Supporting Information for "Systematic Evaluation of Counterpoise Correction in Density Functional Theory"

Montgomery Gray,¹ Paige E. Bowling,^{1,2} and John M. Herbert^{1,2*}

¹Department of Chemistry and Biochemistry ²Biophysics Graduate Program

The Ohio State University, Columbus, Ohio 43210 USA

October 7, 2022

List of Figures

S 1	Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the S66 data, set using double-hybrid functionals in various Dunning basis sets.	$\mathbf{S4}$
S2	Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the	~ 1
	S66 data, set using double-hybrid functionals in various Karlsruhe basis sets. Panel (d) is the	05
S3	same as Fig. 1. Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the	59
	S66 data, set using double-hybrid functionals in various Pople basis sets.	S6
S 4	Distributions of signed convergence errors in interactions energies for the S66 data set, using various functionals and basis sets. Gray rectangles delineate errors of ± 0.25 and ± 0.50 kcal/mol.	
	The corresponding data for BLYP+D3(BJ) can be found in Fig. 2.	S7
S5	Distributions of signed convergence errors in interactions energies for the S66 data set, using various double hybrid functionals and basis sets. Grav rectangles delineate errors of ± 0.25	
	and ± 0.50 kcal/mol.	$\mathbf{S8}$
$\mathbf{S6}$	Mean absolute convergence errors with respect to the DFT/CBS limit (bar graphs, to be read	
	from the scale on the left), for ΔE_{int} in the S66 data set, using four different functionals and	
	a variety of Dunning basis sets. Also shown are timing data for pentane dimer (points, to be	
	read from the scale on the right). Timings represent aggregate CPU time on 14 processors of	
	a single compute note (Dell Intel Xeon E5-2680 v4).	S9
S7	Mean absolute convergence errors with respect to the DFT/CBS limit (bar graphs, to be read	
	from the scale on the left), for ΔE_{int} in the S66 data set, using four different functionals and	
	a variety of Karlsruhe basis sets. Also shown are timing data for pentane dimer (points, to	
	be read from the scale on the right). Timings represent aggregate CPU time on 14 processors	010
Co	of a single compute note (Den Intel Acon E5-2080 v4). Panel (a) is the same as Fig. 5 Mean absolute convergence energy with respect to the DET/CPS limit (ber graphs, to be read	510
00	from the scale on the left) for $\Delta E_{\rm eff}$ in the S66 data set using four different functionals and	
	a variety of Pople basis sets. Also shown are timing data for pentane dimer (points to be	
	read from the scale on the right). Timings represent aggregate CPU time on 14 processors of	
	a single compute note (Dell Intel Xeon E5-2680 v4).	S11

^{*}herbert@chemistry.ohio-state.edu

$\mathbf{S9}$	Potential energy profiles of coronene dimer as a function of the center-to-center intermolecular	
	separation, using two different functionals and Karlsruhe basis sets.	S12
S10	Potential energy profiles of coronene dimer as a function of the center-to-center intermolecular	
	separation, using two different functionals and Pople basis sets.	S12
S11	Interaction energies for (a) 181L:benzene and (b) 1HSG:indinavir computed using ω B97M-V	
	in various basis sets. Connected points illustrate convergence of ΔE_{int} in Karlsruhe basis	
	sets, both with and without CP correction. For comparison, values of ΔE_{int} in the 6-31+G [*]	
	basis set are also shown. The ω B97M-V/CBS limit, obtained by averaging def2-ma-QZVP	
	interaction energies with and without CP correction, is indicated by the horizontal line and	
	its numerical value is also indicated. These plots are complementary to the ones for ligand-	
	protein complexes 1LI2:phenol and 1O44:RU85052 that are shown in Fig. 6.	S13
S12	Interaction energies for the indicated protein–ligand complexes, computed using M06-2X in	
	various basis sets. Connected points illustrate convergence of ΔE_{int} in Karlsruhe basis sets,	
	both with and without CP correction. For comparison, values of ΔE_{int} in the 6-31+G*	
	basis set are also shown. The ω B97M-V/CBS limit, obtained by averaging def2-ma-QZVP	
	interaction energies with and without CP correction, is indicated by the horizontal line and	
	its numerical value is also indicated.	S14
S13	Wall time required to compute ΔE_{int} for the 1HSG:indinavir complex. Calculations were	
	performed on a single 48-core node using the ω B97M-V functional. Horizontal dashed lines	
	indicate the time required for the CP-corrected def2-SVPD (which is a good approximation	
	of the CBS limit) and for the uncorrected def2-ma-QZVP calculation that is used to establish	
	the CBS limit.	S15

