occupancy (ni = 2/3) is used, as
compared to Slater’s original approach. We will refer to both of these
approximations as STMs, and they are collected in Table I along with
some other approximations that are introduced below. What Eqs. (5)
and (6) share in common is that either method requires only a single
(fractional-electron) SCF calculation to estimate BEi. In contrast, the
generalized (G)STM approximations that are introduced below each
require two or more SCF calculations. This additional complexity
may be warranted if the agreement with ΔSCF improves.

C. Generalized fractional occupation methods
To derive GSTMs, we follow the formalism of Hirao et al.59 and

express E(q) as a Taylor series about the point q = 0:

E(q) =
∞

∑
k=0

qkE(k), (7)

where

E(k) =
1
k!
(
∂kE
∂qk )∣

q=0

. (8)

Limiting values of Eq. (7) are E(0) = Einitial
0 at q = 0 and

E(1) =
∞

∑
k=0

E(k) = Efinal
i , (9)

at q = 1, where the choice of which MO is to be ionized (index i) is
again implicit.

According to this formalism, BEi is given by

ΔE = Efinal
i − Einitial

0

= E(1) + E(2) + E(3) + ⋅ ⋅ ⋅ . (10)

Differentiation of Eq. (7) affords

F(q) =
∞

∑
k=1

kqk−1E(k), (11)

with limiting values

F(0) = E(1) (12)

for the original molecule and

F(1) =
∞

∑
k=1

kE(k) (13)

for its cation. The procedure followed by Hirao et al.59 is to search
for combinations of F(q) = −εi(q) and F(q′) = −εi(q′), with differ-
ent fractional occupancies q and q′, in order to cancel leading-order
errors in the Taylor series that defines ΔE in Eq. (10). The quan-
tities F(q) and F(q′) require separate fractional-occupancy SCF
calculations.

We will formulate this process in a somewhat different way
by rewriting Eq. (11) as a polynomial expansion in q = 1 − 1/n,
where n is an integer and q represents the fractional charge that is
removed from the MO to be ionized. This will define a sequence of
approximations F[n] for n = 2, 3, . . .:

F[n] ≡ F(1 − 1/n) =
∞

∑
k=1

k(1 − 1/n)k−1E(k). (14)

As indicated in Table I, the F[2] scheme corresponds to the original
STM and F[3] is the alternative formula derived by Williams et al.58

Error estimates follow when F[n] is subtracted from ΔE in Eq. (10).
The original STM incurs an error at third order in the expan-

sion of E(q), as indicated in Table I, but judicious combinations
of eigenvalues from multiple fractional-occupancy SCF calculations
can reduce this error.59 To examine some of these approximations,
we start by defining

F[0; n] = F(0) + nF(1 − 1/n), (15)

from which one can obtain

F[0; n] = (n + 1)E(1) +
∞

∑
k=2

kn(1 − 1/n)k−1E(k). (16)

The first few terms are
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F[0; n] = (n + 1)E(1) + 2n(1 − 1/n)E(2)

+ 3n(1 − 1/n)2E(3) + 4n(1 − 1/n)3E(4)

+ 5n(1 − 1/n)4E(5) + ⋅ ⋅ ⋅ . (17)

The quantities F[0; n], with different values of n, provide approxi-
mations for BEi. To see how this is so, consider the case n = 3. The
result for F[0; 3] can be rewritten as

1
4
[F(0) + 3F(2/3)] = E(1) + E(2) + E(3) +

8
9

E(4) + ⋅ ⋅ ⋅ . (18)

Subtracting this expression from the ΔSCF result in Eq. (10), one
observes a cancellation of the first three terms, leaving

ΔE −
1
4
[F(0) + 3F(2/3)] = −

1
9

E(4) + ⋅ ⋅ ⋅ . (19)

Therefore, the evaluation of the quantity on the left side of Eq. (18)
incurs an error at fourth order in the expansion of E(q). This is supe-
rior to the third-order error incurred by the original STM. By virtue
of the Slater–Janak theorem, the corresponding approximation for
BEi is

ΔEGSTM = −
1
4
[εi(0) + 3εi(2/3)]. (20)

This result was originally derived by Hirao et al.59

We will call the approximation in Eq. (20) a GSTM because
it requires two SCF calculations to obtain BEi, one with q = 0 and
another with q = 2/3. However, q = 0 corresponds to a standard
integer-occupancy SCF calculation, which is often a prerequisite
for performing fractional-occupancy SCF calculations. In that case,
this particular GSTM does not incur additional overhead as com-
pared to the STMs described in Sec. II B. The method of Eq. (20)
is listed in Table I under the nomenclature F[0; n] with n = 3. The
n = 4 result, F[0; 4], is also shown for comparison; however, this
approach incurs cubic rather than quartic error in E(q), despite also
requiring two SCF calculations.

