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ABSTRACT: CMIRS (composite method for implicit repre-
sentation of solvent) is a relatively new implicit solvation
model that adds terms representing solute−solvent dispersion,
Pauli repulsion, and hydrogen bonding to a continuum
treatment of electrostatics. A small error in the original
implementation of the dispersion term, but one that can
modify dispersion energies by up to 8 kcal/mol in some cases,
necessitates refitting the parameters in the model, which we do here. We refer to the modified implementation and parameter set
as CMIRS v. 1.1. While the dispersion energies change in nontrivial ways, an increase in the attractive dispersion term in the new
implementation is largely offset by an increase in the Pauli repulsion during the fitting process, such that overall statistical errors
are virtually unchanged with respect to v. 1.0 of the model, for a large database of experimental solvation free energies for
molecules and ions. Overall, we obtain mean unsigned errors of <0.7 kcal/mol when the solvent is cyclohexane or benzene, <1.5
kcal/mol for water, and <2.8 kcal/mol for dimethyl sulfoxide and acetonitrile, despite using no more than five empirical
parameters per solvent. For the important but difficult case of ionic solutes in water, mean unsigned errors are <2.9 kcal/mol.

I. INTRODUCTION
Implicit solvation modeling is a popular and low-cost way to
estimate free energies of solvation,1−5 which in the context of a
quantum-mechanical (QM) description of the solute (the
exclusive focus of this work) has historically meant at the very
least a solution of Poisson’s equation or its equivalent for the
electrostatic energy associated with a continuum dielectric
description of the solvent.6−9 This requires a suitable partition
of the system into an atomistic part (the solute) and a
continuum part (the solvent), and this partition constitutes the
“solute cavity;” see Figure 1. The solute−continuum interaction
can then be interpreted as the free energy of solvation (ΔG),
and sampling over the configuration space of explicit solvent
molecules is not required.
That said, whereas continuum electrostatics methods such as

Poisson’s equation or else the polarizable continuum
model3,9,10 (PCM) can account for long-range solute−solvent
interactions, an accurate model for solvation free energies must
also include a treatment of short-range, nonelectrostatic
interactions.4,11 Various models decompose these interactions
in different ways, but usually the nonelectrostatic terms attempt
to model all or most of the following:3,4,11,12 solute−solvent
dispersion (van der Waals) interactions, Pauli (“exchange”)
repulsion between solute and solvent, the work associated with
forming the solute cavity within the dielectric medium (the so-
called “cavitation energy”), hydrogen-bonding and other
“specific” interactions due to the molecular structure of the
solvent, and changes in the structure (and therefore the
entropy) of the neat solvent upon introduction of the solute. A
variety of approaches for introducing these nonelectrostatic

interactions have been used in conjunction with a continuum
treatment of electrostatics.4,5,12−22

Recently, Pomogaeva and Chipman22−24 introduced a new
implicit solvent model that they call the “composite method for
implicit representation of solvent” (CMIRS). This model
consists of a self-consistent treatment of solute−continuum
electrostatics, wherein the solute is described quantum-
mechanically and the interaction with the continuum is
described using the “surface and volume polarization for
electrostatics” [SS(V)PE] method,8 which is closely re-
lated9,10,25,26 to the “integral equation formulation” of the
PCM (IEF-PCM).6 To this electrostatics calculation, the
CMIRS approach adds a solute−solvent dispersion term that
is modeled upon the nonlocal “VV09” van der Waals dispersion
density functional of Vydrov and Van Voorhis,27 a Pauli
repulsion contribution that depends upon the tail of the solute’s
electron density that extends beyond the solute cavity, and a
hydrogen-bonding correction based on the maximum and
minimum values of the normal component of the electric field
generated by the solute at the cavity surface. Although this
model must be independently parametrized for each solvent of
interest, it uses no more than five empirical parameters per
solvent, with parameters for water,23 acetonitrile (CH3CN),

24

dimethyl sulfoxide (DMSO),24 benzene,22 and cyclohexane22

having been reported thus far.
For these solvents, the accuracy of CMIRS versus

experimental solvation free energies ΔG is at least as good as
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that of the popular “SMx” solvation models developed by
Truhlar and co-workers,4,12,28,29 while requiring fewer fitting
parameters. In fairness, it should be pointed out that later
versions of SMx (specifically SM8,28 SM12,29 and SMD12) are
intended to be “universal” solvation models that are available
for a very large number of solvents with a single set of
parameters,4 whereas CMIRS is currently parametrized only for
the five solvents mentioned above, and the parameters are
solvent-dependent. Nevertheless, the outstanding performance
of CMIRS is impressive, given its limited parameter set.
The original implementation of the model,22−24 CMIRS v.

