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ABSTRACT: We introduce a “pair−pair” approximation to the generalized many-
body expansion (pp-GMBE) as an approximation to a traditional four-body
expansion, the latter of which is accurate but quickly becomes numerically unstable
and ultimately intractable as the number of “bodies” (fragments) increases. The pp-
GMBE method achieves a good balance between accuracy and efficiency by defining
significant fragment pairs and then fragment quartets. An efficient fragmentation
scheme is introduced for proteins such that the largest subsystems contain about 60
atoms. Application of the pp-GMBE method to proteins with as many as 70 amino
acids (1142 atoms) reveals that pp-GMBE energies are quite faithful to those obtained
when the same level of density functional theory is applied to the entire
macromolecule. When combined with embedding charges obtained from natural population analysis, the pp-GMBE approach
affords absolute energies that differ by 1−3 kcal/mol from full supersystem results, but it yields conformational energy profiles
that are practically indistinguishable from the supersystem calculation at the same level of theory.

1. INTRODUCTION

Ab initio quantum chemistry provides a general theoretical
route to study molecular properties of medium-sized molecules
containing ∼100 atoms. The computational cost of such

methods scales as N N( )a b
A B , where NA denotes the number of

atoms and NB is the number of basis functions per atom. The
exponents a and b depend upon the ab initio method in
question, but typically a ≥ 3 and b = 2−4. Although a large
number of algorithms that scale linearly with respect to NA have
been devised,1−5 such methods tend to work best in small basis
sets and therefore do not solve the “NB problem”. Molecular
fragmentation approaches4−6 are an alternative route to
tractable macromolecular quantum chemistry calculations, but
these methods have not been tested consistently or with regular
success in the triple-ζ and larger basis sets that are necessary to
obtain converged results, even for modern density functional
theory (DFT).7,8 When fragment-based methods do appear to
work in large basis sets, this “success” is often due largely to
error cancellation.9,10

The fragment-based approach is the one pursued here. Our
approach is a chemically intuitive means to reduce the
computational scaling with respect to NA while preserving the
ability to use reasonable basis sets. The NA-atom system is
partitioned into subsystems using a set of predefined rules. The
total energy is computed by assembling the energies of smaller
subsystems, each of which is assumed to be representative of its
local electronic environment. For a fixed basis set, the
computational scaling is reduced from N( )a

A to n( )a
A ,

where nA is the size of the largest subsystem (fragment). The
subsystem calculations are completely independent of one
another; hence, it is straightforward to combine the fragment-

based approach with all levels of ab initio electronic structure
theory and to parallelize the algorithm without extensive
modification to existing quantum chemistry codes. The
algorithm is embarrassingly parallelizable, so if a number of
processors equal to the number of subsystem calculations is
available, then the wall time becomes independent of system
size.
A wide variety of fragment-based methods exist in the

literature,4,5 and Richard and Herbert6 have established a
conceptual framework that unifies many of them. The four
elements proposed in ref 6 to define a particular fragment-
based method are

• a fragmentation method,
• a capping method,
• an embedding method, and
• the number of layers.

In some fragment-based methods, the capping method is
included as part of the fragmentation method. The
fragmentation method together with the capping method
determines how the subsystems are defined. Embedding and
multilayer methods play an analogous role in the fragment-
based method, namely, to recover the long-range interactions
missing from the individual subsystems. The difference is that
the embedding method includes only the Coulomb interactions
while the multilayer method is able to introduce exchange and
correlation interactions via some low-level method applied to
the entire supersystem. In the latter case, one may significantly
reduce the overall computational effort, as compared to
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application of the high-level method to the entire supersystem,
but linear scaling is sacrificed.
A good fragment-based method must achieve a delicate

balance between accuracy and efficiency. In principle, the
many-body expansion (MBE), in which the total energy is
partitioned into a sum of monomer, dimer, trimer, ... energies is
able to systematically improve the accuracy.11 (Recent studies
have questioned whether this is true in practice, however, at
least for large systems.9,10,12,13 For high-accuracy calculations,
one must consider the effects of basis-set superposition error,
which behaves quite differently in fragment-based ap-
proaches.9,10,12,14) A four-body expansion is usually sufficient
to obtain an accurate total energy,15 but the number of
tetramers grows so rapidly with system size that four-body
expansions are prone to serious loss-of-precision problems.13

Two-body expansions are much more stable in large systems,13

yet three- and four-body corrections are needed to obtain
“chemical accuracy” of ∼1 kcal/mol.16−20

In this work, we will attempt to capture the most significant
four-body interactions based on identifying nearby pairs of
fragments. The pair−pair fragmentation method that we will
introduce consists of two steps: (1) defining the monomers,
which include significant fragment pairs, and (2) defining the n-
mers (unions of the monomers), which include significant
monomer pairs. This constitutes a “pair−pair” (pp) approx-
imation to the generalized many-body expansion (GMBE) of
Richard and Herbert6,21,22 and signif icantly reduces the number
of independent electronic structure calculations that are
required, relative to a primitive four-body expansion or a
two-body GMBE. (In the case of a 70-residue protein
considered herein, for example, the number of individual
subsystem calculations is reduced from more than 109 for a
four-body expansion to fewer than 12 000 using the pp-GMBE,
without sacrificing accuracy.) Charges are extracted from a low-
level GMBE calculation in order to improve the accuracy of the
method. Finally, we have parallelized our fragmentation code
(“FRAGME∩T”, developed in previous work6,21) in order to take
advantage of very large numbers of processors, with subsystem
calculations that are also relatively large. In the present work,
we describe this methodology and test it for polypeptides and
proteins, using a new fragmentation scheme that results in
subsystems containing ≲60 atoms, which makes feasible the
application of decent levels of electronic structure theory.

