Supporting Information for "Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions"

Ka Un Lao and John M. Herbert*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210

1 Examination of Basis-Set Dependence

1.1 Set of 11 Charge-Transfer Complexes

In Fig. S1 we examine the basis-set dependence of CT energies for this set of complexes. For this comparison, we choose the 6-311++G(3df,3pd) basis set, which is used frequently in ALMO-EDA,¹ along with def2-TZVPPD and def2-QZVPPD, which have been recommended for the cDFT scheme.² The cDFT method exhibits essentially no basis set dependence, whereas the basis-set dependence of the ALMO and SAPT methods is significant for the four complexes where the extent of CT is large $(\delta q > 0.1 e^{-})$. CT energies for ALMO and SAPT vary by as much as 26.7 kJ/mol (ALMO-EDA) and 16.5 kJ/mol (SAPT) for the H₃N···BH₃ complex. For the ALMO-EDA and SAPT calculations, the maximum deviations amongst the three basis sets occurs between def2-TZVPPD and def2-QZVPPD, indicating once again the extreme dependence on basis set size associated with these definitions of CT.

1.2 Cation–Alkyl Radical Complexes

Using the same three basis sets for this set of 8 complexes, we once again find that the cDFT method exhibits very mild basis-set dependence, with CT energies that vary by no more than 1.4 kJ/mol amongst these three basis sets. ALMO-EDA results, in contrast, vary by as much as 27.3 kJ/mol across these basis sets and SAPT results vary by as much as 8.2 kJ/mol. The large basis-set dependence of the ALMO-EDA results cannot be explained by BSSE, as the counterpoise corrections are no larger than 2.5 kJ/mol.

^{*}herbert@chemistry.ohio-state.edu

1.3 Nucleophile– $C_6H_5^{\bullet+}$ Complexes

In most cases, CT energies calculated using B3LYP are greatly overestimated as compared to the those computed using ω B97X-D3. For example, the mean unsigned deviation for ALMO-EDA CT energies, comparing B3LYP/ and ω B97X-D3/6-311++G(3df,3pd) results is 9.3 kJ/mol, and the corresponding mean unsigned deviation for cDFT calculations is 6.0 kJ/mol. We attribute the larger B3LYP values of the CT energies to greater delocalization error with this functional, which is known to exaggerate the extent of CT.^{3,4}

Examining the same three basis sets considered above for this set of 12 complexes, we find that the maximum basis-set deviation in the CT energy is 4.5 kJ/mol for ALMO-EDA and 2.1 kJ/mol for cDFT. For SAPT and SAPT+ δ SCF, the maximum deviations are 3.7 and 3.9 kJ/mol, respectively, for C₆H^{•+}₅ · · · · HBr and C₆H^{•+}₅ · · · · PH₃. As in all of the results reported in this work, cDFT results are far less dependent on the choice of basis set as compared to orbital-based EDAs.

2 Exchange-Dipole Model for $C_6H_5^{\bullet+}\cdots H_2O$

The high-level SAPT2+3(CCD)/aug-cc-pVTZ method was used to estimate the dispersion energy (for use with dlDF) for the $C_6H_5^{\bullet+}\cdots H_2O$ complex. These calculations were performed using the PSI4 program,⁵ and because this method is only available for closed-shell species, we substitute the closed shell $C_6H_6\cdots H_2O$ complex for these calculations. To assess the magnitude of this approximation, we turn to the Becke-Johnson exchange-dipole model (XDM),^{6,7} a DFT-based way to compute dispersion interactions that is available for both closed- and open-shell species. At the B3LYP/aug-cc-pVTZ level of theory, we find that the XDM dispersion energy for the open-shell $C_6H_5^{\bullet+}\cdots H_2O$ complex is smaller than that of the closed-shell $C_6H_6\cdots H_2O$ complex, but only by 0.7 kJ/mol (on-top orientation) or 0.3 kJ/mol (side-on orientation). Assuming that these differences are transferable to SAPT calculations, they amount to only 3% of the SAPT2+3(CCD)/aug-cc-pVTZ dispersion energy for $C_6H_6\cdots H_2O$, in either orientation. This justifies our use of the closed-shell complex to obtain an accurate dispersion correction to augment the dlDF functional.