1.0, is available in the GAMESS quantum chemistry program.30

In the course of implementing this model in the Q-Chem
program,31 we discovered an error in the original implementa-
tion of the solute−continuum dispersion interaction, correction
of which changes the dispersion energies by as much as 7.8
kcal/mol for some molecules in the data set used to
parametrize the model. As such, correct numerical implemen-
tation of the dispersion formula originally suggested in ref 22
requires refitting the parameters of the model and reassessing
its accuracy. That is the topic of the present work, and we refer
to the new model as CMIRS v. 1.1.

II. THEORY
II.A. CMIRS. The CMIRS models the Gibbs free energy of

solvation, ΔG, as22−24

Δ = Δ + ΔG G GCMIRS SS(V)PE DEFESR (1)

where ΔGSS(V)PE is the continuum electrostatics contribution,
which includes an approximate but accurate description of the
“volume polarization” that arises from the tail of the solute
wave function, which may penetrate beyond the solute cavity.8

The SS(V)PE model defines the solute cavity to be an

isocontour of the solute’s charge density, and as in the original
CMIRS model,22−24 we determine this isodensity cavity using a
single-center approach32,33 and discretize it with a single-center
Lebedev grid.34 The single-center approach is highly efficient
but can fail for certain nonspherical solute geometries.34 The
second term in eq 1 contains the short-range dispersion,
exchange, and “field-extremum short-range” (DEFESR) inter-
actions:

Δ = Δ + Δ + ΔG G G GDEFESR disp exch FESR (2)

Whereas the SS(V)PE electrostatic energy is updated at each
self-consistent field iteration, and thus determined self-
consistently alongside the solute’s charge density, the DEFESR
components are evaluated only once, using the converged
charge density.
The dispersion contribution to eq 2 is adapted from the

VV09 density functional,27 a nonlocal correlation functional
designed to account for the van der Waals interaction between
atoms and molecules in the gas phase. In the present context,
the working formula for the solute−solvent dispersion
interaction is

∫ ρ δΔ = ̅G A S Ir r rd ( ; ) ( ; )disp
solute

3
solvent (3)
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(All formulas are given in atomic units, where ℏ, e, me, and
1/4πϵ0 each have the value of unity.) The quantity ρsolvent
represents the solvent’s average electron density, as taken from
experiment. The constant c = 0.0089 is taken unchanged from
the value that was optimized to fit a test set of gas-phase
intermolecular interaction energies in the development of
VV09.27 The linear parameter A in eq 3 and the nonlinear
damping parameter δ in eq 6 are to be determined empirically
in order to reproduce experimental solvation energies. A linear
factor of ρsolvent

1/2 that would otherwise appear in eq 3 has been
absorbed into the A parameter for convenience, and the value
of A should be negative because the dispersion interaction is
attractive. Note that evaluation of I(r;δ) in eq 6 requires
integration over the solvent (defined as those Lebedev points
exterior to the solute cavity) and that to evaluate the integral in
eq 3 this integration over solvent must be done for each solute
grid point, that is, for each value of r for which ρ(r) is not
negligible. In practice, this means that integration over r
extends somewhat beyond the solute cavity.
The tail of ρ(r) that penetrates beyond the solute cavity also

contributes to the exchange interaction with the solvent,
ΔGexch, which in CMIRS is adapted from an approach that
represents the asymptotic exchange energy between two gas-
phase, one-electron atoms as a surface integral over the flux of
exchanging electrons.35,36 This formalism suggests the func-
tional form

