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ABSTRACT: A fragment-based method for computing vertical excitation
energies of molecular clusters is introduced based on an ab initio
implementation of a Frenkel−Davydov exciton model consisting of singly
excited monomer basis states. Our strategy is to construct and diagonalize the
exact Hartree−Fock Hamiltonian in such a basis. Matrix elements between
nonorthogonal determinants are computed via the corresponding orbital
transformation and the resulting generalized eigenvalue problem is solved to
determine collective excitation energies and wave functions. The basis may be
expanded to include higher-lying fragment excited states in order to account
for interfragment polarization effects. Absolute errors of ≲0.1 eV (relative to
supersystem methods) are achievable for systems such as water clusters and
crystalline arrays of organic chromophores such as pentacene and
napthalenediimide. Preliminary tests for a nine-chromophore subunit of an organic nanotube suggest that it is possible to
target the optically bright state, even when it is a high-lying excitation, by using carefully selected basis states. The highly parallel
nature of this method provides a foundation for further developments to treat collective excitations in large molecular assemblies.

I. BACKGROUND

Quantum chemical calculations of excited-state properties have
played an important role in numerous fields of modern
chemical research, such as solar energy conversion,1−3 nano-
materials,4,5 and more. However, the potential of quantum
chemistry as a tool that can dramatically benefit the research
and development of novel materials is only beginning to be
realized. The challenge for excited-state methods, as with much
of quantum chemistry, is the highly nonlinear scaling of the
computational cost; even the cheapest excited-state methods
formally scale as N( )4 with system size.6 Assemblies of
electronically coupled chromophores (such as molecular
crystals, or the light harvesting complex in the photosynthetic
reaction center) pose special problems in this respect, insofar as
the excited states may be delocalized over multiple
chromophores. Such cases require especially large quantum-
chemical model systems.
On the computational side, it has been the case for some

time that single-threaded CPU performance has essentially
reached an asymptotic limit. Today, Moore’s Law is realized by
improvements in concurrent multithreaded performance by the
continued addition of processor cores to computer systems.
Modern supercomputers include of tens of thousands of CPU
cores, and even an average workstation may have dozens, and
these numbers are only increasing. To continue to push the
boundaries of quantum chemistry research, algorithms must be
designed to scale efficiently across these massively parallel, peta-
scale architectures. The simplest way to do so is to exploit the
“embarrassing parallelizability” of an algorithm whose effort can

be subdivided into a large number of completely independent
processes.
Here, we introduce a novel method for computing excitation

energies for systems of weakly interacting fragments such as
liquids or molecular aggregates. The method is based on the
molecular exciton model that was first introduced by Frenkel in
1931,7 who described the excited states of solids as super-
positions of excitation waves. This idea was further expanded by
Davydov in 1964,8 who wrote the Hamiltonian for a molecular
crystal as
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where Ĥn is the Hamiltonian operator for the molecule located
at lattice site n, and V̂mn is the coupling between sites. Energy is
variationally minimized and solutions to the requisite secular
equation have the form

∑ ∑ ∏ϕ ϕΨ =
≠

kI
n i

n
i

n
i

m n
m

(2)

Here, ΨI is the Ith excited state of the supersystem and ϕn
i is the

ith singly-excited eigenstate of the nth monomer unit, whereas
ϕm is the wave function for monomer m in its ground state.
It is important to make clear the physics that distinguishes

excitonic behavior, in no small part because “exciton” is a
confusing term in the literature. We take “exciton” to mean an
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excited state of a collection of chromophores that is delocalized
across one or more of them but which can nevertheless be
represented as a linear combination of excited states that are
spatially localized on particular subunits. This representation is
the fundamental ansatz that we make in putting forth an
“exciton model”. Note that cases where the excitation is actually
localized on one subunit emerge naturally as a special case.
Molecular (as opposed to solid-state) exciton theory has been
applied in the past to explain the spectroscopic behavior of
oligomeric systems of interest in biology and photosynthesis9

and, more recently, in characterizing the aggregation of light
harvesting complexes.10

Historically, the coupling matrix elements between direct-
product basis states were computed as Coulomb integrals over
transition densities,11 or even more simply within a dipole
approximation. Some improvements beyond this have been
made, as summarized in ref 12, but electronic overlap and
exchange effects are still typically neglected. More recently, new
approaches have been developed that construct and diagonalize
an effective Hamiltonian projected onto an excitonic basis,13,14

with the aim of reducing computational cost as compared to
construction and diagonalization of the full Hamiltonian for the
aggregate.
As an alternative, we present a fully ab initio implementation

of the original Frenkel−Davydov exciton model. The full
Hartree−Fock Hamiltonian is diagonalized in a basis of singly
excited fragments, as in eq 2, so that the Coulomb and
exchange interactions from Hartree−Fock theory are treated
exactly, as is the nontrivial overlap of the fragment wave
functions. The basis states are constructed by forming direct
products of configuration state functions computed from Nfrgm

independent fragment self-consistent field (SCF) calculations
and results in a basis whose dimension is at least Nfrgm + 1,
including the direct-product ground state. Fragment states used
to construct the basis are adiabatic in the sense that they are
determined in the absence of interfragment interactions. The
basis space can be expanded to include higher-lying fragment
excitations, which increases the flexibility of the direct-product
ansatz, or to include charge-transfer basis states to explore the
mixing of neutral and charge-transfer excitons. To the best of
our knowledge, our approach is the first to include exact
Hartree−Fock exchange interactions in the excitonic coupling.
These prove to be crucial for accuracy at short intermolecular
distances.
In its current implementation, the aggregate CPU time

required for our method scales more steeply, as a function of
system size, than does the CPU time required for traditional
supersystem methods such as configuration interaction singles
(CIS). However, the overwhelming computational bottleneck
in our approach is calculation of individual matrix elements of
the exciton Hamiltonian, and these concurrent tasks are
embarrassingly parallelizable. As such, the required wall time
should be reduced in nearly direct proportion to the number of
available CPU cores. We provide examples of several exciton
calculations for relevant systems of interest where this
combination of parallelism and a priori simplification of the
problem based on chemical intuition results in significantly
reduced wall times and memory requirements, relative to a
traditional supersystem calculation, while maintaining accuracy
of ≲0.1 eV with respect to supersystem CIS results.