2. THEORY

2.1. Energy Expression. 2.1.1. General Energy Expres-
sion. As with a few other fragment-based quantum chemistry
methods,5,23−25 the GMBE method is based on the principle of
inclusion/exclusion (PIE), which is a theorem about the
cardinality of sets. Let S1, S2, ..., SN be subsets of some set S;
these subsets need not be disjoint. There are two possible cases.
First, the case where the aforementioned subsets form a
complete partition of S, meaning that

∪| | =
=
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Here, S n = S\Sn is the complement of Sn in S. The PIE states
that the cardinality of the set S1 ∪ S2 ∪ ··· ∪ SN can be expressed
as
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The GMBE is obtained by applying the PIE to a partition of
the supersystem’s Hamiltonian.6,21 The latter is

∑ ∑ ∑ ∑̂ = ̂ + ̂ + ̂ + ̂
< <

H h V V V
i

i
i I

iI
i j

ij
I J

IJ
, (4)

where lower-case indices are for electrons and upper-case
indices denote nuclei. If the supersystem is divided into N
primitive subsystems, then the total Hamiltonian can be
expressed exactly as a linear combination of subsystem
Hamiltonians, according to the PIE:6,21
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An energy expression follows as the expectation value of eq 5:
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Here, Φ is the exact ground-state wave function for the entire
supersystem, in which case E is the exact ground-state energy.
The complementary energy

Δ = ̅ ∩ ̅ ∩··· ∩ ̅E E i i iN1 2 (7)

depends on the specific form of subsystem Hamiltonian.
Equation 6 is a universal energy expression that can serve as a

starting point for making the necessary approximations (i.e.,
computing localized wave functions for the subsystems) that
form the basis of a fragment-based approach. The results
obviously depend on how the fragments are defined. In
particular, the traditional MBE is simply an n-body truncation
of the GMBE based on nonoverlapping fragments, and the
“generalized energy-based fragmentation” (GEBF) method of
Li and co-workers24,26,27 is a one-body truncation but with
overlapping fragments defined based on a distance threshold.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00955
J. Chem. Theory Comput. 2016, 12, 572−584

573

http://dx.doi.org/10.1021/acs.jctc.5b00955


[For this reason, we have sometimes referred to the GEBF
method as GMBE(1).22] The “many overlapping body
expansion” (MOBE) of Mayhall and Raghavachari28 and the
systematic molecular fragmentation (SMF) method of Collins
et al.29−31 are truncations that in addition omit certain
intersections from eq 6.6,21 The “molecular fragmentation
with conjugated caps” (MFCC) approach,32−37 which predates
the aforementioned methods, should be particularly mentioned
in this context, as it has been widely applied to calculations on
proteins.37 The latest version36 of MFCC bears much similarity
to the method developed here, with some technical differences
as explained herein, though our approach can be rigorously
derived as an approximation to the GMBE. The traditional
MBE as well as the GEBF/GMBE(1) approach will be
considered further below.
2.1.2. Traditional Many-Body Expansion. For nonoverlap-

ping fragments that do not cut across covalent bonds, it has
long been recognized that the exact ground-state energy, E, can
formally be expressed in terms of the energies of monomers,
dimers, trimers, .... This is the traditional MBE, and the most
conceptually straightforward way to write it is11
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where the EI are the monomer energies,
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is a correction for dimers,
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is a correction for timers, etc. An m-body approximation for the
energy, E(m), simply consists of truncating eq 8 at the m-body
level. As written in eq 8, this involves a lot of redundancy,
which can be eliminated a priori to afford a compact expression
for the m-body approximation to the total energy:20
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is a binomial coefficient and Eα
(k) is the energy of the αth unique

k-mer of fragments. The coefficient of E(k) can be derived from
eq 6:
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Higher-order terms that are neglected in truncating the MBE
are sometimes included by performing a full supersystem
calculation at a lower level of theory.18,38−45

2.1.3. Generalized Many-Body Expansion. In the GEBF
method,24,26,27 which we have also called GMBE(1) because it
can be derived based on a one-body truncation of the
GMBE,6,22 the total energy expression is written as
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>

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E C E C
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1

I
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I
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This energy expression can be derived from eq 6,6 and the form
of the second (charge-embedding) term will be discussed
below. In the original paper introducing the GEBF method,24

the coefficients CI were derived for specific subsystems using a
top-down procedure. The primitive subsystems correspond to
the top subsets of S (i.e., the S1, S2, ..., SN), and these get a
coefficient CI = 1. Next, the coefficient for the largest derivative
subsystem is obtained by counting the number of times that
this subsystem appears in any primitive subsystem. This process
continues until all unique derivative subsystems have been
determined. In the GMBE approach, the coefficient CI for
subsystem I is obtained instead by assembling all related
coefficients in eq 6. In principle, the total energy expression can
be written as in eq 6, but in practice we use eq 14, where each
subsystem energy EI is computed using a wave function for the
localized fragment. The resulting energy expression, eq 14, is
equivalent to the one used in the GEBF approach.24

2.1.4. Subsystem Energy Expressions. Next, let us turn to
the specific energy expression for the subsystems and the
resulting complementary energy expression, eq 7. In the gas
phase, the subsystem Hamiltonian is independent of the
supersystem:

∑ ∑ ∑ ∑̂ = ̂ + ̂ + ̂ + ̂
∈ < <
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H h V V VA
i

i
i I

iI
i j

ij
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A ,
i I i j I J, A , A , A (15)

The subsystem energy is

= ⟨Φ| |Φ⟩ ≈E H EA A A
gas

,0 (16)

where EA,0 is the ground-state energy of isolated subsystem A. If
S 1 ∩ S 2 ∩ ··· ∩ S n ≠ ⌀, then not all interaction terms are
explicitly included in the subset {S1, S2, ..., SN} and the
complementary energy ΔE is usually computed using an
empirical method, such as a molecular mechanics (MM) force
field. Furthermore, the residual interaction terms in ΔE might
be ignored if the distance between interacting fragments is
large.
A potentially more accurate approach is to embed the

subsystem in some representation of the environment and thus
write the subsystem Hamiltonian as

