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ABSTRACT: We derive, implement, and test three different local excitation approx-
imations (LEAs) to time-dependent density functional theory (TDDFT) that are designed
to be extremely efficient for computing excitations that are localized on a single
chromophore surrounded by explicit solvent molecules. One of these approximations is
equivalent to the “TDDFT for molecular interactions” [TDDFT(MI)] method that we have
introduced previously, which exploits non-orthogonal, absolutely-localized molecular
orbitals to approximate full TDDFT for systems consisting of multiple, weakly-coupled
chromophores. Further approximations are possible when the excitation is localized on only
a single subsystem and are introduced here to reduce the cost of LEA-TDDFT(MI) with
respect even to TDDFT(MI). We apply these methods to compute solvatochromatic shifts
for the n → π* excitations in aqueous acetone and pyridine. The LEA-TDDFT(MI) method accurately reproduces the solvent-
induced blue shifts in these systems, at a significant reduction in cost as compared to conventional TDDFT.

I. INTRODUCTION

Excited electronic states are crucial to understand the photo-
physical and photochemical process of biological and other
condensed-phase chromophores,1−5 where they are intimately
influenced by the surrounding environment. The solvent effect
can be divided into three parts: the solvent polarization effect,
specific solute−solvent interactions such as hydrogen bonds, and
the dynamic solvent effect, which means the average of the
excited-state properties upon configuration sampling. All three
components are indispensable in the theoretical description of
solvent effects on electronically excited states.
The combined quantum mechanics/molecular mechanics

(QM/MM) approach, in which the important part of the
problem is treated via quantum mechanics and the remaining
part via an empirical force field,6−8 is an explicit solvation model
intended to introduce the solvent polarization effect while
retaining the quantum mechanics in a system small enough to
attack with ab initiomethods. If the non-covalent interactions are
also characterized by the force field, then the specific solute−
solvent interactions are empirically included in the QM/MM
approach. However, the performance of the QM/MM approach
is highly dependent upon the empirical parameters in the force
field and the ground-state parameters may not be appropriate for
excited states, where the larger and more polarizable wave
function may simultaneously increase the attractive dispersion
interaction but also magnify the Pauli repulsion, relative to the
ground state.
Implicit solvent models are also popular in excited-state QM

calculations, wherein the solvent is described as a structureless
dielectric medium. Polarizable continuum models (PCMs) are a
widely used family of implicit solvent models based upon
reaction-field theory and boundary-element discretization of the
solute/continuum interface.9−15 PCMs implicitly include an

average over different solvent configurations, via the medium’s
dielectric constant, but are not able to simulate specif ic solute−
solvent interactions.
For specific solvent effects, a supermolecular approach is

required, in which nearby solvent molecules are described at the
QM level. The supermolecular method is able to describe highly
specific solute−solvent interactions, yet at a cost that increases
sharply with system size. As such, time-dependent density
functional theory16−19 (TDDFT) is the most widely used
approach, as it scales no worse than N( )4 with system size, and
better with density fitting.20 In order to include the dynamic
effect of solvent, however, configuration sampling should be
carried out via molecular dynamics (MD) simulations. Thus, the
problem grows from a single calculation on a solute molecule to
hundreds of calculations on the supermolecular solute−solvent
system.
In an effort to reduce the computational scaling of TDDFT

without sacrificing accuracy, we recently introduced an
approximation to linear-response TDDFT that is based on
localized, non-orthogonal molecular orbitals,21 which omits the
explicit charge-transfer (CT) terms from the TDDFT working
equations and thus confines the excitations within monomer
units. We called this method TDDFT(MI), where the “MI”
(“molecular interactions”) indicates that the method is based on
absolutely-localized molecular orbitals (ALMOs), as in the self-
consistent field (SCF) for molecular interactions [SCF(MI)]
method of Head-Gordon and co-workers.22,23 TDDFT(MI) is a
good method for systems of multiple, weakly-coupled
chromophores, and in this context it can describe even
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delocalized excitations to an accuracy of 0.2−0.3 eV with respect
to full linear-response TDDFT.21