List of Tables

S1	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using M06-2X.	S16
S2	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using $M06-2X+D3(0)$.	S17
S3	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using M06-L.	S17
S4	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using BLYP+D3(BJ).	S18
$\mathbf{S5}$	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using PBE0+D4.	S19
S6	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using ω B97X-V.	S20
S7	Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in	
	the S66 data set computed using ω B97M-V.	S21
S 8	Error statistics in S66 interaction energies as compared to CCSD(T)/CBS benchmarks	S21
$\mathbf{S9}$	Convergence error data (in kcal/mol) for MP2 calculations in the S66 data set, with respect	
	to the MP2/CBS limit.	S22
S10	Convergence error statistics (with respect to the MP2/CBS limit) for interaction energies in	
	the S66 data set computed using MP2.	S23
S11	Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in	
	the S66 data set computed using PBE-QIDH.	S24
S12	Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in	
	the S66 data set computed using B2GPPLYP.	S24
S13	Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in	
	the S66 data set computed using ω B97X-2(LP)	S25

S14	Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in	
	the S66 data set computed using ω B97M-(2)	S26
S15	Distribution of errors in ΔE_{int} predictions (in kcal/mol) for the S66 data set.	S26
S16	Distribution of errors in ΔE_{int} predictions (in kcal/mol) for the S66 data set.	S27
S17	Timing data for pentane dimer.	S27

Fig. S1: Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the S66 data, set using double-hybrid functionals in various Dunning basis sets.

Fig. S2: Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the S66 data, set using double-hybrid functionals in various Karlsruhe basis sets. Panel (d) is the same as Fig. 1.

Fig. S3: Mean absolute convergence errors with respect to the DH-DFT/CBS limit, for ΔE_{int} in the S66 data, set using double-hybrid functionals in various Pople basis sets.

Fig. S4: Distributions of signed convergence errors in interactions energies for the S66 data set, using various functionals and basis sets. Gray rectangles delineate errors of ± 0.25 and ± 0.50 kcal/mol. The corresponding data for BLYP+D3(BJ) can be found in Fig. 2.

Fig. S5: Distributions of signed convergence errors in interactions energies for the S66 data set, using various double hybrid functionals and basis sets. Gray rectangles delineate errors of ± 0.25 and ± 0.50 kcal/mol.

Fig. S6: Mean absolute convergence errors with respect to the DFT/CBS limit (bar graphs, to be read from the scale on the left), for ΔE_{int} in the S66 data set, using four different functionals and a variety of Dunning basis sets. Also shown are timing data for pentane dimer (points, to be read from the scale on the right). Timings represent aggregate CPU time on 14 processors of a single compute note (Dell Intel Xeon E5-2680 v4).

Fig. S7: Mean absolute convergence errors with respect to the DFT/CBS limit (bar graphs, to be read from the scale on the left), for ΔE_{int} in the S66 data set, using four different functionals and a variety of Karlsruhe basis sets. Also shown are timing data for pentane dimer (points, to be read from the scale on the right). Timings represent aggregate CPU time on 14 processors of a single compute note (Dell Intel Xeon E5-2680 v4). Panel (a) is the same as Fig. 3.

Fig. S8: Mean absolute convergence errors with respect to the DFT/CBS limit (bar graphs, to be read from the scale on the left), for ΔE_{int} in the S66 data set, using four different functionals and a variety of Pople basis sets. Also shown are timing data for pentane dimer (points, to be read from the scale on the right). Timings represent aggregate CPU time on 14 processors of a single compute note (Dell Intel Xeon E5-2680 v4).

Fig. S9: Potential energy profiles of coronene dimer as a function of the center-to-center intermolecular separation, using two different functionals and Karlsruhe basis sets.

Fig. S10: Potential energy profiles of coronene dimer as a function of the center-to-center intermolecular separation, using two different functionals and Pople basis sets.

Fig. S11: Interaction energies for (a) 181L:benzene and (b) 1HSG:indinavir computed using ω B97M-V in various basis sets. Connected points illustrate convergence of ΔE_{int} in Karlsruhe basis sets, both with and without CP correction. For comparison, values of ΔE_{int} in the 6-31+G^{*} basis set are also shown. The ω B97M-V/CBS limit, obtained by averaging def2-ma-QZVP interaction energies with and without CP correction, is indicated by the horizontal line and its numerical value is also indicated. These plots are complementary to the ones for ligand–protein complexes 1LI2:phenol and 1O44:RU85052 that are shown in Fig. 6.

