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ABSTRACT: A widespread belief persists that the Boys−Bernardi function
counterpoise (CP) procedure “overcorrects” supramolecular interaction energies
for the effects of basis-set superposition error. To the extent that this is true for
correlated wave function methods, it is usually an artifact of low-quality basis sets.
The question has not been considered systematically in the context of density
functional theory, however, where basis-set convergence is generally less
problematic. We present a systematic assessment of the CP procedure for a
representative set of functionals and basis sets, considering both benchmark data
sets of small dimers and larger supramolecular complexes. The latter include
layered composite polymers with ∼150 atoms and ligand−protein models with
∼300 atoms. Provided that CP correction is used, we find that intermolecular
interaction energies of nearly complete-basis quality can be obtained using only
double-ζ basis sets. This is less expensive as compared to triple-ζ basis sets without
CP correction. CP-corrected interaction energies are less sensitive to the presence of diffuse basis functions as compared to
uncorrected energies, which is important because diffuse functions are expensive and often numerically problematic for large
systems. Our results upend the conventional wisdom that CP “overcorrects” for basis-set incompleteness. In small basis sets, CP
correction is mandatory in order to demonstrate that the results do not rest on error cancellation.

1. INTRODUCTION
1.1. Density Functional Theory for Noncovalent

Interactions. The description of noncovalent interactions
within density functional theory (DFT) has improved
dramatically over the past two decades, relative to a starting
point where generalized gradient approximations (GGAs)
predict interaction potentials that are unbound for dispersion-
dominated complexes such as rare-gas dimers or even
(C6H6)2.1 The first functionals to deal with this problem in a
generally effective way were those with empirical atom−atom
dispersion potentials added ad hoc.1,2 These dispersion-
corrected or “DFT+D” methods remain tremendously
important in contemporary DFT,1−3 and modern versions of
the dispersion corrections resemble proper atomic C6
coefficients in the separated-atom limit.4,5 (Double counting
of correlation effects at van der Waals contact distances does
remain an issue, however.1,6,7) Early versions of the DFT+D
approach8 were quickly followed by semi-empirical meta-GGA
functionals that significantly outperformed GGAs for van der
Waals complexes,9−12 although not always for the right
reasons.13−15 Rather, because the semilocal meta-GGA frame-
work has a much longer range in real space, due to its
dependence on the density Laplacian and the kinetic energy
density, meta-GGAs afford nonvanishing interactions in the
region of nonbonded close contacts (unlike typical GGAs),
and noncovalent interactions may therefore emerge upon
sufficient parameterization. Separately, the development of

nonlocal correlation functionals,16−22 which have the right
physics to describe dispersion from first principles, has paved
the way for a new generation of empirical functionals23−25

based on the B97 model.26 At present, these B97-based
functionals are among the best performers for noncovalent
interactions, with accuracy approaching 1−2 kcal/mol for
standard benchmark data sets.3 Other methods attempt to
extract in situ atomic C6 (or C8, C10, ...) coefficients from a
DFT density for a first-principles approach to modeling
dispersion. Examples include the Becke−Johnson exchange-
hole dipole moment method27−32 and the Tkatchenko−
Scheffler atoms-in-molecules polarizability approach.33−35

Finally, there is double-hybrid (DH-)DFT,36,37 where a
fraction of the second-order Møller−Plesset (MP2) correlation
energy is introduced. These functionals can also describe
dispersion from first principles, although it is worth mentioning
that MP2 itself is not a benchmark-quality method for
dispersion interactions.38−41
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In DFT, noncovalent interaction energies ΔEint are typically
computed via the supramolecular approach:

=E E E Eint AB A B (1)

When atom-centered Gaussian basis sets are used, this
approach suffers from the well-known deficiency of basis-set
superposition error (BSSE).42−46 This reflects the fact that in
the dimer calculation (EAB), either monomer may use basis
functions centered on the other to improve the quality of its
wave function, but that possibility is precluded in the monomer
calculations (EA and EB). This leads to a significant
overestimation of ΔEint that disappears slowly as the
monomer-centered basis sets approach completeness.47−50

The Boys−Bernardi “function counterpoise” (CP) procedure
is a means to sidestep this problem, which dates to the early
days of quantum chemistry.51 The CP procedure recognizes
that eq 1 is an unbalanced approximation unless all three
energies are computed in the same (dimer) basis set.

Despite its easy-to-understand provenance, use of the CP
procedure has been controversial44 and remains so in some
more recent work.52−54 The chronological evolution of this
controversy is detailed in Section 1.2, but the gist is a
perception that the CP procedure “overcorrects” ΔEint.

42−44

When small basis sets are used, |ΔEint| is much too large as
compared to the complete basis set (CBS) limit computed at
the same level of theory, but |ΔEint| may be too small upon CP
correction. This observation is not an indictment of the CP
procedure per se because BSSE is interwoven with basis-set
incompleteness error (BSIE). Due to partial compensation of
these effects,55 it has been suggested that fixing one of these
issues (namely BSSE, by means of the CP procedure) without
fixing the other (BSIE, by use of larger basis sets) results in an
approximation that is also unbalanced.53 The use of a “half-
CP” procedure,56 which averages the CP-corrected and
uncorrected values of ΔEint, can be seen as a remedy for this
imbalance. For correlated wave function methods, the half-CP
average converges to the CBS limit faster than either the
corrected or uncorrected interaction energy on its own.49,50,55

For DFT, there is an additional consideration in that the
performance for noncovalent interactions varies greatly from
one functional to another, and finite-basis error may offset
inherent functional error in some cases.57 To the extent
possible, one should therefore attempt to uncouple these errors
by examining the performance of DFT in the CBS limit.
Although the CP procedure has been carefully benchmarked
for correlated wave function models,50,55 its behavior in DFT
calculations has not been examined so systematically. A recent
comparison with explicitly correlated wave function results
recommended CP correction for converging DFT to the CBS
limit,56 although the selection of basis sets and functionals was
somewhat limited. Another assessment of dispersion-corrected
GGA functionals using Dunning basis sets concluded that CP-
corrected aug-cc-pVDZ results were close to quadruple-ζ
results but that uncorrected aug-cc-pVDZ results were not.58

The systematic examination contained herein considers a
wider variety of functionals and basis sets that are more
typically used for DFT calculations.

With the exception of double-hybrid functionals, it can be
expected that BSSE is smaller for DFT than it is for correlated
wave function methods due to the more rapid basis-set
convergence of DFT that originates in the absence of electron
coalescence cusps. Dependence on virtual orbitals also
increases the BSSE associated with correlated wave function

methods.52 The much slower convergence of MP2 as
compared to traditional semilocal or hybrid DFT underlies a
recent recommendation to use the half-CP procedure with
double-hybrid functionals versus “full CP” for other func-
tionals.56 In the early days of molecular DFT calculations,
small Pople-style basis sets were quickly judged to be
adequate,59 and this recommendation seems to have been
ported to noncovalent problems without careful calibration.
However, the conventional wisdom that double-ζ basis sets are
adequate for DFT does not always hold for modern meta-
GGAs and B97-based functionals, which converge more slowly
than their predecessors with respect to both basis set23,24,60

and quadrature grid.24,61,62 In view of this, a thorough
assessment of CP correction in DFT seems timely.
1.2. History of CP Correction. We consider the historical

record in an effort to understand the emergence of a
conventional wisdom that the Boys−Bernardi procedure
“overcorrects” for BSSE. Evidence debunking that viewpoint
had appeared already in reviews dating to the late 1980s and
early 1990s;42−44 nevertheless, this sentiment persists in more
recent literature.52−54,63

Very early literature on the efficacy of CP correction is
muddled by the use of low-quality basis sets, for which both
BSSE and BSIE are sizable. It is difficult to take seriously the
early criticisms of CP correction based on minimal-basis
calculations,64 where BSSE can be so large as to convert
repulsive interactions into attractive ones.65 There was also an
early suggestion66 that the Boys−Bernardi procedure erro-
neously allows the occupied orbitals of one monomer to
occupy regions of space that should be taken up by occupied
orbitals of the partner monomer in the supramolecular
complex, thus causing the CP procedure to underestimate
the true interaction energy. This view was later shown to be
false, however.67−69 In fact, spatial restriction of the occupied
orbitals upon formation of the A···B complex lies at the heart
of the Pauli exclusion principle!44