∑ ∑ ∑ ∑ ∑ ∑ ∑̂ = ̂ + ̂ + ̂ + ̂
∈ ∈ ∈ ∈

H h V V VA
i

i
i I

iI
i j

ij
I J

IJ
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A A A A

(17)

Unfortunately, this expression does not satisfy the criterion
ĤA∩B = ĤA ∩ ĤB. In order to build the total energy using the
PIE, it is necessary to incorporate the self-energy (Ĥbath) or
two-particle interaction energy (Vbath) of the surrounding
(bath) system into the subsystem Hamiltonian in order to
satisfy this condition. Here, we use the interaction energy form,
and the Hamiltonian of subsystem A is written as
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∑ ∑ ∑ ∑ ∑ ∑ ∑̂ = ̂ + ̂ + ̂ + ̂

+

∈ ∈ ∈ ∈
H h V V V

V

A
i

i
i I

iI
i j

ij
I J

IJ
embed

A A A A

bath (18)

In the electrostatic embedding case, the total energy of an
empty subsystem (if A = ⌀) is simply the self-interaction of all
of the embedding charges. Otherwise, EA

embed is equal to the sum
of the energy of subsystem A, the interaction of A with the
embedding charges, and the self-energy of the embedding
charges. Since the sum of all coefficients in the PIE equals unity,
the coefficient for E⌀, the subsystem energy when A = ⌀, is

∑= −⌀C C1
I

M

I
(19)

This is precisely the coefficient of the second term of eq 14.
The total energy can, therefore, be rearranged as
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Written in this way, it becomes clear that charge embedding is
simply one special form of a multilayer method.18,43,46,47

2.2. GMBE Method. 2.2.1. Definition of Groups. To apply
the GMBE to polypeptides, we must decide upon a
fragmentation scheme. It might seem natural to specify each
amino acid residue as a “group” of atoms, as is done in the
MFCC approach.37 Such a choice corresponds to the cut
labeled “X3” in Figure 1. However, two other groupings can be

envisaged,48,49 severing either the bond between CO and Cα

(cut “X1” in Figure 1) or else the bond between Cα and N
(“X2” in Figure 1). We find the second choice, severing the C−
C bond between the carbonyl and Cα, to be the most natural,
and we refer to this as the P1 partition scheme. This has several
advantages over the other two cuts suggested in Figure 1,
namely, (1) it keeps the peptide bonds intact, (2) it avoids
problems arising from cutting the bond between Cα and N−H
in proline, and (3) it severs a less polar bond.
A typical amino acid residue contains 7−24 atoms. The

largest subsystem in the pair−pair fragmentation method will
contain up to 96 atoms (fragment quartets) excluding the
capping hydrogen atoms. These subsystems are too large to be
calculated with high-level ab initio methods, such as MP2, and
are computationally taxing even for some DFT methods with
large basis sets. To reduce the cost, we could further divide
residues with a long side chain into two parts (main chain part
and side chain part), which we will call partition P2. As shown
in Figure 2, all residues containing more than 15 atoms are
divided into two parts. If one −CH2 group connects to the Cα

atom, then the main chain part contains the atoms in the main
chain and the −CH2 group (the group G1 in Figure 2). If one
−CH group connects to the Cα atom, then the main chain part
contains only the atoms in the main chain (G2 in Figure 2).
The side chain part contains the remaining side chain atoms. As
such, the largest group only contains 15 atoms, so the largest
fragment quartet (and thus the largest individual electronic
structure calculation) that is required in the P2 partition
contains 60 atoms, excluding the capping hydrogen atoms.
These largest subsystems include a fragment quartet, so
assuming an average of 11 or 12 atoms per group, the largest
fragments will consist of no more than about 48 atoms.
Although this is somewhat larger than the typical fragment sizes
used in the MOBE and SMF methods, it is comparable to the
fragment size used to study proteins with the latest version of
MFCC.36 (See Table 1 of ref 5 for a comparison of typical
fragment sizes for various methods.)

2.2.2. Fragmentation Method. The Hartree−Fock energy
of a molecule in an atom-centered basis set can be expressed as

∑ ∑ ∑ ∑μν λσ= + +
μν

μν μν
μνλσ

μν λσ
>

E P h P P
Z Z
R

1
2

( )
A B A

A B

AB

(21)

with the usual notation, and antisymmetrized two-electron
integrals. Although the Hamiltonian contains only one- and
two-particle interactions, the total energy can be decomposed
into the sum of the one-, two-, three-, and four-atom terms
using eq 21, according to the four indices in (μν∥λσ). If a
system is divided into N fragments, then the total energy can be
decomposed using the MBE (eq 8), keeping up to four-body
terms for high accuracy. The cost of such an approach will scale
as N( )4 , whereas with integral screening the traditional
(supersystem) Hartree−Fock cost scales as N( )3 for a fixed
basis set and for a system whose size grows like N. (We will see
in our numerical results that there is a significant regime where
fragment-based methods often require more computer time
than the corresponding supersystem calculation, at least at the
DFT level, and the fragment approach is only a “win” in terms
of wall time because it parallelizes so well.)
The shell-pair data are central to the success of any modern

integral program.50 It is possible to construct all potentially
important shell-quartets, which are the foundation of the two-
electron integrals, by pairing the shell-pairs with one another. A
similar strategy can be applied to fragment-based methods. The
energy expression in eq 21 can be rewritten in a pair-interaction
form

Figure 1. Definition of atom groups for polypeptides and proteins,
using the peptide ACE−(Gly)3−NME as an example.