Figure 1. Schematic description of the vectors r and r′ in eqs 3 and 6,
for a triatomic solute. Red points represent a few of the atom-centered
Lebedev quadrature points used in the DFT calculation, which are also
used to integrate the solute’s charge density for CMIRS. Green points
lie on the single-center set of concentric Lebedev grids that is used to
determine the isodensity surface (heavy black curve) and to integrate
the solvent region that lies outside of this surface. The blue vector
shows how r was erroneously defined in previous work,22−24 whereas
the red vector r is the definition used here, so that r and r′ share a
common origin coinciding with the center of the Lebedev grids used
to determine the isodensity surface.
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∫ ρΔ = |∇̂ |G B r rd ( )exch
solvent

3
(7)

where B is an empirical parameter. Note that “exchange” in this
context denotes the QM antisymmetry requirement on the
total (hypothetical solute + solvent) wave function, including
the intra-molecular exchange effect that is always negative and
the Pauli repulsion (penetration) effect that is always positive.37

In the region of van der Waals interactions, the penetration
term is normally about twice as large as the stabilizing
intramolecular exchange term;14 therefore the value of B should
be positive and ΔGexch reduces the solvation energy.
The final component of CMIRS is a field-effect short-range

(FESR) term that is intended to describe specific hydrogen-
bonding interactions.20 Hydrogen bond strength in water, as
estimated by the distribution of O−H vibrational frequency
shifts, correlates well with local electric field strength in classical
molecular dynamics simulations,38,39 so it makes some sense to
use the normal component of the electric field at the cavity
surface as an indicator of hydrogen-bond affinity, since this
quantity is computed anyway in SS(V)PE calculations. In
particular, the FESR model uses the minimum and maximum
values (Fmin and Fmax) of the outgoing normal electric field
produced by the solute, evaluated at the cavity surface. These
values are assumed to describe donation or acceptance of a
hydrogen bond, respectively, by the solvent. If the outgoing
normal field is strictly positive, then Fmin is set to zero, and if it
is strictly negative, then Fmax is set to zero. The FESR
contribution to ΔG is parametrized in the form20

Δ = | | +γ γG C F DFFESR min max (8)

where the linear proportionality constants C and D as well as
the exponent γ are empirical parameters. (The exponent γ is
present because there is no reason to believe that hydrogen
bond strength should correlate linearly with field strength.) As
noted by Pomogaeva and Chipman,20,23,24 a serious limitation
of the FESR model is that it describes, at best, only the single
strongest donor and single strongest acceptor hydrogen bond
sites on the solute.
Note that in the DEFESR model of eq 2, there is no explicit

cavitation contribution to the solvation free energy. As reported
by Pomogaeva and Chipman,22−24 an explicit treatment of
cavitation (e.g., an energy penalty depending on the volume of
the solute cavity) afforded only a very slight statistical
improvement in solvation energies as compared to the
experiment, at the cost of an increased number of empirical
parameters. Those authors suggest that the cavitation work may
already be contained implicitly in CMIRS, probably mostly in
the exchange term.23 Indeed, the exchange component has
comparable extent to the repulsion term plus the cavitation
terms in the formalism of Amovilli and Mennucci.14 On the
other hand, the lack of an explicit cavitation term or the ability
to describe multiple hydrogen bond donor and/or acceptor
sites suggests that CMIRS may be most appropriate for
modeling molecules that are about the same size as those in the
training set, which currently ranges in size up to decamethylte-
trasiloxane (48 atoms), n-pentadecane (48 atoms), n-
hexadecane (51 atoms), and ethyloctadecanoate (63 atoms).
II.B. New Implementation. The original implementa-

tion22−24 of CMIRS contained an error in the evaluation of the
integral in eq 6, the nature of which can be understood from
Figure 1, which provides a schematic view of how the integrals
over r (in eq 3) and r′ (in eq 6) are evaluated. The former uses

the same atom-centered quadrature grids that are used to
integrate the exchange-correlation functional in a DFT
calculation, whereas the latter uses the concentric single-center
Lebedev grids that are used to determine the isodensity cavity
surface. Mathematically, both r and r′ should share a common
coordinate origin, which we take to be the center of the
isodensity Lebedev grids. In the original implementation of
CMIRS, however, the origin for r was incorrectly taken to be
whatever atom was associated with the DFT grid point in
question. This is the blue vector in Figure 1, whereas in the
present work the red vector is used instead to define r, so that
the origin is the same for all grid points.
We have verified in our implementation that if we do indeed

use the blue vector in Figure 1 to define r, then we are able to
reproduce the dispersion energies provided in the Supporting
Information to ref 24, to many significant digits. All other
contributions to the CMIRS solvation energy are identical in
both implementations, but the significant change in the
dispersion energies necessitates reparameterization of the
model.