A specific class of problems for which one might wish to use a
localized version of TDDFT is to study excitation energies of a
single chromophore in solution, wherein a significant number of
explicit solvent molecules are treated quantum-mechanically.
TDDFT(MI) works especially well in this case, with an accuracy
of ∼0.1 eV with respect to full TDDFT,21 but without the
spurious CT states that often arise in systems of this type,24−26 a
problem that is not solved, in a fully satisfactory way, simply by
using range-separated hybrid functionals.27 For this particular
class of problems, further approximations to TDDFT are
possible that will reduce the cost even more. Here, we will
introduce a local excitation approximation (LEA) to
TDDFT(MI) in which all of the Coulomb and exchange
couplings between the solvent molecules and the solute molecule
(chromophore) are neglected. We call this method LEA-
TDDFT(MI), and compared with our original TDDFT(MI)
approach it has three attractive features.
(1) Calculations can be performed on very large systems, since

the time-consuming TDDFT part is restricted in a small central
region of the whole system, i.e., the chromophore only. The QM
part is restricted in an active region, as indicated in Figure 1,

which simulates both specific solvent effects (such as hydrogen
bonds) and non-specific effects (such as polarization). The MM
part allows a large number of solvent molecules to be explicitly
included, which describes the long-range electrostatic inter-
actions.
(2) Excited-state calculations restricted to the central system

allow an easy confirmation of the target state in comparison with
the supermolecular approach. Especially in TDDFT calculations,
it avoids unphysical results introduced by mixing with spurious,
low-energy CT states.24−26

(3) In comparison with other local excitation schemes,33−36

the localized molecular orbitals on the solute molecule that are
used in this work are well-defined and computed from SCF
calculations.
The aim of this work is to propose an efficient LEA to time-

dependent density functional theory and to compare it to our
original TDDFT(MI) approach.21 In addition, we will test a
frozen molecular orbital embedding method, where the effect of
the solvent molecules is included only insofar as they modify the
chromophore’s MOs and orbital energies. All three of these
approximate TDDFT approaches will be applied to investigate

solvatochromatic shifts by performing a statistical average of
TDDFT calculations for configurations extracted from MD
simulations. The solvatochromatic shift in the n→ π* excitation
for acetone in aqueous solution has become a standard test case
for evaluating the performance of theoretical approaches for
describing solvent effects on excitation energies37,38 and will be
studied here. Reliable reference data are available since many
experimental39−41 and theoretical studies36,42−47 have been
carried out for this system. The experimental shift is 0.19−0.21
eV.39−41 As a second test, we will consider pyridine in aqueous
solution. Although no experimental data on the n → π*
excitation are available for this system, the shift has been
estimated theoretically to lie in the range 0.25−0.37 eV.48Wewill
demonstrate that the present methodology is capable of
reproducing these shifts.

II. THEORY
A. TDDFT Based on Non-orthogonal MOs. The non-

Hermitian linear-response TDDFT eigenvalue equation in a
basis of non-orthogonal MOs is21
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Two-electron integrals are expressed in Mulliken notation, and
Cx is the coefficient of Hartree−Fock exchange, in the case of a
hybrid functional. Indices i, j, ... label occupied MOs; a, b, ... label
virtual MOs; and p, q, ... label arbitrary MOs.
The general MOs ϕp are defined as
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where ϕp̃ are non-orthogonal MOs, which in this work will be

ALMOs.22,23 The quantity
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is the ground-state density operator, and S is the overlap matrix
among the general MOs:
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Figure 1. Schematic picture for an acetone/water cluster. The ball-and-
stick molecules constitute the QM region.
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is the exchange-correlation potential, and the exchange-
correlation kernel is defined as

δ
δρ δρ

=f
E

r r
r r

( , )
( ) ( )

xc
1 2

xc

1 2 (11)

B. Local Excitation Approximations. In the case of weakly
interacting molecular units, only local electronic excitations
within the central subsystem (chromophore) are of interest. The
TDDFT working equation on the central subsystem can be
approximated as
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where the matrices AL, BL, andΔL are the local sub-blocks of the
matrices A, B, and Δ in eq 1, i.e., the blocks where indices a, i, b,
and j all belong to the chromophore. We will refer to eq 12 as the
LEA-TDDFT(MI) working equation. In comparison with the
standard TDDFTmethod, the size of theAL, BL, andΔL matrices
is significantly reduced if the size of the chromophore is small
compared to the size of the entire system. Furthermore, insofar as
the central subsystem (chromophore) is fixed, the size of AL, BL,
and ΔL remains the same as the supersystem grows larger, e.g.,
due to the addition of explicit solvent molecules. Environmental
effects on electronic excitation of the chromophore can therefore
tractably be included by making the supersystem as large as
possible.
Equation 12 involves an overlap matrix among general MOs so

that the solution of this equation is a bit different as compared to
standard linear-response TDDFT. Below, we introduce three
schemes for the LEA based on eq 12. For easy reference, these
three approaches are then summarized in section IID.
1. Frozen MO Embedding. Sneskov et al.47 have shown that,

for acetone, the main effect of solvent polarization is captured
already in the description of the ground state, with only minor
contributions to the excited state. Besley et al.49 explicitly take the
full system into account during the SCF calculation and restrict
the active molecular orbitals for the TDDFT calculation to those
orbitals significantly localized on the solute molecule, introduc-
ing what is effectively an active space approximation to linear-
response TDDFT. A comparable approximation in the present
framework is to let the non-orthogonal MOs ϕp in eq 12 be
ALMOs, which we denote by ϕp̃. Since the ALMOs satisfy