The erratic nature of BSSE in small basis sets70,71 partly
motivated the development of intermolecular perturbation
theory in the 1970s72 because this approach is inherently free
of BSSE.73 Gaussian basis sets had become more systematized
by the 1980s, and a 1988 review74 observes that it is “generally
accepted” that the CP correction brings Hartree−Fock
interaction energies closer to the CBS limit, except in the
case of minimal basis sets. However, the effectiveness of the
CP procedure was questioned in a 1985 study by Schwenke
and Truhlar,75 who performed calculations on (HF)2 using 34
different Pople-style basis sets and found no systematic
improvement when CP was used. That said, there was little
variation among the basis sets tested, and a subsequent study
of alanine dimer using many of the same basis sets reached the
opposite conclusion, namely, that CP correction typically
improves the results.76 Other work from the same time period
suggested that the CP procedure actually insulates the results
from otherwise erratic changes in ΔEint upon relatively small
changes in the basis set.77

This understanding was summarized in a 1994 review of the
“overcorrection debate”.44 The Boys−Bernardi procedure is
not only compatible with the Pauli principle,67 but
furthermore, CP-corrected supramolecular calculations afford
results of comparable accuracy to intermolecular perturbation
theories that are inherently free of BSSE.43,67−69 (In fact,
supramolecular perturbation theory calculations may afford
nonsensical results for energy components if these are not
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corrected for BSSE.43) Similarly, comparison of CP-corrected
MP2 to the corresponding “chemical Hamiltonian” version of
that method,78 which is inherently free of BSSE, results in
excellent agreement for basis sets of moderate quality.79,80 By
late 1990s (but arguably much earlier than that),42−44 it was
therefore evident that CP correction generally improves the
quality of supramolecular interaction energies. Where
exceptions can be found in the older literature, they are
almost always attributable to the use of low-quality basis sets.
Nevertheless, reviews by van Lenthe et al. in 198742 and by the
same authors again in 199444 bemoan the persistent and
widespread belief that the Boys−Bernardi procedure “over-
corrects” as well as the notion that the CP correction is merely
an “estimate” of the BSSE rather than a well-defined procedure
that recognizes the origin of the problem (namely, imbalance
in the supramolecular formula of eq 1) and eliminates it,
essentially by definition.

To a significant extent, this older discussion was hindered by
inability to reach the CBS limit for systems with more than a
few atoms or to obtain reliable ab initio benchmarks. Those
problems have been overcome, and correlated wave function
benchmarks clearly indicate that CP-corrected and uncorrected
energies converge to the CBS limit from opposite directions.50

We regard this as an incompleteness problem rather than an
“overcorrection” because the CP-corrected results extrapolate
more smoothly to the CBS limit, resulting in smaller error
bars.50 (This behavior was originally predicted by Dunning.81)
Half-CP results converge even faster,50,55 and other molecular
properties also converge more smoothly with CP correction
than without.47 Reported cases where uncorrected results
converge faster to the CBS limit,52 or where the basis-set error
(relative to the CBS limit) is larger with CP correction,54

typically involve systems where the difference between the CP-
corrected and uncorrected results is quite small, whereas the
systematic study in ref 50 considered a wide range of cases. As
such, we conclude that there is nothing in wave function
theory to suggest that CP correction is ill-advised.
1.3. Overview of the Present Work. Whereas the CP

correction for correlated wave function methods has been
considered systematically,50,55 as has that of double-hybrid
functionals,56 the latter constitute a relatively small niche in the
overall pantheon of DFT methods and the CP correction has
not been considered systematically for other classes of
functionals. In addition, we want to understand how basis
sets of double- and triple-ζ quality behave, as these are the
largest basis sets that are typically employed in DFT
calculations. We will therefore examine the effects of CP
correction for interaction energies computed using a set of
density functionals that perform well for noncovalent
interactions, using basis sets as small as 6-31G*. These tests
span a range of system sizes because BSSE is size-extensive and
large supramolecular complexes exhibit dramatically larger CP
corrections as compared to small dimers. Finally, we will
consider whether CP correction is more or less economical
than simply enlarging the basis set, as a strategy to obtain
converged DFT/CBS values of ΔEint.

2. METHODS
Basis sets tested here include Dunning’s correlation-consistent
sequence, aug-cc-pVXZ (with X = D, T, and Q);82,83 Karlsruhe
“def2” basis sets through def2-QZVPD;84,85 and Pople basis
sets 6-31G*, 6-31+G*, 6-311G*, and 6-311+G*.86 Pople basis
sets use a common orbital exponent for s and p functions in a

given shell, which makes them much more efficient than
alternatives with a comparable number of functions,87,88

provided that the electronic structure program takes advantage
of this simplification. As such, Pople basis sets continue to see
widespread use in DFT calculations, especially in large systems.
A double-ζ basis set called DZVP,89 which is not in widespread
use, is also tested for large supramolecular complexes because
it is reported to afford accurate interaction energies for small
dimers, without the need for CP correction.90 (In the basis set
exchange,91 this basis set is called DGauss-DZVP.)

We selected a small set of functionals that perform well for
noncovalent interactions.3 These include BLYP+D3(BJ), a
GGA functional that employs the D3 empirical dispersion
correction4 with a Becke−Johnson (BJ) damping function;6

PBE0+D4, a hybrid GGA using the relatively new D4
dispersion correction;5 ωB97X-V,23 a hybrid GGA with
nonlocal VV10 correlation;21 and finally the hybrid meta-
GGAs ωB97M-V24 and M06-2X.10 Extensive benchmarking
suggests that ωB97X-V, ωB97M-V, and BLYP+D3(BJ) are
among the best all-around options for noncovalent inter-
actions,3 although M06-2X remains widely used in that
capacity and PBE0+D4 performs very well for large supra-
molecular complexes.39 We also consider the dispersion-
corrected M06-2X+D3(0) functional, where “D3(0)” indicates
the original damping function developed for D3,2,4 and finally
the meta-GGA functional M06-L.92 The latter performs less
well for noncovalent interactions but exhibits exceptionally
poor convergence properties with respect to basis set,60 making
for an interesting test. A few double-hybrid functionals are also
tested: PBE-QIDH,93 B2GP-PLYP,94 ωB97X-2(LP),95 and
ωB97M(2).24 For these functionals, the MP2 correlation
energy is evaluated within the resolution-of-identity approx-
imation using orbitals obtained from the underlying hybrid
functional.

The overall performance of these methods is illustrated in
Table 1 using several noncovalent data sets. Importantly, the

DFT calculations used to compute these error statistics were
performed at or near the CBS limit and are compared to
benchmark values of ΔEint obtained at the level of coupled-
cluster theory with single, double, and perturbative triple
excitations [CCSD(T)], also extrapolated to the CBS limit. As
such, these error statistics probe the inherent accuracy of DFT
itself, free from BSSE or BSIE. The data in Table 1 are

Table 1. Statistical Accuracy of DFT for Noncovalent
Interactions

RMSD (kcal/mol)a

functional NCEDb NCECc NCDd S66e

BLYP+D3(BJ) 0.34 2.18 2.82 0.28
M06-L 0.55 2.20 1.87 1.16
M06-2X 0.43 2.52 0.99 0.34
ωB97X-V 0.24 0.64 1.23 0.20
ωB97M-V 0.18 0.48 1.13 0.23
PBE0+D4 0.50
ωB97X-2(LP) 0.38
ωB97M(2) 0.35

aRoot-mean-square deviations (RMSDs) with respect to CCSD(T)/
CBS benchmarks. bNoncovalent “easy” dimers (NCED), from ref 3.
cNoncovalent “easy” clusters (NCEC), from ref 3. dNoncovalent
“difficult” dimers (NCD), from ref 3. eEvaluated as part of the present
work.
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intended to demonstrate what level of accuracy is presently
feasible with available exchange−correlation functionals. In the
rest of this work, we will mostly be concerned with
convergence to the CBS limit for a particular functional and
therefore subsequent error statistics will be defined with
respect to that limit (DFT/CBS), rather than comparing to
CCSD(T)/CBS results.