II.C. Computational Details. Solute molecules reported in
refs 22−24 were tested, with optimized gas-phase geometries
obtained from the Minnesota Solvation Database, v. 2009,40

and not further optimized. Isodensity cavity surfaces were
determined as described in ref 34 using single-center Lebedev
grids with 1202 angular grid points. Although this single-center
approach can in some cases fail to generate an isodensity cavity
surface, it is highly efficient in cases where it succeeds because
the integration over solvent in eq 6 can be separated into radial
and angular parts, the former of which can be integrated
analytically.22

The SS(V)PE treatment of electrostatics contains a single
empirical parameter, namely, the isodensity value ρ0, and we
test values ρ0 = 0.0005 and 0.0010 au that were found to afford
good results in previous work.8,22−24,33 Note that the SS(V)PE
solvation model uses the symmetric form of the matrix K in the
PCM equation Kq = Rv (in the notation of refs 9 and 26), as
distinguished from the asymmetric form used in IEF-PCM.
Dielectric constants and values of ρ̅solvent were taken from refs
22−24 and can also be found in the Supporting Information of
the present work. All calculations were performed at the
B3LYP/6-31+G* level for the solute, using a locally modified
version of Q-Chem.31

Empirical parameters in CMIRS were optimized to best
reproduce experimental solvation energies in the Minnesota
Solvation Database, v. 2009.40 Specifically, for a fixed value of γ,
we optimize the linear parameters A, B, C, and D in the
DEFESR model using the Nelder−Mead algorithm from the
Python SciPy package41 in order to minimize either the mean
unsigned error (MUE)
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or else the root meant square error (RMSE)
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We then minimize the one-dimensional function MUE(γ) or
RMSE(γ) according to the MUE criterion, in order to obtain
the final parameter, γ. The recommended values of the linear
parameters are fit to minimize the RMSE criterion in eq 10, for
reasons discussed below, whereas the robustness tests in
Section III.B use the MUE criterion. In cases where both
procedures are well-behaved, results are about the same.
Throughout this work, the damping parameter in eq 6 is

fixed at δ = 7 au (about 3.7 Å), a value that was optimized
previously.22−24 This value is about twice the van der Waals
radius for most atoms in the data set, indicating that dispersion
is considered only at intermolecular distances larger than the
van der Waals contact distance. Values of ΔGdisp predicted by
eq 3 are within the typical range of values determined in studies
of gas-phase intermolecular dispersion energies.42

III. RESULTS AND DISCUSSION

CMIRS parameters optimized in this work, using the RMSE
criterion in eq 10, are listed in Table 1 alongside those reported

previously for v. 1.0 of the model.22−24 (While we use the
RMSE criterion of eq 10 to optimize the parameters
throughout this work, to facilitate easy comparison with other
implicit solvation models we report error statistics in terms of
MUEs, which are evaluated at the RMSE-optimized parame-
ters.) Although the dispersion energies change significantly as
compared to the implementation in v. 1.0, at least in cases
where ΔGdisp is large, the overall MUEs actually change very
little as compared to v. 1.0. For example, in cyclohexane, we
obtain a MUE of 0.43 kcal/mol (CMIRS v. 1.1), as compared
to the value of 0.41 kcal/mol (CMIRS v. 1.0) that was reported
previously,22 despite changes averaging 4.5 kcal/mol in ΔGdisp.
As such, we will highlight only the most significant changes.
Unless stated otherwise, the following discussion applies
equally well to results obtained using either ρ0 = 0.0005 au
or ρ0 = 0.0010 au to define the isodensity cavity.