By analogy to Eq. (15), we next define

F[1; n] = F(1) + nF(1/n)

= (n + 1)E(1) +
∞

∑
k=2
[kn(1 − 1/n)k−1

+ k]E(k). (21)

By virtue of Eq. (4), this represents the cation eigenvalue F(1) plus
a correction based on an SCF calculation with a small fraction of
an electron, q = 1/n. With n = 3, the F[1; 3] scheme also exhibits
fourth-order error, analogous to the F[0; 3] scheme.59

An alternative is to take the sum

F[0; n] + F[1; n] = 2(n + 1)E(1) +
∞

∑
k=2

γkE(k). (22)

Here, γk = 2kn(1 − 1/n)k−1
+ k for n ≥ 2. With n = 2, this formula

yields

F(0) + 2F(1/2) + F(1) + 2F(1/2)

= 6E(1) + 6E(2) + 6E(3) + 6E(4) +
25
4

E(5) + ⋅ ⋅ ⋅ . (23)

As such, the quantity (F[0; 2] + F[1; 2])/6 affords the ΔSCF value
of BEi through E(4), with a leading-order error equal to −E(5)

/24. A
similar exercise for n = 3 demonstrates that

1
8
[F(0) + F(1) + 3F(2/3) + 3F(1/3)]

= E(1) + E(2) + E(3) + E(4) +
55
44

E(5) + ⋅ ⋅ ⋅ . (24)

These two schemes, each with fifth-order error, are also listed in
Table I. The one with n = 3 has a smaller formal error but requires
four separate SCF calculations, whereas the method with n = 2
requires only three separate SCF calculations, and only one of those
with fractional occupation numbers.

III. COMPUTATIONAL DETAILS
We will test some of the STM and GSTM approaches using

the “CORE65” dataset,39 which consists of 65 experimental K-shell
CEBEs for the elements carbon (30 CEBEs in the dataset), oxy-
gen (21 CEBEs), nitrogen (11 CEBEs), and fluorine (3 CEBEs).
Various density functional approximations are tested, including
the SCAN functional30 along with its hybrid SCAN0,85 the latter
of which includes 25% Hartree–Fock exchange (HFX); the B3LYP
functional;86,87 Becke’s “half-and-half” functional (BH & HLYP),
which contains 50% HFX; the range-separated hybrid functional
ωB97X-V;88 and two long-range corrected (LRC) functionals,89

namely, LRC-ωPBE and LRC-ωPBEh,90,91 the latter of which
includes 20% HFX at short range. We also examine the short-range
corrected (SRC) functional SRC1-r1,92 which was parameterized for
XAS at the K-edge of “first row” elements (meaning C, O, N, and
F) and contains 50% HFX on a length scale of <1 Å.92,93 Range sep-
aration parameters for the two LRC functionals were set to ω = 0.3
bohr−1 (LRC-ωPBE) and ω = 0.2 bohr−1 (LRC-ωPBEh), which are
the statistically optimized values for a dataset that includes both
thermochemistry and excitation energies.90,94,95

The def2-QZVP basis set is used for all production calculations.
It has been suggested that additional core functions are required for
CEBE calculations, in order to describe orbital relaxation associated
with the core hole,63,96,97 but we find that def2-QZVP is sufficiently
close to the basis-set limit as to make this unnecessary. For ΔSCF
methods, a completely uncontracted version of def2-QZVP, which
should better describe core-hole relaxation, affords K-shell CEBEs
that differ by an average of only 0.03 eV as compared to conven-
tional def2-QZVP results (Table S2). For the def2-TZVP basis, the
ΔSCF results change by an average of 0.4 eV upon uncontract-
ing the basis set (Table S2), meaning that uncontracting the basis
set is a good option when lower quality basis sets are used, in
order to reach the basis-set limit more rapidly. For the purpose of
this benchmark study, we use the conventional (contracted) def2-
QZVP basis set because we subscribe to the idea that new theoretical
methods should first be assessed near the basis-set limit before basis-
set approximations are introduced, in order to avoid conflating
method error with the basis-set error.98 Calculations with general-
ized gradient approximation (GGA) functionals and their hybrids
use the SG-1 quadrature grid,99 whereas SG-2 is used for meta-GGA
functionals.100