II. THEORY
A. Direct-Product Configuration State Function Basis.

The strategy of our ab initio fragment exciton approach is to
construct and diagonalize the Hamiltonian in an excitonic basis
made up of direct products of fragment configuration state
functions (CSFs). The fragment CSFs are computed from
ground- and excited-state SCF calculations for the independent
fragments. CSFs on different fragments are generally non-
orthogonal and may be comprised of multiple determinants.
The notation we use is as follows: for fragment M, ΨM indicates
a CSF, ΦM indicates a Slater determinant, ϕp

M is a molecular
orbital (MO), and nM indicates the total number of occupied
orbitals, including both α and β spin states. The total number of
occupied orbitals in the system of Nfrgm fragments is denoted by
N.
Consider a system of two chromophores, A and B, and a

direct product state |ΨA*ΨB⟩ involving excitation of fragment A.
The ground-state CSF for fragment B,

ϕ ϕ ϕ|Ψ ⟩ = |Φ ⟩ = ···
n
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B B
B

B B
n
B
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is a single Slater determinant constructed from a set of SCF
MOs. The spin-adapted CSF for the excited fragment A,

∑ ∑|Ψ*⟩ = |Φ ⟩
σ α β
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is a linear combination of singly substituted determinants |ΦA
ia⟩

weighted by CI coefficients Cσ
ia that are computed for the spin-

restricted singlet or triplet state of each isolated fragment. We
use restricted SCF calculations for the fragments, so the spatial
orbitals and CI coefficients are identical, up to a possible sign
change, for α and β spin, but we must treat both spin
components explicitly in order to account for spin coupling
between states. The overall excitonic basis state can then be
written
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For clarity, the notation in eq 5 only includes two fragments,
A and B. More generally, basis states |ΨA*ΨBΨC···⟩ will simply
append ground-state (MOs) ϕ1

Cϕ2
C···ϕnC

C , etc., to the Slater
determinant in eq 5. In this way, every basis state includes all of
the occupied MOs for the entire system. This stands in contrast
to traditional exciton theory that considers only pairwise
Coulomb interactions of the excited sites and neglects the
overlap of the remaining fragments. In order to include
nonpairwise additivity in the exchange interactions, and
therefore enforce antisymmetry in the excitonic wave functions,
all MOs must be included. However, the fragment MOs
computed from independent SCF calculations are not
orthogonal therefore the excitonic basis states are not
orthogonal. Therefore, overlap matrices must be computed,
in addition to matrix elements of the Hamiltonian, a
generalized eigenvalue problem must be solved. These matrix
elements between CSFs are

∑ ∑⟨Ψ*Ψ |Ψ Ψ*⟩ = ⟨Φ Φ |Φ Φ ⟩
σ τ

σ τC CA B A B
ia kb

ia kb
A
ia
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∑ ∑⟨Ψ*Ψ | ̂ |Ψ Ψ*⟩ = ⟨Φ Φ | ̂ |Φ Φ ⟩
σ τ

σ τH C C HA B A B
ia kb

ia kb
A
ia

B A B
kb

(6b)
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In our spin-restricted implementation there are only two
distinct spin multiplicity terms for each pair of transitions. The
sign of the coupling term is derived from the spin of the
fragment: positive for singlet and negative for triplet. This, in
turn, determines the spin of target state.
B. Natural Transition Orbital Representation. In order

to minimize the number of terms in eq 6, we transform the
fragment excited states into the natural transition orbital
(NTO) basis.15−17 The nM

occ × nM
virt single-particle transition

density matrix, T, couples occupied and virtual orbitals with
coefficients Cia from a CIS or time-dependent density
functional theory (TDDFT) calculation, the latter performed
within the Tamm−Dancoff approximation (TDA).18 NTOs are
computed from a singular value decomposition of T:16

Λ = †OTN (7)

Here, O and N are separate unitary transformations of the
canonical occupied and virtual MOs, respectively, which
transform these orbitals into a set of (state-specific) paired
hole and particle NTOs. This transformation reduces the
dimension of the CI expansion to no more than nM

occ particle-
hole excitations and the diagonal matrix Λ contains the
coefficients of these excitations in the NTO basis. This results
in no more than nM terms for a single excited state and no more
than nAnB terms in eq 6. Similarly, only nAnB appear in the more
general expression for ⟨ΨA*ΨBΨC···|Ĥ|ΨAΨB*ΨC···⟩.
In practice, the number of significant NTOs needed for the

CSF expansions depends on the size and complexity of the
fragment; for small molecules, we typically find that only one or
two Λi are significant. The NTO expansions may therefore be
truncated at a specified fraction of the excitation amplitude
(norm of T) in order to reduce the length of the summations in
eq 6.
C. Corresponding Orbital Transformation. To compute

matrix elements between nonorthogonal Slater determinants,
we turn to the corresponding orbital transformation of Amos
and Hall.19 For a given term in eq 6, the two sets of spin
orbitals associated with the bra and ket will be denoted l and r,
respectively. The sets are Schmidt-orthogonalized among
themselves and expanded in a common atomic orbital (AO)
basis, {χ}:

χ
χ

=
=

l L

r R (8)

Let SLR = L†SR denote the (nondiagonal) overlap matrix
between the left (L) and right (R) sets of orbitals, where S
denotes the AO overlap matrix. We can then apply left and
right unitary transformations that diagonalize SLR but leave the
original Slater determinants unchanged, except possibly for a
phase that is equal to the determinant of U† or V†:

= ̃ ̃ = ̃† † †U L SRV L SR sLR (9)

Here, s ̃LR is diagonal and the matrices U and V are computed
from the singular value decomposition of SLR.
The corresponding orbitals transformation leads to a set of

generalized Slater−Condon rules20 that may be used to
compute the Hamiltonian and overlap matrix elements in
terms of the AO basis. The overlap matrix element is