Figure 2. Definition of atom groups with partition P2, which
subdivides amino acid residues into a main part and a side chain part, if
the side chain R contains more than six atoms. R1 includes less than
10 atoms, and R2 + R3 includes more than 8 atoms. The cuts labeled
“X1” correspond to the same label in Figure 1.
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where IJ and KL are pairs of atoms. In the formation of
fragment pairs, all pairs of fragments in the supersystem are
considered and categorized as either significant or negligible
according to a distance criterion. Given the nearsightedness of
electronic matter,51,52 it is not surprising that most of the
fragment pairs in a large molecule are negligible, that is, the
number of significant fragment pairs increases linearly with the
size of the molecule. In this work, a significant fragment pair is
defined to mean two covalently bonded fragments or two
hydrogen-bonded fragments. The criteria for a hydrogen bond
are (1) the bond length between the donor atom (X = O, N, or
F) is less than twice the sum of the van der Waals radii of X and
H, and (2) the bond angle Y−H···X is larger than a specified
cutoff ϕH, which we will ultimately take to be 130° based on
numerical tests.
After defining the fragment pairs, the next step is to construct

the important fragment quartets. As the distance between
fragment pairs increases, the interaction is dominated by the
Coulomb interaction and can be described by charge−charge
interactions at long range. Thus, it is possible to set up a cutoff
threshold to distinguish the significant pair−pair interactions.
We use a simple distance cutoff, λc = 4.0 Å. We refer to this
method, which constructs significant fragment quartets from
the significant fragment pairs, as pp-GMBE.
2.2.3. Capping Method. The severed valencies introduced

by fragmentation must be capped, and this is usually
accomplished either using a simple hydrogen link atom or via
some kind of frozen orbital cap. We use the former, and upon
severing a covalent bond between atoms located at r1 and r2, a
hydrogen atom is placed at a position rcap defined by

= +
+
+

−
⎛
⎝⎜

⎞
⎠⎟

R R
R R

r r r r( )cap 1
1 H

1 2
2 1

(23)

where R1, R2, and RH are the van der Waals radii of the
indicated atoms. This is the approach taken in the SMF method
of Collins et al.,29−31 and in ref 6 we referred to this as the
“SMF capping method”. In contrast, MFCC calculations of
proteins typically use functional group caps,37 but results below
will demonstrate that hydrogen caps are sufficient for use with
the fragmentation schemes suggested herein.
An essential requirement for a valid fragmentation method is

that the net number of capped hydrogen atoms must be zero.
The GMBE method always satisfies this requirement since it
complies with the PIE, as is easily shown. Let S1, S2, ..., SN still
be subsets of some set S, but let them now represent the
covalent bonds between atoms. In the GMBE approach,
S 1 ∩ S 2 ∩ ··· ∩ SN = ⌀. Let σi→j denote the total number of the
dangling bonds of atom i that point to atom j, which
corresponds to subsystems that include atom i but not j. (We
sever only single bonds, but the i−j bond may be severed in
multiple subsystem calculations.) Let σij be the total number of
joint bonds between atoms i and j, which corresponds to the
subsystems including both atoms i and j. The net number of
bonds between atoms i and j is

σ σ σ+ + =→ → 1ij i j j i (24)

and the net number of times that atom j appears in subsystem
calculations is

σ σ+ =− → 1i j j i (25)

Inserting eq 25 into eq 24, one may deduce that σi→j = 0.
Because each dangling bond corresponds to a capped hydrogen
atom, this result shows that the capped hydrogen atoms
bonded to fragment i are canceled when all subsystems are
considered. It is one way in which the GMBE, because it is
based on a rigorous set-theoretical partition of the Hamiltonian,
avoids double-counting (or undercounting) of interactions.

2.2.4. Embedding Charges. Dahlke and Truhlar11 intro-
duced two different versions of charge embedding in the
context of what they call the “electrostatically embedded” MBE
(EE-MBE). Embedding charges were either (a) obtained from
a supersystem electronic structure calculation, e.g., as Mulliken
atomic charges, or else (b) computed from subsystem
calculations in the gas phase. The latter is more attractive for
large systems as it avoids any supersystem calculation at all, and
although at first glance it appears to be rather crude, EE-MB
results are found to be surprisingly insensitive to the precise
details of the embedding charges,11,53 at least in systems such as
small water clusters. As system size increases, this situation may
change; even in larger water clusters, the difference between
results obtained using various embedding charges is more
pronounced.13

A very different charge embedding scheme was proposed in
the context of GEBF.24,27,54 Embedding charges on the central
fragment were derived from natural population analysis55

(NPA) in a primitive subsystem calculation, and an iterative
method was introduced to calculate the natural charges. (This
does complicate the formulation of analytic gradients, and only
single-point energy calculations are considered here.) In the
original GMBE method,24 the embedding charge for a
particular atom was defined as the average of its charge in all
fragments. This extension to intersecting fragments is not
physically straightforward because atoms contained within
intersections might have different charges in different frag-
ments. Although this crude averaging procedure worked
surprisingly well in preliminary tests,6 it is not without
problems. Here, we propose a better way to extend charge
embedding to intersecting fragments within the GMBE
method.
Recalling the PIE, the total density of the supersystem can be

expressed as a linear combination of the subsystem
densities:5,23,25
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This leads directly to an expression for the embedding charges
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where a is the atom index and qa′ is the charge on atom a in
subsystem i1 ∩ i2 ∩···∩ in. In order to obtain more accurate
embedding charges, the embedding charges are considered as
the surrounding point charges to update the subsystem
densities until the embedding charges converge. As in the
GEBF approach, this updating procedure does not preserve the
variational nature of the subsystem self-consistent field (SCF)
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procedure, which will complicate the formulation of analytic
energy gradients.
In the GEBF method, the embedding charge are extracted

from the central fragment, which means that the primitive
subsystems should be large enough to describe environmental
effects. This procedure is too expensive for high-level ab initio
methods. In our charge embedding method, a much cheaper
GMBE method (such as a truncated two-body expansion) is
used to calculate the embedding charges, and this proves to be
sufficient to capture the qualitative supersystem density and
provide reasonable embedding charges.
One nontrivial (but seldom discussed) problem regarding

embedding charges in macromolecular systems is the charge on
“link” atoms. The total charge on the link (capping) atoms may
not exactly cancel in the GMBE. In larger systems, or when the
system is not charge-neutral, the cumulative charge error can be
significant even while the charges on individual link atoms are
small. In order to cancel these errors, we redistribute the
charges on link atoms to the related bond-broken atoms.
Generally, this operation leads to very small change on the
bond-broken atoms while preserving the correct total charge.

