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ABSTRACT: We introduce an implementation of the truncated many-body expansion,
MBE(n), in which the n-body corrections are screened using the effective fragment
potential force field, and only those that exceed a specified energy threshold are computed
at a quantum-mechanical level of theory. This energy-screened MBE(n) approach is tested
at the n = 3 level for a sequence of water clusters, (H2O)N=6−34. A threshold of 0.25 kJ/mol
eliminates more than 80% of the subsystem electronic structure calculations and is even
more efficacious in that respect than is distance-based screening. Even so, the energy-
screened MBE(3) method is faithful to a full-system quantum chemistry calculation to
within 1−2 kJ/mol/monomer, even in good quality basis sets such as aug-cc-pVTZ. These
errors can be reduced by means of a two-layer approach that involves a Hartree−Fock
calculation for the entire cluster. Such a correction proves to be necessary in order to obtain
accurate relative energies for conformational isomers of (H2O)20, but the cost of a full-system Hartree−Fock calculation remains
smaller than the cost of three-body subsystem calculations at correlated levels of theory. At the level of second-order Møller−
Plesset perturbation theory (MP2), a screened MBE(3) calculation plus a full-system Hartree−Fock calculation is less expensive
than a full-system MP2 calculation starting at N = 12 water molecules. This is true even if all MBE(3) subsystem calculations are
performed on a single 40-core compute node, i.e., without significant parallelization. Energy-screened MBE(n) thus provides a
fragment-based method that is accurate, stable in large basis sets, and low in cost, even when the latter is measured in aggregate
computer time.

1. INTRODUCTION

Fragmentation methods1−6 are an increasingly popular means
to circumvent the steeply nonlinear computational scaling of
ab initio quantum chemistry, by decomposing a large
(super)system into tractable subsystems, then approximating
the energy or other properties of the supersystem using
electronic structure calculations performed on the subsystems.
A formal scaling of N( )p , where N measures the supersystem
size and p is characteristic of a particular quantum-chemical
model, is thereby reduced to n( )p , where n measures the size
of the largest fragment necessary to obtain accurate results. If
the fragment size (n) remains fixed as the system size (N)
increases, then the scaling bottleneck can be defeated by means
of distributed computing.
The reduced scaling, however, incurs a prefactor propor-

tional to the number of subsystems, and in practice the total
computer time (summed across all subsystem calculations) is
sometimes considerably larger than the cost of the supersystem
calculation that fragmentation aims to avoid.1,7−9 As system
size grows, the fragment-based approach must eventually
become the more economical one, and the crossover point is
reached more quickly for correlated wave function methods (p
≥ 4) as compared to density-functional calculations (p ≤ 3).
Furthermore, there are inherent advantages to the subsystem-
based approach in terms of parallelizability and checkpointing,
both of which are relatively straightforward in the context of
fragment-based methods. Despite these advantages, and

notwithstanding the “forced-march towards exascale comput-
ing” that characterizes some areas of computational science at
the moment, we feel that it is a mistake to focus strictly on
time-to-completion or “wall time”. An inefficient-but-scalable
calculation still occupies processors that are then unavailable
for other work, which is especially relevant in the context of
shared computing facilities. Such a calculation also consumes
power, whereas modern processor designs often use very little
power when idle.
Most fragment-based quantum chemistry methods are based

at some level on the idea of a many-body expansion (MBE) or
else generalizations thereof.1,10−12 Only the traditional MBE is
considered here:
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The energy of a supersystem composed of N fragments is thus
decomposed into monomer energies EI along with two-body
corrections
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etc. The idea is to truncate eq 1 at relatively low n-body
interactions, and we will use the notation MBE(n) to refer to
such a truncated expansion. This affords a method whose cost
contains a multiplicative prefactor of
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that represents the number of distinct n-body subsystems.
Note that the numerator of eq 4 grows like Nn with system
size, for a fixed level of approximation, so the formal scaling of
the MBE(n) approach is N( )n with system size, in the
absence of any attempt to screen or otherwise discard n-body
subsystems.
Calculations for small water clusters indicate that electron

correlation effects are nearly pairwise-additive;13−15 never-
theless, four- and five-body terms contribute 1−2 kcal/mol to
the total interaction energies of clusters ranging from (H2O)6
to (H2O)16.

16−18 In larger water clusters, our own work
suggests that four-body terms are necessary to obtain (or even
approach) chemical accuracy.7,19,20 This largely remains true
even when electrostatic embedding is employed in an effort to
capture higher-order polarization effects.7

Use of a four-body expansion is often prohibitively expensive
in practice, however. For calculations at the level of second-
order Møller−Plesset perturbation theory (MP2, for which p =
5), the MBE(4) approximation applied to (H2O)20 is actually
more expensive than the MP2 calculation on the full system,
when the cost is measured in aggregate computer time.7 The
large number of four-body terms also engenders serious loss-
of-precision problems,19,21 necessitating the use of very tight
thresholds.7,21 For these reasons, fragmentation is not the
proverbial “free lunch” that it is sometimes made out to be; it is
more like a long-term investment strategy, with significant up-
front costs but a potentially sizable payoff as N → ∞.
Distance-based thresholding represents an obvious way to

reduce the combinatorial prefactor associated with MBE(n)
and has been used with some success in water clusters.20,22,23

For systems where the fragments are larger and more diverse
than H2O, however, the efficiency and/or the accuracy of
distance-based screening is likely to suffer. Fortunately, the
essentially classical nature of higher-order n-body interactions
means that classical polarization formulas can be used to
predict the three- and four-body interaction energies with
reasonable fidelity.24 The success of the “hybrid many-body
interaction” (HMBI) scheme developed by Beran and co-
workers25−31 is further testament to the validity of classical
approximations for higher-order induction. Within HMBI, one-
and two-body interactions are computed from electronic
structure theory but higher-order terms are obtained from
polarizable force fields.
The success of these classical polarization approaches

suggests that energy-based screening, using an appropriate
classical model, may be a useful alternative to distance-based
screening. Even for water clusters, we have previously
demonstrated that the energy-based approach is more efficient
than distance-based screening, without loss of accuracy.20