∏Ξ = ⟨Φ Φ |Φ Φ ⟩ = ̃† sU Vdet( )det( )A
ia

B A B
kb

i

N

ii
LR LR

(10)

Note that the transformations L and R depend, implicitly, on
the MOs ϕi

A, ϕa
A, ϕk

B, and ϕb
B that are involved in the excitation,

but for brevity the indices in question are subsumed into the
“LR” in ΞLR. The corresponding matrix element of Ĥ can be
written

⟨Φ Φ | ̂ |Φ Φ ⟩ = Ω + ΩHA
ia

B A B
kb
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2
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where
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and
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The interaction terms for α and β electrons are computed
explicitly, so

Ω = Ω + Ωα β
1
LR

1
LR

1
LR

(14)

and

Ω = Ω + Ω + Ω + Ωαα ββ αβ βα
2
LR

2
LR

2
LR

2
LR

2
LR

(15)

where the spin coupling terms in eq 15 cause the
antisymmetrized AO integrals, ⟨λμ||ρν⟩ in eq 13, to be replaced
with with Coulomb integrals ⟨λμ|ρν⟩. This fundamentally
comes from the vanishing of the exchange contributions to the
generalized density matrices in the αβ case, reflecting the lack
of exchange interaction between α and β densities.

III. ACCURACY
A preliminary version of our ab initio fragment molecular
exciton method has been implemented in a developer’s version
of the Q-Chem electronic structure program.21,22 Unless
otherwise noted, all fragment and supersystem calculations
were carried out at the CIS level of theory, and “error” in
excitation energies obtained for the exciton models is defined
with respect to a supersystem CIS calculation using the same
basis set. (Since our exciton model is based on the Hartree−
Fock Hamiltonian, this is the most appropriate comparison.) A
few calculations use monomer basis states computed from
density functional theory (DFT), but these results will
nevertheless be compared to supersystem CIS calculations
because matrix elements of the exciton Hamiltonian are
evaluated at the Hartree−Fock level. In this sense, DFT serves
only as an alternative means to obtain basis states but does not
fundamentally change the exciton model. Unless otherwise
noted, the 6-31G basis set was used for all calculations except
those for Hen, for which the 6-311G basis set was used.

A. Linear Helium Chains. Linear chains of He atoms (with
each atom separated by the He2 equilibrium distance of
1.581978 Å) are a potentially difficult test system as their
excited states tend to be fully delocalized across the entire
chain. Figure 1 plots errors in excitation energies for Hen chains
(n = 2−30) computed using our exciton model. Results are
shown for a variety of exciton bases.
There are two primary approximations in our model. First,

the isolated fragment excited states are computed in the
absence of interactions with the surrounding fragments. The
severity of this approximation can be reduced by including
higher-lying fragment excited states in the direct-product basis,
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which add variational flexibility and allow the excitonic wave
functions to deform in response to interfragment perturbations.
For the weakly polarizable Hen test systems, however, this
approximation is not a significant source of error.
The second approximation is fundamental to the exciton

model itself: we assume that each supersystem excitation can be
described as a linear combination of excitations localized on
individual subunits. Helium chains put this assumption to the
test, because their excited states qualitatively resemble those of
a particle in a one-dimensional box. Our data show that even
such highly delocalized states are well described by the model,
so long as the fragment size is sufficient to capture the
(relatively localized) charge transfer character of the excited
state. For triplet and singlet excited states, fragments made up
of two and three He atoms, respectively, are adequate to
achieve reasonable accuracy (Figure 1). That the description of
singlets requires additional fragment states, relative to the
triplet case, makes sense in view of the fact that Pauli repulsion
tends to delocalize singlet excitations to a greater extent than
triplet excitations. Analysis of the supersystem NTOs for He10
(Figure 2) shows that the overall excitation is well represented

as a combination of relatively localized excitations, the sizes of
which correspond roughly to the two and three He atoms per
fragment that afford good results in the triplet and singlet
exciton models, respectively.

B. Water Clusters. The collective nature (or lack thereof)
of the excited states of water has been a subject of some
debate.23 We have used our method to compute the excitation
energies of water clusters at their equilibrium geometries and
the results are given in Figure 3. (Geometries are MP2/cc-
pVDZ, from ref 24.) Relative to the Hen results, the excited
states of (H2O)n are not well represented by adiabatic fragment
states, as reflected in the large errors reported in Figure 3. By
including three excitations per H2O fragment, however, we
obtain excellent agreement with supersystem calculations, with
errors that are generally less than 0.1 eV. We find that these
results are robust with respect to the choice of AO basis set as
well, and similar results are obtained in the 6-31+G* basis.
We select an (H2O)7 cluster from our test set as an

illustrative example. As shown by the NTOs in Figure 4, the
excitation primarily involves transitions localized on monomers
1 and 3 with minimal intermolecular excitation transfer.
Comparing this picture to the coefficients of the exciton
eigenvector computed with our method, as provided in Table 1,
we find that the excitonic wave function is dominated by basis

Figure 1. Absolute errors (relative to a supersystem CIS/6-311G
calculation) in the excitation energy predicted by the exciton model for
the lowest triplet and singlet states of Hen chains. Results are shown
for several versions of the exciton model, using fragments ranging in
size from He to He3, in conjunction with an excitonic basis consisting
of 1−3 excited states per fragment. CIS/6-311G calculations are used
also for the fragments. The number of NTOs retained per fragment is
equal to the number of He atoms per fragment, as this is sufficient to
recover essentially the full norm of the transition density matrix.

Figure 2. Plots of the two dominant NTOs for the lowest singlet and
triplet excitations of a He10 chain. (An isosurface value of 0.05 au is
used in each case.) Each pair of particle/hole NTOs for the triplet
state accounts for 38.5% of the norm of the transition density matrix,
while in the singlet case the two NTO pairs account for 60.3% (upper
pair) and 24.1% (lower pair) of the norm.
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states involving excitation of precisely these two water
monomers. This behavior is typical and shows how the exciton
approximation still captures the fundamentals of the super-
system excited state for realistic molecular clusters. Note that
the relative magnitude of the dominant states are reversed
when compared to the corresponding localized NTO
amplitudes. This is due to neglect of intermolecular polar-
ization, and largely disappears when higher-lying monomer
excited states are included in the excitonic basis.