3. RESULTS AND DISCUSSION
3.1. Embedding Charges. In this section, we consider α-

helices and β-strands of polyalanine containing 10 residues
capped with an acetyl (ACE) cap at the N-terminus and an N-
methylacetamide (NME) cap at the C-terminus. We use these
decapeptides, which we call α-(Ala)10 and β-(Ala)10, as test
systems to compare various charge embedding methods. Both
of these systems are charge-neutral, so we also use chignolin
(PDB code: 1UAO) as an example of a charged polypeptide
exhibiting a U-turn. Geometries of α-(Ala)10 and β-(Ala)10 were
taken from ref 16, and the geometry of 1UAO was optimized
with the Amber ff99SB force field,56 using the AMBER

program.57 These structures are shown in Figure 3.

We first examine the effect of different point-charge
embeddings on the total energy of these three polypeptides,
using a supersystem calculation to obtain the embedding
charges. As indicated above, this is not ideal for application to
large molecules and will be replaced below by the subsystem-
based embedding method suggested in eq 27, but for now, we
use supersystem-derived embedding charges as a quick method
to compare Mulliken charges, NPA charges,55 and ChElPG
charges.58 As shown in Table 1, the differences among these
three embedding schemes, and between the embedded
methods and a pp-GMBE approach that uses no embedding
at all, are less than 1 kcal/mol for the two neutral polyalanine

systems. In the charged system 1UAO, however, the pp-GMBE
without embedding charges leads to a large error, −5.2 kcal/
mol, whereas the deviations remain <1 kcal/mol for the three
embedded pp-GBME approaches. Since there is not much
difference among these three charge schemes, we will settle on
NPA charges due to their stability with respect to basis-set
expansion55 (unlike Mulliken charges) and because ChElPG
charges can depend strongly on molecular conformation,
especially in large molecules.58

We next compare NPA embedding charges derived from two
different GMBE-based methods to those obtained from a
calculation on the supersystem in an effort to determine
whether the supersystem calculation can be eliminated. Results
are shown in Table 2, where the method labeled 2b-GMBE
means that a cheaper GMBE method is used to approximate
the supersystem density and thus compute the embedding
charges using eq 27. Specifically, the 2b-GMBE method uses
only the significant pairs (as defined above) and their
intersections, but not the significant quartets, so that the
largest subsystem consists of a fragment pair. The method
labeled pp-GMBE is the one introduced in Section 2.2.2 that
does use the fragment quartets. Environment charges for use in
the next iteration are derived from those in the previous
iteration, starting from a gas-phase calculation (no embedding),
and the procedure is iterated to convergence, which takes no
more than two iterations in these examples. In the two charge-
neutral systems, embedding charges obtained from gas-phase
calculations are accurate enough already without iteration,
whereas in the charged 1UAO system, the method takes only
an iteration or two to converge.
The performance of embedding charges derived from the 2b-

GMBE method and the pp-GMBE method is very similar for α-
(Ala)10, β-(Ala)10, and 1UAO except that it takes more
iterations to converge the total energy using the 2b-GMBE
charges. However, the computational cost for embedding
charges derived from the pp-GMBE method is much greater
than the cost to obtain 2b-GMBE charges, since the latter
involves smaller and fewer subsystems. Hence, it is more
efficient to use the 2b-GMBE approach to derive embedding
charges. In case of larger systems, the convergence with
embedding charges derived from the 2b-GMBE method is
slightly slower, and we find that three iterations are required in
some cases, such as 3T97-B, which contains 58 amino acids and
has a net charge of +5.

3.2. Single-Point Energies of Proteins. We next consider
the convergence of the total energy for the pp-GMBE using
different distance cutoffs. Figure 4 shows the deviation of the
total energy with respect to the full supersystem calculation, for
distance cutoffs λc ranging from 2 to 5 Å. In addition, we
compare two different criteria for the hydrogen-bond cutoff
angle, ϕH = 130° versus ϕH = 150°. In previous studies using
the MFCC approach,36,37 deviations with respect to super-
system results were found to be within 0.01 hartree when the

Figure 3. Macromolecular structures used to benchmark the
embedding charges: (a) α-(Ala)10, (b) β-(Ala)10, and (c) the peptide
1UAO.

Table 1. Energy Deviations (kcal/mol) between Supersystem
and pp-GMBE Results at the HF/6-311G* Level Using
Various Embedding Charges

charge scheme α-(Ala)10 β-(Ala)10 1UAO

none −0.16 0.44 −5.19
Mulliken 0.53 0.08 −0.42
ChElPG −0.36 0.32 −1.23
NPA 0.96 0.24 −0.25
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distance threshold λc ≥ 4.0 Å. As shown in Figure 4, the relative
energies with the pp-GMBE method converge when λc ≈ 3.5−
4.0 Å, which is very similar to the conclusions drawn in ref 36.
We will use a cutoff λc = 4 Å, which for proteins includes most
noncovalent interactions including C−H···π and π−π inter-
actions. The two hydrogen-bond cutoffs in Figure 4 yield nearly
identical results, although ϕH = 130° is slightly closer to the full
supersystem results and will be used here.
We have performed pp-GMBE calculations on 18 different

proteins at the HF/6-31G* level; see Figure 5 for the structures
and PDB codes. Table 3 shows how pp-GMBE single-point
energies for these proteins compare to full supersystem results

at the same level of theory. We test both partitions P1 and P2
along with several sets of embedding charges. Protein structures
were downloaded from the Protein Data Bank (PDB), and the
data set includes various protein secondary structural motifs.
The largest protein (2LH0) contains 70 amino acid residues
and 1142 atoms.
Given the P1 partition, results for all three charge schemes

agree very well with the full supersystem HF calculations, with
mean absolute errors (MAEs) of just 1.6, 1.8, and 1.1 kcal/mol
for Mulliken, ChElPG, and NPA charge embeddings,
respectively. The NPA charge embedding scheme produces
the smallest maximum error, at 2.5 kcal/mol. The P2 partition