These were proof-of-concept results, in the sense that we
precomputed all of the many-body interactions at a quantum-
mechanical (QM) level of theory and then reverse-engineered

an energy-screening threshold to preserve the accuracy of the
MBE(n) approximation.
Here, we present a practical implementation of energy-based

screening for MBE(n) using the effective fragment potential
(EFP).32−34 The EFP method is attractive in this capacity
because it is a classical force field and can therefore be
evaluated at essentially zero cost (in comparison to QM
calculations), yet it is derived in an automated way from QM
calculations. As such, EFP can be parametrized for the sort of
large, complex systems for which one might want to apply
quantum chemistry, and the energy-screened MBE(n)
approach need not be limited to systems for which force
fields have already been developed. Calculations on non-
covalent dimers suggest that the accuracy of EFP is similar to
that of MP2,35 which proves to be adequate for screening
purposes, although the calculations reported here also make it
clear that EFP is no substitute for MP2.

2. THEORY

2.1. Many-Body Expansion. The MBE in eq 1 will be
truncated at three-body terms in the present work. Non-
redundant formulas for the two- and three-body energy
corrections can be found in ref 21. In our experience, the
cost differential between MBE(3) and MBE(4) is rather
catastrophic, both in terms of growth in the number of
subsystems and in terms of issues with finite precision, which
further increases the cost by necessitating the use of tight
thresholds.7,19,21 For that reason, we aim to see whether a
composite three-body approach, which combines MBE(3)
with EFP, can be made both accurate and tractable.
Importantly, the subsystem calculations used to obtain the

dimer energies (EIJ in eq 2) and trimer energies (EIJK in eq 3)
each include a full self-consistent field (SCF) calculation. This
should be contrasted with the approach taken in the fragment
molecular orbital (FMO) method,2,36−39 which is probably the
most widely used fragment-based quantum chemistry method,
due to its implementation in the GAMESS code.36,39 The
FMO approach with n-body interactions (FMOn) uses the
energy expression in eq 1, but unlike the method that we call
MBE(n), in FMOn only the one-body wave functions are
iterated to self-consistency. These iterations are performed in
the presence of a classical electrostatic embedding field that
represents the effects of the other fragments. Because the self-
consistent iterations lack interfragment exchange interactions,
however, the FMO approximation affords large errors or even
convergence failure when it is combined with large basis sets,
especially those that contain diffuse functions.40,41 This
severely limits the applicability of FMO in the context of
correlated wave function methods. Even in density functional
theory (DFT), basis sets such as aug-cc-pVTZ are recom-
mended for some modern functionals including new-developed
B97-based functionals,42−44 which are among the most
accurate DFT methods presently available for a variety of
properties.45 Self-consistency also means that analytic gradients
of MBE(n) are much more straightforward, even when self-
consistent charge embedding is used,46 as compared to the
gradient for FMOn.47

2.2. Energy-Based Screening. We adopt the parameter-
free version of EFP (sometimes called “EFP2”),34 whose
energy expression is

E E E E EEFP elst pol disp exrep= + + + (5)
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Here, Eelst is the classical electrostatic (permanent multipole)
energy and Epol is the dipole polarization energy. The
dispersion energy Edisp is truncated at leading order and
includes only the R−6 term. The exchange-repulsion energy
Eexrep is based on the Heitler−London formula.32 The charge-
transfer contribution is omitted in this work. EFP calculations
are performed using an interface between the Q-Chem
program48 and the LibEFP library.49 Note that EFP is
designed for rigid monomers whose geometries are fixed at
the geometry used to parametrize the model. LibEFP uses two
vectors to align the target molecule to this reference molecule.
This works perfectly well when the monomers are H2O, as in
the present work, but in preliminary testing for other systems
we found that this procedure could lead to large deviations for
small but nonplanar monomers such as NH3. In the interest of
later extending our scheme to more general systems with
minimal modification, we therefore use an optimal rotational
matrix in order to minimize the deviation between reference
and target molecules.50

To reduce the number of QM subsystems, we precompute
three-body interactions at the EFP level before performing any
QM calculations. Three-body EFP corrections are given by

E E E E EIJK IJK IJ IK JK
EFP EFP EFP EFP EFPΔ = − − − (6)

Note that ΔEIJ
EFP = EIJ

EFP because EFP is an intermolecular
(rigid-monomer) force field; that is, its monomer energies are
set to zero. Furthermore, the only many-body effects captured
by ΔEIJK

EFP are induction effects, since EFP is pairwise-additive
in all other energy components. However, many-body
contributions to other energy components are generally quite
small,1 and the three- and four-body energies computed using
classical many-body induction formulas agree quite well with
the three- and four-body corrections (ΔEIJK and ΔEIJKL)
obtained from QM calculations.24 Here, a QM calculation is
performed on dimer IJ only if |ΔEIJ

EFP| exceeds a specified
energy threshold and on trimer IJK only if |ΔEIJK

EFP| exceeds the
threshold.
Figure 1 plots three-body corrections ΔEIJK for a large set of

water clusters, computed at two different QM levels of theory
(B3LYP/aDZ and MP2/aDZ) and compared to EFP estimates
ΔEIJK