Calculations reported below were performed using a locally
modified version of Q-Chem 5.4,101 which contains several different
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algorithms that can be used to optimize a non-aufbau determinant
that contains a core hole or fractional core hole.18 The simplest of
these is the maximum overlap method (MOM),82 and for the present
calculations, we have found it sufficient to use the “initial MOM”
(IMOM) algorithm.83 This differs from the original MOM proce-
dure only in that the reference orbitals used for computing overlaps
are not updated during the SCF iterations, but are taken from an ini-
tial closed-shell, integer-occupancy SCF calculation that is used to
obtain Einitial

0 (N) in Eq. (1). For the core-ionized states considered
here, we find that IMOM avoids variational collapse in all cases.

Element-specific relativistic corrections from Ref. 102 were
added to the absolute CEBEs: 0.14 eV for carbon, 0.28 eV for nitro-
gen, 0.51 eV for oxygen, and 0.85 eV for fluorine. (Similar values
have been used in other recent studies of K-shell ionization.39,103)
For molecules that have symmetry-equivalent atoms, the Boys local-
ization procedure104 is used prior to the ΔSCF and fractional-
occupancy calculations.

IV. RESULTS AND DISCUSSION
A. CORE65 dataset

Table II summarizes the accuracy of different functionals for
CEBEs in the CORE65 test set as computed using ΔSCF, STM, and
GSTM methods. (The ΔSCF errors are also summarized in Fig. 1.)
For GSTM, we consider the F[0; 3] + F[1; 3] (n = 3) method in
Table I. This requires four different SCF calculations and was con-
sidered also in Ref. 59. It has a leading error of O(E(5)/54) that
is lower, formally speaking, than any of the Slater-type methods
that are listed in Table I and allows us to test the limits of the
GSTM approach. Detailed results for the entire CORE65 dataset are
supplied in the supplementary material (Tables S3–S5) and will be
summarized here in terms of MAEs.

FIG. 1. MAEs for the CORE65 dataset obtained via ΔSCF calculations with
different XC functionals. Whiskers represent±1 standard deviation from the mean.

The best results are obtained from the SCAN functional whose
MAE at the ΔSCF level is 0.2 eV with respect to the experiment,
in accord with previous studies.21 This is considerably better than
the performance of the SRC1-r1 functional (MAE = 1.5 eV), which
is notable since SRC1-r1 was specifically parameterized for K-edge
excitation energies computed using time-dependent (TD-)DFT,92

although not specifically for CEBEs. Ionization energies may present
a more rigorous test, in which there is less opportunity for the
cancellation of self-interaction between initial and final states since
those two states have a different number of electrons in the case
of a CEBE. It is interesting to note that the ΔSCF errors obtained
using SCAN0 are slightly larger (MAE = 0.3 eV) as compared to the

TABLE II. MAEs (with respect to the experiment) for K-shell CEBEs in the CORE65 dataset using ΔSCF, STM, and GSTM methods. Within each row, the smallest error is shown
in boldface and the largest error is italicized.

Mean absolute error (eV)

Element Method SCAN SCAN0 B3LYP BH & HLYP ωB97X-V LRC-ωPBE LRC-ωPBEh SRC1-r1 HFX

All ΔSCF 0.19 0.29 0.23 0.69 0.47 0.76 0.47 1.47 0.41
C ΔSCF 0.13 0.28 0.24 0.79 0.48 0.78 0.46 1.65 0.38
N ΔSCF 0.12 0.22 0.14 0.61 0.45 0.79 0.46 1.43 0.35
O ΔSCF 0.27 0.30 0.23 0.58 0.46 0.74 0.51 1.25 0.52
F ΔSCF 0.54 0.56 0.36 0.80 0.57 0.60 0.34 1.27 0.17
All STM 2.71 2.25 1.39 1.38 1.83 0.99 1.00 2.08 0.45
C STM 2.33 2.03 1.32 1.43 1.74 0.84 0.90 2.22 0.47
N STM 2.67 2.19 1.33 1.28 1.82 0.98 0.99 2.05 0.33
O STM 3.13 2.49 1.49 1.33 1.93 1.17 1.10 1.92 0.52
F STM 3.71 2.90 1.75 1.53 2.12 1.41 1.26 1.96 0.24
All GSTMa 0.37 0.15 0.17 0.54 0.30 1.14 0.74 1.36 0.41
C GSTMa 0.40 0.12 0.13 0.65 0.28 1.14 0.73 1.58 0.36
N GSTMa 0.47 0.10 0.16 0.43 0.23 1.20 0.76 1.19 0.34
O GSTMa 0.30 0.21 0.25 0.42 0.38 1.12 0.76 1.16 0.53
F GSTMa 0.15 0.21 0.12 0.63 0.32 1.02 0.66 1.09 0.18