ϕ ϕ δ⟨ ̃ | ̃⟩ =p q pq on the solute molecule, the sub-block of the overlap

matrix in eq 12 is a unit matrix. In this approach, solvent
polarization arises solely due to the change of the MOs and
orbital energies on the chromophore due to the presence of the
solvent molecules, which is in some sense a “zeroth-order”
approximation to full TDDFT. For that reason, we refer to this
scheme as “LEA0”.
2. Non-orthogonal Linear-Response TDDFT Method.

Actually the difference between eq 12 and standard TDDFT
lies only in the overlap matrix, which indicates that it is possible
to transform eq 12 into the standard TDDFT working equation.
The first step is a symmetric orthogonalization procedure to
obtain orthogonal molecular orbitals ϕp

⊥ that are defined as
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As discussed by Miura and Aoki,34 the dense structure of the
Fock matrix, which corresponds to the non-diagonal structure of
matrix F⊥ in eq 14, may lead to slow convergence of Davidson’s
iterative diagonalization procedure.50,51 In order to eliminate the
off-diagonal matrix element of the Fock matrix F⊥, one effective
method is to introduce a set of quasi-canonical MOs (QCMOs),
ϕp
Q:
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With these QCMOs, eq 12 has exactly the same form as the
standard TDDFT working equation,
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We will refer to this particular LEA-TDDFT(MI) scheme as
“LEA-Q”.

3. TDDFT(MI) Method. As discussed in our previous work,21

the TDDFT(MI) working equation can be expanded within the
monomer excited basis states,

∑
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The subscript n indicates the nth excited state of the central
subsystem, and |X′,Y′⟩ is a transition density for the gas-phase
calculation. The amplitudes X and Y can be expressed as

∑
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(23b)

m
m m

m
m m

where U is obtained by diagonalizing eq 22. In contrast to the
LEA0 approach, here the overlap effect between the
chromophore subsystem and the solvent molecules has been
included, and herein we call this approach LEAc. It is a localized
version (in the sense that |X′,Y′⟩ is computed only for the
chromophore) of the TDDFT(MI) method introduced in ref 21.
C. Absolutely Localized MOs. The definition of a localized

MO is central to the success of implementing the various LEAs
introduced here. In comparison with the localized MOs
proposed in other LEA-TDDFT methods,33−36 the ALMOs
used in this work are well-defined and absolutely localized, in the
sense that only AO basis functions centered on a given subsystem
are allowed to contribute to that subsystem’s MOs. The ALMOs
are largely free of the “orthogonalization tails” that typically
appear upon orbital localization. Several versions of the
SCF(MI) procedure to compute ALMOs have been introduced;
we used Stoll’s method,52 as implemented by Khaliullin et al.22,23

Although the ALMOs are absolutely localized, the general
MOs and the QCMOs, which are used to compute Fock-like
matrices, are delocalized over the whole system. The
construction of these Fock-like matrices scales as N( )4 with
system size N, or N( )3 with the density fitting,20 although
integral screening often reduces this to N( )2 in large systems.
Construction of these Fock-like matrices will become the
bottleneck in solving the LEA-TDDFT(MI) eigenvalue
equation. In the case of weakly-interacting subsystems, however,
the coupling between the central chromophore and the
environment is very small, meaning that the orbitals of interest
remain localized. Therefore, it is feasible to re-define a set of
ALMOsφp′ to approximate the general MOs in the LEAcmethod
or to approximate the QCMOs in the LEA-Q method.36

Expanding the MOs φp′ in subsets of atomic orbitals χμ
centered on the central subsystem A, we have

∑φ χ′ = ′
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The expansion coefficients can be computed by minimizing the
functional
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The procedure for the QCMOs (ϕi
Q) is the same. The more

diffuse the basis functions are, the more solvent molecules the
general MOs or QCMOs spread over, making it necessary to
adopt a larger subset of atomic orbitals surrounding the central
subsystem in the procedure above. Of course, if the central
subsystem is large enough, then the effect of the diffuse basis
functions will be insignificant since we focus only on excitations
of the central subsystem.