C. Alternative Basis States. An exciton approach is
essentially a variational energy minimization in a strategically
chosen trial basis. Accordingly, determination of the fragment
orbitals for the basis states need not be limited to a particular
quantum chemistry method, so long as they accurately
represent the excited state(s) of the fragment. Kohn−Sham
orbitals and TDA-TDDFT coefficients Cia offer a basis that
includes some intrafragment electron correlation. It is also well-
known that Kohn−Sham orbitals are more representative of
electronic excitations as compared to Hartree−Fock orbitals,25

which bear more resemblance to ionized states. Indeed, we find
that NTO expansions are generally more compact for TDDFT
excited states as compared to their CIS counterparts, which
proves useful in reducing computational time when the
monomer units are large (see Section III.D). Here, we use
the B3LYP functional to compute monomer basis states for
water clusters. The results, shown in Table 2, demonstrate that
the B3LYP-based approach is slightly more accurate for water
clusters, as compared to the same exciton model constructed
from CIS monomer wave functions. (This conclusion is not
true for all of the systems that we have explored, however; see
below.)
For systems comprised of polar monomers, another way to

augment the adiabatic approximation is to compute monomer
wave functions in the presence of some classical representation
of the electrostatic environment of the supersystem, for
example, by embedding the monomer calculations in a field
of atom-centered point charges on the other monomers. The
variational “XPol” (explicit polarization) approach of Xie et al.26

uses a self-consistent charge embedding procedure to
accomplish this, and here, we use XPol in conjunction with
“ChElPG” charges that are fit to reproduce the molecular
electrostatic potential outside of the van der Waals region. (See
refs 27 and 28 for details of the combined XPol + ChElPG
algorithm.) The polarized MOs generated by the XPol
procedure are then used to perform CIS calculations on the
fragments.
Results in Table 2 show that the use of XPol wave functions

significantly enhances the accuracy of the exciton model for
water clusters; in particular, use of a single XPol CIS state per
monomer is as accurate as three adiabatic (gas-phase) states per
monomer. This combination presents a highly appealing route
for economical excited-state calculations in clusters, providing
accuracy within 0.2 eV of supersystem calculations with only a
minimal basis.

D. Results for Large Systems. We next consider whether
comparable accuracy is maintained in larger systems. Table 3
shows errors in the exciton model for several snapshots of a
(H2O)57 cluster and a (H2O)117 cluster that were extracted
from simulations of liquid water. The errors for these systems
tend to be less than similar calculations in Table 2 including
one excitation per fragment. The water molecules from these
simulations are generally further apart than those in equilibrium
(i.e., cluster) geometries with fewer hydrogen bonds between

Figure 3. Absolute errors for the lowest triplet and singlet excitation
energies for various isomers of water clusters, relative to supersystem
CIS/6-31G excitation energies. The various colors refer to different
cluster isomers.

Figure 4. Plots of the two dominant NTOs for the first triplet
excitation of an (H2O)7 cluster. The NTO particle/hole pairs account
for 76% and 14% of the overall transition, respectively. (The isosurface
value for all plots is 0.05 au.) Numbers indicate the monomer index of
the adjacent molecule.
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adjacent molecules. This results in weaker interfragment
interactions such that the unperturbed fragment MOs better
represent the supersystem than they do in the case of
geometry-optimized clusters. Furthermore, increasing the
number of fragments effectively increases the variational space

and stabilizes the excited states, as can be seen by the decrease
in error going from the (H2O)53 to (H2O)117.
Tests for clusters of conjugated organic chromophores are

shown in Table 4. These include clusters of pentacene, C22H14,
a material that has been widely discussed in the context of
singlet fission,29 along with clusters of a methylated
napthalenediimide (NDI) chromophore that forms the basic
building block of a self-assembling nanotube.4,5 These
structures are shown in Figure 5. (The pentacene cluster is
obtained from the crystal structure of the “LT” polymorph
reported in ref 30. Structural parameters for the NDI nanotube
were obtained from ref 5.) We find that the exciton model
affords excellent agreement with supersystem calculations for
these systems, with errors as low as 0.01 eV; however, the
accuracy is highly sensitive to the choice of fragment MOs
included in the basis. As compared to previous examples, the
NTO expansions for these more complex molecular fragments
include a greater number of significant terms that must be
included in eq 6 for the matrix elements. Whereas in previous

Table 1. Amplitudes for the First Triplet Excitation of the (H2O)7 Cluster Shown in Figure 4

monomer

1 2 3 4 5 6 7

one state per monomer
0.581 −0.000 0.813 −0.001 −0.009 −0.009 0.000

three states per monomer
state 1 0.832 −0.000 0.078 −0.001 −0.010 −0.000 0.000
state 2 0.034 0.000 −0.000 −0.000 0.003 0.000 −0.000
state 3 0.421 −0.000 −0.353 −0.000 0.020 −0.000 0.000

Table 2. Mean Unsigned Errorsa (MUEs, in eV) for S0 → S1 and S0 → T1 Excitation Energies for Small Water Clusters
Computed Using Various Exciton Models

no. of water molecules

basis state 2 3 4 5 6 7 8 9 10

HF/6-31G (1 state) T1 0.09 0.57 0.77 0.54 0.77 0.65 1.06 0.88 0.82
S1 0.14 1.14 0.90 0.65 0.91 0.79 1.25 1.04 0.98

HF/6-31G (2 states) T1 0.09 0.57 0.71 0.53 0.76 0.65 1.04 0.87 0.81
S1 0.12 0.08 0.08 0.08 0.07 0.13 0.11 0.07 0.12

HF/6-31G (3 states) T1 0.09 0.08 0.08 0.06 0.06 0.13 0.09 0.06 0.10
S1 0.12 0.08 0.08 0.09 0.09 0.14 0.12 0.08 0.14