Fig. S12: Interaction energies for the indicated protein–ligand complexes, computed using M06-2X in various basis sets. Connected points illustrate convergence of ΔE_{int} in Karlsruhe basis sets, both with and without CP correction. For comparison, values of ΔE_{int} in the 6-31+G* basis set are also shown. The ω B97M-V/CBS limit, obtained by averaging def2-ma-QZVP interaction energies with and without CP correction, is indicated by the horizontal line and its numerical value is also indicated.

Fig. S13: Wall time required to compute ΔE_{int} for the 1HSG:indinavir complex. Calculations were performed on a single 48-core node using the ω B97M-V functional. Horizontal dashed lines indicate the time required for the CP-corrected def2-SVPD (which is a good approximation of the CBS limit) and for the uncorrected def2-ma-QZVP calculation that is used to establish the CBS limit.

Desis Cat	CD2	Mea	n Absolut	e Error (kcal/	'mol)	Me	an Signed	Error (kcal/r	nol)	Mea	n Absolute	e Percent Err	or (%)
Basis Set	CP! -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	0.75	0.40	1.13	0.73	-0.75	-0.40	-1.13	-0.73	22.6	6.1	39.2	22.4
aug-cc-pVDZ	yes	0.14	0.19	0.15	0.07	0.03	0.19	-0.10	-0.00	3.5	1.8	6.3	2.2
aug-cc-pVTZ	no	0.14	0.10	0.15	0.18	-0.14	-0.10	-0.14	-0.18	3.4	1.3	4.0	5.1
aug-cc-pVTZ	yes	0.07	0.07	0.10	0.04	0.07	0.07	0.10	0.02	2.0	0.7	3.8	1.3
aug-cc-pVQZ	no	0.05	0.04	0.06	0.04	-0.05	-0.04	-0.06	-0.04	1.2	0.5	1.8	1.2
aug-cc-pVQZ	yes	0.05	0.04	0.06	0.04	0.05	0.04	0.06	0.04	1.2	0.5	1.8	1.2
def2-SVP	no	1.54	2.69	0.84	1.02	-1.50	-2.69	-0.72	-1.02	30.6	37.8	23.7	30.4
def2-SVP	yes	0.43	0.38	0.50	0.40	0.31	0.10	0.50	0.31	11.3	5.3	17.4	11.3
def2-SVPD	no	1.38	0.98	1.84	1.31	-1.38	-0.98	-1.84	-1.31	38.0	13.4	61.2	39.5
def2-SVPD	yes	0.14	0.09	0.23	0.09	0.02	0.04	-0.02	0.05	4.1	1.0	8.4	2.8
def2-TZVP	no	0.26	0.46	0.11	0.20	-0.21	-0.43	-0.01	-0.20	5.8	7.9	3.9	5.7
def2-TZVP	yes	0.19	0.23	0.21	0.11	0.12	0.08	0.21	0.07	4.5	2.8	7.4	3.4
def2-TZVPD	no	0.08	0.09	0.08	0.07	-0.02	0.02	-0.03	-0.06	1.9	0.9	2.7	2.0
def2-TZVPD	yes	0.14	0.14	0.18	0.09	0.14	0.14	0.18	0.09	3.5	1.5	6.1	2.7
def2-QZVP	no	0.07	0.07	0.09	0.05	0.01	-0.07	0.08	0.00	2.1	1.3	3.4	1.4
def2-QZVP	yes	0.11	0.09	0.15	0.09	0.11	0.09	0.15	0.08	2.9	1.2	5.0	2.6
def2-QZVPD	no	0.05	0.05	0.07	0.04	0.05	0.05	0.07	0.04	1.4	0.6	2.4	1.2
def2-QZVPD	yes	0.09	0.08	0.12	0.07	0.09	0.08	0.12	0.07	2.4	1.0	3.9	2.1
$6-31G^{*}$	no	1.36	2.21	0.79	1.03	-1.36	-2.21	-0.79	-1.03	28.4	31.1	24.0	30.5
6-31G*	yes	0.52	0.59	0.64	0.29	0.20	-0.40	0.60	0.20	13.6	9.7	21.6	9.0
$6-31+G^*$	no	0.63	1.11	0.39	0.34	-0.62	-1.10	-0.37	-0.34	13.3	18.8	10.4	10.3
$6-31+G^{*}$	yes	0.28	0.57	0.13	0.12	-0.06	-0.21	0.01	0.05	5.5	8.1	4.7	3.4
6-311G*	no	1.64	2.57	1.05	1.25	-1.64	-2.57	-1.05	-1.25	35.5	39.2	30.9	36.5
6-311G*	yes	0.39	0.74	0.17	0.23	-0.27	-0.45	-0.14	-0.22	8.6	12.1	6.3	7.3
$6-311+G^*$	no	1.07	1.47	0.90	0.81	-1.06	-1.43	-0.90	-0.81	25.4	24.9	27.1	24.0
$6-311+G^*$	yes	0.45	0.78	0.27	0.27	-0.34	-0.49	-0.26	-0.25	9.8	12.2	9.0	8.0
$6-311++G^{**}$	no	0.75	0.85	0.78	0.61	-0.56	-0.78	-0.54	-0.34	18.7	14.2	23.6	18.2
$6-311++G^{**}$	yes	0.28	0.42	0.23	0.19	-0.07	-0.16	-0.06	0.03	6.6	6.1	7.9	5.7

Table S1: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using M06-2X.