D. Overview of the LEA Schemes. Three different LEA
schemes have been introduced above: LEA0, LEA-Q, and LEAc,
the latter being a localized version of the TDDFT(MI) method
of ref 21. All three schemes require solution of TDDFT
equations (i.e., Casida equations17) whose dimension is no larger
than that required for a TDDFT calculation performed on the
chromophore only.
At one end of the accuracy spectrum of these three methods is

LEA0, in which we simply solve eq 12 in a basis of ALMOs for the
chromophore. In this approach, the entirety of the solvent effect
lies in how the chromophore’s ALMOs are affected by the
presence of the environment during the SCF(MI) iterations. At
the other end of the spectrum of accuracy is the original
TDDFT(MI) method,21 in which we compute a basis of
monomer excited states that are then coupled together via eq 22
in order to obtain excited states of the supersystem. As shown in
previous work,21 this method works even in cases where the
excitation is delocalized across more than one chromophore unit.
However, in cases where the excitation is localized and weakly

coupled to the excited states of the solvent molecules, the LEAc
and LEA-Q methods reserve the overlap effect but discard the
excited-state couplings between the solvent molecules and the
solute molecules, which will be shown below to work quite well.
LEAc is a version of TDDFT(MI) in which eq 22 is solved using
a transition density |X′,Y′⟩ for the chromophore only; hence
excited-state calculations on the solvent molecules are not
required. Both LEAc and LEA-Q start from ALMOs computed
for the chromophore, but in the latter case we subject these
orbitals to a number of transformations leading ultimately to a
version of the Casida equations (eq 12) expressed in a localized
version of the QCMO basis (eqs 19−21), which is then solved
via Davidson iteration. For clarity, these specific transformations
are discussed in the Appendix.

III. RESULTS AND DISCUSSION
The LEA0, LEA-Q, and LEAc methods have been implemented
in a locally modified version of Q-Chem.53 Stoll’s SCF(MI)

method,52 as implemented in Q-Chem by Khaliullin et al.,22 is
used to compute the ground-state ALMOs.
A total of 600 configurations for aqueous acetone and aqueous

pyridine were extracted from a molecular dynamics (MD)
simulation run at ambient density and T = 298 K, as described in
the Supporting Information. These simulations employed the

Table 1. Deviations in the 1nπ* Excitation Energy of Aqueous
Acetone for LEA-TDDFT(MI) Methodsa

error (eV)

config
excitation energy

(eV) LEA0 LEA-Q(0) LEA-Q(2) LEAc(0)

1 4.581 0.027 0.009 0.009 0.009
2 4.404 0.042 0.033 0.007 0.030
3 4.371 0.016 0.001 0.009 0.001
4 4.292 0.077 0.041 0.006 0.039
5 4.485 0.063 0.047 0.019 0.046
6 4.396 0.040 0.027 0.012 0.027
7 4.740 0.033 −0.012 0.003 −0.013
8 4.261 0.049 0.024 0.035 0.020
9 4.498 0.082 0.040 0.027 0.033
10 4.421 0.062 0.036 0.019 0.034
MAE 0.049 0.027 0.015 0.025

aWith respect to a full TDDFT calculation, PBE0/6-311G* level.
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OPLS-AA force field54,55 for the solute and the SPC force field56

for water. TDDFT calculations were then performed on these
solvent configurations to generate an absorption spectrum.
Denoting by r the distance between a solvent molecule and the

solute, each different QM/MMmethod will be labeled as (ra, rb)
where solvent molecules are included in the QM part if r < ra and

in the MM part if ra < r < rb. The quantity rb indicates the size of
the cluster that is extracted from the bulk MD simulation for the
QM/MM calculation. We will also use the notation LEA0(n) to
indicate a LEA0 calculation in which n water molecules are
explicitly included in the solute (chromophore) subsystem;
when n = 0, we will simply refer to the method as LEA0. The
notations LEA-Q(n) and LEAc(n) are defined analogously.