a F[0; 3] + F[1; 3] (n = 3)method from Table I.
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semilocal SCAN functional and are closer to the B3LYP results. As
compared to B3LYP or SCAN0, the BH & HLYP functional contains
a larger fraction of HFX and also exhibits notably larger ΔSCF errors
(MAE = 0.7 eV).

Other functionals, such as ωB97X-V, LRC-ωPBE, and
LRC-ωPBEh, also afford larger ΔSCF errors as compared to SCAN,
with MAEs of 0.5 eV for ωB97X-V and LRC-ωPBEh and 0.8 eV
for LRC-ωPBE. Regarding the LRC functionals, it is interesting to
note how the error is reduced by the addition of short-range HFX,
yet neither functional is as accurate as HF theory itself. There is
some precedent for this observation. In a recent ΔSCF study of
K-, L-, and M-shell ionization energies of Ni and Cu atoms, it was
found that HF calculations were more accurate than a broad array
of density functionals,29 although SCAN was not tested in that
work. In Ref. 39, the hybrid functional PBEh(α) was applied to the
CORE65 dataset, optimizing the fraction of HFX to minimize the
errors. The optimal fraction was found to be α = 0.45, affording
an MAE of 0.33 eV that is only slightly better than HF theory
(MAE = 0.41 eV).

We next address the performance of the STM and GSTM
approaches, which are quite different (for a given functional) as
compared to the ΔSCF results. The Slater-type methods are orbital-
based estimates of CEBEs, rather than many-electron descriptions,
and they depend on the accuracy of the Kohn–Sham one-particle
energy levels. Both delocalization error (whose magnitude may be
inferred by the performance of semilocal functionals) and local-
ization error (as inferred by the performance of HF calculations)
become critically important.

The performance of SCAN is considerably worse in the con-
text of STM than it was for ΔSCF, and although GSTM improves the
situation (as expected), its performance in conjunction with SCAN
remains inferior to that of various hybrid and LRC functionals. In

fact, the smallest STM errors are obtained using HF theory, suggest-
ing issues with delocalization error, although the SCAN0 functional
offers only a modest improvement upon SCAN results, and errors
for STM-SCAN0 remain large (MAE = 2.25 eV). The situation is
quite different for the GSTM approach, however. While the HF
errors are virtually unchanged with respect to the corresponding
STM results, both SCAN and the various hybrid functionals improve
significantly. The accuracy of GSTM-SCAN is on par with that of
HF theory whereas results with hybrid functionals are improved rel-
ative to HF theory, except in the case of the two LRC functionals.
Although errors for the F(1s) subset defy some of these trends, we
do not put much weight on that observation given that the CORE65
dataset contains only three data points for fluorine.

To further analyze the performance of the best of these meth-
ods, Fig. 2 plots absolute the CEBEs vs experiment using the ΔSCF,
STM, and GSTM methods in conjunction with the SCAN func-
tional. (The corresponding data computed using B3LYP are shown
in Fig. S1.) The ΔSCF results follow the experimental trend line quite
well, with little systematic error. In contrast, the STM and GSTM
methods exhibit a roughly constant shift with respect to experiment,
with STM calculations overestimating the CEBEs and GSTM results
underestimating them by a smaller amount.

In view of these systematic trends, we tested an empirically
shifted version of STM,

BEi ≈ −εi(1/2) + δi. (25)

Here, −εi(1/2) is the STM value of BEi and δi is an empirical
correction, computed according to

δi = β[εi(1/2) − εi(0)], (26)

FIG. 2. Calculated CEBEs vs experi-
ment, using the SCAN functional in con-
junction with the ΔSCF, STM, and GSTM
methods for (a) C(1s), (b) N(1s), (c)
O(1s), and (d) F(1s) ionization energies
in the CORE65 dataset.
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where β is an empirical parameter whose value depends on the cho-
sen XC functional. A correction of the form in Eq. (26) can be
derived based on a Taylor expansion of εi(q) around q = 1/2:

∂εi

∂q
∣

q=1/2
≈

Δεi

Δq
∣

q=1/2
= 2[εi(1/2) − εi(0)]. (27)

This suggests a value of β ≈ 2 although we treat β as a fitting para-
meter. Note that both εi(0) and εi(1/2) are already required for an
STM calculation. The value εi(0) comes from the integer-occupancy
SCF calculation, and orbitals obtained from that calculation serve
as a starting point for the fractional-occupancy SCF calculation
that is used to obtain εi(1/2). The correction δi can be under-
stood to eliminate differential self-interaction in the localized elec-
tronic response between the initial state and the core-ionized state.