3 Charge-Transfer Interactions in Alkyl and Aryl complexes

CT energies in alkyl and aryl complexes are shown in Tables 3 and S2, respectively.

Figure S1: CT energies computed in a variety of basis sets using (a) cDFT with the ω B97X-D3 functional, (b) ALMO-EDA using the ω B97X-D3 functional, and (c) SAPT with and without the $\delta E_{\text{int}}^{\text{HF}}$ (" δ SCF") correction, using the LRC- ω PBE functional.

Cation	Alkyl	$(IE - EA)^{-1}/$	$CT Energy / kJ mol^{-1}$					
	Species	eV^{-1}	cDFT	ALMO	SAPT	$SAPT+\delta SCF$		
H_3O^+	CH_4	0.12	-30.30	-22.05	-2.73	-17.50		
	$(CH_3)_3CH$	0.16	-41.55	-32.42	-3.37	-28.80		
	$\operatorname{CH}_3^{\bullet}$	0.18	-45.46	-48.84	-7.34	-41.75		
	$(CH_3)_3C^{\bullet}$	0.42	-122.52	-96.96	-13.89	-124.98		
NH_4^+	CH_4	0.13	-11.22	-7.11	-0.78	-5.21		
	$(CH_3)_3CH$	0.17	-14.06	-10.06	-1.05	-7.80		
	CH_3^{\bullet}	0.20	-16.91	-20.97	-2.84	-14.81		
	$(CH_3)_3C^{\bullet}$	0.51	-33.71	-37.53	-4.92	-32.16		

Table S1: CT energies for the cation–alkyl complexes.

Orientation	Nucleophile	$(IE - EA)^{-1}/$	$CT Energy / kJ mol^{-1}$				
		eV^{-1}	cDFT	ALMO	SAPT	$SAPT+\delta SCF$	
	PH_3	1.59	-80.34	-118.69	-9.10	-93.07	
	$\rm NH_3$	1.20	-63.45	-88.72	-10.05	-77.17	
	CH_3COOH	0.71	-28.76	-30.69	-3.04	-27.33	
On Ton	CH_3OH	0.63	-24.14	-29.69	-2.64	-22.48	
Oll-Top	CH_3Cl	0.50	-17.49	-23.73	-1.79	-15.46	
	HBr	0.41	-17.93	-27.44	-2.00	-16.76	
	$\rm CH_3CN$	0.34	-14.53	-16.65	-1.82	-17.89	
	H_2O	0.30	-10.14	-11.86	-1.34	-10.78	
	CH ₃ COOH	0.71	-4.60	-3.00	-0.65	-3.54	
Side On	CH_3OH	0.63	-5.28	-5.13	-1.05	-5.85	
Side-Oli	CH_3CN	0.34	-5.55	-6.16	-1.31	-7.18	
	H_2O	0.30	-3.95	-4.27	-0.91	-4.36	

Table S2: CT energies for $C_6H_5^{\bullet+}\cdots$ nucleophile complexes, considering two orientations.

References

- Horn, P. R.; Sundstrom, E. J.; Baker, T. A.; Head-Gordon, M. J. Chem. Phys. 2013, 138, 134119:1–14.
- [2] Řezáč, J.; de la Lande, A. J. Chem. Theory Comput. 2015, 11, 528–537.
- [3] Steinmann, S. N.; Piemontesi, C.; Delachat, A.; Corminboeuf, C. J. Chem. Theory Comput. 2012, 8, 1629–1640.
- [4] Johnson, E. R.; Salamone, M.; Bietti, M.; DiLabio, G. A. J. Phys. Chem. A 2013, 117, 947–952.
- [5] Turney, J. M. et al. WIREs Comput. Mol. Sci. 2012, 2, 556–565.
- [6] Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122, 154104:1-5.
- [7] Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 123, 154101:1-9.