EFP. (Here and elsewhere, “aDZ” is an abbreviation for the
aug-cc-pVDZ basis set.) The correlation with EFP is excellent

at either level of QM theory, and the data cluster around the y
= x line in similar ways for B3LYP and MP2, although we
present more data at the B3LYP level, for reasons discussed
below. These similarities are not altogether surprising given
that the performance of EFP for noncovalent interactions is
generally similar to that of MP2,35 and the performance of
B3LYP for water clusters is also roughly similar to that of
MP2.51−53 The good correspondence between QM and
classical values of ΔEIJK justifies the use of EFP to screen the
QM values at either level of theory.
In these tests, we have used a rigid-monomer para-

metrization of EFP, neglecting any changes that would be
obtained if we were to reparameterize this force field for each
individual monomer geometry. Various methods to obtain a
flexible EFP, including full reparameterization, were tested in
ref 54 for cases involving strong hydrogen bonding (e.g.,
formic acid dimer) where the monomer geometries do change
upon complexation. These changes are likely to be quite minor
for the neat water clusters examined herein. For the
challenging problem of relative conformational energies
(Section 3.3), we use a set of (H2O)20 isomers with strictly
rigid monomer geometries so that the issue of changes in EFP
due to changes in the monomer geometry does not complicate
our evaluation.
Note that the (H2O)N cluster data set that is used for the

MP2 calculations (Figure 1b) ranges up to N = 15, whereas for
B3LYP we include data up to N = 37 (Figure 1a). For the
larger clusters in the data set, a complete MBE(3) calculation
at the MP2/aDZ level of theory requires significantly greater
computer time than the calculation it aims to approximate,
namely, MP2/aDZ applied to the full cluster. This aspect of
MBE(n) is seldom discussed, although we have raised this
issue before.1,7 This observation underscores the fact that
automated screening methods are mandatory in order to turn
MBE(n) into a usable (and useful) method.
In view of this, it is worth noting that the combination of

EFP with fragment-based quantum chemistry has been
attempted previously, in the form of the “effective fragment
molecular orbital” (EFMO) method.55−60 EFMO was
originally introduced as a distance-based screening procedure
for FMO2, wherein the dimer energy EIJ is replaced by its EFP
approximation when fragments I and J are sufficiently well-

Figure 1. Correlation plot for three-body corrections ΔEIJK in water clusters, computed at (a) the B3LYP/aDZ level of theory and (b) the MP2/
aDZ level of theory, comparing against EFP results in either case. The MP2 data set is smaller (using clusters only up to N = 15, versus N = 37 for
B3LYP) because evaluation of the full set of three-body corrections is considerably more expensive than the supersystem calculation at this level of
theory. The orange line in either plot represents a linear fit to the data.
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separated. (In the EFMO approach, new EFP parameters are
generated for each individual monomer geometry.) The
EFMO approximation is problematic, however, in part because
FMO2 is not an accurate method in the first place. It is also
unclear that EFMO is genuinely a systematic or robust
approximation to FMO2. Both of these concerns are borne
out, e.g., from the water cluster data presented in ref 58. In
recent work, the accuracy of EFMO has been discussed as an
entity unto itself.61 In absolute terms, however, its accuracy
remains rather poor.1

2.3. ONIOM-Type Formalism. To recover higher-order n-
body interaction energies (n ≥ 4), which are dominated by
classical induction, we adopt an ONIOM-type formalism62 that
involves some type of calculation on the entire supersystem.
The idea to combine ONIOM with a fragment-based method
was originally introduced by Tschumper and co-workers,63−71

and later by Raghavachari and co-workers.72−81 The two-layer
“molecules-in-molecules” (MIM2) approach,72,73 equivalent to
Tschumper’s “n-body:many-body” technique,70 can be ex-
pressed in ONIOM-style notation as

E E E E(super) (MBE) (MBE) (super)high high low low≈ − +
(7)

Here, “high” and “low” indicate different levels of theory, with
a lower-level calculation performed on the entire supersystem
[Elow(super)]. The relationship between eq 7 and the original
ONIOM method can be understood schematically using
Figure 2. Alternatively, by rewriting eq 7 as

E E(super) (MBE)high high
fragδ≈ + (8)

it becomes clear that

E E(super) (MBE)frag
low lowδ = − (9)

is a correction for errors introduced by fragmentation.

The method introduced in this work combines eq 7 with an
energy-screened MBE(3) approximation. The high-level
Ehigh(MBE) term is first evaluated using EFP to screen an
MBE(3) calculation. Energetically important subsystems (as
determined using EFP) are replaced by QM calculations, but
for below-threshold subsystems we simply retain the EFP

energy, which then cancels out in the difference Ehigh(MBE) −
Elow(MBE). Ideally, the supersystem correction Elow(super)
would be applied using EFP for the low level of theory, as this
calculation is essentially free in comparison to the cost of any
QM calculations. However, we find that this approach does not
always preserve good fidelity with respect to a high-level QM
calculation on the entire supersystem. To improve the
accuracy, we also examine a composite approach in which
Ehigh(MBE) is evaluated using the EFP-screened MBE(3)
approximation but the low-level supersystem calculation uses
either Hartree−Fock theory or else a semiempirical method.
Although this destroys the linear-scaling nature of the energy-
screened MBE(3) approximation, it may yet represent an
affordable approximation when the subsystem MBE(3)
calculations are performed at a post-Hartree−Fock level of
theory. This has been the approach pursued by the
Raghavachari group,73,79−81 where the supersystem calculation
is either semiempirical or else a small-basis Hartree−Fock
calculation. Similar ideas underlie many-body expansions for
the correlation energy (only),82 sometimes called the “method
of increments”.83

3. RESULTS AND DISCUSSION

3.1. Computational Details. In the first part of this work,
we examine how energy-based cutoffs affect the accuracy of the
MBE(3) approximation, for a sequence of water clusters
(H2O)N with N = 6−34.84 There is one structure at each
cluster size, representing the putative global minimum on the
TIP4P potential energy surface and taken from ref 85. (This is
the same sequence of clusters that we have used in previous
examinations of the MBE,7,19−21 and these clusters have rigid
H2O monomer geometries.) In the second part of this work,
we examine relative energies of four different structural motifs
of (H2O)20, taken originally from ref 86 and used also in our
previous work on MBE(n) methods.7,20,87