Table S2: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using M06-2X+D3(0).

Pagia Sat	sis Set CP? Mean Absolute Error (kcal/mol)				mol)	Me	an Signed	Error (kcal/r	Mea	Mean Absolute Percent Error (%)				
Dasis Set	01: -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	0.75	0.40	1.13	0.73	-0.75	-0.40	-1.13	-0.73	19.4	5.9	32.2	20.4	
aug-cc-pVDZ	yes	0.14	0.19	0.15	0.07	0.03	0.19	-0.10	0.00	3.0	1.8	5.2	2.0	
aug-cc-pVTZ	no	0.14	0.10	0.15	0.18	-0.14	-0.10	-0.14	-0.18	3.1	1.2	3.4	4.7	
aug-cc-pVTZ	yes	0.07	0.07	0.10	0.04	0.07	0.07	0.10	0.02	1.7	0.7	3.1	1.2	
aug-cc-pVQZ	no	0.05	0.04	0.06	0.04	-0.05	-0.04	-0.06	-0.04	1.0	0.5	1.5	1.1	
aug-cc-pVQZ	yes	0.05	0.04	0.06	0.04	0.05	0.04	0.06	0.04	1.0	0.5	1.5	1.1	
def2-SVP	no	1.54	2.69	0.84	1.02	-1.50	-2.69	-0.72	-1.02	28.4	36.8	20.3	28.2	
def2-SVP	yes	0.43	0.38	0.50	0.40	0.31	0.10	0.50	0.31	9.9	5.2	14.1	10.4	
def2-SVPD	no	1.38	0.98	1.84	1.31	-1.38	-0.98	-1.84	-1.31	33.2	13.0	50.8	36.1	
def2-SVPD	yes	0.14	0.09	0.23	0.09	0.02	0.04	-0.02	0.05	3.5	1.0	6.9	2.6	
def2-TZVP	no	0.26	0.46	0.11	0.20	-0.21	-0.43	-0.01	-0.20	5.4	7.7	3.2	5.3	
def2-TZVP	yes	0.19	0.23	0.21	0.11	0.12	0.08	0.21	0.07	4.0	2.7	6.0	3.1	
def2-TZVPD	no	0.08	0.09	0.08	0.07	-0.02	0.02	-0.03	-0.06	1.6	0.9	2.3	1.9	
def2-TZVPD	yes	0.14	0.14	0.18	0.09	0.14	0.14	0.18	0.09	3.0	1.5	5.0	2.5	
def2-QZVP	no	0.07	0.07	0.09	0.05	0.01	-0.07	0.08	0.00	1.8	1.2	2.7	1.3	
def2-QZVP	yes	0.11	0.09	0.15	0.09	0.11	0.09	0.15	0.08	2.5	1.1	4.1	2.3	
def2-QZVPD	no	0.05	0.05	0.07	0.04	0.05	0.05	0.07	0.04	1.2	0.6	2.0	1.1	
def2-QZVPD	yes	0.09	0.08	0.12	0.07	0.09	0.08	0.12	0.07	2.0	1.0	3.2	1.9	
$6-31G^{*}$	no	1.36	2.21	0.79	1.03	-1.36	-2.21	-0.79	-1.03	26.2	30.3	20.4	28.2	
$6-31G^{*}$	yes	0.52	0.59	0.64	0.29	0.16	-0.36	0.64	0.18	12.1	9.5	18.2	8.3	
$6-31+G^{*}$	no	0.63	1.11	0.39	0.34	-0.62	-1.10	-0.37	-0.34	12.4	18.3	9.0	9.6	
$6-31+G^{*}$	yes	0.28	0.57	0.13	0.12	-0.06	-0.21	0.01	0.05	5.1	7.9	3.8	3.2	
6-311G*	no	1.64	2.57	1.05	1.25	-1.64	-2.57	-1.05	-1.25	32.8	38.2	26.5	33.7	
$6-311G^{*}$	yes	0.39	0.74	0.17	0.23	-0.27	-0.45	-0.14	-0.22	8.0	11.8	5.2	6.9	
$6-311+G^*$	no	1.07	1.47	0.90	0.81	-1.06	-1.43	-0.90	-0.81	23.2	24.3	23.1	22.1	
$6-311+G^*$	yes	0.45	0.78	0.27	0.27	-0.34	-0.49	-0.26	-0.25	9.1	11.9	7.7	7.4	
$6-311++G^{**}$	no	0.75	0.85	0.78	0.61	-0.75	-0.85	-0.78	-0.61	16.9	13.9	20.0	16.7	
$6-311++G^{**}$	yes	0.28	0.42	0.23	0.19	-0.20	-0.19	-0.23	-0.17	6.0	5.9	6.7	5.3	