At the same time, this correction compensates for higher order
terms in the Taylor expansion of Eq. (7), which are omitted in the
conventional STM.

Errors resulting from of this approach, for the CORE65 dataset
and using best-fit values of β, are summarized in Table III. (See
Table S6 for the full set of results.) The SCAN functional with
β = 3.2 yields considerable improvement over unshifted STM-SCAN
results, achieving a MAE of 0.15 eV that is smaller than the ΔSCF
error (0.19 eV) for the same functional. The shift δi improves the
results significantly for all functionals except HFX, although the
best-fit value of β differs considerably from one functional to the
next. Especially notable are BH & HLYP, where the MAE is reduced
to 0.5 eV (better than the corresponding ΔSCF error) and SRC1-r1,
for which the shifted STM error is 0.3 eV whereas the ΔSCF error is
1.5 eV. On the other hand, the SRC1-r1 functional requires a rather

TABLE III. Errors with respect to the experiment for K-shell CEBEs in the CORE65 dataset, computing using the empirically shifted STM approach.a

Mean absolute error (eV)b

SCAN SCAN0 B3LYP BH & HLYP ωB97X-V LRC-ωPBE LRC-ωPBEh SRC1-r1 HFX
Element (β = 3.2) (β = 4.7) (β = 2.1) (β = 8.8) (β = 3.2) (β = 1.2) (β = 1.8) (β = 15.2) (β = 0.2)

All 0.15 0.14 0.14 0.19 0.20 0.14 0.14 0.34 0.44
C 0.15 0.13 0.15 0.20 0.20 0.12 0.11 0.31 0.55
N 0.08 0.12 0.04 0.17 0.10 0.08 0.07 0.37 0.31
O 0.19 0.18 0.19 0.20 0.25 0.20 0.21 0.39 0.39
F 0.22 0.10 0.11 0.13 0.30 0.17 0.09 0.24 0.15
aUsing Eq. (25) plus an element-specific relativistic correction.
bLargest and smallest errors are indicated in italics and bold, respectively.

FIG. 3. K-shell CEBEs in the CORE65
dataset for (a) carbon, (b) nitrogen,
(c) oxygen, and (d) fluorine, computed
using an empirically shifted version of
STM-SCAN, Eq. (25) with β = 3.2.
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FIG. 4. MAEs for CORE65 test set according to some of the best-performing meth-
ods. In some cases, results from more than one (color-coded) method are shown
for the same XC functional. Error statistics for the GW methods are taken from
Refs. 39 and 40.

large fitting parameter (β = 15.2) in order to achieve this result. Safer
bets are the shifted STM-SCAN and shifted STM-B3LYP methods,
for which absolute CEBEs are plotted vs experiment in Fig. 3 and
Fig. S2, respectively.

A survey of the errors obtained using several of the best meth-
ods (including ΔSCF, GSTM, and empirically shifted STM with var-
ious functionals) is presented in Fig. 4, alongside results from several
variants of the GW method, which have recently been tested using
the same dataset.39,40 The shifted-STM approach achieves a MAE
of 0.14 eV in conjunction with any of several different function-
als: SCAN0, B3LYP, LRC-ωPBE, and LRC-ωPBEh. This is actually
slightly smaller than the MAE obtained using a variety of (consid-
erably more expensive) GW methods. The latter include the non-
self-consistent variant G0W0@PBEh(α), whose MAE is 0.33 eV,
the “eigenvalue self-consistent” evGW0@PBE approach (MAE
= 0.30 eV), and GW with Hedin shift, GΔHW0@PBE,40 whose
MAE is 0.25 eV. Moreover, these GW methods are not free from
empiricism. For example, G0W0@PBEh(α) uses a fraction of HFX
(α = 0.45) that has been adjusted in order to minimize errors
with respect to experimental CEBEs.39 GSTM methods based on
the SCAN0, B3LYP, and ωB97X-V also yield similar accuracy as
compared to the GW methods.