For many of the convergence tests in Section 3.2, we use the
affordable B3LYP/aDZ level of theory. Our goal is to use low-
cost calculations to establish an appropriate value of the three-
body energy-screening threshold (τ3B), in the hope that if τ3B is
chosen conservatively then this value may prove to be
transferrable to more accurate MBE(n) calculations at higher
levels of theory. Note that the cost of unscreened MBE(n)
calculations for medium-sized clusters is typically much larger
than the cost of full-system quantum chemistry calculations,
even for an N( )5 method such as MP2,1,7 assuming that the
supersystem calculations are performed using an efficient
quantum chemistry code. (Inefficient or nonscalable imple-
mentations skew the comparison in favor of the fragment-
based approach.1) The high cost of unscreened, supersystem
MBE(n) calculations means that we cannot possibly
reparameterize τ3B at every distinct level of theory and basis
set that we might hope to use in practical applications.
The ultimate proof that the threshold τ3B is transferrable

from low- to high-level MBE(3) calculations rests in the
performance of those higher-level calculations. To that end, we
consider (in Section 3.3) the very challenging problem of
predicting relative energies of (H2O)20 isomers, for which we
use MP2 calculations. We will also test the ωB97X-V
functional42 for the same application, as this functional
performs very well for noncovalent interactions.45

All calculations use a single water monomer per fragment
and were performed with a locally modified version of Q-

Figure 2. Schematic depictions of the (a) ONIOM and (b) MIM2
approaches. In the traditional ONIOM method,62 a high level of
theory (illustrated in blue) is applied to a small portion of a large
system, often called the “model system”, while a low level of theory
(in orange) is applied to the entire (or “real”) system. The low-level
theory is applied also to the model system and subtracted out, to
avoid double counting. The molecules-in-molecules (MIM) ap-
proach72 is an adaptation in which the high level of theory is applied
to the entire system by means of a fragmentation approximation; see
eq 7.
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Chem.48 The SCF convergence threshold was set to τSCF =
10−7 a.u. and the integral screening threshold to τints = 10−14

a.u.. These are “tight” convergence thresholds, as defined in
previous work.7 Both thresholds, but especially τints, are tighter
than typical default settings in many electronic structure
programs (including Q-Chem), but the use of looser
thresholds leads to precision problems in large clusters.21 In
contrast, the DFT quadrature grid is found to make little
difference,21 so the modest SG-1 grid88 is used for all
calculations.
3.2. Validity of the Energy Cutoff Scheme. We first

assess the accuracy of the energy-based screening approx-
imation by comparing screened versus unscreened MBE(3)
results. We have previously observed that errors in fragment-
based approximations are size-extensive,7,19 and as such it is
common to report errors on a per-monomer basis. Ouyang and
Betterns89 have suggested that the target accuracy for such
methods should be 0.1 × (3/2)kB × (298 K) = 0.4 kJ/mol per
monomer, which represents 10% of the available thermal
energy per fragment at room temperature. The idea is that if
the fragmentation approximation can be made faithful to the
underlying quantum-chemical model to within this level of
accuracy, then fragmentation could conceivably be used in an
ab initio molecular dynamics simulation without concern that
the fragmentation approximation skews the results. This turns
out to be a rather stringent criterion, which is likely not met by
most fragment-based methods in the literature.1

Figure 3 reports error statistics for the MBE(3) method as a
function of the three-body screening threshold, τ3B, aggregating

statistics for the entire cluster sequence (H2O)N=6−34. We will
use the notation MBE(3)τ3B to indicate the energy-screened
MBE(3) method, in which three-body corrections are simply
neglected if |ΔEIJK

EFP| < τ3B. (In the calculations reported in
Figure 3, all two-body corrections are retained at the QM
level.) These calculations establish a baseline, namely, that a

threshold τ3B ≈ 0.3 kJ/mol is required in order to meet the
aforementioned dynamic accuracy criterion. This is very
similar to the threshold of 0.25 kJ/mol that was suggested in
previous work by Ouyang and Bettens,24 albeit based on proof-
of-concept calculations in which all of the QM interaction
energies were computed a priori and then estimated based on
classical polarization formulas. In what follows, we will adopt
the slightly more conservative choice of τ3B = 0.25 kJ/mol from
ref 24 for the purpose of screening the three-body interactions.
Figure 4 shows how the errors in the screened

approximation MBE(3)τ3B differ from errors in a complete

MBE(3) approximation that includes all of the trimers. Both
errors are judged with respect to a supersystem calculation at
the same level of theory, which is B3LYP/aDZ in the present
case, and are plotted as a function of cluster size N. For most of
the individual (H2O)N clusters, the absolute error introduced
by energy screening is ≲0.4 kJ/mol/monomer, consistent with
the aggregate error statistics in Figure 3 for the selected
threshold of τ3B = 0.25 kJ/mol. However, several of the largest
individual errors occur in the largest clusters. To understand
whether this represents a random fluctuation or else the start of
an upward trend, we performed calculations on two larger
clusters, (H2O)79 and (H2O)140, obtaining MBE(3)τ3B errors of
0.50 and −0.25 kJ/mol/monomer, respectively. These are of
the same magnitude as what is observed for clusters with N ≤
34, suggesting that any hint of an upward trend in Figure 4
may be illusory.
Given that we are using EFP calculations to screen the n-

body energy corrections, there is no reason to simply drop the
three-body interactions when they fall below the threshold, as
we have done in the MBE(3)τ3B approach that has been
described thus far. Instead, we can include them at the EFP
level by means of the two-layer ONIOM-style scheme that is
shown schematically in Figure 2b. Results from this composite
approach are labeled MBE(3)τ3B + EFP in Figure 3. When τ3B
≤ 0.5 kJ/mol, this approach is actually slightly less accurate as
compared to simply neglecting all of the small interactions. We
regard this as a minor artifact of error cancellation; for more