Often in DFT calculations, quadruple-ζ energies are taken to
be equivalent to the CBS limit.38,58,60 Except for double-hybrid
functionals, we will define the DFT/CBS limit using the
average of CP-corrected and uncorrected values of ΔEint
computed using a quadruple-ζ basis set, namely, aug-cc-
pVQZ for small dimers and def2-ma-QZVP88 for larger
systems. For dimers in the S66 data set,96 CP correction at
the aug-cc-pVQZ level typically amounts to <0.1 kcal/mol,
indicating convergence to the DFT/CBS limit. For larger
systems, the magnitude of the CP correction in the def2-ma-
QZVP basis set affords an estimate of the uncertainty in the
DFT/CBS limit. For double-hybrid functionals, we estimate
the CBS limit using the SCF/aug-cc-pVQZ hybrid DFT energy
plus a two-point “T/Q” extrapolation of the MP2 correlation
energy, where the latter is computed using aug-cc-pVTZ and
aug-cc-pVQZ.97

All calculations were performed using Q-Chem v. 5.4.98

Integral screening and shell-pair drop tolerances were both set
to τints = 10−12 a.u., and the self-consistent field (SCF)
convergence threshold was set to τSCF = 10−8 Ha, except for
the protein−ligand systems in Section 3.3.2, for which we use
τints = 10−10 a.u. and τSCF = 10−6 Ha. The SG-2 quadrature grid
is used for all B97-based functionals and SG-3 for the
Minnesota functionals.62 For other functionals, we use SG-1.99

3. RESULTS AND DISCUSSION
3.1. S66 Data Set. We will use the S66 data set96 to obtain

a systematic understanding of the effect of CP correction on
ΔEint. The largest of the S66 dimers contains 34 atoms
(pentane dimer), and this small size allows us to use
quadruple-ζ calculations even for computationally demanding
functionals and thus to definitively establish the CBS limit.
3.1.1. Convergence Errors for Conventional DFT. A

statistical summary of basis-set convergence errors for S66 is

provided in Table 2, where the errors are defined with respect
to the DFT/CBS limit for each functional. More detailed
statistics can be found in Tables S1−S7, including a breakdown
into subsets consisting of hydrogen-bonded dimers, dispersion-
bound dimers, and dimers of mixed-influence interactions.
Data for M06-2X+D3(0) are omitted from Table 2 but can be
found in Table S2.

It proves useful to examine Table 2 by class of basis set. For
the Dunning basis sets, CP correction has a significant effect
only at the double-ζ level. For aug-cc-pVDZ, the mean
absolute error (MAE) with respect to the DFT/CBS limit is
reduced from 0.7 to 0.2 kcal/mol (averaging across func-
tionals) when the CP correction is included. (These statistics
exclude the double-hybrid functionals, whose basis-set
convergence is quite different and which are considered
later.) With the exception of the M06-L functional, this
difference of ≈0.5 kcal/mol between CP and non-CP
interaction energies is larger than the difference between
DFT/CBS and CCSD(T)/CBS interaction energies for the
same data set (Table 1). When the basis set is extended to aug-
cc-pVTZ, the CP correction is nearly negligible (≲0.1 kcal/
mol), except in the case of M06-L, and for aug-cc-pVQZ it is
negligible in all cases. Notably, the CP-corrected aug-cc-pVDZ
convergence errors are generally close to the uncorrected aug-
cc-pVTZ values, such that results of triple-ζ quality can be
obtained at double-ζ cost by applying CP correction.

Most practical DFT calculations do not employ correlation-
consistent basis sets, so we next turn to the Karlsruhe basis sets
that were designed specifically for SCF calculations. We tested
versions with85 and without84 augmentation by diffuse
functions, finding that diffuse functions afford systematically
smaller convergence errors both before and after CP
correction. Otherwise, the behavior of the Karlsruhe basis
sets is similar to that of the Dunning basis sets, albeit with
somewhat larger convergence errors, especially at the double-ζ
level. Similar to the aug-cc-pVDZ case, however, def2-SVPD
with CP correction is sufficient to reduce the convergence
error so that it is smaller than the intrinsic accuracy of the
functional itself. In the absence of the CP correction, this
cannot be said of the double-ζ basis sets. A corollary is that
once again, triple-ζ basis sets are not required to reach the

Table 2. Basis-Set Convergence Errors for S66 Interaction Energies

mean absolute error (kcal/mol), vs DFT/CBSa

M06-2X M06-L BLYP+D3(BJ) PBE0+D4 ωB97X-V ωB97M-V

basis set no CP with CP no CP with CP no CP with CP no CP with CP no CP with CP no CP with CP

aug-cc-pVDZ 0.75 0.14 0.79 0.43 0.71 0.16 0.66 0.06 0.65 0.07 0.79 0.08
aug-cc-pVTZ 0.14 0.07 0.85 0.49 0.11 0.07 0.10 0.05 0.12 0.04 0.17 0.02
aug-cc-pVQZ 0.05 0.05 0.20 0.20 0.04 0.04 0.04 0.04 0.03 0.03 0.02 0.02
def2-SVP 1.54 0.43 1.48 0.60 2.54 0.26 1.85 0.28 1.82 0.36 2.04 0.37
def2-SVPD 1.38 0.14 1.24 0.57 1.52 0.13 1.37 0.09 1.36 0.10 1.56 0.18
def2-TZVP 0.26 0.19 0.82 0.58 0.48 0.15 0.35 0.13 0.34 0.12 0.42 0.10
def2-TZVPD 0.08 0.14 0.75 0.54 0.09 0.13 0.09 0.09 0.08 0.08 0.12 0.05
def2-QZVP 0.07 0.11 0.59 0.51 0.12 0.06 0.08 0.04 0.07 0.04 0.10 0.03
def2-QZVPD 0.05 0.09 0.59 0.52 0.02 0.05 0.02 0.04 0.01 0.04 0.02 0.03
6-31G* 1.36 0.52 1.42 0.75 2.27 0.39 1.62 0.39 1.62 0.42 1.84 0.44
6-31+G* 0.63 0.28 0.96 0.68 0.54 0.29 0.62 0.24 0.56 0.24 0.63 0.25
6-311G* 1.64 0.39 1.76 0.78 1.86 0.41 1.63 0.34 1.67 0.32 1.95 0.37
6-311+G* 1.07 0.45 1.35 0.82 0.69 0.37 0.93 0.32 0.88 0.33 1.02 0.43
6-311++G** 0.75 0.28 1.08 0.70 0.43 0.23 0.96 0.32 0.61 0.18 0.75 0.29

aDFT/CBS is defined as the average of CP-corrected and uncorrected aug-cc-pVQZ interaction energies.
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intrinsic accuracy limit, as CP-corrected def2-SVPD con-
vergence errors are within ∼0.1 kcal/mol of def2-QZVPD
values.

Pople basis sets remain workhorses in DFT, and it is
therefore interesting to note that in order to reduce
convergence errors below 1.0 kcal/mol, CP correction is
required in most (although not all) cases. With the exception
of the slowly convergent M06-L functional, convergence errors
for all CP-corrected functionals are ≲0.5 kcal/mol. These
errors are systematically smaller when diffuse functions are
added, yet CP correction is still required to reduce the
convergence error to something comparable to the intrinsic
accuracy of the functional in the DFT/CBS limit.

So far, this discussion has been confined to error statistics
with respect to the DFT/CBS limit, but it is important not to
lose sight of accuracy with respect to benchmark interaction
energies. Table S8 lists error statistics with respect to
CCSD(T)/CBS benchmarks96 for the functionals and basis
sets in Table 2. With the exception of the notably less accurate
M06-L functional, the errors fall within <0.6 kcal/mol of the
benchmarks when CP correction is employed but exceed 2
kcal/mol in some double-ζ basis sets when the CP correction
is omitted. With CP correction and diffuse functions (i.e.,
excluding the basis sets 6-31G* and def2-SVP), the double-ζ
errors are ≲0.4 kcal/mol. CP correction is thus crucial not only
for achieving the CBS limit but also for improving the accuracy
of small-basis interaction energy calculations.
3.1.2. Convergence Errors for Double-Hybrid Functionals.