HF/6-31+G* (1 state) T1 0.21 0.51 0.65 0.52 0.68 0.66 0.96 0.77 0.75
S1 0.27 0.61 0.77 0.65 0.82 0.80 1.15 0.92 0.94

HF/6-31+G* (2 states) T1 0.20 0.50 0.63 0.51 0.66 0.65 0.94 0.75 0.74
S1 0.15 0.18 0.21 0.21 0.22 0.22 0.38 0.24 0.33

HF/6-31+G* (3 states) T1 0.13 0.13 0.15 0.14 0.15 0.15 0.21 0.14 0.21
S1 0.16 0.19 0.26 0.28 0.32 0.36 0.52 0.43 0.60

B3LYP/6-31G (1 state) T1 0.01 0.48 0.65 0.44 0.64 0.55 1.00 0.52 0.66
S1 0.05 1.01 0.74 0.52 0.74 0.63 1.11 0.64 0.78

B3LYP/6-31G (2 states) T1 0.01 0.47 0.64 0.44 0.63 0.54 0.98 0.51 0.65
S1 0.04 0.47 0.06 0.04 0.06 0.13 0.28 0.27 0.02

B3LYP/6-31G (3 states) T1 0.01 0.02 0.06 0.04 0.05 0.12 0.28 0.27 0.03
S1 0.04 0.47 0.06 0.04 0.06 0.12 0.28 0.27 0.02

XPol-HF/6-31G (1 state) T1 0.06 0.06 0.07 0.07 0.06 0.06 0.14 0.08 0.10
S1 0.11 0.06 0.07 0.08 0.07 0.07 0.16 0.08 0.11

XPol-HF/6-31+G* (1 state) T1 0.10 0.17 0.65 0.52 0.68 0.66 0.98 0.77 0.75
S1 0.13 0.20 0.77 0.65 0.82 0.80 1.19 0.92 0.94

XPol-HF/6-31+G* (2 state) T1 0.10 0.17 0.24 0.22 0.27 0.25 0.57 0.29 0.47
S1 0.10 0.20 0.25 0.24 0.27 0.28 0.38 0.34 0.32

XPol-HF/6-31+G* (3 state) T1 0.07 0.12 0.16 0.14 0.16 0.16 0.27 0.18 0.22
S1 0.10 0.17 0.20 0.20 0.23 0.21 0.38 0.23 0.31

aWith respect to a supersystem CIS calculation using the same AO basis set.

Table 3. Absolute Errorsa (in eV) in S0 → S1 and S0 → T1
Excitation Energies for Large Water Clusters Extracted from
a Simulation

(H2O)57 (H2O)117

snapshot T1 S1 T1 S1

1 0.154 0.232 0.054 0.148
2 0.106 0.177 0.049 0.084
3 0.246 0.323 0.046 0.159
4 0.181 0.261
5 0.296 0.178

aWith respect to a supersystem CIS/6-31G calculation, using a one-
state Hartree−Fock basis.
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examples we included a fixed number of NTOs, in these
examples, it is prudent to truncate the expansions at some fixed
fraction of the excitation amplitude. We have found that a
threshold of 85% of the norm of T provides a reasonable
balance of performance and accuracy.
The use of fragment MOs from DFT calculations, in this case

calculated with the B3LYP functional, is another means of
reducing the computational cost since their NTO expansions
tend to include fewer terms. For the examples in Table 4,
however, we find that the use of B3LYP MOs in the exciton
model degrades the accuracy of the excitation energies
somewhat, so the errors of ∼0.3 eV arise in the case of
B3LYP orbitals whereas with Hartree−Fock MOs the errors
were ≲0.1 eV. It should be recalled that “error” here is defined
with respect to a supersystem CIS calculation; further testing is
required to understand whether these larger B3LYP errors are

related to this choice of supersystem reference calculation, to
the B3LYP functional in particular, or to the use of Kohn−
Sham MOs in general.

E. Comparison to the Renormalized Exciton Model.
Recently, Ma and co-workers13,14 developed a “renormalized”
exciton model (REM), in which an effective Hamiltonian is
constructed by projecting various n-body Hamiltonians (for n =
2 or 3 subunits) onto an excitonic direct-product basis. In Table
5, we compare the results of that approach to the present

Frenkel−Davydov-type model, in the case that both techniques
employ CIS/STO-6G wave functions. As with the linear helium
chains, this is an extreme case due to the highly delocalized
nature of the excited states, and results using our method are
rather poor when the excitonic basis is constructed from H2
dimers. Adding higher-lying excited states does not improve the
situation, because it is delocalization rather than polarization
that limits the accuracy in these cases. However, results are
improve significantly when larger segments of the chain are
used to construct the basis states, and for basis states
constructed using half the chain [(H2)n/2 in Table 5], errors
in the S0 → T1 excitation energy are comparable to those
obtained using REM-CIS, although generally larger for the S0
→ S1 excitation.
In comparison, the REM-CIS results do an impressive job of

capturing these highly delocalized excitations using smaller
monomer units. Note, however, that extension of the REM
approach to more realistic three-dimensional systems is slightly
complicated, given that the number of n-body interactions
included in the REM effective Hamiltonian scales as (n

N) for N
fragments. Terms beyond n = 2 are often critically important to
the accuracy of ground-state many-body approaches,31 and
their importance should presumably increase in the excited
state, given the increased size and polarizability of the excited-
state wave function. Our ab initio exciton approach, on the
other hand, includes many-body Coulomb and exchange effects
and is essentially a “black box” whose application to any system
is straightforward.

F. Size-Consistency Considerations. Supersystem CIS
calculations are rigorously size-consistent,6 in the customary

Table 4. Absolute Errorsa in the S0 → T1 Excitation Energy
for Two Systems Composed of Larger Monomers

cluster exciton basis threshold (%) error (eV)

(NDI)2 HF/6-31G 95 0.014
(NDI)2 HF/6-31G 85 0.142
(NDI)2 HF/6-31+G* 85 0.129
(NDI)2 B3LYP/6-31G 90 0.282
(NDI)6 HF/6-31G 90 0.079
(NDI)6 B3LYP/6-31G 90 0.327
(NDI)9 HF/6-31G (bright state) 85 0.108b

(pentacene)2 HF/6-31G 95 0.010
(pentacene)2 HF/6-31G 85 0.110
(pentacene)2 HF/6-31+G* 85 0.114
(pentacene)2 B3LYP/6-31G 85 0.357
(pentacene)6 HF/6-31G 90 0.044
(pentacene)6 B3LYP/6-31G 85 0.364

aWith respect to a supersystem CIS calculation in the same AO basis
set, using one state per monomer. bBright state error, relative to
supersystem S30.