Figure 3. Errors (measured with respective to a supersystem
calculation) in the energy-screened three-body approximation,
MBE(3)τ3B, as applied to a sequence of water clusters (H2O)N=6−34.
The error is expressed as the root-mean-square deviation (RMSD) for
the entire data set. QM calculations were performed at the B3LYP/
aDZ level, and the cutoff τ3B was applied only to the three-body
corrections, ΔEIJK, retaining all of the two-body corrections. In the
MBE(3)τ3B + EFP and MBE(3)τ3B + HF schemes, higher-order
induction is recovered using an ONIOM-style formalism that requires
a supersystem calculation at either the EFP level or else the HF/aDZ
level.

Figure 4. Signed errors per monomer for clusters (H2O)N=6−34,
considering both a complete MBE(3) approximation (including all
terms) and its three-body-screened variant, MBE(3)τ3B (neglecting
terms for which |ΔEIJKEFP| < τ3B, with τ3B = 0.25 kJ/mol/monomer). All
calculations were performed at the B3LYP/aDZ level of theory, and
the error is defined with respect to a supersystem calculation at that
level of theory. The data in green represent the difference between the
MBE(3)τ3B error and the MBE(3) error.
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aggressive thresholds (larger values of τ3B), the composite
scheme is indeed more accurate than simply neglecting below-
threshold values.
More accurate still is a two-layer method where higher-order

induction is incorporated by means of a two-layer approach
involving a supersystem calculation at the HF/aDZ level. This
approach is labeled “MBE(3)τ3B + HF” in Figure 3, and its
accuracy is within the dynamic accuracy criterion of 0.4 kJ/
mol/monomer suggested by Ouyang and Bettens,89 for values
of τ3B ranging all the way up to at least τ3B = 1.0 kJ/mol. The
minimum error is obtained close to the value τ3B = 0.25 kJ/mol
that was singled out above.
In Figure S1, we fix τ3B = 0.25 kJ/mol and plot the error in

MBE(3)τ3B calculations as a function of an energy threshold
τ2B that is used to screen the two-body corrections. Denoting
this approach as MBE(3)τ2B,τ3B, we note that MBE(3)τ2B,τ3B +
HF/aDZ affords better results than either MBE(3)τ2B,τ3B alone
or MBE(3)τ2B,τ3B + EFP, which is unsurprising in view of the
results for three-body screening. With τ2B = 0.25 kJ/mol,
however, each of these MBE(3)τ2B,τ3B-based approximations
affords errors <0.5 kJ/mol/monomer. This suggests that some
two-body screening is feasible without serious loss of accuracy,
although this does not do much to reduce the cost of the
systems examined here. As such, all other calculations reported
in this work use three-body screening only.
Admittedly, the MBE(3)τ3B + HF/aDZ results that exhibit

the best performance must be regarded as proof-of-concept
calculations only, because the MBE(3) calculations reported in
Figure 3 are performed at the B3LYP/aDZ level of theory and
thus the HF/aDZ calculation that is applied as a supersystem
correction is not significantly less expensive than the method
we are aiming to approximate and which serves as the
benchmark. That said, this example demonstrates that two
different levels of theory can successfully be matched in a two-
layer composite scheme that facilitates energy-based screening
of the MBE(3) portion of the calculation. It also facilitates low-
cost testing to establish a value for the τ3B parameter. In what
follows, we will consider more expensive levels of theory for
the MBE(3) part of the calculation, including MP2
calculations. In such cases, MBE(3)τ3B + HF/aDZ proves to
be extremely cost-effective in comparison to a supersystem
calculation at the MP2 level, and in fact the supersystem HF/

aDZ calculation amounts to only a small fraction of the cost of
the fragment-based MP2 calculation. This will be demon-
strated in Section 3.4, where timing data are presented. First, it
is necessary to establish the accuracy of MBE(3)τ3B and related
methods.
Figure 5 shows the signed errors for MBE(3)τ3B-based

approximations for the entire data set of water clusters, with
τ3B = 0.25 kJ/mol as established above. These calculations are
reported both at the B3LYP/aDZ level (Figure 5a) and also at
the MP2/aDZ level (Figure 5b). At the B3LYP level, the
MBE(3)τ3B approach alone (sans supersystem correction)
exhibits a few data points that lie outside of the dynamic
accuracy criterion. The two-layer MBE(3)τ3B + EFP approach
is unable to rectify this situation, and in fact makes the errors
slightly larger in most cases, but MBE(3)τ3B + HF/aDZ
reduces all of the errors below the target accuracy. In an
attempt to reduce the cost of the supersystem correction, and
inspired by the success of Raghavachari and co-workers using
semiempirical calculations for the supersystem correction in
MIM2,79,80 we also tested the semiempirical PM3 method.90,91