B. K-shell CEBEs for other molecules
To test the shifted-STM approach beyond the CORE65 dataset,

we next consider C(1s) ionization of ethyl trifluoroacetate. This
molecule has four carbon atoms whose K-shell ionization energies
are distinguishable, and as such it has been historically important in
understanding XPS chemical shifts.105 This molecule has also been
used to benchmark various theoretical methods.17,40,106,108,109 Our
own results for ethyl trifluoroacetate are listed in Table IV along-
side GW results from the literature.40,106 The SRC1-r1 and HFX
functionals are not considered due to their relatively large errors in
shifted-STM calculations.

Among the GW methods, the evGW0@PBE approach affords
the smallest MAE with respect to the experiment, 0.2 eV. The
ΔSCF calculations using SCAN, SCAN0, and B3LYP are also quite
accurate, but errors are larger for eliminate spaces in the acronym
BH&HLYP (MAE = 0.8 eV). Note that the absolute CEBEs in our
SCAN results are slightly different from those reported in Ref. 17
where a numerical orbital representation was used, but the differ-
ences do not concern us given the SCAN functional’s well-known
sensitivity to the quality of the numerical integration grid.110–112

As applied to ethyl trifluoroacetate, the original STM approach
exhibits errors of 1–2 eV for some of the functionals tested. How-
ever, shifted-STM values (using β parameters optimized for the
CORE65 test set) exhibit errors that are smaller than those obtained
using GW methods. The best shifted-STM results are obtained
with the LRC-ωPBEh functional, with a maximum error of only
0.04 eV for the four C(1s) ionization energies. However, none of
the functionals considered in Table IV exhibit any errors larger
than 0.17 eV. The β parameters therefore appear to be transferrable,
which is not altogether surprising given the element-specific
nature of XPS.

Finally, we tested the performance of the shifted-STM approach
for the adenine and thymine molecules, for which benchmark the-
oretical values are available at the level of fourth-order algebraic-
diagrammatic construction [ADC(4)].113 Error statistics compar-
ing the shifted-STM approach to these benchmarks are summa-
rized in Table V, where the dataset includes seven N(1s) CEBEs,
ten C(1s) CEBEs, and two O(1s) CEBEs, corresponding to all
of the heavy atoms in adenine and thymine. (The full set of
calculated CEBEs can be found in the supplementary material.)
Our results suggest that shifted-STM methods from various den-
sity functionals improve considerably upon the conventional STM
approach with minimal empiricism. As a result of the empiri-
cal correction, this method is even able to improve upon ΔSCF
results.

C. VtC x-ray emission
As a rather different application, we consider the usefulness

of the STM approach for VtC transitions in x-ray emission spec-
troscopy (VtC-XES), which is beginning to attract attention within
the quantum chemistry community.114–121 This application repre-
sents a first step in extending Slater-type approaches to core-excited
rather than core-ionized states. Within the context of DFT, VtC-
XES is typically simulated by applying linear-response TD-DFT to
a reference determinant that contains a core hole,114,120 as a ΔSCF
approach would require state-by-state constrained SCF calculations
to place an electron in each of the valence virtual orbitals. In con-
trast, using STM with just two SCF calculations, one can obtain
the entire spectrum. The first calculation computes conventional
integer-occupancy SCF orbitals, which are used as a starting point
for a fractional-occupancy calculation with ni = 1/2 in the core 1s
orbital. A full spectrum of excitation energies is computed from that
calculation using the formula

ΔEi→a = εa(1/2) − εi(1/2), (28)

in which both eigenvalues are computed from the same fractional-
electron calculation. The integer-occupancy calculation can be
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TABLE IV. Errors in the four C(1s) ionization energies of the ethyl trifluoroacetate molecule.

Individual errors (eV)a Overall (eV)