Table 2. Deviations between GMBE Charges Derived from Sub- versus Supersystem Calculations at the HF/6-311G* Levela

α-(Ala)10 β-(Ala)10 1UAO

iteration 2b-GMBE pp-GMBE 2b-GMBE pp-GMBE 2b-GMBE pp-GMBE

1 0.008 (0.96) 0.001 (0.97) 0.002 (0.34) 0.000 (0.31) 0.013 (−0.77) 0.001 (−0.24)
2 0.002 (0.95) 0.000 (0.95) 0.002 (0.24) 0.005 (−0.16) 0.001 (−0.22)
3 0.002 (0.95) 0.000 (0.95) 0.002 (0.24) 0.005 (−0.17) 0.001 (−0.22)
4 0.002 (0.95) 0.002 (0.24) 0.005 (−0.16)

aAs a function of iterative-updating of the embedding charges, starting from gas-phase values. Energy deviations (in kcal/mol) are given in
parentheses.

Figure 4. Errors in the pp-GMBE, with respect to the supersystem results, as a function of the distance cutoff λc for defining significant pair−pair
interactions that are used to form fragment quartets and for two different values of the hydrogen-bond angle cutoff, ϕH. Results are shown for four
different polypeptides, with PDB codes as indicated: (a) 1BHI, a 38-residue polypeptide containing both an antiparallel β-sheet and an α-helix, (b)
2RLK, a 37-residue β-hairpin, (c) 2YSC, a 39-residue polypeptide, and (d) 3L32-A, a 45-residue polypeptide consisting of two α-helices.
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produces results quite close to those obtained with P1, except
in the case of ChElPG embedding charges, where the MAE is

4.2 kcal/mol and the maximum deviation is 21.9 kcal/mol.
Much of this error arises from two protein structures, 2RLK

Figure 5. Structures of the 18 small proteins used in this study, with PDB codes as indicated.

Table 3. Deviations between the Full System Energy and Its pp-GMBE Approximation at the HF/6-31G* Level

deviation (kcal/mol)

P1 P2

system full system (hartree) Mulliken ChElPG NPA Mulliken ChElPG NPA

1AML −15142.596282 −0.31 −0.30 2.33 −2.01 −1.84 −0.18
1BBA −15103.699913 2.13 −0.69 1.21 0.86 5.73 1.83
1BHI −15990.191162 3.05 3.06 1.74 1.05 −0.75 0.52
1BZG −13681.215668 1.84 0.75 1.80 1.36 1.46 1.95
1CNR −18004.668080 −3.02 −3.56 −2.52 −3.08 −3.56 −0.92
1VTP −10015.595416 0.46 0.60 0.65 −1.97 0.60 −0.52
1WN8 −8878.693155 −1.14 0.24 −0.17 −0.12 0.24 0.56
2JPK −13855.875913 −0.91 −2.50 0.79 −0.50 −4.91 1.14
2KCF −14599.940061 −0.53 −0.85 −1.19 1.67 −0.85 0.04
2L8E −20270.601331 −1.16 −1.67 0.39 1.23 −2.47 3.13
2LH0 (Chain A) −28500.910569 2.12 −0.42 1.02 1.57 −6.00 4.27
2PPZ −14958.306351 −0.43 −1.58 −1.86 −0.37 −1.58 0.51
2RLK −14590.340301 −0.23 −1.79 −0.04 −0.67 −10.01 −1.42
2YSC −14634.918275 −0.37 −5.00 −0.86 −2.58 −5.00 −0.82
3L32 (Chain A) −18055.090444 −4.27 −1.71 −1.96 −4.63 −1.71 −4.36
3NTW (Chain A) −23683.640326 −5.26 −1.24 −1.44 −4.57 −21.88 −0.27
3T97 (Chain B) −24598.999033 −2.14 −5.03 −0.27 −2.01 −3.58 −0.28
3V1E (Chain A) −18015.416098 −0.34 −1.30 0.10 −2.23 −2.72 1.06
max 5.26 5.03 2.52 4.63 21.88 4.36
MAE 1.65 1.79 1.13 1.81 4.16 1.32
RMSE 2.18 2.31 1.36 2.20 6.45 1.85
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and 3NTW. It is unclear from the structures in Figure 5 why
these particular examples should be problematic, but if they are
removed from the data set, then the MAE for the P2/ChElPG
approach is reduced to 2.4 kcal/mol and the RMSE is reduced
to 3.1 kcal/mol. If only proteins with fewer than 700 atoms are
considered, then the maximum P2/NPA error is 2.0 kcal/mol,
for 1BZG.
Since most of the P2 error arises from the choice of

embedding charges, it can be reasoned that the ChElPG
charges suffer from dependence on conformation. Another
important difference between P1 and P2 is subsystem size: the
latter approach contains no more than 60 atoms per subsystem
(excluding the capping hydrogen atoms), whereas the P1
partition may contain up to 96 atoms, although with an average
of 60 atoms per subsystem since the average size of an amino
acid is about 15 atoms. In view of the problems with ChElPG
charges in the P2 case, it must be concluded that P2/NPA is an
efficient yet stable approach for when high-level quantum
chemistry calculations (albeit with moderate basis sets) are to
be employed.
In proteins, not only covalent but also noncovalent

interactions are important, with the latter playing a key role
in determining secondary, tertiary, and quaternary structure.
Correlated wave funct ion approaches, scal ing as

N( )basis
5 − N( )basis

7 , have traditionally been necessary for the
accurate description of noncovalent interactions, although a
variety of DFT approaches to this problem have been put forth
in recent years. These include dispersion corrected DFT (DFT
+D),59 along with nonlocal functionals such as ωB97X-V8 and
B97M-V.60 Here, we will take the dispersion-corrected ωB97X-
D functional61 as an example to consider the accuracy of the
pp-GMBE method when combined with DFT. Table 4 lists
errors in pp-GMBE energies using the P2/NPA scheme.
Although the errors are, in general, a bit larger at the ωB97X-
D/6-31G* level than those observed at the HF/6-31G* level,

the results are still in good agreement with full supersystem
calculations.