We find that the MBE(3)τ3B + PM3 approach tends to
exaggerate the polarization correction, pushing the errors in
the opposite direction as compared to MBE(3)τ3B + EFP. (It
should be noted that Raghavachari and co-workers have used
PM6-D3 in their MIM2 calculations,79,80 but this has not yet
been implemented in Q-Chem.) In the end, however, all of the
data in Figure 5a are accurate to within ±1.0 kJ/mol/
monomer, including those for the MBE(3)τ3B and MBE(3)τ3B
+ EFP approaches that include no supersystem correction at all
or else an EFP correction with negligible additional cost.
Errors are larger when the underlying quantum-chemical

model is MP2/aDZ (Figure 5b), although the underlying
trends are the same as those observed for B3LYP calculations.
Here, MBE(3)τ3B + PM3 is slightly more accurate than
MBE(3)τ3B+ HF/aDZ, but neither method consistently
achieves the stringent 0.4 kJ/mol/monomer accuracy criterion.
Most errors are <1.0 kJ/mol/monomer, which cannot be said
of the MBE(3)τ3B + EFP approach. We tried tightening the
threshold τ3B in an attempt to reduce the errors at the MP2/
aDZ level, but to no effect. The size-dependent trends in the
errors that are observed in Figure 5b using the threshold τ3B =
0.25 kJ/mol are nearly identical to those documented in Figure

Figure 5. Signed errors per monomer for energy-screened MBE(3) approximations computed at the (a) B3LYP/aDZ or (b) MP2/aDZ level of
theory. In either case, the energy cutoff is τ2B = τ3B = 0.25 kJ/mol and error is defined with respect to a supersystem at the specified level of
quantum chemistry. Higher-order induction is recovered via two-layer methods labeled MBE(3)τ3B + X, where X = EFP, PM3, or HF/aDZ. These
composite methods require a supersystem calculation at level X.
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S2 using τ3B = 0.20 kJ/mol, the latter of which results in more
subsystem calculations performed at the target (MP2) level of
theory. The level of accuracy that is observed in Figure 5b may
simply be the intrinsic limit of the method. It is possible that
this situation could be rectified by extending the method to
MBE(4), but we leave that as a topic for future work.
3.3. Relative Energies. We next examine the challenging

problem of predicting relative energies of different cluster
isomers, using a set of 80 isomers of (H2O)20. (These are taken
originally from ref 86 but are provided in the Supporting
Information to the current work.) This data set includes 20
isomers from each of the four structural motifs (Figure 6) that

are found in water clusters in this size regime.92 The same data
set has been used in our previous work,7,20,87 and benchmark
energies have been computed at the MP2/aDZ and ωB97X-V/
aTZ levels of theory, where “aTZ” means aug-cc-pVTZ.

Regarding basis sets, we note that one-dimensional dissociation
potentials computed at the MP2/aDZ level for water dimer
mimic those computed at the CCSD(T)/aQZ level,93 due to
error cancellation. For the DFT calculations, we use the aTZ
basis set as this is required for good results using modern B97-
based functionals.42 In order to use large, flexible basis sets
such as aTZ, it appears to be necessary to iterate the n-body
subsystem calculations to self-consistency,1 which is done here
but is notably not done in FMO calculations.37 The absence of
interfragment Pauli repulsion interactions renders FMO
calculations unstable in large, flexible basis sets.1,40,41

Errors with respect to supersystem benchmarks that are
reported below are defined as

E Eerror rel
fragment

rel
supersys= − (10)

These errors are plotted in Figure 7 for calculations at the
MP2/aDZ level, using a variety of MBE(3)τ3B-based
approximations, and in Figure S3 for calculations at the
ωB97X-V/aTZ level. Unlike the calculations in Section 3.2,
where errors were plotted in per-monomer terms, here all of
the clusters are the same size so we deal in total energy errors.
A target accuracy might therefore be the “chemical accuracy”
standard of ∼4 kJ/mol.
Results in Figure 7a correspond to the energy-screened

MBE(3)τ3B method without any supersystem correction, which
proves to be insufficient to reproduce MP2/aDZ relative
energies with any real fidelity. An accuracy of ±4 kJ/mol can

Figure 6. Examples of the four families of (H2O)20 isomers.

Figure 7. Signed errors (as compared to a supersystem MP2/aDZ calculation) in relative energies for isomers of (H2O)20, using MBE(3)τ3B-based
approximations at the MP2/aDZ level, with τ3B = 0.25 kJ/mol. These approximations include (a) energy screening only, with no supersystem
calculation; (b) MBE(3)τ3B + HF/aDZ, where a supersystem Hartree−Fock calculation is used to capture higher-order induction; (c) MBE(3)τ3B +
PM3, where the supersystem correction is semiempirical; and (d) MBE(3)τ3B + EFP, where the supersystem calculation can be evaluated at
essentially no cost.
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be achieved by application of an ONIOM-style correction at
the HF/aDZ level, as shown in Figure 7b. Roughly the same
behavior is observed for ωB97X-V/aTZ calculations, where
errors in relative energies computed using the MBE(3)τ3B +
HF/aDZ approximation all lie between −7 kJ/mol and +3 kJ/
mol (Figure S3b). Together, these calculations establish that
the MBE(3)τ3B + HF/aDZ approach is faithful to the
underlying quantum-chemical model for relative energies, to
nearly (but not quite) a “chemical accuracy” standard of ±4 kJ/
mol.
Returning to the MP2/aDZ results, the accuracy is degraded

a bit when PM3 is substituted for HF/aDZ (Figure 7c), with a
small, systematic error for the dodecahedral structures relative
to the others and a few noticeable deviations for the face-
sharing pentagonal prisms. In an attempt to bypass the need
for a supersystem calculation at the HF/aDZ level of theory,
we attempted to substitute HF/6-31G* instead, and also the
semiempirical HF-3c method,94 which requires only a
minimal-basis Hartree−Fock calculation. Neither of these
methods, when used in conjunction with fragmentation at the
MBE(3)τ3B level, afforded results that were accurate enough to
warrant consideration here.
The MBE(3)τ3B + EFP approach is worth considering