Table S3: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using M06-L.

Durin Cut	CD2	Mea	n Absolute	e Error (kcal/	mol)	Me	an Signed	Error (kcal/m	iol)	Mean Absolute Percent Error (%)				
Basis Set	CP: ·	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	0.79	0.17	1.52	0.65	-0.69	-0.10	-1.32	-0.63	34.8	2.6	71.3	29.8	
aug-cc-pVDZ	yes	0.43	0.35	0.71	0.21	0.04	0.35	-0.29	0.05	16.3	4.8	32.8	10.6	
aug-cc-pVTZ	no	0.85	0.37	1.12	1.10	-0.56	-0.37	-0.85	-0.45	32.5	5.1	50.2	43.8	
aug-cc-pVTZ	yes	0.49	0.05	0.58	0.88	0.01	0.03	-0.11	0.13	18.5	0.6	25.4	31.1	
aug-cc-pVQZ	no	0.20	0.20	0.22	0.19	-0.20	-0.20	-0.22	-0.19	6.1	2.9	8.7	7.0	
$\operatorname{aug-cc-pVQZ}$	yes	0.20	0.20	0.22	0.19	0.20	0.20	0.22	0.19	6.1	2.9	8.7	7.0	
def2-SVP	no	1.48	2.02	1.25	1.14	-1.19	-2.02	-0.82	-0.67	42.4	30.8	51.4	45.3	
def2-SVP	yes	0.60	0.38	0.61	0.85	0.21	0.21	0.06	0.39	19.3	5.6	24.7	28.8	
def2-SVPD	no	1.24	0.56	1.84	1.34	-1.02	-0.56	-1.66	-0.82	48.3	7.8	82.1	55.9	
def2-SVPD	yes	0.57	0.19	0.67	0.88	0.08	0.19	-0.17	0.24	20.7	3.0	29.6	30.7	
def2-TZVP	no	0.82	0.77	0.78	0.93	-0.46	-0.77	-0.38	-0.21	27.1	11.9	35.1	35.4	
def2-TZVP	yes	0.58	0.31	0.62	0.86	-0.08	-0.31	-0.02	0.12	20.1	4.8	26.4	30.4	
def2-TZVPD	no	0.75	0.45	0.85	0.97	-0.39	-0.45	-0.49	-0.22	27.1	6.3	39.0	37.3	
def2-TZVPD	yes	0.54	0.17	0.64	0.86	0.002	-0.17	0.02	0.18	19.1	2.1	26.8	29.8	
def2-QZVP	no	0.59	0.22	0.67	0.91	-0.17	-0.22	-0.25	-0.004	21.7	3.2	30.2	33.2	
def2-QZVP	yes	0.51	0.10	0.60	0.86	0.11	0.10	0.01	0.22	18.4	1.5	25.5	29.7	
def2-QZVPD	no	0.59	0.12	0.76	0.93	-0.18	-0.12	-0.35	-0.05	22.7	1.7	33.4	34.4	
def2-QZVPD	yes	0.52	0.14	0.59	0.86	0.13	0.14	0.03	0.24	18.5	2.0	25.2	29.7	
6-31G*	no	1.42	1.68	1.24	1.32	-1.21	-1.68	-1.00	-0.92	44.7	26.8	55.0	53.4	
6-31G*	yes	0.75	0.58	0.80	0.89	-0.11	-0.21	-0.07	-0.04	26.0	9.6	35.9	33.6	
$6-31+G^{*}$	no	0.96	0.85	1.07	0.98	-0.63	-0.71	-0.75	-0.40	33.4	15.3	46.4	39.3	
$6-31+G^{*}$	yes	0.68	0.47	0.70	0.88	-0.11	0.02	-0.33	-0.001	23.3	6.1	32.1	33.0	
6-311G*	no	1.76	2.35	1.46	1.43	-1.57	-2.35	-1.22	-1.10	53.1	38.4	63.7	58.0	
6-311G*	yes	0.78	0.64	0.80	0.91	-0.42	-0.54	-0.48	-0.23	28.0	12.2	37.5	35.3	
$6-311+G^{*}$	no	1.35	1.41	1.43	1.18	-1.14	-1.39	-1.20	-0.79	45.7	25.5	63.0	48.9	
$6-311+G^*$	yes	0.82	0.67	0.86	0.94	-0.45	-0.55	-0.54	-0.25	29.0	11.8	39.8	36.3	
$6-311++G^{**}$	no	1.08	0.84	1.33	1.09	-0.82	-0.84	-1.06	-0.53	38.7	14.4	58.3	44.0	
$6-311++G^{**}$	yes	0.70	0.36	0.86	0.93	-0.33	-0.30	-0.53	-0.13	26.6	6.1	39.8	35.0	