III.A. Optimal Parameters and Mean Unsigned Errors.
For the two nonpolar solvents, cyclohexane and benzene, we do
not include the hydrogen-bonding correction ΔGFESR, and thus
no values are reported in Table 1 for the parameters C, D, and γ
in these cases. The dispersion parameters A for these two
solvents are reduced by a factor of 2 as compared to those
reported previously;22 the exchange parameters B are reduced
significantly only for benzene. These changes reflect that the
actual values of ΔGdisp change significantly because values of the
integral in eq 3 are simply different in our implementation. We

Table 1. Optimizeda CMIRS Parametersb (in a.u.) for Various Solvents

ρ0 = 0.0005 au ρ0 = 0.0010 au

solvent reference A B C D γ A B C D γ

benzene ref 22 −0.01016 0.06533 −0.01154 0.03442

this work −0.00572 0.01116 −0.00522 0.01294

cyclohexanec ref 22 −0.01730 0.06039 −0.01496 0.04380

this work −0.00721 0.05618 −0.00938 0.03184

DMSOd ref 24 −0.003758 0.017585 −1041.53 4.4 −0.014401 0.059515 −253.58 4.3

this work −0.002523 0.011757 −817.93 4.3 −0.009510 0.044791 −162.07 4.1

DMSOe ref 24 0. 001392 −0. 025825 −2989.37 5.0 −0.009872 0.036192 −696.65 5.0

this work 0. 000728 −0. 022288 −12939.70 5.6 −0.006330 0.025298 −2639.89 5.6

CH3CN
d ref 24 −0.000463 0.006345 −0.43405 1.2 −0.004984 0.028574 −0.32009 1.3

this work −0.003805 0.032230 −0.44492 1.2 −0.008178 0.045278 −0.33914 1.3

CH3CN
e ref 24 0. 003232 −0. 035571 −1.48289 2.0 −0.001832 0.006349 −1.54873 2.5

this work 0. 001436 −0. 024959 −1.48231 2.0 −0.002555 0.010156 −2.36788 2.7

water ref 23 −0.009663 0.063101 −1840.0 −70.873 3.6 −0.010825 0.045576 −944.4 −17.817 3.6

this work −0.006496 0.050833 −566.7 −30.503 3.2 −0.006736 0.032698 −1249.6 −21.405 3.7
aThe damping parameter δ = 7 au is fixed, not optimized. bUnphysical values of the parameters A and B are highlighted in bold. cIn ref 22, the
damping parameter δ = 6 au was used. dExperimental solvation energies for ions were obtained based on the proton solvation free energy from Kelly
et al.43 eExperimental solvation energies for ions were obtained based on the proton solvation free energy from Fawcett.44

Table 2. Mean Unsigned Errors in CMIRS v. 1.1 Solvation Energies (in kcal/mol), As Compared to Experimental Values

ρ0 = 0.0005 au ρ0 = 0.0010 au

solvent all solutes hydro-carbons all neutrals cations anions all ions all solutes hydro-carbons all neutrals cations anions all ions

benzene 0.72 0.64
cyclohexane 0.38 0.43
DMSOa 2.32 0.52 1.00 2.58 2.49 2.46 2.93 0.68 2.52 2.41
DMSOb c 2.24 0.91 0.45 2.49 2.37
CH3CN

a 2.62 2.31 2.64 2.67 2.65 2.80 2.89 2.84 2.73 2.80
CH3CN

b c 2.08 1.30 2.25 2.04 2.16
water 1.53 0.59 0.93 2.86 3.01 2.94 1.25 0.43 0.78 1.84 2.82 2.36

aExperimental solvation energies for ions were obtained based on the proton solvation free energy from Kelly et al.43 bExperimental solvation
energies for ions were obtained based on the proton solvation free energy from Fawcett.44 cExcluded, because either A or B acquired an unphysical
sign during the fitting process.
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find, however, that upon refitting of the parameters with this
new implementation of ΔGdisp, the exchange energies change
significantly as well. For example, in the case of cyclohexane
using ρ0 = 0.001 au, dispersion energies change by an average of
4.5 kcal/mol for the 87 molecules in the data set, relative to
those obtained using v. 1.0 of the model, but at the same time
the average change in the exchange energies is −4.5 kcal/mol!
We will return to this observation below, as significant
cancellation between dispersion and exchange appears to be a
feature of the model.
Using the new parameters, we obtain MUEs of no larger than

0.72 kcal/mol in benzene and 0.43 kcal/mol in cyclohexane.
(The precise MUE depends on the choice of ρ0.) MUEs for v.
1.1 of the model, for all solvents, are reported in Table 2. Figure
2 plots the CMIRS v. 1.1 solvation energies versus experiment

for ρ0 = 0.001 au, and we see that the data are clustered tightly
along the diagonal that represents perfect agreement with the
experiment.
Moving on to DMSO and CH3CN, we set C = 0 by fiat (as in