Convergence error statistics with respect to the CBS limit are
summarized for double-hybrid functionals in Table 3. Inclusion
of MP2 correlation means that we expect the convergence
behavior of these functionals to resemble that of correlated
wave function methods, which is generally much slower than
DFT, and the convergence behavior of MP2 itself is also
examined in Table 3. We observe that MP2 convergence errors
in Pople basis sets and in def2-SVP are larger with CP
correction than without, which can simply be ascribed to the
fact that these basis sets are not appropriate for a correlated
wave function method. A more incisive explanation is gleaned
by examining the raw data for S66 interaction energies
computed at the MP2 level (Table S9), which reveals that
MP2 severely underestimates ΔEint for the dispersion-bound
subset of S66 when these basis sets are employed. Since the

absence of CP correction leads to a larger interaction energy,
there is a partial error cancellation that is upset by CP
correction. This behavior contrasts with the systematically
smaller convergence errors obtained when CP correction is
applied to GGA and hybrid functionals, and it sets up a
competition between that behavior and the behavior of MP2
correlation in the case of double-hybrid functionals, when very
small basis sets are employed. This leads to slightly less
systematic convergence behavior than what was observed for
GGA and hybrid functionals; CP correction generally reduces
the convergence errors, but by amounts that are somewhat
functional-dependent.

That said, if we exclude def2-SVP and the Pople basis sets,
then convergence to the DH-DFT/CBS limit is reasonable and
is facilitated by CP correction, especially in double-ζ basis sets
such as def2-SVPD. A graphical example is presented in Figure
1 for Karlsruhe basis sets; see Figures S1−S3 for additional
functionals and basis sets. Using CP correction in conjunction
with def2-SVPD results in a mean convergence error of 0.2
kcal/mol, comparable to the CP-corrected def2-TZVPD error.
While diffuse functions prove to be important (e.g., the def2-
TZVP convergence error is a bit larger at 0.3 kcal/mol, even
with CP correction), this analysis demonstrates that

Table 3. Basis-Set Convergence Errors for S66 Interaction Energies

mean absolute error (kcal/mol) vs DFT/CBS

MP2 PBE-QIDH B2GP-PLYP ωB97X-2(LP) ωB97M(2)

basis set no CP with CP no CP with CP no CP with CP no CP with CP no CP with CP

aug-cc-pVDZ 1.70 0.80 1.31 0.18 1.29 0.24 1.54 0.28 1.34 0.18
aug-cc-pVTZ 0.78 0.32 0.96 0.10 1.01 0.11 1.31 0.14 0.99 0.11
aug-cc-pVQZ 0.28 0.16 0.36 0.48 0.36 0.10 0.48 0.13 0.39 0.11
def2-SVP 1.02 2.27 1.52 0.73 1.70 0.87 1.46 1.27 1.65 0.86
def2-SVPD 3.31 0.99 2.35 0.18 2.41 0.26 2.72 0.35 2.43 0.18
def2-TZVP 0.31 0.99 0.42 0.29 0.48 0.31 0.48 0.41 0.44 0.32
def2-TZVPD 0.79 0.63 0.57 0.17 0.61 0.18 0.79 0.22 0.56 0.16
def2-QZVP 0.13 0.34 0.31 0.10 0.34 0.10 0.41 0.13 0.33 0.09
def2-QZVPD 0.27 0.28 0.39 0.09 0.42 0.09 0.57 0.12 0.41 0.09
6-31G* 0.89 2.34 1.21 0.85 1.38 0.93 1.09 1.32 1.34 0.93
6-31+G* 0.77 2.00 0.92 0.61 0.84 0.73 0.85 0.85 0.86 0.66
6-311G* 0.84 2.12 1.36 0.69 1.41 0.82 1.22 1.07 1.42 0.77
6-311+G* 1.07 1.78 1.20 0.55 1.06 0.66 1.13 0.81 1.08 0.57
6-311++G** 0.48 0.39 0.99 0.39 0.86 0.51 0.96 0.66 0.88 0.43

Figure 1. Mean absolute convergence errors (with respect to the CBS
limit) for S66 interaction energies computed using the double-hybrid
functional ωB97M(2) in various Karlsruhe basis sets.
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correlation-consistent basis sets are not required to reach the
DH-DFT/CBS limit, which can facilitate significant cost
savings. Convergence errors remain larger in Pople basis sets
(see Figure S3) and are only somewhat mitigated (in most
cases) by CP correction. These basis sets are therefore not
recommended for double-hybrid functionals.
3.1.3. Error Distributions. Figure 2 plots how the basis-set

convergence errors are distributed with respect to zero for one

particular functional using a variety of basis sets and comparing
both CP-corrected and uncorrected results. (For other
functionals, including double hybrids, see Figures S4 and
S5.) In larger basis sets, the error distributions narrow
considerably and def2-TZVPD is the smallest basis set for
which all the data points lie within ±0.5 kcal/mol of the CBS
limit, which is true in that case even without CP correction.
For aug-cc-pVDZ and def2-SVPD, the CP-corrected errors are

much more tightly grouped together as compared to the
uncorrected results, with a mean signed error that tilts toward
underbinding but by a much smaller amount as compared to
the overbinding that is observed in the absence of CP
correction. In the aug-cc-pVXZ data, one can perhaps find
justification for the statement that “CP overcorrects for BSSE”,
yet it is equally true that the uncorrected results systematically
underbind the S66 complexes, and as a result the half-CP
average is more reliable than either the CP-corrected or
uncorrected values of ΔEint. That said, CP correction reduces
the MAE with respect to the CBS limit and also significantly
reduces the spread of the convergence errors. Quantitative data
for each functional and basis set, as measured by root-mean-
square deviations from the DFT/CBS limit, can be found in
Tables S15 and S16.

These trends are more muddled in the case of Pople basis
sets, where CP-DFT does not consistently under- or overbind
the complexes, and the distribution of CP-DFT convergence
errors is centered close to zero. For example, in the case of the
BLYP+D3(BJ) functional, the mean signed errors range from
−0.07 to +0.10 kcal/mol for the four Pople basis sets shown in
Figure 2c; see Table S4 for the quantitative data. If CP
correction is neglected, the dimers are generally overbound,
with the mean signed errors ranging up to −2.3 kcal/mol.
Karlsruhe basis sets (Figure 2b) represent something of an
intermediate case, in that CP-corrected results are not always
underbound but convergence to the CBS limit is systematic.

Other functionals behave similarly to BLYP+D3(BJ), except
for the problematic M06-L (Figure S4), for which CP-
corrected convergence errors show a significant spread on both
sides of zero and the distributions of CP-corrected and
uncorrected values are difficult to distinguish. As such, CP
correction may either improve or degrade the results but does
so more or less at random, indicative of an overall failure of
systematic convergence to the CBS limit.60 For the double-
hybrid functionals (Figure S5), Dunning and Karlsruhe basis
sets behave similarly to what is seen for BLYP+D3(BJ) in
Figure 2b,c, but Pople basis sets clearly underbind the
complexes when CP correction is applied, whereas the results
without CP correction are overbound.

In general, it can be said that the CP-corrected convergence
errors span a smaller range as compared to convergence errors
when CP correction is omitted. This discrepancy is especially
prevalent in double-ζ basis sets and in all Pople basis sets.
These observations parallel what has been observed for wave
function methods,50 although the magnitude of the CP
correction is different, reflecting the different convergence
behavior of DFT. The same trends hold for double-hybrid
functionals if Pople basis sets (for which CP correction has
only a modest effect) are excluded.
3.1.4. Timing Data. We have observed that CP-corrected

double-ζ calculations often afford interaction energies on par
with uncorrected triple-ζ results, so it is interesting to consider
which of these methods is less expensive. We assess this using
pentane dimer as it is the largest of the S66 complexes, and
Table S17 presents timing data using each of the functionals
and basis sets whose convergence statistics are given in Table
2. In any given basis set, CP correction adds about a factor of
2.5× to the cost of the calculation, which reflects the cost of
performing two monomer calculations in the dimer rather than
the monomer basis set. This additional overhead pales in
comparison to the increased cost of extending the basis set
from double- to triple-ζ, however. All three double-ζ

Figure 2. Convergence errors (with respect to the DFT/CBS limit)
for the BLYP+D3(BJ) functional using (a) Dunning, (b) Karlsruhe,
and (c) Pople basis sets. Gray rectangles delineate errors of ±0.25 and
±0.50 kcal/mol.
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calculations in the dimer basis set can typically be performed in
25−50% of the time required for a single triple-ζ calculation of
the dimer. If a triple-ζ level of convergence is desired, then CP
correction is about 4× less expensive than a single quadruple-ζ
calculation on the dimer.