Table S4: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using BLYP+D3(BJ).

Decia Cat	CD2	Mea	n Absolute	e Error (kcal/	Mean Absolute Error (kcal/mol)				nol)	Mea	Mean Absolute Percent Error (%)			
Dasis Set	CF! -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	0.71	0.52	0.96	0.63	-0.71	-0.52	-0.96	-0.63	18.4	6.9	29.5	18.9	
aug-cc-pVDZ	yes	0.16	0.17	0.18	0.12	0.16	0.17	0.18	0.12	3.6	2.1	5.1	3.6	
aug-cc-pVTZ	no	0.11	0.07	0.15	0.11	-0.11	-0.07	-0.15	-0.11	2.6	0.8	4.0	3.1	
aug-cc-pVTZ	yes	0.07	0.08	0.09	0.04	0.07	0.08	0.09	0.04	1.5	0.9	2.5	1.1	
aug-cc-pVQZ	no	0.04	0.03	0.07	0.03	-0.04	-0.03	-0.07	-0.03	1.1	0.4	2.0	0.8	
aug-cc-pVQZ	yes	0.04	0.03	0.07	0.03	0.04	0.03	0.07	0.03	1.1	0.4	2.0	0.8	
def2-SVP	no	2.54	4.11	1.54	1.88	-2.54	-4.11	-1.54	-1.88	51.2	57.1	42.0	55.0	
def2-SVP	yes	0.26	0.38	0.25	0.12	0.07	-0.05	0.23	0.04	5.6	6.0	6.8	3.8	
def2-SVPD	no	1.52	1.25	1.90	1.40	-1.52	-1.25	-1.90	-1.40	38.4	16.4	57.5	41.6	
def2-SVPD	yes	0.13	0.07	0.18	0.13	0.09	-0.03	0.17	0.13	3.2	0.9	5.0	3.8	
def2-TZVP	no	0.48	0.82	0.21	0.40	-0.47	-0.82	-0.19	-0.40	9.9	12.9	5.4	11.8	
def2-TZVP	yes	0.15	0.20	0.18	0.08	0.06	-0.03	0.18	0.01	3.7	3.0	5.3	2.5	
def2-TZVPD	no	0.09	0.08	0.13	0.06	-0.07	-0.04	-0.12	-0.06	2.1	1.1	3.5	1.8	
def2-TZVPD	yes	0.13	0.11	0.17	0.10	0.13	0.11	0.17	0.10	3.0	1.1	5.0	3.0	
def2-QZVP	no	0.12	0.21	0.05	0.09	-0.12	-0.21	-0.04	-0.09	2.5	3.4	1.4	2.7	
def2-QZVP	yes	0.06	0.05	0.09	0.03	0.05	.04	0.08	0.02	1.3	0.7	2.4	0.9	
def2-QZVPD	no	0.02	0.01	0.04	0.01	-0.01	0.01	-0.03	-0.00	0.6	0.2	1.3	0.3	
def2-QZVPD	yes	0.05	0.03	0.07	0.03	0.04	0.03	0.07	0.02	1.1	0.4	2.1	0.8	
$6-31G^{*}$	no	2.27	3.19	1.67	1.89	-2.27	-3.19	-1.67	-1.89	48.4	43.2	47.6	55.2	
$6-31G^{*}$	yes	0.39	0.54	0.39	0.23	-0.07	-0.41	0.37	-0.20	9.4	9.5	11.2	7.3	
$6-31+G^{*}$	no	0.54	0.97	0.22	0.41	-0.54	-0.97	-0.22	-0.41	11.2	16.3	5.0	12.4	
$6-31+G^{*}$	yes	0.29	0.43	0.31	0.11	0.10	-0.06	0.31	0.04	6.3	5.5	9.6	3.5	
$6-311G^{*}$	no	1.86	3.30	0.79	1.44	-1.85	-3.30	-0.77	-1.44	36.4	48.9	19.1	42.0	
$6-311G^{*}$	yes	0.41	0.64	0.36	0.20	-0.03	-0.35	0.36	-0.13	9.6	10.9	11.0	6.7	
$6-311+G^*$	no	0.69	1.26	0.28	0.51	-0.66	-1.22	-0.23	-0.51	14.4	21.7	6.3	15.4	
$6-311+G^*$	yes	0.37	0.62	0.33	0.14	0.00	-0.31	0.33	-0.02	8.1	9.2	10.2	4.5	
$6-311++G^{**}$	no	0.43	0.72	0.23	0.33	-0.42	-0.72	-0.20	-0.33	9.1	12.1	5.4	9.9	
6-311++G**	yes	0.23	0.29	0.27	0.11	0.07	-0.10	0.27	0.04	5.2	4.1	7.9	3.4	