3.3. Relative Energies of Proteins. More important than
absolute energies for proteins are relative conformational
energies. To test the latter, we employ a data set consisting
of 20 conformations for each of two proteins: 1WN8 and
2KCF. Initial structures were obtained from the ensembles
provided in the PDB and then optimized (in the absence of
solvent) with the Amber ff99SB force field;56 both the initial
and the relaxed structures are shown in Figure 6. Whereas the

initial structures (optimized subject to solution-phase NMR
distance constraints) are quite similar save for the relatively
mobile termini, gas-phase optimization leads to greater
structural variety, although the primary features of secondary
structure (an α-helix in 1WN8 and an antiparallel β-sheet in
2KCF) are preserved.
This structural variation affords an ensemble whose relative

energies vary by nearly 100 kcal/mol, as shown in Figure 7,
where we plot the relative energies for each of the 20 structures
at both the HF/6-31G* and M06-2X/6-31G* levels of theory.
While neither of these model chemistries is necessarily an
appropriate level of theory for this problemthe former lacks
any treatment of dispersion interactions, for example, and in the
6-31G* basis set, both methods are likely to be heavily beset by
basis-set superposition errorthe important observation is that
the pp-GMBE approach faithfully reproduces the relative
energies at both levels of theory, to the point that the pp-
GMBE plots in Figure 7 are nearly indistinguishable from the
full supersystem results. This is an important proof-of-principle
result for when we attempt pp-GMBE calculations at higher
levels of theory and in larger systems. Error statistics, averaged
over 20 conformations (Table 5), show that pp-GMBE exhibits
a maximum absolute deviation of only 1.8 kcal/mol for 1WN8
and 2.6 kcal/mol for 2KCF at the HF/6-31G* level. The
corresponding values at the M06-2X/6-31G* level are 2.0 kcal/
mol for 1WN8 and 4.5 kcal/mol for 2KCF.
One possible point of concern in these calculations is

whether the ∼100 kcal/mol range of relative energies might

Table 4. Errors in the pp-GMBE P2/NPA Method with
Respect to Full Supersystem Calculations at the ωB97X-D/
6-31G* Level

molecule total energy (hartree) deviation (kcal/mol)

1AML −15228.320066 −0.21
1BBA −15187.461036 −2.42
1BHI −16076.053869 −2.19
1BZG −13760.714345 −0.03
1CNR −18098.695358 −6.51
1VTP −10072.705786 −2.96
1WN8 −8927.072195 −1.30
2JPK −13936.903344 −0.75
2KCF −14682.518736 −2.34
2L8E −20379.435805 −1.67
2LH0 (Chain A) −28661.963961 1.79
2PPZ −15042.290031 −0.60
2RLK −14674.323078 −4.78
2YSC −14719.120990 −1.53
3L32 (Chain A) −18158.251179 −5.62
3NTW (Chain A) −23816.533876 1.46
3T97 (Chain B) −24736.621922 −7.62
3V1E (Chain A) −18116.263876 −4.00
MAE 2.66
RMSE 3.41

Figure 6. Top: Set of 20 solution-phase structures of 1WN8 and
2KCF obtained from the PDB. Bottom: The same set of structures,
following gas-phase relaxation using the Amber ff99SB force field.
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somehow be an artifact of, say, minimum-energy bond lengths
and angles that are slightly different in the force field than in the
ab initio calculations. (Thus, certain structures might be pushed
slightly up the repulsive wall of the HF or M06-2X potential,
exacerbating the energy differences between them.) Even if it is
true, this is not an indictment of the pp-GMBE approximation
per se, but to examine this issue, we took seven structures of
1UAO (Figure 3c) from the PDB and then relaxed them in the
gas phase at two different levels of theory: the ff99SB force
field, as in the calculations above, and using the HF-3c
method,62 as implemented in ORCA software.63 HF-3c is a
semiempirical method in which a minimal-basis Hartree−Fock
calculation is combined with three empirical corrections: one
for basis-set superposition error, one for basis-set incomplete-

ness, and one for dispersion. This approach has been shown to
perform well for large-molecule geometry optimizations and is
affordable enough to be used for such. Figure 8 plots the
resulting relative energies. For this particular polypeptide, the
relative energies span a range of about 50 kcal/mol, but,
importantly, they do so at both the force field level and at the
HF-3c level. This result, in conjunction with the results for
1WN8 and 2KCF above, suggests that relative energies of 50−
100 kcal/mol are simply what one can expect when structures
from a solution-phase ensemble are pulled out of solution and
subjected to gas-phase calculations. This is an interesting
observation in the context of using such calculations to
benchmark force fields, suggesting that comparisons between
force field and ab initio energetics are meaningless in the
absence of solvent.

3.4. Parallelization. The serial efficiency of traditional
supersystem methods is highly optimized, but the potential for
parallelization is fundamentally limited by their iterative nature;
each step requires the results of the previous iteration before it
can proceed. The work done in each iteration can be
parallelized, and this can be made to scale fairly well across a
single node, but in attempts to scale beyond a single node, the
efficiency often suffers greatly due to latencies in communica-
tion. Multithreading offers only a partial solution, as two-
electron integral calculations can become easily bottlenecked by
passage of information through memory in such a calculation,

Figure 7. Relative energies for 20 different conformations of two proteins, computed at each of two levels of theory. Results in black are for the pp-
GMBE method, whereas results in red represent a calculation on the entire protein at the same level of theory, but the two calculations are essentially
indistinguishable on this scale.