Method Functional C1 C2 C3 C4 Mean Max

evGW0
b PBE −0.70 −0.54 −0.19 −0.12 −0.36 0.36

evGW0
c PBE −0.41 −0.18 −0.04 −0.09 −0.18 0.18

G0W0
b PBEh(α = 0.45) 0.56 0.54 0.30 0.16 0.39 0.39

GΔHW0
b PBE −0.53 −0.44 −0.10 −0.02 −0.27 0.27

ΔSCF SCAN −0.24 −0.17 −0.03 0.08 −0.09 0.13
STM SCAN 2.13 2.17 2.30 2.35 2.24 2.24
GSTM SCAN −2.41 −2.30 −2.38 −2.33 −2.35 2.35
STM (shifted)d SCAN −0.28 −0.20 −0.05 −0.01 −0.14 0.14
ΔSCF SCAN0 0.23 0.32 0.18 0.21 0.23 0.23
STM SCAN0 2.08 2.15 1.97 1.94 2.03 2.03
GSTM SCAN0 −0.03 0.06 −0.11 −0.10 −0.05 0.07
STM (shifted)d SCAN0 0.01 0.12 0.00 −0.06 −0.02 0.05
ΔSCF B3LYP −0.01 0.11 0.11 0.20 0.10 0.11
STM B3LYP 1.15 1.26 1.22 1.26 1.22 1.22
GSTM B3LYP −0.29 −0.15 −0.16 −0.07 −0.17 0.17
STM (shifted)d B3LYP −0.04 0.08 0.06 0.09 0.05 0.07
ΔSCF BH & HLYP 0.90 1.05 0.63 0.61 0.80 0.80
STM BH & HLYP 1.62 1.75 1.28 1.21 1.47 1.47
GSTM BH & HLYP 0.75 0.91 0.50 0.47 0.66 0.66
STM (shifted)d BH & HLYP 0.19 0.36 0.02 −0.10 0.12 0.17
ΔSCF ωB97X-V 0.33 0.49 0.39 0.42 0.41 0.41
STM ωB97X-V 1.68 1.82 1.68 1.67 1.71 1.71
GSTM ωB97X-V 0.11 0.28 0.17 0.21 0.19 0.19
STM (shifted)d ωB97X-V 0.10 0.26 0.17 0.14 0.17 0.17
ΔSCF LRC-ωPBE −1.10 −0.94 −0.85 −0.78 −0.92 0.92
STM LRC-ωPBE 0.61 0.75 0.80 0.81 0.74 0.74
GSTM LRC-ωPBE −1.48 −1.30 −1.22 −1.14 −1.29 1.29
STM (shifted)d LRC-ωPBE −0.20 −0.05 0.00 0.01 −0.06 0.07
ΔSCF LRC-ωPBEh −0.6 −0.54 −0.54 −0.48 −0.56 0.56
STM LRC-ωPBEh 0.76 0.88 0.84 0.84 0.83 0.83
GSTM LRC-ωPBEh −0.99 −0.83 −0.83 −0.77 −0.85 0.85
STM (shifted)d LRC-ωPBEh −0.12 0.02 0.00 −0.01 −0.03 0.04
Experimente 299.45 296.01 293.07 291.20
Experimentf 298.93 295.80 293.19 291.47
aWith respect to experimental values from Ref. 105.
bFrom Ref. 40.
cFrom Ref. 106.
dUsing β from Table III.
eFrom Ref. 107.
fFrom Ref. 105.

reused for different spectra but a different fractional-electron cal-
culation is needed for each occupied orbital i that is excited.
All final states (virtual orbitals a) are obtained from the same
calculation.

Results are shown for several small molecules in Table VI for
VtC transitions of second-row elements where reliable experimental
data are available. No empirical shift has been employed; neverthe-
less, results obtained using the B3LYP functional are quite good,

with an MAE of 0.8 eV. This can be compared to results for the
same dataset that have been obtained using many-body methods
including EOM-CCSD (MAE = 0.5 eV) and ADC (MAEs rang-
ing from 0.3 to 1.5 eV depending on the particular variant of
ADC).119 It is possible that the STM results might be improved
further by empirical shifting, and we hope to provide a more
complete evaluation of (G)STM methods for core-excited states in
due course.
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TABLE V. Error statistics in K-shell CEBEs for adenine and thymine, as compared to
ADC(4) benchmarks.a

MAE (eV)b

Functional Method Adenine Thymine

SCAN ΔSCF 0.17 0.24
SCAN STM 2.28 2.49
SCAN GSTM 0.63 0.46
SCAN Shifted-STMc 0.19 0.20

SCAN0 ΔSCF 0.19 0.41
SCAN0 STM 1.91 2.12
SCAN0 GSTM 0.28 0.19
SCAN0 Shifted-STMc 0.14 0.23

B3LYP ΔSCF 0.15 0.22
B3LYP STM 1.05 1.23
B3LYP GSTM 1.52 0.27
B3LYP Shifted-STMc 0.13 0.23

BH & HLYP ΔSCF 0.41 0.64
BH & HLYP STM 1.04 1.18
BH & HLYP GSTM 0.27 0.56
BH & HLYP Shifted-STMc 0.17 0.37

ωB97X-V ΔSCF 0.41 0.61
ωB97X-V STM 1.58 1.77
ωB97X-V GSTM 0.14 0.31
ωB97X-V Shifted-STMc 0.13 0.36