Table S5: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using PBE0+D4.

Decia Set	CD2	Mea	Mean Absolute Error (kcal/mol)			Me	Mean Signed Error (kcal/mol)				Mean Absolute Percent Error (%)			
Dasis Set	UP! -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	0.66	0.44	0.90	0.63	-0.66	-0.44	-0.90	-0.63	16.9	5.7	27.2	18.0	
aug-cc-pVDZ	yes	0.06	0.09	0.04	0.05	0.06	0.09	0.03	0.05	1.1	0.8	1.2	1.3	
aug-cc-pVTZ	no	0.10	0.07	0.14	0.10	-0.10	-0.07	-0.14	-0.10	2.5	0.7	3.9	2.9	
aug-cc-pVTZ	yes	0.05	0.07	0.06	0.03	0.05	0.07	0.06	0.03	1.1	0.7	1.7	0.8	
aug-cc-pVQZ	no	0.04	0.03	0.05	0.02	-0.04	-0.03	-0.05	-0.02	0.9	0.3	1.5	0.7	
aug-cc-pVQZ	yes	0.04	0.03	0.05	0.02	0.04	0.03	0.05	0.02	0.9	0.3	1.5	0.7	
def2-SVP	no	1.85	3.15	1.06	1.27	-1.85	-3.15	-1.06	-1.27	35.1	40.8	29.2	35.2	
def2-SVP	yes	0.28	0.35	0.24	0.23	0.05	-0.22	0.24	0.13	6.1	5.1	7.0	6.2	
def2-SVPD	no	1.37	1.12	1.72	1.25	-1.37	-1.12	-1.72	-1.25	33.3	13.8	51.4	35.1	
def2-SVPD	yes	0.09	0.13	0.06	0.07	-0.01	-0.13	0.05	0.07	1.8	1.5	1.7	2.1	
def2-TZVP	no	0.35	0.58	0.16	0.31	-0.35	-0.58	-0.15	-0.31	7.2	9.0	4.2	8.7	
def2-TZVP	yes	0.13	0.20	0.12	0.06	0.04	0.00	0.12	-0.01	2.8	2.6	3.6	1.9	
def2-TZVPD	no	0.09	0.07	0.12	0.07	-0.06	0.00	-0.12	-0.06	2.0	0.8	3.4	1.9	
def2-TZVPD	yes	0.09	0.12	0.10	0.06	0.09	0.12	0.10	0.06	1.9	1.1	2.9	1.7	
def2-QZVP	no	0.08	0.13	0.05	0.06	-0.08	-0.13	-0.04	-0.06	1.7	2.0	1.3	1.8	
def2-QZVP	yes	0.04	0.04	0.06	0.02	0.04	0.04	0.06	0.02	1.0	0.5	1.7	0.7	
def2-QZVPD	no	0.02	0.01	0.03	0.01	-0.01	0.01	-0.03	-0.01	0.5	0.1	1.1	0.3	
def2-QZVPD	yes	0.04	0.03	0.06	0.02	0.04	0.03	0.06	0.02	0.9	0.3	1.7	0.7	
$6-31G^{*}$	no	1.62	2.46	1.07	1.29	-1.62	-2.46	-1.07	-1.29	32.9	31.8	31.4	36.0	
$6-31G^{*}$	yes	0.39	0.56	0.43	0.14	-0.02	-0.46	0.43	-0.04	9.0	9.0	12.8	4.4	
$6-31+G^{*}$	no	0.62	1.10	0.31	0.42	-0.62	-1.10	-0.31	-0.42	11.9	16.9	7.2	11.6	
$6-31+G^{*}$	yes	0.24	0.49	0.13	0.08	-0.01	-0.17	0.13	-0.01	4.5	6.3	4.5	2.4	
6-311G*	no	1.63	2.72	0.88	1.26	-1.63	-2.72	-0.88	-1.26	32.1	38.1	23.6	34.8	
6-311G*	yes	0.34	0.68	0.13	0.19	-0.16	-0.44	0.11	-0.16	6.8	10.6	4.3	5.5	
$6-311+G^*$	no	0.93	1.40	0.64	0.71	-0.92	-1.38	-0.64	-0.71	19.7	22.2	17.0	20.0	
$6-311+G^{*}$	yes	0.32	0.69	0.08	0.17	-0.16	-0.40	0.05	-0.12	5.8	9.9	2.6	4.8	
$6-311++G^{**}$	no	0.96	1.42	0.69	0.75	-0.95	-1.39	-0.69	-0.75	20.7	22.3	18.7	21.0	
6-311++G**	yes	0.32	0.68	0.08	0.17	-0.15	-0.40	0.06	-0.12	5.8	9.8	2.7	4.7	