CMIRS v. 1.024), since neither of these solvents is expected to
serve as hydrogen bond donor. In discussing the data for polar
solvents, where some single-ion solvation free energies are
included in the data set, it is important to bear in mind that
extracting single-ion solvation energies from experiments on
ion pairs requires an absolute reference, which is usually taken
to be the solvation free energy of the proton. However, two

different values for this reference in DMSO and CH3CN can be
found in the recent literature,43,44 so there are really two
different sets of experimental data for these two solvents,
depending on which reference is used. For all of the polar
solvents, we report parameters that have been optimized
separately depending on whether the experimental data for ions
are tied to Fawcett’s value44 of the proton solvation energy or
else the value reported by Kelly et al.43 (The latter is a revised
version, using additional data, of the value originally derived by
Coe and co-workers,45 as discussed also in ref 46.) Careful
inspection of Table 1 reveals two cases (specifically DMSO and
CH3CN with ρ0 = 0.0005 au, using Fawcett’s value) where the
fitting procedure yields values of A and B whose signs are
unphysical, suggesting repulsive dispersion but attractive
exchange. (These cases are highlighted in bold in Table 1.)
Pomogaeva and Chipman previously reported such an anomaly,
in precisely the same two cases.24

Before discussing the optimal parameters for DMSO and
CH3CN, we demonstrate why we choose eq 10 rather than eq
9 for parameter optimization. Figure 3a plots the MUE for
DMSO as a function of the nonlinear parameter γ, but where in
one case the linear parameters were obtained by minimizing the
RMSE at fixed γ, whereas in the other case they are optimized
to minimize the MUE. In the latter case, the MUE oscillates
dramatically as a function of γ, for γ > 7 and γ < 3. When the

Figure 2. CMIRS v. 1.1 solvation energies in (a) benzene and (b)
cyclohexane, versus experimental values. The CMIRS calculations use
an isodensity contour ρ0 = 0.001 au, and the solute is described at the
B3LYP/6-31+G* level.

Figure 3. (a) MUEs and (b) B parameters for DMSO, obtained by
minimizing the linear parameters at fixed γ according to either the
MUE (eq 9) or the RMSE criterion (eq 10). The black symbols
indicate the optimal values. Calculations were performed using ρ0 =
0.001 au, B3LYP/6-31+G*, and Fawcett’s value44 of the proton
solvation energy.
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linear parameters are optimized according to the RMSE
criterion, the MUE remains well-behaved even in these cases,
suggesting that the RMSE is the better objective function.
Figure 3b shows that the optimal value of the B parameter (at
fixed γ) is also wildly oscillatory when the MUE criterion is
employed but is well-behaved when optimized (simultaneously
with the other linear parameters) to minimize the RMSE.
Excluding the two anomalous cases with unphysical

optimized parameters, we can say in general that our v. 1.1
values of A and B are smaller in magnitude for DMSO but
larger for CH3CN, as compared to the values reported for v.
1.0.24 Optimal values for γ and D in ΔGFESR are quite
comparable to those obtained in previous work, except for the
case of DMSO based on experimental data tied to Fawcett’s
proton reference, where D is dramatically different, and γ is
more different than what is seen for other solvents (see Table
1). Recall that ΔGFESR = DFmax

γ for these two solvents, so it is
not altogether surprising that a change from γ = 5.0 (ref 24) to
γ = 5.6 (this work) is compensated by a large change in the
corresponding coefficient, D. The relatively large change in γ
occurs because the error profile as a function of γ is quite flat
for 4 < γ < 9; see Figure 3a. Unfortunately, the data set used to
fit the parameters for DMSO consists overwhelmingly of
anions, with very few neutral or cationic solutes, and since small
anions are unlikely to form hydrogen bonds with DMSO, the
number of data points that contribute significantly to the
optimization of D and γ is quite limited in this case; see Figure
4a. The situation is less severe for CH3CN, as shown in Figure
4b. We have been unable to locate significant additional
experimental data in DMSO that might resolve this situation.
Figure 5 plots the calculated CMIRS v. 1.1 solvation free