An illustration of the trade-off between accuracy and cost is
presented in Figure 3 using convergence errors for the whole of

S66, with BLYP+D3(BJ) and Karlsruhe basis sets. (For other
functionals and basis sets, see Figures S6−S8.) Timing data are
shown for pentane dimer. In the absence of CP correction,
double-ζ basis sets afford unacceptably large convergence
errors (1.5−2.5 kcal/mol on average), which the CP correction
reduces below 0.25 kcal/mol, smaller than the intrinsic
accuracy of the functional for this data set. All three
calculations required for the CP-corrected double-ζ result
can be obtained in about 75% of the compute time required for
a single triple-ζ calculation, yet basis-set convergence errors
and accuracy with respect to CCSD(T)/CBS are comparable
to those obtained using def2-TZVPD. This comparison
demonstrates that a CP-corrected double-ζ calculation is a
cost-effective strategy to obtain results of triple-ζ quality.
3.2. (Coronene)2 at Displaced Geometries. The S66

calculations reported above were performed exclusively at
equilibrium geometries. Since BSSE arises from overlapping
monomer-centered basis functions, it should be sensitive to

monomer separation, so we next examine results for coronene
dimer, (C24H12)2, as a function of intermolecular separation.
We placed the dimer in an eclipsed cofacial (“sandwich”)
orientation at intermolecular separations ranging from R = 3 to
10 Å. Potential energy curves, both with and without CP
correction, are shown in Figure 4 for the ωB97M-V functional
using Karlsruhe basis sets. Results for other functionals and
basis sets can be found in Figures S9 and S10 but are quite
similar to the data in Figure 4.

In the absence of CP correction (Figure 4a), the minimum-
energy separation of the dimer changes as a function of basis
set, increasing from 3.50 Å in double-ζ basis sets to 3.75 Å in
larger basis sets. The potential curve is also much shallower in
the larger basis sets, consistent with too-large values of ΔEint
due to BSSE, and the effect is larger than it was for the smaller
S66 dimers. The def2-SVP and def2-SVPD basis sets
overestimate ΔEint by 7.0 and 5.0 kcal/mol, respectively, as
compared to the def2-QZVPD value. On the other hand,
triple-ζ results are essentially converged to the CBS limit.

Upon CP correction (Figure 4b), all Karlsruhe basis sets
afford very similar potential energy curves. There is no longer
any meaningful distinction between def2-SVP and def2-SVPD
results, both of which overestimate ΔEint by about 2.0 kcal/mol
relative to triple- and quadruple-ζ results that are indistin-
guishable from one another. Moreover, the shapes of the CP-
DFT/double-ζ potentials are the same as the converged
results, with the same minimum-energy separation of R = 3.75
Å. In the absence of CP correction, we conclude that double-ζ
basis sets cannot be assumed to afford correct geometries.

A new CCSD(T)/CBS interaction energy has recently been
reported for coronene dimer,100 and in Table 4 we use that
benchmark to assess errors in ωB97M-V interaction energies
using Karlsruhe basis sets. Although this functional affords sub-
kcal/mol errors for the S66 dimers, that level of accuracy is not
realized here, where the errors remain 2−3 kcal/mol upon CP
correction. However, in the absence of CP correction, the
relative errors (as a percentage of the total interaction energy)
are actually larger for the S66 data set, where they range from
3% (def2-QZVPD) to 38% (def2-SVP). For CP-corrected
calculations, errors in the S66 data set range from 3% (def2-
QZVPD) to 9% (def2-SVP). Combined with the (coronene)2
results, this suggests an intrinsic accuracy of ≈10% for
ωB97M-V, but that intrinsic limit cannot be reached in
double-ζ basis sets unless CP correction is used.

Figure 3. Mean absolute convergence errors for BLYP+D3(BJ)
calculations of the S66 complexes (bar graph, axis at left) vs wall time
required for pentane dimer (orange dots, axis at right). Calculations
were performed on a single compute node with 14 processors.

Figure 4. Potential energy profiles for the eclipsed-cofacial configuration of (coronene)2, computed using ωB97M-V in various basis sets (a)
without CP correction and (b) with CP correction.
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A peculiarity in the coronene dimer results is that the def2-
SVPD error is significantly larger (at 15 kcal/mol) than the
def2-SVP error (8 kcal/mol). While CP correction reduces
both errors to 3 kcal/mol, the larger error when diffuse
functions are added defies the conventional wisdom that a
good description of the tails of the density is important to the
description of noncovalent interactions. In fact, larger errors
for def2-SVPD than for def2-SVP are a feature of the
dispersion-bound subset of S66 and also for every functional
that we have examined (see Tables S1−S7), although the
overall S66 convergence errors are reduced in the presence of
diffuse functions. (This is primarily due to a reduction in
convergence errors for the hydrogen-bonded subset of S66,
and we have observed that diffuse functions are particularly
important for the description of hydrogen bonds.88) For the
dispersion-bound complexes in S66, results with def2-SVP lead
to overbinding for all functionals examined, and since CP
correction generally reduces interaction energies, these results
benefit from some error cancellation that disappears when
diffuse functions are added. The effect is less overbinding with
def2-SVPD. However, this type of error cancellation feels
fragile and from our point of view, CP-corrected results
obtained using def2-SVPD provide a more reliable representa-
tion of the true performance of double-ζ basis sets.
3.3. Large Complexes. For the S66 dimes, CP-DFT in

small basis sets can be used to obtain interaction energies that
are within ∼0.2 kcal/mol of the DFT/CBS limit for the same
functional, a convergence error that is smaller than the intrinsic
accuracy of the best contemporary functionals for these same
complexes. For coronene dimer, however, the CP correction is
larger in double-ζ basis sets. In this section, we examine much
larger molecular systems in order to understand how the
magnitude of BSSE grows with system size. Systems examined
include a set of layered complexes of oligothiophenes and
graphene nanoribbons,101,102 such as the example shown in
Figure 5a. These range in size from 134 to 174 atoms and have
ΔEint in the range of 60−100 kcal/mol, depending on the
functional and basis set. We also examine four protein−ligand
systems ranging from 261 to 323 atoms, whose DFT/CBS
interaction energies range from 15 to 100 kcal/mol; two of
these are shown in Figure 5b,c. As in the calculations reported
above, our primary goal is not to evaluate ΔEint against some
benchmark value but rather to examine convergence to the
DFT/CBS limit and to assess the efficacy of CP correction in
obtaining that limit.
3.3.1. Graphene−Oligothiophene Complexes. We examine

several layered trimers of polythiophene (nPT, meaning n
thiophene units) with graphene nanoribbons: (5PT)(C38H22)-

(5PT), (5PT)(C59H20)(5PT), and (7PT)(C46H26)(7PT).
Geometries are taken from ref 102 and are provided in the
Supporting Information. As representative functionals, we
consider M06-2X and ωB97M-V using a subset of the basis
sets examined above, mostly representative of practical choices
for large systems but including the high-quality def2-TZVPD
basis set. For the S66 dimers, the latter basis affords absolute
convergence errors smaller than 0.15 kcal/mol for the two
functionals considered here, and CP-DFT/def2-TZVPD
affords interaction energies comparable to DFT/def2-
QZVPD for the S66 dimers.