Figure 5. Structures of (a) (pentacene)6 and (b) (NDI)6.

Table 5. Errors for Linear H2 Chains
a from the REM-CIS

Method and Our Frenkel−Davydov Exciton Model

errorb/mHartree

S0 → T1 S0 → S1

this workc this workc

system REM14 (H2)2 (H2)n/2 REM14 (H2)2 (H2)n/2

1.5 Re

(H2)6 −8.68 69.78 39.60 −17.73 128.92 77.22
(H2)8 −13.31 76.52 29.40 −22.27 142.53 60.92
(H2)10 −15.86 79.70 22.14 −23.24 149.15 48.28
(H2)12 −17.39 81.38 17.02 −23.23 152.73 38.76

2.0 Re

(H2)6 −5.58 32.01 16.64 −17.73 81.87 44.79
(H2)8 −8.53 34.42 11.23 −24.29 87.51 31.63
(H2)10 −10.13 35.49 7.93 −27.55 89.89 23.30
(H2)12 −11.08 36.03 5.83 −29.22 91.05 17.85

aUsing the equilibrium bond length of Re = 0.7414 Å and an
intermolecular separation of either 1.5 or 2.0 times Re.

bWith respect
to a supersystem CIS calculations, STO-6G basis. cWith basis states as
indicated.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500765m | J. Chem. Theory Comput. 2014, 10, 5366−53765372



supermolecular sense of the term. Nonorthogonal CI can be
made to satisfy size-consistency of the total energy (meaning
that the total energy for a system of well-separated fragments is
equal to the sum of the fragment energies) and also size-
intensivity of excitation energies (meaning that the excitation
energy is unaffected by the addition of a distant and therefore
noninteracting fragment).32 These facts are straightforward to
verify since off-diagonal coupling elements of the exciton
Hamiltonian vanish in the limit of large interfragment
separation.
Although often conflated with size-consistency, size-exten-

sivity is more properly defined as a nonvanishing correlation
energy per particle in the thermodynamic (infinite, periodic)
limit. This property has been considered carefully by Hirata,33

although he calls it size-consistency, for reasons explained in ref
33, and concludes that CIS is rigorously size-extensive provided
that the HF determinant is used as the reference state. In
contrast, the reference state for our Frenkel−Davydov exciton
model is composed of HF MOs from multiple, independent
fragment calculations; hence, the formal requirements of size-
extensivity are not met. This opens the possibility of increasing,
size-dependent errors for interacting systems. This issue was
also pointed out by Sundholm and Head-Gordon,32 who note
that in a nonorthogonal CI calculation, an increasing [but only
as N( )2 ] number of determinants may be required to achieve
a comparable level of accuracy as system size grows, yet
excitation energies remain size-intensive in the sense defined
above.
Our model does not satisfy Brillouin’s theorem; hence, size-

inconsistency may manifest as spurious stabilization of the
ground-state direct-product wave function via mixing with the
excitonic basis functions. This could potentially result in an
unbalanced treatment of the excited states relative to the
ground state, and errors that might increase as the size of the
excitonic basis increases. Since the basis functions are spin
eigenstates, for a singlet ground state this stabilization appears
only when computing singlet excited states. We may therefore
quantify the extent of this stabilization by comparing the
ground-state eigenvalue of the exciton Hamiltonian in the
singlet (S0 → Sn) and triplet (S0 → Tn) excitation cases.
For linear He chains, using single He atoms as monomer

units, the aforementioned stabilization is found to increase
linearly with system size at the rate of 0.005 mHartree/
monomer. However, errors in singlet excitation energies mirror
those for triplet excitation and are essentially constant for N >
10 He atoms (see Figure 1). Despite the linear growth in the
ground-state stabilization per monomer, in actuality, this effect
is dictated not so much by system size but rather by the size of
the direct-product basis. This is particularly evident in our data
for water clusters computed using the 6-31+G* basis (Table 2),
where the inclusion of three excited states per monomer
slightly increases the errors in excitation energy of the singlet
case, relative to errors obtained using two excited states per
monomer. No corresponding effect is observed for triplet
excitations, and we attribute this effect to ground-state
stabilization in the singlet case.
This effect can be ameliorated using XPol monomer wave

functions, as is evident in the water cluster data in Table 2.
XPol allows the primary orbital relaxation effects in the ground
state to be included explicitly in the monomer wave functions,
so that there is less of a driving force for mixing excited-state
direct-product wave functions into the ground state. In general,
we find that errors stemming from size-inconsistency are quite

small and our exciton method performs well when compared to
rigorously size-consistent supersystem CIS calculations, even
for the sizable systems that we have explored.

IV. PERFORMANCE
A. Bottlenecks. The SVD step of the corresponding

orbitals transformation in eq 8 formally scales as N( )3 but
with a very small prefactor. In practice, the overall computa-
tional cost is dominated by contraction of two-electron
integrals with a density matrix to form a Fock-like matrix:

∑ λμ ρν= ⟨ || ⟩λρ
μν

μνF P
(16)

For the exciton model, Pμν is a generalized density matrix
whose form is suggested by eq 13:

∑= ̃ Ξ
̃

̃μν ν μ
†

⎛
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⎟⎟P R

s
L

j
j

jj
j

LR

LR
(17)