A. Accuracy and Efficiency. In this section, all calculations
are performed with the (ra = 3 Å, rb = 20 Å) scheme for acetone.
For 10 randomly selected configurations of acetone in water,
Table 1 lists the errors in the n→ π* excitation energy for various

Table 2. CPUTime (in Seconds) andNumber of Iterations (in Parentheses) ToCompute the 1nπ*Excitation Energy of Acetone in
Clusters of 13−16 Water Moleculesa

LEAc LEA-Q TDDFT

config SCF(MI) TDDFT total SCF(MI) TDDFT total SCF TDDFT total speed-upb

1 129 (14) 175 (14) 399 127 (14) 150 (10) 346 161 (15) 1155 (12) 1067 3.1
2 202 (14) 202 (16) 519 198 (14) 179 (13) 464 252 (15) 1454 (14) 1426 3.1
3 229 (13) 162 (11) 516 229 (13) 183 (15) 508 293 (14) 1277 (11) 1768 3.5
4 217 (14) 168 (13) 497 213 (14) 162 (12) 466 267 (15) 1588 (9) 1565 3.4
5 219 (14) 147 (10) 477 212 (14) 152 (10) 447 256 (14) 1514 (15) 1858 4.2
6 220 (14) 171 (12) 506 221 (14) 142 (9) 450 265 (14) 1322 (16) 1794 4.0
7 208 (14) 160 (11) 477 203 (14) 164 (11) 447 243 (14) 2213 (11) 1580 3.5
8 358 (15) 173 (13) 672 357 (15) 212 (17) 681 412 (14) 1176 (12) 2643 3.9
9 254 (15) 195 (14) 571 252 (15) 179 (13) 520 304 (15) 1131 (8) 1496 2.9
10 215 (14) 180 (13) 510 212 (14) 170 (12) 468 271 (15) 1089 (9) 1420 3.0

aPBE0/6-311G* level. bTotal TDDFT time divided by the total LEA-Q time.

Figure 2. TD-PBE0/6-311G* excitation energies for the n → π*
transition of aqueous acetone, as a function of the size of the QM region
(ra) and the total QM + MM region (rb).

Figure 3. Calculated n → π* excitation energies of aqueous acetone at
the TD-PBE0/6-311++G* level with different LEA-TDDFT(MI)
methods. The curves are Gaussian fits to the statistical distributions of
excitation energies over 600 individual configurations. The LEA-Q and
LEAc curves are essentially indistinguishable.

Figure 4. Calculated n→ π* excitation energies for aqueous acetone by
at the TD-PBE0 level using various basis sets. The curves are Gaussian
fits to the statistical distributions of excitation energies.
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LEA approximations, as compared to the full TDDFT calculation
applied to the entire supersystem (explicit water molecules out to

3 Å and SPC point charges out to a distance of 20 Å from the
acetone molecule). We have carefully examined the full TDDFT

Figure 5. Calculated n → π* excitation energies of aqueous acetone by TDDFT with different exchange-correlation functionals. The basis set is
6-311++G*. The curves are Gaussian fits to the statistical distributions of excitation energies.

Figure 6. Calculated n → π* excitation energies of aqueous pyridine by TDDFT with different exchange-correlation functionals. The basis set is
6-311++G*. The solid lines are fitted to the statistical distributions of the excitation with the Gaussian function.
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results in this case to ensure that we have in fact located the 1nπ*
state, rather than some spurious CT state, and the aim of these
calculations is to verify whether the LEAs accurately reproduce
the energy of this state, for the same functional and basis set.
Mean absolute errors (MAEs) for the LEA-Q(0) and LEA-

Q(2) methods, with respect to full TDDFT, are 0.027 and 0.015
eV, respectively. Both methods agree very well with the
supersystem results. It is worth mentioning, however, that it is
not reasonable to consider the supersystem TDDFT calculation
as a benchmark, since in many cases the TDDFT calculation
predicts nO(water) → π* CT character, which originates from the
deficiencies in the DFT methodology.24,25 The MAE of the
LEAc(0) method, 0.025 eV, is in good agreement with the LEA-
Q(0) method, and the difference between these two approaches
is negligible. The MAE of the LEA0(0) is larger because this
approach considers the solvent effect only at the level of how the
SCF(MI) procedure modulates the MOs and orbital energies of
the acetone solute.
Table 2 compares timings for the LEAc, LEA-Q, and full