Interaction energies for these layered materials are listed in
Table 5. The trends are similar for M06-2X and ωB97M-V, so
our discussion will focus on the latter. When that functional is
used with a double-ζ basis set, the difference between CP-
corrected and uncorrected interaction energies is large, ranging
from 12 to 48 kcal/mol. The DZVP basis set, which was
previously found to afford accurate interaction energies in
small-molecule data sets such as S66,90 here affords CP
corrections that are comparable to those obtained using 6-
31+G* and certainly not small.

It should be noted that double-ζ basis sets are not
recommended for use with ωB97M-V and similar, combinato-
rially optimized B97-based functionals.23,24 The def2-SVP basis
is specifically suggested to be “incompatible” with ωB97M-V,24

and def2-TZVPPD is suggested as the smallest recommended
basis set. These recommendations are based in part on
thermochemical data and may be overly conservative for
noncovalent interactions; thus, it is relevant to consider smaller
double-ζ basis sets here. The M06-2X functional, which is
routinely used with small Pople basis sets, actually converges to
the DFT/CBS limit in a manner that is very similar to ωB97M-
V, as measured by the difference between CP-corrected and
uncorrected values of ΔEint.

Despite the recommendation against double-ζ basis sets,
with CP correction the ωB97M-V interaction energies are
remarkably close to def2-TZVPD results, within 3 kcal/mol in
all cases except 6-31G*. In fact, M06-2X exhibits slightly larger
deviations between CP-corrected double- and triple-ζ results.
It is perhaps surprising to note that diffuse functions have only
a small effect when CP correction is used: ≲4 kcal/mol
difference between def2-SVP and def2-SVPD results, and <0.5

Table 4. Accuracy of ωB97M-V Interaction Energies for
Coronene Dimer

error vs CCSD(T)/CBSa

absolute (kcal/mol) relative (%)

basis set no CP CP no CP CP

def2-SVP 7.7 2.9 37 14
def2-SVPD 14.8 3.3 70 16
def2-TZVP 2.5 1.9 12 9
def2-TZVPD 2.8 2.0 13 10
def2-QZVP 2.5 2.2 12 11
def2-QZVPD 2.5 2.2 12 11

aBenchmark from ref 100.

Figure 5. Examples of large molecular assemblies considered in this
work: (a) (5PT)(C38H22)(5PT), (b) 181L:benzene, and (c)
1HSG:indinavir. In (b,c), the ligand is shown in a ball-and-stick
representation and the protein binding site is shown using a tubular
representation.
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kcal/mol difference between def2-TZVP and def2-TZVPD.
Presumably, the use of a supramolecular basis set facilitates a
good description of the tails of the density, whereas in the
absence of CP correction diffuse functions are needed to
describe these tails in the monomer calculations. This
observation is good news for calculations on systems of this
size, where diffuse functions add significantly to the cost and
also incur problems with linear dependencies. That said, when
double-ζ basis sets are employed, CP correction is essential in
order to mitigate the effect of the diffuse functions; without it,
def2-SVP and def2-SVPD interaction energies differ by >20
kcal/mol in some cases. For triple-ζ basis sets, the effect of
diffuse functions is ≲1 kcal/mol even without CP correction.

Regarding the results with the smallest basis sets, such as 6-
31G* (for which the CP-corrected and uncorrected values of
ΔEint differ by as much as 30 kcal/mol), we note that the ratio
|ΔEint(no CP)/ΔEint(CP)| ≈ 1.4. This is only slightly smaller
than the ratio of ≈1.5 that is observed for the S66 dimers,
using the same functional and basis set. For ωB97M-V/def2-
SVP, this ratio is ≈1.3 for the graphene−oligothiophene
systems. The similarity of these ratios suggests that neither the
behavior of the functional nor that of the CP correction is
fundamentally changed by moving to these larger systems.
Instead, the larger convergence errors observed for the layered
complexes reflects the size extensivity of BSSE, which is often
overlooked.

When ωB97M-V is used with a larger def2-TZVPD basis set,
the magnitude of the CP correction is reduced below 4 kcal/
mol or about 4% of |ΔEint| for these complexes. The ratio
|ΔEint(no CP)/ΔEint(CP)| is reduced to ≈1.04, which is nearly
the same as the ratio of ≈1.03 that is obtained for S66
calculations in this basis set.
3.3.2. Protein−Ligand Complexes. Finally, we consider

four protein−ligand complexes: 181L:benzene (Figure
5b),1031LI2:phenol,1041HSG:indinavir (Figure 5c),105 and
1O44:(C34H35N3O9).106 In the latter complex, the ligand is a
malonic acid derivative known as RU85052, and we henceforth
refer to this system as 1O44:RU85052. The indinavir and
RU85052 complexes involve much larger ligands as compared
to benzene and phenol, and the computed values of ΔEint are
correspondingly larger for these two systems.

The 1HSG:indinavir complex consists of a small ligand
bound to HIV-2 protease and has become a model system for

testing quantum-chemical methods for noncovalent inter-
actions.39,107−110 This structure was taken from ref 108. For
the other three complexes, crystal structures were obtained
from the protein data bank,111 which were then protonated
using the H++ web server.112 The resulting structures were
relaxed using the GFN2-xTB semi-empirical quantum
chemistry method,113 using a generalized Born model for
water.114 Relaxed structures were trimmed using a 5 Å cutoff
(with respect to the ligand) for the 181L and 1LI2 complexes
and a 2.5 Å cutoff in the case of 1O44, where the ligand is
much larger. The coordinates that we used in the quantum
chemistry calculations can be found in the Supporting
Information.

We will again test M06-2X and ωB97M-V as representative
functionals, using a variety of basis sets, and the corresponding
interaction energies are listed in Table 6. The basis sets are
standard except for minimally augmented (“ma”) and heavy-
augmented (“ha”) versions of the Karlsruhe basis sets, which
were introduced in ref 88. Due to the size of these complexes,
we use the average of CP-corrected and uncorrected DFT/
def2-ma-QZVP interaction energies to estimate the DFT/CBS
limit for the ligand−protein complexes. By examining the
entries for def2-ma-QZVP in Table 6, one can see that the two
values that are averaged lie within 0.8 kcal/mol of one another
when ωB97M-V is used and within 1.2 kcal/mol for M06-2X.
This provides some measure of the uncertainty in establishing
the DFT/CBS limit.

Broadly speaking, these systems exhibit the same trends
observed above, namely, that CP corrections are sizable in
double-ζ basis sets but modest in triple-ζ bases. For the more
weakly interacting complexes where the ligand is benzene or
phenol, CP correction moves ΔEint about 2 kcal/mol closer to
the CBS limit for M06-2X/6-31+G* and about 3 kcal/mol
closer for ωB97M-V/6-31+G*. For ωB97M-V/def2-SVP, the
CP correction reduces the convergence error by 1−2 kcal/mol,
although for M06-2X/def2-SVP, the CP correction actually
increases the convergence error by 1−3 kcal/mol. CP-ωB97M-
V/6-31+G* results for 181L:benzene and 1LI2:phenol are
essentially converged to the CBS limit, and the CP-M06-2X/6-
31+G* results are only about 1 kcal/mol from that limit. In
these cases, the CP correction improves the agreement with
the DFT/CBS result by 3−4 kcal/mol or 20−25% of the total
interaction energy. For the more strongly bound complexes

Table 5. Interaction Energies (in kcal/mol) for Graphene−Oligothiophene Complexes