LRC-ωPBE ΔSCF 1.00 0.84
LRC-ωPBE STM 0.73 0.90
LRC-ωPBE GSTM 1.36 1.22
LRC-ωPBE Shifted-STMc 0.13 0.20

LRC-ωPBEh ΔSCF 0.68 0.52
LRC-ωPBEh STM 0.75 0.91
LRC-ωPBEh GSTM 0.96 0.82
LRC-ωPBEh Shifted-STMc 0.12 0.23
aBenchmarks from Ref. 113.
bSmallest MAEs are shown in boldface.
cUsing β from Table III.

V. CONCLUSIONS
We have quantified the performance of various density-

functional approaches for computing K-shell electron binding ener-
gies corresponding to the ionization of C(1s), O(1s), N(1s), and F(1s)
orbitals. As a baseline (for any given functional), we provide com-
prehensive benchmarks for the ΔSCF or “full core hole” approach,
although our real interest lies in methods based on Slater’s tran-
sition concept using fractional-occupancy SCF calculations. This
provides a means to compute core-level transition energies directly
from Kohn–Sham orbital energy levels and may offer more chem-
ical insight into the nature of chemical shifts in x-ray transitions,
which could be rationalized in terms of shifting MO energy levels.
The convenience of STM-based methods also represents a first step
toward modeling transient x-ray experiments directly in terms of
one-particle energy levels.

TABLE VI. VtC-XES results (in eV) using STM(B3LYP), as compared to experiment.

Molecule Transition Expt.a STM error

CH4 1t2 → 1a1 276.3 −0.2

CH3OH
2a′′ → 2a′ 281.2 0.8
7a′ → 2a′ 279.5 0.6
6a′ → 2a′ 277.4 −0.3

NH3
2a1 → 1a1 395.1 −1.7
1e→ 1a1 388.8 −0.3

H2O
1b1 → 1a1 527.1 −1.8
3a1 → 1a1 525.4 −1.9
1b2 → 1a1 521.0 −1.2

CH3OH
2a′′ → 1a′ 527.8 −0.7
7a′ → 1a′ 526.1 0.2
6a′ → 1a′ 523.9 −0.2

C2H5OH 3a′′ → 1a′ 528.0 −0.4
10a′ → 1a′ 526.4 −0.1

CH3F 2e→ 1a1 678.6 0.6
5a1 → 1a1 675.6 −0.9

aTaken from Ref. 119.

When used with the SCAN or B3LYP functionals, the base-
line ΔSCF procedure achieves an MAE of 0.2 eV as compared to
experiment (upon inclusion of atomic relativistic corrections and
using a converged basis set), which is more accurate than other
functionals tested, although SCAN0 is competitive and ωB97X-V
exhibits a MAE of 0.5 eV. The SRC1-r1 functional performs sur-
prisingly poorly (MAE = 1.5 eV), despite having been parameterized
for K-edge XAS using TD-DFT. STM-based methods are signifi-
cantly less accurate but GSTM methods, which use more than one
fractional-electron SCF calculation, can achieve MAEs of 0.2–0.3 eV
for the same dataset, using functionals including SCAN0, B3LYP, or
ωB97X-V.

Most importantly, we find that an empirically shifted version
of the conventional STM reduces the aforementioned errors below
0.2 eV for a variety of functionals. This approach requires only
two SCF calculations: a conventional one for the ground state of
the neutral molecule, followed by a single, edge-specific fractional-
electron calculation for the core-ionized state. This is a cost com-
parable to that of ΔSCF and affords accuracy that is competitive
with the best variants of GW, all of which are considerably more
expensive. Tests for a variety of main-group compounds suggest
that this shifted-STM approach affords accurate chemical shifts
as well.

Together, these results suggest that the shifted-STM technique
is a useful computational tool, especially in cases where GW or ΔSCF
calculations are expensive or otherwise inconvenient. It is also of
interest to extend this method to core-excited states rather than the
core-ionized states that are primarily considered here. As a first step
in that direction, we report VtC-XES transitions for a benchmark
set of molecules. Even without empirical shifting, STM results are
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competitive with many-body theory. Unlike ΔSCF, this approach
allows for a spectrum of transitions to be computed in a single shot,
similar to TD-DFT but without the need for large shifts in the exci-
tation energies122 or specialized functionals.92 We will report more
fully on this approach in the future.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete dataset for all
methods tested.
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