Table 5. Statistical Deviations of the Absolute Energies (in
kcal/mol) for 20 Conformation of 1WN8 and 2KCF with
Respect to Full System Calculation

1WN8 2KCF

HFa M06-2Xa HFa M06-2Xa

max 2.00 4.41 4.18 9.32
MAE 0.96 1.53 1.72 6.01
RMSE 1.13 2.56 1.98 6.20

aBasis set is 6-31G*.
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e.g., to evaluate the vertical recurrence relations required for
higher angular momentum functions.50

Fragment-based methods are designed to overcome these
limitations. Iterations are limited to fragments only, and the
subsystem energy calculations are entirely independent of one
another and thus trivial to distribute across any arrangement of
processors. This internode parallelism could be further
augmented by shared memory intranode parallelism, such as
open multi-processing (OpenMP) multithreading. We have
implemented the pp-GMBE method with (a) parallelism using
the message-passing interface (MPI) in order to parallelize
subsystem energy computations across cores within a
distributed memory model and (b) a MPI + OpenMP parallel
version that parallelizes subsystem energy computations across
nodes and parallelizes each subsystem calculation with
OpenMP. (This is highly efficient for more expensive levels
of theory.) Given N cores for N subsystems, the total wall time
is essentially reduced to the time required for the longest
subsystem calculation.

Figure 9 shows both the total computer time and the wall
time required for single-point energy calculations on the set of
18 proteins given in Table 3. Even for the largest of these
proteins (2LH0, at 1142 atoms), the total computer time for
the pp-GMBE calculations is significantly greater than that
required for the supersystem calculations. However, using just
120 processors, the wall time for the pp-GMBE calculations can
be significantly less than that required for the full system
calculations. On 120 processors, the pp-GMBE calculations
take 1−2 h for most of our protein data set (at the HF/6-31G*
level), and only about 7 h for 2LH0.
In addition, the pp-GMBE method significantly reduces the

number of independent electronic structure calculations that
are required, relative to a traditional four-body expansion or a
two-body GMBE. For example, there are 445 groups in the P2
partition of 2LH0-A, and for a traditional four-body expansion,
this means 445C4 ≈ 1.6 × 109 individual tetramer calculations,
plus 445C3 ≈ 1.5 × 106 trimers and some comparatively trivial
number of dimers and monomers. These are intractable
numbers. On the other hand, these 445 groups generate 152
monomers if we set the hydrogen-bond angle threshold ϕH to
130°, so for the two-body GMBE, the total number of the
largest subsystems (four groups) is 152C2 = 11 552. (Smaller
subsystems, namely, intersections, are also required, but clearly
this is a significant reduction relative to the four-body
expansion.) For the pp-GMBE approximation to the two-
body GMBE, the number of largest subsystems is a mere 1266.

4. SUMMARY

We have introduced a pp-GMBE method for fragment-based
quantum chemistry, which is an approximation to the two-body
GMBE and an alternative to the traditional four-body
expansion, with significant fragment pairs and quartets treated
quantum mechanically in the presence of embedding charges
representing the rest of the system. Relative to a four-body
expansion, this approach significantly reduces the number of
subsystem calculations and thus the computational time. An
efficient and accurate fragmentation scheme is introduced for
proteins, reducing the size of the largest subsystem to about 60
atoms.

Figure 8. Relative energies for seven isomers of 1UAO, computed
using either the ff99SB force field or the HF-3c semiempirical method.
In each case, the same set of starting structures was obtained from the
PDB, but these structures were then relaxed in the gas phase at either
the ff99SB or HF-3c level of theory so that the geometries are
computed at the same level of theory that is subsequently used to
compute the relative energies.

Figure 9. Total (a) computer time and (b) wall time (i.e., time-to-solution) required for single-point energy calculations for 18 different proteins at
the HF/6-31G* level. The pp-GMBE calculations were performed on 10 nodes (with 12 processors per node) with a MPI + OpenMP parallelized
version of our FRAGMEN∩T code,6,21 as a driver for Q-CHEM.64 The supersystem calculations were performed on a single node, multithreaded across
all 12 processors using Q-CHEM.
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A comparison of the pp-GMBE method with full system
calculations for a set of proteins has been carried out at the
Hartree−Fock and DFT levels of theory. Mean absolute errors
approaching 1 kcal/mol are achievable with the pp-GMBE and
our P1/NPA partitioning and charge-embedding scheme.
Other charge embeddings work well in some cases, but
ChElPG charges turn out to be surprisingly unstable, with
maximum errors in excess of 21 kcal/mol in some cases. For
relative conformational energies of a given protein, the pp-
GMBE P1/NPA approach provides results that are nearly
indistinguishable from calculations at the same level of theory
applied to the entire protein.
In contrast to the four-body expansion, it is necessary to set

up two parameters for pp-GMBE calculations. One is the
monomer (fragment dimer) criterion, and the other is the
distance cutoff. In principle, the result is more accurate when
more monomers are involved and the distance cutoff is larger,
but the number of subsystems increases rapidly as does the
computational time. It is necessary to find a balance between
accuracy and efficiency. With more accurate quantum chemistry
methods, the criterion of the significant fragment pairs will
change. In this work, only hydrogen bonds are included, and for
more general applications, it will be necessary to find a general
way to include all significant pairs. The MPI + OpenMP version
of the pp-GMBE within the FRAGME∩T code6 allows all
individual subsystem calculations to be multithreaded using
OpenMP. This provides a powerful tool to carry out pp-GMBE
calculations using correlated wave function levels of theory,
with appropriate basis sets, or using the latest nonlocal density
functionals, which are more expensive to evaluate than the ones
used here for testing purposes. We hope to report on such
calculations in the future.
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