The cost of the contraction in eq 16 scales as N( )x
basis where 2

≤ x ≤ 4, depending on system size and integral thresholds.
Construction of each exciton matrix element (eq 6b)

requires NNTO
2 contraction steps, where NNTO is the number

of NTO pairs retained in the CI expansion of the individual
fragment excited states. We note that the primary bottleneck is
not generation of the AO integrals ⟨λμ||ρν⟩ but rather their
digestion (eq 16) with numerous generalized density matrices.
We are currently pursuing ways to accelerate this step.
In total, there are Nfrgm(Nfrgm + 1)/2 matrix elements of the

exciton Hamiltonian to compute so total CPU time scales as
N N( )x

frgm
2

basis . Memory usage is favorable; each matrix element
requires a few Nbasis × Nbasis arrays, although our implementa-
tion will happily exploit additional memory for efficient integral
evaluation. The same is true for disk storage, requiring only the
occupied and a few virtual NTOs from each fragment to be
stored in the fragment (nbasis) basis sets.
Traditional supersystem CIS and TDDFT calculations

employ Davidson iteration to diagonalize the singly-excited
block of the CI Hamiltonian. The number of iterations required
to reach convergence varies with the system and number of
desired eigenvalues but is typically 10−30 iterations when
several (but ≪30) eigenvalues are requested. For each
Davidson iteration, the rate-determining step is the contraction
of the AO two-electron integrals with subspace trial vectors.
This is directly related to the contraction step written in eq 16,
in that Pμν is the pseudodensity matrix of Maurice and Head-
Gordon.34 Memory requirements are the same as above, but all
occupied and virtual orbitals in the supersystem basis set must
be stored.
In view of these considerations, one can straightforwardly

conclude that total CPU time is minimized by the method that
requires the fewest instances of the digestion step in eq 16. In
general, supersystem methods are highly efficient at minimizing
this step as well as the overall single-threaded CPU time.
However, the scaling of this performance is limited for modern
computer architectures, and below, we discuss the performance
of an implementation in which calculation of the exciton matrix
elements is distributed across cores.

B. Parallelization. The serial efficiency of traditional
supersystem methods is highly optimized, but the potential
for parallelization is fundamentally limited by their iterative
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nature; each step requires the results of the previous iteration
before it can proceed. The work done in each iteration can be
parallelized; for example, the integrals in eq 16 can be batched
into different tasks. This approach scales fairly well across the
cores of a single node, but efficiency is reduced, often
significantly, by latencies in communication when scaling
across nodes is required.
Our method is designed to overcome both of these

limitations. Iterations are limited to fragments only, and the
matrix element calculations are entirely independent of one
another and thus trivial to distribute across any arrangement of
processors. In fact, internode parallelism could further be
augmented by shared memory intranode parallelism. We have a
implemented a parallel version of our method (based on the
Message Passing Interface, MPI) that parallelizes matrix
element computations across cores within a distributed
memory model. Given Nfrgm(Nfrgm + 1)/2 cores, the total
wall time is essentially reduced to the time to compute a single
matrix element. Given this degree of parallelism, the wall time
required for our exciton model will be less than that of a
traditional supersystem CIS calculation if the number of terms
in eq 6, each of which requires one instance of a contraction
such as that shown in eq 16, is fewer than the number Davidson
iterations necessary to converge the supersystem calculation.
Due to the efficient scaling of our method across processors
this can still be true when considering parallel performance of
supersystem methods on equivalent hardware, as shown below.
Chemical insight into the nature of the electronic states of

the system of interest can be applied to the fragment
partitioning in order to minimize cost while maintaining
accuracy. For example, the lowest triplet excitation of a gas-
phase guanine−cytosine (GC) base pair is highly localized on
the cytosine moiety but is significantly stabilized by hydrogen
bonding to the other base. This suggests using base pairs, rather
than individual nucleobases, to generate basis states for clusters
or π stacks. Timing data for various clusters of GC base pairs
are given in Table 6. (The GC dimer structure was taken from
ref 35 and stacked to form larger systems.)

The timing data for the exciton models presented in Table 6
are estimated from the time required for the computation of a
single matrix element, as the fragment SCF and CIS
calculations represent negligible overhead, as does diagonaliza-
tion of the exciton Hamiltonian matrix. The NWChem
program36 was used as a benchmark for the parallel
supersystem calculations, which is somewhat incongruous
because the exciton model is implemented in Q-Chem, which

exhibits far better serial performance as compared to
NWChem. However, NWChem is generally recognized as
state-of-the-art for scalability (and Q-Chem’s implementation
of TDDFT does not scale to the number of cores indicated in
Table 6); thus, the comparison presented in Table 6 is at least
interesting. By taking advantage of nearly perfect parallel
scaling, the exciton method can indeed outperform a traditional
supersystem calculation on equivalent hardware by up to a
factor of 15, with errors in excitation energies of ≈0.2 eV. Of
course, for systems composed of very large monomer units, the
embarrassing parallelism of the exciton model could be
combined with a parallel implementation of CIS to compute
the fragment excited states, and (more importantly) a parallel
version of the digestion step in eq 16, in order to accelerate
calculation of the individual matrix elements.

V. POSSIBLE IMPROVEMENTS AND EXTENSIONS
Results presented above suggest that our ab initio exciton
model is indeed a useful starting point for efficient calculation
of collective excitations in multichromophore systems. Several
ways in which this basic model might be improved or extended
are sketched in this section.

A. Targeted States. Thus far we have only discussed
application of our ab initio exciton method to the lowest-lying
excited state of a given spin symmetry. Due to the physically
based nature of the model, however, we can use it to target
specific higher-lying states of molecular aggregates, with
potentially dramatic savings in computational cost. For
example, in the (NDI)9 calculations reported in ref 5, the
lowest optically bright state was S28, with spacings of ∼0.05 eV
between lower-lying, optically dark states. TDDFT calculations
reported in ref 5 used the 3-21G* basis set, but for a larger
number of NDI chromophores or a higher-quality basis set, the
position of the bright state would inevitably move further up
the manifold of singlet excited states. The need to calculate so
many eigenvalues manifests as very large storage (memory and/
or disk) requirements.
Application of chemical insight into the properties of the