TDDFT calculations for the same 10 configurations considered
in Table 1. (These configurations contain 13−16 water
molecules plus acetone.) The timings are separated into an
SCF part and a TDDFT part, and we note that the (in principle
identical) SCF(MI) calculations in the LEAc and LEA-Q
calculations differ by a few seconds, or 1−3%, which can be
taken as the intrinsic error in these timing data. Also listed in
Table 2 is the number of iterations required for both the ground-
and the excited-state parts of the calculation. Although the
number of TDDFT (Davidson) iterations changes from method
to method and from configuration to configuration, there is no
clear pattern and, in particular, there is no evidence that the LEA
approaches lead to a consistently greater number of either
TDDFT or SCF iterations. As such, the primary figure of merit in
comparing these methods is the total computer time required.
The LEAc approach is slightly slower than LEA-Q, primarily

because it requires projecting eq 12 onto a subspace; see eqs 22
and 23. The LEA-Q method is found to be 3−4 times faster than
full TDDFT, for these small clusters and with a moderate-sized
(6-311G*) basis set; the speedup will be larger as the number of
explicit solvent molecules is increased. For these relatively small
systems, the SCF(MI) procedure does not afford significant
speedup; hence, the SCF part of the timings is nearly the same in
the LEA-Q and full TDDFT approaches, but the TDDFT time is
greatly reduced for LEA-Q. As cluster size grows, the
computational time required for the TDDFT part of LEA-Q
changes very little so that the dominant contribution to the
timing for large systems is the SCF(MI) part, which ultimately
becomes faster than the full SCF procedure for large systems.22

B. Convergence with Respect to Cluster Size. Recent
work has demonstrated that this kind of QM/MM treatment of
solvatochromatic shifts sometimes converges quite slowly with
respect to the number of explicit solvent molecules that are
included,26,57 an effect that is partly an artifact of spurious, low-
energy CT states in the TDDFT calculations24−26 but also arises
due to orbital energies for the “edge waters” that are not
indicative of the liquid-phase environment.26 In Figure 2 we
examine the convergence of the n → π* transition in aqueous
acetone as a function of the parameters ra and rb, for the LEA-Q
method.
For a given value of ra, the excitation energies for rb = 10−25 Å

lie very close to one another, meaning that the effect of long-
range Coulomb interactions is nearly converged at rb = 10 Å. The
difference between rb = 20 Å and rb = 25 Å is <0.001 eV, for

example, and MM embedding out to a radius rb = 20 Å is thus
converged for this small solute. (For rb = 20 Å, the maximum
deviation among all values ra = 3−10 Å is <0.01 eV.) For solutes
of this size, we conclude that the (ra = 3 Å, rb = 20 Å) QM/MM
scheme offers a good balance between accuracy and efficiency.
The quality of QM/MM calculations is of course strongly

dependent upon the force-field parameters, for H2O in this case.
To investigate the effect of the MM point charges, we can
compare QM/MM excitation energies to those obtained when
the full supersystem is described at the QM level. In other words,
we can compare the (ra = 10 Å, rb = 10 Å) results to (ra, rb = 10 Å)
results for various values of ra ranging from 3.0 to 9.5 Å. The
maximum deviation between these two calculations of the n →
π* excitation energy is <0.01 eV, meaning that the QM/MM
method with SPC point charges provides an acceptable
description of the long-range electrostatic interactions for
aqueous acetone. By incorporating the most important (nearby)
water molecules into the QM region, the effect of the force-field
parameters becomes less significant.

C. Solvatochromatic Shifts.We next examine solvatochro-
matic shifts in aqueous acetone, in order to examine possible
functional and basis-set dependence of the three LEAs. Figure 3
shows the statistical distributions of the n → π* excitation
energies for aqueous acetone calculated using the LEA0, LEA-Q,
LEA-Q(2), and LEAc methods. As an aside, recall that the
TDDFT ionization continuum starts at −εHOMO,

17 but for the
600 configurations considered in this section the minimum value
of−εHOMO is 6.4 eV, which is well off scale in Figure 3 and in each
of the subsequent plotted spectra. (See the Supporting
Information for minimum values of −εHOMO using various
functionals and basis sets.)
In the LEA0 method, the solvent effect arises exclusively from

the changes in the orbitals and orbital energies that are polarized
by their environment, whereas in the LEA-Q and LEAc methods
there are additional solvent effects stemming from overlap
interactions, and in LEA-Q(2) there are two explicit water
molecules in the QM region, so that hydrogen bonding to the
chromophore is treated explicitly. Average vertical n → π*
excitation energies, computed at the TD-PBE0/6-311++G* level
for 600 individual solvent configurations are 4.49, 4.44, 4.42, and
4.44 eV for the LEA0, LEA-Q, LEA-Q(2), and LEAc methods,
respectively. In comparison to the gas-phase excitation energy
(4.25 eV) in gas phase, the solvatochromatic shift is 0.24 eV for
the LEA0 method, 0.19 eV for the LEA-Q method, 0.17 eV for
the LEA-Q(2) method, and 0.19 eV for the LEAc method. (The
experimentally measured solvatochromatic shift is 0.19−0.21
eV.39−41)
As compared to the LEA-Q method, LEA0 overestimates the