(5PT)(C59H20)(5PT) (5PT)(C38H22)(5PT) (7PT)(C46H26)(7PT)

method no CPa CPb diff.c no CPa CPb diff.c no CPa CPb diff.c

ωB97M-V/DZVP −105.37 −90.68 14.69 −78.24 −66.53 11.71 −104.60 −89.11 15.48
ωB97M-V/6-31G* −100.81 −75.75 25.06 −76.91 −54.37 22.54 −102.31 −73.25 29.07
ωB97M-V/6-31+G* −103.06 −88.95 14.11 −75.73 −65.26 10.48 −101.50 −87.45 14.05
ωB97M-V/def2-SVP −110.15 −88.50 21.65 −82.03 −63.45 18.58 −110.21 −85.59 24.61
ωB97M-V/def2-SVPD −133.97 −90.61 43.36 −102.99 −67.00 35.99 −137.17 −89.85 47.32
ωB97M-V/def2-TZVP −89.70 −86.57 3.13 −65.38 −62.81 2.57 −87.69 −84.49 3.20
ωB97M-V/def2-TZVPD −89.82 −86.67 3.15 −65.78 −63.12 2.66 −88.23 −84.89 3.34
M06-2X/DZVP −88.00 −68.36 19.64 −70.69 −55.20 15.49 −94.51 −73.76 20.75
M06-2X/6-31G* −71.20 −51.41 19.80 −58.91 −41.12 17.79 −78.49 −55.24 23.25
M06-2X/6-31+G* −80.10 −66.22 13.88 −63.52 −53.40 10.12 −85.21 −71.26 13.95
M06-2X/def2-SVP −84.89 −65.21 19.68 −67.15 −50.62 16.54 −90.46 −68.15 22.31
M06-2X/def2-SVPD −109.26 −66.60 42.66 −89.59 −53.94 35.65 −119.53 −72.21 47.33
M06-2X/def2-TZVP −65.53 −61.60 3.92 −52.91 −49.65 3.26 −71.02 −66.55 4.48
M06-2X/def2-TZVPD −66.91 −62.41 4.51 −53.79 −50.14 3.65 −72.20 −67.05 5.15

aΔEint without CP correction. bΔEint with CP correction. cDifference between CP-corrected and uncorrected values of ΔEint.
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(1HSG:indinavir and 1O44:RU85052), CP-corrected 6-
31+G* results are even more impressive, affording results
that are only about 1 kcal/mol from the DFT/CBS limit.
Nevertheless, CP correction is essential and exceeds 10 kcal/
mol. This is true even for the DZVP basis set that afforded
good accuracy (without CP correction) for small-molecule
calculations reported in ref 90, including the S66 data set.
Those results likely benefit from fortuitous error cancelation

made possible by the relatively small magnitude of the CP
corrections for the S66 dimers.

Notably, the addition of diffuse functions to def2-SVP
significantly increases the convergence errors for both func-
tionals. This behavior was also observed for coronene dimer
(Section 3.2), where it was explained by analogy to the basis-
set convergence properties of the dispersion-bound subset of
the S66 complexes. Consistent with those examples, here we
find that CP correction significantly insulates the results

Table 6. Interaction Energies (in kcal/mol) for Ligand−Protein Complexesa

181L:benzene 1LI2:phenol 1HSG:indinavir 1O44:RU85052

method no CPb CPc no CPb CPc no CPb CPc no CPb CPc

ωB97M-V/DZVP −22.4 −19.6 −25.0 −21.4 −146.9 −129.3 −119.9 −108.0
(−1.9) (+0.9) (−3.2) (+0.4) (−16.7) (+0.9) (−12.0) (−0.1)

ωB97M-V/6-31+G* −23.3 −20.7 −25.5 −22.0 −143.2 −129.3 −120.2 −108.0
(−2.8) (−0.2) (−3.7) (−0.2) (−13.1) (+0.9) (−12.2) (+0.0)

ωB97M-V/def2-SVP −23.9 −17.9 −27.0 −19.0 −175.9 −125.6 −136.9 −106.8
(−3.4) (+2.6) (−5.2) (+2.8) (−40.8) (+4.6) (−28.9) (+1.1)

ωB97M-V/def2-ma-SVP −25.5 −18.7 −27.9 −20.1 −151.5 −127.6 −126.5 −108.8
(−5.0) (+1.8) (−6.1) (+1.7) (−21.3) (+2.6) (−18.5) (−0.8)

ωB97M-V/def2-ha-SVP −28.9 −20.1 −30.0 −21.3 −157.9 −130.1 −128.2 −108.7
(−8.4) (+0.4) (−8.2) (+0.5) (−27.7) (+0.0) (−20.2) (−0.7)

ωB97M-V/def2-SVPD −32.0 −20.5 −33.0 −21.6 −167.5 −131.0 −132.7 −109.1
(−11.4) (+0.1) (−11.2) (+0.2) (−37.3) (−0.9) (−24.7) (−1.1)

ωB97M-V/def2-TZVP −21.6 −20.5 −23.5 −21.7 −138.9 −130.6 −112.6 −107.8
(−1.1) (+0.0) (−1.7) (+0.1) (−8.7) (−0.4) (−4.7) (+0.2)

ωB97M-V/def2-ma-TZVP −21.7 −20.5 −23.3 −21.8 −134.4 −130.1 −110.8 −107.8
(−1.1) (+0.0) (−1.5) (+0.0) (−4.3) (+0.1) (−2.8) (+0.2)

ωB97M-V/def2-ha-TZVP −21.3 −20.5 −22.7 −21.7 −132.8 −131.9 −109.3 −107.7
(−0.8) (+0.0) (−0.9) (+0.1) (−2.6) (−1.7) (−1.3) (+0.3)

ωB97M-V/def2-TZVPD −21.3 −20.5 −22.6 −21.7 −132.8 −130.2 −109.3 −107.7
(−0.8) (+0.0) (−0.9) (+0.1) (−2.6) (−0.1) (−1.3) (+0.3)

ωB97M-V/def2-QZVP −20.7 −20.4 −22.1 −21.6 −131.8 −129.9 −108.6 −108.3
(−0.2) (+0.2) (−0.3) (+0.2) (−1.6) (+0.2) (−0.6) (−0.3)

ωB97M-V/def2-ma-QZVP −20.7 −20.4 −22.0 −21.5 −130.6 −129.8 −108.1 −107.8
(−0.2) (+0.2) (−0.2) (+0.2) (−0.4) (+0.4) (−0.2) (+0.2)

M06-2X/DZVP −16.7 −14.5 −18.9 −16.0 −123.7 −108.6 −104.5 −93.0
(−1.5) (+0.7) (−3.0) (−0.2) (−16.4) (−1.2) (−12.7) (−1.3)

M06-2X/6-31+G* −18.3 −16.4 −19.8 −16.9 −122.6 −108.6 −105.1 −92.2
(−3.1) (−1.2) (−4.0) (−1.1) (−15.2) (−1.3) (−13.3) (−0.5)

M06-2X/def2-SVP −16.4 −11.2 −18.7 −12.0 −142.1 −99.6 −114.3 −89.2
(−1.1) (+4.0) (−2.8) (+3.8) (−34.7) (+7.7) (−22.5) (+2.6)

M06-2X/def2-ma-SVP −18.7 −12.4 −20.6 −13.4 −125.5 −102.6 −109.0 −91.6
(−3.5) (+2.8) (−4.7) (+2.4) (−18.1) (+4.7) (−17.2) (+0.2)

M06-2X/def2-ha-SVP −23.3 −14.5 −23.6 −15.1 −134.3 −106.3 −111.5 −91.8
(−8.1) (+0.7) (−7.7) (+0.8) (−26.9) (+1.1) (−19.8) (−0.1)

M06-2X/def2-SVPD −26.3 −14.6 −26.9 −15.4 −144.8 −107.3 −116.5 −92.3
(−11.1) (+0.6) (−11.0) (+0.4) (−37.5) (+0.0) (−24.7) (−0.5)

M06-2X/def2-TZVP −15.2 −14.8 −16.4 −15.6 −113.1 −106.5 −95.1 −90.4
(−0.0) (+0.4) (−0.5) (+0.2) (−5.7) (+0.9) (−3.4) (+1.3)

M06-2X/def2-ma-TZVP −15.3 −14.8 −16.4 −15.7 −110.7 −106.3 −94.3 −90.5
(−0.1) (+0.4) (−0.6) (+0.2) (−3.3) (+1.1) (−2.6) (+1.2)

M06-2X/def2-ha-TZVP −14.9 −14.8 −15.7 −15.6 −109.1 −106.4 −92.7 −90.3
(+0.3) (+0.4) (+0.1) (+0.2) (−1.8) (+1.0) (−1.0) (+1.5)

M06-2X/def2-TZVPD −15.0 −14.8 −15.7 −15.7 −109.0 −106.5 −92.5 −90.3
(+0.2) (+0.4) (+0.1) (+0.2) (−1.7) (+0.9) (−0.8) (+1.5)

M06-2X/def2-QZVP −15.1 −15.2 −16.0 −15.6 −108.4 −106.7 −92.5 −91.0
(+0.1) (+0.0) (−0.2) (+0.2) (−1.1) (+0.6) (−0.8) (+0.7)

M06-2X/def2-ma-QZVP −15.2 −15.3 −15.7 −16.0 −107.9 −106.8 −92.3 −91.2
(+0.1) (−0.1) (+0.1) (−0.1) (−0.5) (+0.5) (−0.6) (+0.6)

aErrors relative to the DFT/CBS limit are given in parentheses. bΔEint without CP correction. cΔEint with CP correction.
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against this effect. With CP correction, the def2-ha-SVP basis
set (in which hydrogen atoms do not have diffuse functions)
performs very similar to fully augmented def2-SVPD, although
the results in the minimally augmented def2-ma-SVP basis set
are noticeably different. This suggests def2-ha-SVP (with CP
correction) as a low-cost choice for large systems, in which
convergence errors have been reduced to ≲1 kcal/mol with
respect to the DFT/CBS limit. This basis is defined for most of
the periodic table, whereas 6-31+G* is only defined for
elements up to argon.