because the EFP correction is essentially free, but again the
results (Figure 7d) represent only a modest improvement
upon the underlying MBE(3)τ3B approximation, and are
considerably worse than results obtained using a supersystem
HF/aDZ or PM3 correction. In addition, MBE(3)τ3B + EFP
exhibits a sizable, systematic error in its prediction of the
energies of fused-cube structures with respect to those of the
other three structural motifs. Errors for the fused-cube
structures are relatively large and negative, indicating that the
EFP induction correction overstabilizes these isomers relative
to the others. Based on these results, it seems that accurate
results for relative isomer energies are achievable with
MBE(3)τ3B only if it is combined with a low-level quantum
chemistry calculation performed on the supersystem. While
EFP can be used for screening, its accuracy appears to be
insufficient to replace Hartree−Fock theory as the supersystem
correction.
We noted in Section 2.2 that MBE(3)τ3B + EFP bears some

similarity to the EFMO method,55−60 although the latter uses a
two-body QM approximation (namely, FMO2) and distance-
based rather than energy-based screening of the two-body
subsystem calculations. Nevertheless, it is interesting to see
how EFMO performs in comparison to MBE(3)τ3B-based
approaches (especially MBE(3)τ3B + EFP) for this same set of
cluster isomers. These results are shown in Figure 8. Overall,
and in absolute terms, the EFMO approach is no more
accurate than MBE(3)τ3B + EFP and arguably less so, with
errors that range from −10 kJ/mol up to +20 kJ/mol. For
MBE(3)τ3B + EFP, most of the errors are negative, ranging up
to −20 kJ/mol. These EFMO calculations use a dimensionless
cutoff parameter Rcut = 2.0 to switch between short-range
FMO2 and longer-range EFP, based on the dimensionless
intermolecular distance55
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QM calculations are retained only if RIJ < Rcut, and the value
Rcut = 2.0 that we use represents the most conservative choice
from the systematic tests that were reported in ref 58.

One interesting aspect of the EFMO data is that what
appears to be a systematic error in EFP energies for the fused-
cube isomers manifests again, as this particular class of isomers
exhibits much larger errors as compared to the others, similar
to what was observed in the case of MBE(3)τ3B + EFP (Figure
7d) but opposite in sign in the case of EFMO. Noting that
positive errors correspond to understabilization by the
fragment-based approximation (according to eq 10), we
observe that EFMO understabilizes the fused-cube structures
whereas the MBE(3)τ3B + EFP approach overstabilizes them,
despite the fact that the ONIOM-style induction correction is
applied using the same force field in both calculations. The
EFMO calculation lacks three-body QM terms that are present
in MBE(3), which may make the results more erratic, but we
suspect that the primary explanation for this difference with
respect to MBE(3)τ3B + EFP lies in the rather aggressive
distance-based thresholding that is applied to the two-body
corrections ΔEIJ in the EFMO approach. For stable, low-
energy cluster geometries, the two-body terms are almost
always attractive, whereas three-body corrections ΔEIJK are a
mix of attractive and repulsive contributions, as seen in Figure
1. Comparing the MBE(3)τ3B results in Figure 7a, which
contain no higher-order induction, to the accurate MBE(3)τ3B
+ HF results in Figure 7b, where apparently the higher-order
effects are well described, one may determine that the higher-
order polarization effects that are needed to correct MBE(3)τ3B
are net attractive for all of the isomers except the fused-cube
structures, where they are net repulsive. According to the
EFMO results, underestimation of the two-body interactions
does not cancel overestimation (by EFP) of higher-order
interactions, so the overall effect is still underestimation of the
relative energies.

3.4. Computational Cost. For MBE(3)τ3B calculations it
seems reasonable to expect that the number of “significant”
three-body terms (i.e., those with |ΔEIJK

EFP| > τ3B) will grow
linearly with system size. Although we have no formal proof of
this fact, it appears to be borne out in practice, so let us assume
for the sake of discussion that this is indeed the case. Then

Figure 8. Signed errors in relative energies for isomers of (H2O)20,
computed using the EFMO method at the MP2/aDZ level. (Error is
defined relative to a supersystem MP2/aDZ calculation.) The color
scheme and energy scale are the same as in Figure 7, which compares
MBE(3)τ3B-based approximations for the same data set. EFMO
calculations used the default value Rcut = 2.0 for the dimensionless
cutoff used in the distance screening.55
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energy-based screening of the three-body interactions reduces
the formal scaling of MBE(3) to N( )2 with system size, since
there remains a quadratic number of two-body terms, but of
course that number can also be reduced to N( ) by means of
energy screening.
The efficacy of both energy- and distance-based cutoffs is

examined in Figure 9, by plotting the number of trimers that

must be computed at the QM level for the cluster data set
(H2O)N=6−37. These subsystem counts are based on the
energy-screening threshold τ3B = 0.25 kJ/mol that was
determined in Section 3.2 and the distance cutoff of 7 Å that
was previously determined for water clusters.20 Distance-based
screening results in a provably N( ) algorithm because the
size of the QM domains is fixed and cannot grow with respect
to supersystem size. That said, for finite clusters the number of
trimers grows a bit erratically in the distance-based approach,
with a noticeable jump between N = 29 and N = 30, for
example (see Figure 9). This particular anomaly results from a
structural transition that occurs in this size regime,95 such that
the N = 29 structure has fewer rings than either the N = 28 or
N = 30 structures.84 Changes in the number of rings also
explain the dip in the number of trimers that is observed
between N = 23 and N = 24.84 These structural changes have
the effect of modifying the distribution of intermolecular
distances, which changes the efficacy of the distance-based
screening protocol.
In contrast, the energy-based screening approach interpo-

lates smoothly through these structural changes with no
sudden changes in its efficacy. Furthermore, the number of
significant trimers appears to increase only as N( ), with a
significantly smaller prefactor as compared to distance-based
screening. That the energy-based screening procedure is more
efficient even in water clusters is notable, because these
systems (where the fragments are very small and identical in
size) likely represent a best-case scenario for the efficacy of
distance-based thresholds. We expect that the advantages of
energy-based screening will become even more pronounced in
more complex environments.