energies versus the Fawcett-based experimental values, using ρ0
= 0.001 au. The MUE is 2.24 kcal/mol for DMSO and 2.08
kcal/mol for CH3CN, across all solutes, and only slightly
greater for the ions-only subset (see Table 2), which likely
reflects the fact that most of the experimental data points for
these two solvents are in fact ions. MUEs remain <3 kcal/mol
when the alternative (Kelly et al.43) value for the proton
solvation energy is used instead.
By way of comparison, the SM12 solvation model47 that was

parametrized using the same experimental data (with the Kelly
et al. proton reference) affords MUEs for ions that are
considerably larger, ranging from 5.7 to 6.8 kcal/mol in DMSO
and from 5.5 to 6.1 kcal/mol in CH3CN, depending on the
functional and basis set that is used to describe the solute. The
MUEs for CMIRS v. 1.1 are thus considerably smaller, despite
the use of fewer empirical parameters as compared to SM12. It
does bear mentioning that SM12 uses more parameters but is
designed to be “universal” (in the sense of being applicable to
all solvents)4 and thus might be more competitive if
parametrized on a per solvent basis, as is CMIRS. Nevertheless,
for the five solvents currently available in CMIRS v. 1.1, the
accuracy of this model seems to compare well with the best
available QM implicit solvation models.
Last, we come to water, for which we find that the A and B

parameters are smaller in magnitude as compared to v. 1.0, but
the C and D parameters are larger, except for the case when ρ0
= 0.0005 au, while γ is about the same. Using ρ0 = 0.0010 au,
we are able to achieve a MUE of 0.78 kcal/mol for neutral
solutes, 2.36 kcal/mol for ions, and 1.25 kcal/mol considering
all solutes. The actual data are plotted against experimental
values in Figure 6.

Considering all of the data, we recommend the parameters
optimized using ρ0 = 0:0010 au and the Kelly et al. proton
solvation energies, for benzene, cyclohexane, acetonitrile, and
water. For DMSO, we recommend the parameters optimized
using ρ0 = 0:0005 au and the Kelly et al. proton reference. For
DMSO, additional data for neutral and cationic solutes would
likely increase the accuracy of the parametrization, or at least
boost confidence in its robustness.

III.B. Robustness of the Parameterization. Following
Pomogaeva and Chipman,22−24 we have performed some
additional analysis of the parametrization of the model. First, in
order to ascertain the robustness of the parametrization, we
took the data set for each solvent and selected half of the points
(at random) to serve as a fitting set, with the other half reserved
for evaluation, then reversed the roles of the two data sets and
refit the parameters. This exercise (including refitting the
parameters) was repeated 10 000 times for each solvent, with
MUEs that are slightly different in each case because the
subsets are chosen randomly. All parameters including γ were
optimized simultaneously using the Nelder−Mead algorithm in
SciPy41 to minimize the MUE, so that scanning of γ profiles can
be avoided in order to facilitate the very large number of
parameter fits. Having already optimized the CMIRS
parameters using the RMSE criterion, we now know that the
MUE(γ) profiles are stable in the vicinity of the optimal value
of γ (see Figure 3), so the MUE optimization criterion is not
problematic. Results for the change in the MUE (with respect to
the values reported in Table 2 that were obtained by fitting to

Figure 4.Mean unsigned errors for (a) DMSO and (b) CH3CN, using
ρ0 = 0.001 au, B3LYP/6-31+G*, and Fawcett’s value44 for the proton
solvation energy. Numbers in parentheses in the legend indicate the
number of data points in each case.
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the entire data set), along with the standard deviation in this
change across all 10 000 refitted sets of parameters, are reported
in Table 3.
For three of the five solvents, changes in the MUE are quite