solvent shift because it completely ignores the interaction of the
solvent’s MOs in the n→ π* excitation, since only the ALMOs of
the acetone molecule are included in the TDDFT calculation,
thus limiting the variational flexibility of the transition density. In
the LEA-Q(2) approach, additional CT states involving the two
explicit solvent molecules mix with the n→ π* excitation, leading
to an underestimate of the solvent shift. There is very little
difference between LEA-Q and LEAc results, meaning that the
two different methods to solve eq 12 that are discussed in section
IIIA are nearly the same in their accuracy, at least for this specific
example.
Figure 4 shows the statistical distributions of the n → π*

excitation energies for acetone in aqueous solution calculated at
the LEA-Q level with different basis sets. Gaussian fits to the
simulated statistical distributions of excitation energies are
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shown as well, for both the gas-phase and the aqueous systems.
Average solvatochromatic shifts are 0.17 eV for PBE0/6-311G*
and 0.18 and 0.19 eV for the 6-31+G* and 6-311++G* basis sets,
respectively, indicating the negligible influence of the basis set,
and the values agree well (within kBT) with the experimental shift
of 0.19−0.21 eV.39−41
It has been noted that nuclear quantum effects can have a

sizable effect on the width of a spectrum computed in this way,58

although the study in ref 58 involves a much larger chromophore,
for which vibrational effects may be expected to be more
important as compared to those in acetone. That said, one
important message to be taken from Figure 4 is that the
computed width is not strongly dependent upon the choice of
basis set, within a reasonable range of basis sets for TDDFT
calculations, so that the issue does not lie with the LEA itself.
Excitation energies reported at the TD-PBE0/6-311G* level in
Table 1, for 10 of the 600 solvent configurations used to generate
Figure 4, exhibit mean errors of only 0.03 eV with respect to full
TDDFT, indicating that application of the LEA does not shift the
distribution of excitation energies much at all. (Unlike the data in
Table 2, however, where we have explicitly identified the 1nπ*
state for each solvent configuration, an attempt to compute
spectra such as those in Figure 4 with full TDDFT would have to
contend with the possibility of artifacts due to spurious CT states,
which can cause spurious intensity-borrowing phenomena that
affect the distribution of oscillator strengths.25)
A previous study by Ma and Ma59 found that predicted

solvatochromatic shifts for acetone can be quite different among
different exchange-correlation functionals, especially when
comparing semilocal to hybrid functionals, although the
differences among hybridscomparing, e.g., B3LYP to
ωB97X-Dwere much smaller, and arise mostly from the
differing description of charge transfer. Figure 5 shows the
calculated electronic spectra for aqueous acetone using several
different exchange-correlation functionals: PBE0,60 B3LYP,61,62

ωB97X-D,63 and long-range corrected (LRC) ωPBEh.64,65 Each
of these functionals affords a solvatochromatic blue shift of 0.19−
0.20 eV. The equivalent performance of these hybrid functionals
within the LEA-TDDFT(MI) scheme suggests that, in each case,
spurious charge transfer is excluded from the calculations.
Finally, we consider a second molecular example, namely, the

lowest n→ π* transition for aqueous pyridine. Electronic spectra
are plotted in Figure 6 and again represent averages over 600
individual configurations. Solvatochromatic shifts of 0.36 eV
(PBE0), 0.36 eV (B3LYP), 0.32 eV (ωB97X-D), and 0.34 eV
(LRC-ωPBEh) are obtained. Although experimental data for this
particular solvent shift are not available, a shift of 0.25−0.37 eV
has been estimated theoretically by Coutinho et al.48 and 0.31 eV
by Marenich et al.66 The shifts that we compute with various
functionals agree very well with these estimates.