Figure 10 compares timing data for MP2/aDZ calculations
across the sequence of clusters (H2O)N=6−34, comparing the

N( )5 cost of a traditional MP2 calculation to the cost of our
best approximation to it, MBE(3)τ3B + HF/aDZ. These data
represent wall times for calculations performed on a single 40-
core node. This means that we have not exploited the trivial
parallelizability of the subsystem calculations to report a very
low wall time while hiding the true cost of the method behind
the number of processors that was used. Instead, the data in
Figure 10 reflect the full cost of the method, and the hardware
required to realize these timings is quite modest.
According to the data in Figure 9, the number of

energetically significant trimers appears to increase linearly
with system size, and thus the cost of an MBE(3)τ3B calculation
is expected to grow as N( ). (Technically, to achieve linear
scaling we would need to screen the dimers as well, which is
not done in these calculations; however, the dimers represent
so little of the total cost that this has no discernible impact on
the scaling for the system sizes examined here.) Furthermore,
in the timing data for MBE(3)τ3B + HF/aDZ that are given in
Figure 10, we have not attempted to separate the cost of the
supersystem HF/aDZ calculation because the difference
between this and the MBE(3)τ3B timing is not discernible on
the scale of Figure 10. That fact alone is significant: the
supersystem Hartree−Fock calculation is not a significant
bottleneck in these calculations. This behavior cannot persist
as N → ∞; the supersystem Hartree−Fock cost scales as

N( )3 in principle and as N( )x2. in most practical
applications, but with an efficient implementation the prefactor
is low. For the system sizes considered in this work, there is
thus no reason not to use the supersystem HF/aDZ correction,
which significantly improves the accuracy while having very
little effect on the cost. For the MP2/aDZ calculations whose
timings are shown in Figure 10, the crossover point at which
the MBE(3)τ3B + HF calculation becomes cheaper than the
supersystem MP2 calculation occurs at N = 12. For
calculations at the much cheaper B3LYP/aDZ level, the

Figure 9. Total number of three-body subsystems that must be
computed at the QM level for water clusters (H2O)N. The “no cutoff”
data represent a complete MBE(3) calculation with N( )3 trimers.
Distance-based screening uses a cutoff of 7 Å (as determined in ref
20), and energy-based screening represents the MBE(3)τ3B approach
with a threshold τ3B = 0.25 kJ/mol.

Figure 10. Wall time for MP2/aDZ calculations on clusters
(H2O)N=6−34. All calculations were performed on a single 40-core
compute node, including all of the MP2 subsystem calculations
required for MBE(3)τ3B (using τ3B = 0.25 kJ/mol). Timings for the
MBE(3)τ3B + HF/aDZ approach include the cost of the supersystem
Hartree−Fock calculation, which is formally N( )3 but which cannot
be distinguished, on this scale, from the N( ) timings for the
MBE(3)τ3B calculations.
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crossover point occurs at N = 45. (Timing data for B3LYP
calculations are plotted in Figure S4, out to N = 140.)

4. CONCLUSIONS
Calculations in water clusters demonstrate that energy-based
screening using the automatically generated EFP force field can
be used to significantly reduce the cost of MBE(n)
calculations, while still preserving reasonable fidelity with
respect to a full-system calculation. An energy cutoff threshold
τ3B = 0.25 kJ/mol, used in conjunction with a three-body
expansion, maintains accuracy at the level of 1−2 kJ/mol/
monomer with respect to the supersystem calculation
performed at the same level of theory as the subsystem
calculations. We have called this approach MBE(3)τ3B.
Calculations on a large set of (H2O)20 conformational

isomers reveal that MBE(3)τ3B alone is insufficient to predict
relative energies, at either the MP2/aDZ or ωB97X-V/aTZ
level of theory, to within a “chemical accuracy” target of ±4 kJ/
mol. However, a two-layer approach that includes an ONIOM-
style correction (requiring a supersystem calculation at the
HF/aDZ level) does approach this level of accuracy. Although
the supersystem HF/aDZ calculation formally introduces a

N( )3 bottleneck, for calculations at the MP2 level this full-
system Hartree−Fock calculation amounts to only a small
fraction of the subsystem (monomer, dimer, and trimer) MP2
cost. For (H2O)N at the MP2/aDZ level, the cost of the
composite MBE(3)τ3B + HF/aDZ approach is cheaper than a
full-system MP2/aDZ calculation already at N = 12. Energy
screening of the subsystem calculations can reduce the cost of
the fragment-based MBE(3)τ3B part of the calculation to N( )
with system size, with an even smaller prefactor as compared to
that incurred using distance-based thresholding.
There are many fragment-based quantum chemistry

approaches with documented parallel scalability, but fewer
whose accuracy is genuinely faithful to the underlying
quantum-chemical model.1,19 This is especially true when it
comes to their use with large basis sets appropriate for
correlated wave function calculations. In this preliminary
report of the energy-screened MBE(n) approach, we have not
yet (quite) achieved chemical accuracy for energies, but there
is reason to think that this could be improved. We have
certainly not exhausted the possibilities for adding an
ONIOM-style supersystem correction, and the addition of
four-body terms (which we had previously deemed to be
borderline-intractable7,19) seems feasible in conjunction with
energy-based screening. A generalized MBE,1,10−12 based on
dimers of overlapping fragments, exhibits outstanding accuracy
for systems ranging from noncovalent clusters7,12 to proteins.8

The number of subsystem calculations required for this
generalized approach is relatively large, and thus the cost is
relatively high,7,8 but energy-based screening is likely to reduce
this cost considerably. These extensions are currently being
explored in our group.
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