small across these 10 000 reparameterizations, which inspires
confidence in the robustness of the parametrization. Relatively
larger changes are observed for DMSO and CH3CN, and we
strongly suspect that this arises from the somewhat unusual
nature of the data sets for these two solvents. Unlike water, for
example, where the data set contains 112 ionic solutes and 264
neutral solutes, there are only seven neutral solutes in the data
set for either DMSO or CH3CN. For DMSO, there are 67
anions but only four cations, whereas for CH3CN there are 30
anions and 39 cations. Especially for DMSO, many of the
10 000 instances of our randomized procedure afford fitting sets
containing only anions, which lead to larger MUEs for the
neutral solutes, and this seems to primarily affect the need to
reoptimize the nonlinear γ parameter in the FESR model. The
deviations reported in Table 3 reflect reoptimization of all
parameters, but only for DMSO does reoptimization of γ
matter significantly. If only the linear parameters are
reoptimized for this solvent, we find that the MUE changes
by a significantly larger value, 1.09 ± 8.94 kcal/mol.
For CMIRS v. 1.0, the quantities ΔGdisp and ΔGexch are found

to be highly correlated, e.g., with a correlation coefficient of R2

= 0.99 for water.23 Despite the change in the implementation of

ΔGdisp, we obtain essentially the same correlation coefficient for
CMIRS v. 1.1. This implies that significant cancellation of the
attractive dispersion interaction by the repulsive exchange
interaction remains a feature of the corrected model, as
quantified above in the specific case of cyclohexane, for which
both the dispersion and exchange interactions are relatively
large. This is the case despite that fact that the integral in eq 3
that defines ΔGdisp becomes more attractive in the present
implementation, by a sizable amount for larger solutes.
Compensation is observed in the refitting of the A and B
parameters.
Since our implementation of CMIRS is exactly the same as v.

1.0 except for this dispersion term, the high correlation between
dispersion and exchange suggests that the parameters in
ΔGFESR should not change significantly in the new
implementation, and indeed this is what we observe. For

Figure 5. CMIRS v. 1.1 solvation energies versus experimental values
for (a) DMSO and (b) CH3CN, using ρ0 = 0.001 au, B3LYP/6-
31+G*, and Fawcett’s value44 of the proton solvation energies.
Numbers in parentheses in the legend indicate the number of data
points in each case.

Figure 6. CMIRS v. 1.1 solvation energies in water, versus
experimental values for (a) the entire data set of solutes and (b)
neutral solutes only. An isocontour value ρ0 = 0.0010 au was used
along with B3LYP/6-31+G* for the solute, and the numbers in
parentheses in the legend indicate the number of data points in each
case.

Table 3. Change in MUE upon Refitting Parameters for
10 000 Randomly Selected Subsets Consisting of Half of the
Available Experimental Data

solvent ΔMUE (kcal/mol)

cyclohexane 0.08 ± 0.06
benzene 0.16 ± 0.11
DMSO 0.43 ± 0.81
CH3CN 0.48 ± 0.33
water 0.13 ± 0.10
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calculations based on Fawcett’s proton reference, ΔGFESR for
the four cationic solutes in DMSO equals −5.59, −6.65, −5.77,
and −7.84 kcal/mol in our implementation, versus −5.69,
−6.64, −5.86, and −7.70 kcal/mol in v. 1.0. These changes are
essentially negligible, while the dispersion and exchange
energies change by 25%. Similar remarks hold for water and
for CH3CN, and Figure 7 demonstrates that the v. 1.0 and v.

1.1 values of ΔGFESR are essentially identical, despite the
reparameterization. This comparison speaks to the robustness
of the FESR model, at least for the solutes considered here.

IV. SUMMARY
We have corrected an error in the implementation of the
CMIRS solvation model, which necessitated refitting the five
empirical parameters that define this model, in each of the five
solvents (water, DMSO, CH3CN, benzene, and cyclohexane)
for which it has been parametrized. The correction alters the
dispersion energy by several kilocalories per mole in some
cases, but upon refitting the parameters we find that the overall
error statistics are only slightly improved, relative to CMIRS v.
1.0. The marginal improvement arises from a compensating
effect in the exchange interaction when the parameters of are
refit. Excellent correlation between the magnitude of the
dispersion and exchange energies, observed originally for
CMIRS v. 1.0, is preserved here, and the value of the single
nonlinear parameter in the model changes little upon
reoptimization, suggesting that the model captures much of

the essential physics with relatively few parameters. For solutes
described at the B3LYP/6-31+G* level, we achieve MUEs of
<0.7 kcal/mol for benzene and cyclohexane, < 1.5 kcal/mol for
water, and <2.8 kcal/mol for DMSO and CH3CN.
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