A visual perspective on convergence to the ωB97M-V/CBS
limit for these systems is presented in Figure 6 for two of the
ligand−protein complexes. (The corresponding plots for the
other two complexes can be found in Figure S11 and for M06-
2X in Figure S12.) In small basis sets, the CP-corrected value
of ΔEint is much closer to the CBS limit as compared to the
uncorrected interaction energy, which is systematically over-
bound. CP correction reduces the interaction energy in a
systematic way as the CBS limit is approached, and although
its effect is diminished in larger basis sets, the CP-corrected
interaction energies hew more closely to the DFT/CBS limit
than do the uncorrected values, with the former being close to
convergence already for def2-SVPD. This parallels what we
have seen for other systems and suggests that double-ζ
interaction energies are completely unreliable for large systems
unless CP correction is employed. Unlike the results in smaller
systems, however, the triple-ζ results cannot be considered to
be converged in these examples (even in the presence of
diffuse functions) unless CP correction is applied, although the
fully augmented def2-TZVPD basis set comes close. Timing
data for the 1HSG:indinavir complex (Figure S13) demon-
strate that CP-ωB97M-V/def2-SVPD is 6× less expensive than
the def2-ma-QZVP basis set that is otherwise needed to reach
the CBS limit.

Finally, in an effort to gauge the absolute accuracy of these
ligand−protein interaction energies, we take advantage of a
recent CCSD(T)/CBS benchmark for the 1HSG:indinavir
system.110Table 7 shows how ωB97M-V performs against this
benchmark, using various basis sets. CP-corrected values of
ΔEint lie within 10 kcal/mol of the benchmark (representing
8% error), even for basis sets as small as def2-SVP. This is

certainly a much larger absolute error as compared to those
observed for S66 dimers, but the percentage errors are typically
7−8% when CP correction is used. (The ωB97M-V/def2-SVP
value is slightly more accurate.) Errors increase substantially in
the absence of CP correction, up to 54 kcal/mol (45% error)
in the smallest basis set tested.

4. CONCLUSIONS
Far from being an “overcorrection”, the Boys−Bernardi CP
procedure is an essential aspect of noncovalent quantum
chemistry that significantly reduces the finite-basis error in
intermolecular interaction energies and thus showcases the
true behavior of the functional in question, free of error
cancellation. CP-corrected interaction energies computed
using double-ζ basis sets are comparable in quality to
uncorrected triple-ζ results and therefore close to the DFT/
CBS limit, even for combinatorially optimized functionals such
as ωB97X-V and ωB97M-V that are considered to be more
demanding in their basis-set dependence.23,24 Perhaps
surprisingly, these conclusions also hold for double-hybrid
functionals that contain MP2 correlation and therefore exhibit

Figure 6. Interaction energies for (a) 1LI2:phenol and (b) 1O44:RU85052 computed using ωB97M-V in various basis sets. Connected points
illustrate convergence of ΔEint in Karlsruhe basis sets, both with and without CP correction. For comparison, values of ΔEint in the 6-31+G* basis
set are also shown. The ωB97M-V/CBS limit, obtained by averaging def2-ma-QZVP interaction energies with and without CP correction, is
indicated by the horizontal line, and its numerical value is also indicated.

Table 7. Errors in ΔEint for 1HSG:Indinavir Using ωB97M-
V

error vs CCSD(T)/CBSa

absolute (kcal/mol) relative (%)

basis set no CPb CPc no CPb CPc

def2-SVP 54.4 4.1 44.8 3.4
def2-ma-SVP 30.0 6.1 24.7 5.0
def2-ha-SVP 36.4 8.6 29.9 7.1
def2-SVPD 46.0 9.5 37.9 7.9
def2-TZVP 17.4 9.1 14.3 7.5
def2-ma-TZVP 12.9 8.6 10.6 7.1
def2-ha-TZVP 11.3 10.4 9.3 8.6
def2-TZVPD 11.3 8.4 9.3 7.2
def2-QZVP 10.3 8.4 8.5 6.9
def2-ma-QZVP 9.1 9.3 7.5 6.8

aVersus the benchmark value ΔEint = −121.50 kcal/mol from ref 110.
bError without CP correction. cError with CP correction.
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slower basis-set convergence (and also increased cost). Even
for lower-cost GGA and hybrid functionals, the use of CP
correction with double-ζ basis sets results in computational
savings, as this approach is 3−4× faster than computing CP-
corrected triple-ζ interaction energies and somewhat faster
(1.2−1.6×) than computing triple-ζ interaction energies with
no CP correction.

For double-ζ basis sets, the use of a supramolecular basis
(i.e., CP correction) significantly reduces the importance of
diffuse basis functions. For example, we find that CP-corrected
def2-SVP and def2-SVPD values of ΔEint are similar except in
the case of double-hybrid functionals, whereas in the absence
of CP correction the diffuse functions significantly alter ΔEint.
For the coronene dimer, we find that double-ζ basis sets
predict an incorrect intermolecular separation unless CP
correction is applied, whereas the CP-corrected double-ζ
geometry agrees with the results obtained using quadruple-ζ
basis sets. These are important observations, given that diffuse
functions are expensive and numerically problematic for large
systems.

In systems with hundreds of atoms, including layered
nanocomposite materials and protein−ligand complexes, the
magnitude of the CP correction is much larger than it is in
small benchmark dimers, which reflects the size extensivity of
BSSE. In the absence of CP correction, double-ζ results for
systems of this size may be 30−40 kcal/mol (or more) from
the DFT/CBS limit and should be considered unreliable,
which is notable given the prevalence of such calculations in
the literature. On the other hand, CP-corrected interaction
energies converge toward the CBS limit in a systematic
manner, and they do so much more rapidly than the
uncorrected results. CP correction again proves to be cost-
effective despite the added expense of computing the
monomer energies in a supramolecular basis set. We
recommend CP-DFT/def2-ha-SVP as a robust and relatively
low-cost approach to compute ΔEint in large systems.

We find no realistic use cases where CP correction is
disadvantageous. (CP correction can increase the convergence
error when double-hybrid functionals are used with small
Pople basis sets or with def2-SVP, but this reflects the
inadequacy of those basis sets for MP2 correlation rather than
a limitation of the CP procedure.) CP correction increases the
cost of the calculation by a modest factor, typically ≈2.5×,
even for large protein−ligand complexes with hundreds of
atoms, and is therefore feasible whenever the supramolecular
calculation itself is feasible. CP correction can be used with
double-ζ basis sets to obtain reliable results in large systems
where triple-ζ calculations are intractable. We suggest that its
use should be considered mandatory for supramolecular
calculations of ΔEint in large systems, especially when only
double-ζ calculations are computationally feasible, in order to
ensure that the results do not benefit from error cancellation
that may not be robust. Even with triple-ζ basis sets, CP
correction can compensate for the absence of diffuse functions
and furthermore provides a means to estimate how far the
finite-basis value of ΔEint may be from the DFT/CBS limit.
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