IV. CONCLUSIONS
In this work, we have developed an efficient implementation of
the local excitation approximation to TDDFT using absolutely
localized molecular orbitals. In contrast to some other LEAs, in
our approach a set of well-defined ALMOs is introduced in the
SCF calculation at the very beginning. In fact, three different
versions of LEA-TDDFT(MI) are introduced and tested here.
These methods are intended to describe an excited state that is
localized on a single chromophore but at the same time to allow
the effects of a large number of solvent molecules to be included
in the calculation, without the introduction of spurious
chromophore-to-solvent CT states. This is accomplished via

localization approximations such that the dimension of the
TDDFT equations that must be solved reflects the chromophore
only, and does not grow as the size of the environment increases.
In the LEA0 method, the solvent effect manifests only via the

change in theMOs and orbital energies, as explicit overlap effects
between the solute MOs and the solvent MOs are ignored. Such
effects are included in the LEA-Q method, which is based on a
quasi-canonicalization for improved performance and, for a
system such as (acetone)(H2O)n with n = 13−16, is about three
times faster than conventional TDDFT, a gap that will only
widen with increasing n. In fact, the time-to-solution (wall time)
associated with the TDDFT part of an LEA-Q calculation is only
related to the size of the chromophore, not to the number of
solvent molecules. Solvent molecules are included in the ground-
state SCF(MI) calculation, but for large systems an SCF(MI)
calculation is significantly faster than a conventional SCF
calculation,22 and we therefore expect the LEA-Q approximation
to TDDFT to be quite useful for larger systems where the
inclusion of enough explicit solvent molecules to converge the
solvatochromatic shift might render a conventional TDDFT
calculation prohibitively expensive. In the present work, we have
applied LEA-TDDFT(MI) to compute solvatochromatic shifts
for the n → π* excitations of acetone and pyridine in aqueous
solution, obtaining shifts that are in good agreement with a
variety of theoretical and experimental estimates.
On the other hand, the correct description of a state where the

excitation is shared across multiple chromophores would require
all of those participants to be included in the central LEA-Q or
LEAc fragment, for which TDDFT equations are solved. This
increases the cost and also potentially reintroduces spurious CT
states. The better low-cost approach in such cases is the
TDDFT(MI) method in ref 21, where the fragments are single
chromophores but couplings among them are calculated (in the
spirit of an exciton Hamiltonian67,68), which allows for the
description of a delocalized excitation. We have addressed such
cases using TDDFT(MI) in previous work.21

■ APPENDIX A: SUMMARY OF THE LEA-Q
ALGORITHM

Here we provide a step-by-step overview of the LEA-Q version of
TDDFT(MI) that is introduced here. For the purpose of this
discussion, we divide the system, S, into a chromophore part (C)
and an environment part (E), S = C ∪ E. TDDFT equations will
be solved whose dimension reflects that of C only, but we first
start with a ground-state SCF(MI) calculation for the entire
system, which affords ALMOs ϕp̃ for both the C and E regions.

Consider an occupied ALMO centered on the chromophore,

∑ϕ χ̃ =
μ

μ μ∈
∈

Ci iC
C

C

(A1)

which is a linear combination of AOs χμ centered in region C. In
order to simplify the appearance of the TDDFT equation, in eq 5
we folded certain inverse overlap factors into the non-orthogonal
MOs, which in this case we might write as

∑ϕ ϕ= ̃
∈

∈

Si
j

j ijC
S

CE

(A2)

where SCE represents the overlap matrix between the
chromophore and the environment orbitals. Alternatively, we
could write
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∑ ∑ ∑ϕ χ=
μ

μ μ∈
∈ ∈

C Si
M j M M

j
M

ijC

molecules

(A3)

and this form makes it clear that even the MOs ϕi in the
chromophore region are expanded in terms of AOs centered on
molecules in the environment region (M∉C). This is addressed
later using a localization approximation.
At this point the ground-state calculation is complete and we

have used the ALMOs to construct general MOs ϕi. We next
discard the MOs ϕi∈E, thereby reducing the dimension of eq 12
to that of a TDDFT calculation for the chromophore alone. We
orthogonalize the general MOs in the chromophore region,

∑ϕ ϕ=∈
⊥

∈

−S( )i
j

j ijC
C

C
1/2

(A4)

where SC is the overlap matrix for the chromophore-centered
AOs. In an effort to accelerate convergence of the Davidson
iterations, however, we quasi-canonicalize these orthogonal MOs
(see eq 17):

∑ϕ ϕ=∈
∈

⊥Ui
j

ij jC
Q

C (A5)

Finally, to facilitate integral screening we take the exact
QCMOs in eq A5, which contain expansion coefficients on AOs
centered in the environment, and re-expand them in terms of just
those AOs centered on the chromophore (eq 24), with fitting
coefficients (Cμi

C)′ obtained from solving eq 26 that represents
the best fit of ϕi∈C

Q to the chromophore-centered AO basis.
Equation 12 is then solved for the chromophore excited states in
this localized basis.
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