aggregate state of interest can dictate the proper choice of
fragment states to include in the exciton basis, such that the
specific supersystem excitation of interest is targeted. An
example is the calculation of the lowest optically bright state of
(NDI)9. The bright state of the NDI aggregate involves a linear
combination of the monomers in their spectroscopically active
excited states. Supersystem methods that utilize the traditional
Davidson algorithm simply solve for the requested number of
lowest-lying eigenstates, and the state of interest is determined
a posteriori by the user.
In a supersystem CIS or TDDFT calculation, the contraction

in eq 16 must be computed for each unconverged root at each
Davidson iteration, and the resulting matrices (Fλρ in eq 16) of
dimension Nbasis × Nbasis must be stored. (Recall that Nbasis
refers to the supersystem.) For large systems composed of large
monomers, this is a significant burden and parallel scaling
suffers from the same limitations outlined earlier. The exciton
model effectively sidesteps this increase. In order to target the
bright state of the cluster, basis states are chosen to be the
spectroscopically active excited states of the monomers,
determined by the orientation and magnitude of the monomer
transition dipole moments.
For NDI at the CIS/6-31G level of theory, the fourth CIS

root corresponds to the spectroscopically bright monomer
excitation. Using these fragment states as an excitonic basis will

Table 6. Wall Clock Times for Parallel Computation of the
Lowest Triplet Excitation of GC Base Pair Clusters

wall time/s

exciton modela

Nfrgm no. of cores 75%b 85%c full CIS

2 3 43 158 2961
4 10 347 1130 9553
6 21 908 3175 14178
8 36 1760 6253 9886
12 75 4605 15578 24096

aEstimated wall time for parallel calculation on Nfrgm(Nfrgm − 1)/2
processers. bAbsolute errors are 0.2 eV for this threshold. cAbsolute
errors are 0.1 eV for this threshold.
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then target the bright state of the cluster. Unlike supersystem
methods, computing higher-lying excited states for the exciton
model has essentially the same computational cost as
computing low-lying states because diagonalization of the
exciton Hamiltonian matrix is trivial. Any increase in cost for
higher-lying states arises from computing a few extra excited
states for the fragments. The CPU and memory requirements
for the exciton calculation are effectively unchanged. The
results for this exciton calculation, reported in Table 4, agree
well with supersystem methods while finishing 30% faster when
both calculations were run on 12 cores.
B. Correlation Corrections. As a final demonstration of

the value of the distinct physical partitioning used in our
method, we present (albeit without rigorous derivation in this
work) an approximate means of including electron correlation
effects in the excitation energies without increasing the cost of
the calculation. Due to the locality of electron correlation
effects, it is not unreasonable to make the approximation that
their contribution to excitation energies in an aggregate are
primarily due to electron correlation within fragment units and
thus to neglect interfragment electron correlation. If we then
consider correlation to be a weak perturbation that only
minimally deforms each fragment wave function, correlation
effects can also be neglected in excitonic couplings. With these
two approximations we can then treat the correlation for an
exciton calculation as straightforward perturb-then-diagonalize
correction.
In practice, we compute the correlation energies of the

ground and excited states of each fragment at the MP2 and
CIS(D) levels,37 respectively, then add this correlation
correction to the diagonal elements of the exciton Hamiltonian,
weighted by the corresponding overlap elements. Even given
this seemingly crude set of approximations, we have found that
the resulting errors for excitation energies, relative to correlated
CIS(D) supersystem calculations, are not significantly worse
than the agreement documented above when the uncorrelated
exciton model is compared to supersystem CIS calculations.
Both sets of errors [versus CIS and versus CIS(D)] for water

clusters are presented in Figure 6, and we obtain similar
accuracy for organic chromophores as well. A correlation
corrected calculation on the GC dimer had the same 0.1 eV

absolute error relative to a supersystem CIS(D) as an
equivalent uncorrected exciton calculation relative to super-
system CIS. Errors approach or exceed 1 eV for the larger
systems in Figure 6, probably because only a single excited state
per monomer is included in the excitonic basis. (The formalism
to include more than one state per monomer at a correlated
level of theory is under development in our group.) Although
the correlated supersystem calculations scale as N( )5 , this
correction is effectively free for the exciton calculation, since the
computational effort in computing excited states of any one
monomer, even including correlation effects, is small in
comparison to the cost of computing the matrix elements of
the exciton Hamiltonian.

VI. CONCLUSIONS

We have introduced a novel method for computing excited
states of aggregates based on an ab initio implementation of an
exciton model. An excitonic basis is constructed from direct
products of fragment configuration state functions and exact
matrix elements of the Hartree−Fock Hamiltonian are
computed using the corresponding orbitals transformation.
This approximation has been shown to maintain accuracy, even
for highly delocalized excitations, so long as basis states are
chosen appropriately. In large systems such as water clusters
and crystalline organic materials, the basis can be chosen such
that excitation energies lie within ≈0.1 eV (or less) of those
computed from a supersystem CIS calculation. Furthermore,
the excitonic basis can be expanded with higher-lying fragment
excitations in order to capture polarization effects and thereby
increase the accuracy. Kohn−Sham orbitals and especially
explicitly polarized (XPol) fragment orbitals perform well as an
excitonic basis. A straightforward application of chemical insight
can help specify the choice of the excitonic basis to increase
accuracy and reduce cost. Notably, it is possible to target a
specific aggregate excitation based on the choice monomer
states included in the basis.
Due to its near-perfect scaling with parallel hardware, our

method can outperform supersystem methods for certain
systems despite the fact that, as of now, total CPU time scales
unfavorably relative to supersystem methods. We believe that
our approach presents a strong theoretical and computational
foundation for the design of excited-state algorithms that are
capable of scaling to massively parallel computer architectures
while maintaining an unambiguous physically motivated
strategy. Future work will focus on reducing the scaling of
this method, most likely by reducing the dimension of the
orbitals included in the exact Hamiltonian via distance-based
charge-embedding approximations. Accurate correlation effects,
hinted at in Section V.B, will be rigorously derived, along with a
formal derivation of a perturbative approach applicable to an
exciton Hamiltonian. Finally, we note that this method is
potentially well-suited to be implemented on GPUs and other
massively parallel vector accelerators. We intend to report on
these developments in future publications.
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