Table S6: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using ω B97X-V.

Dagia Sat	CD?	CP? Mean	Mean Absolute Error (kcal/mol)			Me	Mean Signed Error (kcal/mol)				Mean Absolute Percent Error (%)			
Dasis Set	Or: -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	0.65	0.45	0.88	0.63	-0.65	-0.45	-0.88	-0.63	17.0	6.1	26.7	18.2	
aug-cc-pVDZ	yes	0.07	0.09	0.06	0.05	0.05	0.09	0.01	0.05	1.6	1.0	2.2	1.5	
aug-cc-pVTZ	no	0.12	0.08	0.14	0.13	-0.12	-0.08	-0.14	-0.13	2.9	0.9	4.0	3.7	
aug-cc-pVTZ	yes	0.04	0.06	0.03	0.03	0.04	0.06	0.03	0.03	0.8	0.7	0.9	0.8	
aug-cc-pVQZ	no	0.03	0.03	0.04	0.03	-0.03	-0.03	-0.04	-0.03	0.7	0.3	0.9	0.8	
aug-cc-pVQZ	yes	0.03	0.03	0.04	0.03	0.03	0.03	0.04	0.03	0.7	0.3	0.9	0.8	
def2-SVP	no	1.82	3.24	0.93	1.20	-1.82	-3.24	-0.93	-1.20	34.3	43.7	25.0	34.0	
def2-SVP	yes	0.36	0.34	0.36	0.36	0.19	-0.07	0.36	0.27	8.4	5.1	10.3	10.0	
def2-SVPD	no	1.36	1.12	1.70	1.25	-1.36	-1.12	-1.70	-1.25	33.7	14.6	50.9	35.9	
def2-SVPD	yes	0.10	0.12	0.10	0.09	-0.00	-0.12	0.05	0.08	2.4	1.5	3.1	2.5	
def2-TZVP	no	0.34	0.58	0.14	0.29	-0.34	-0.58	-0.14	-0.29	7.0	9.4	3.3	8.3	
def2-TZVP	yes	0.12	0.20	0.09	0.06	0.04	0.02	0.09	0.02	2.4	2.7	2.5	1.9	
def2-TZVPD	no	0.08	0.07	0.10	0.07	-0.05	0.01	-0.10	-0.07	1.9	0.8	3.0	2.0	
def2-TZVPD	yes	0.08	0.12	0.06	0.06	0.08	0.12	0.06	0.06	1.5	1.2	1.7	1.6	
def2-QZVP	no	0.07	0.12	0.02	0.05	-0.06	-0.12	-0.01	-0.05	1.3	2.0	0.5	1.4	
def2-QZVP	yes	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.03	1.0	0.6	1.3	1.0	
def2-QZVPD	no	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.3	0.2	0.3	0.3	
def2-QZVPD	yes	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.8	0.4	1.2	0.9	
$6-31G^{*}$	no	1.62	2.53	1.05	1.23	-1.62	-2.53	-1.05	-1.23	33.0	34.0	30.2	34.9	
6-31G*	yes	0.42	0.52	0.51	0.21	0.08	-0.38	0.51	0.11	10.4	8.7	15.6	6.5	
$6-31+G^{*}$	no	0.56	1.06	0.27	0.33	-0.56	-1.06	-0.27	-0.33	11.1	17.3	6.2	9.5	
$6-31+G^{*}$	yes	0.24	0.49	0.10	0.11	-0.01	-0.18	0.10	0.06	4.5	6.8	3.6	3.0	
6-311G*	no	1.67	2.82	0.91	1.24	-1.67	-2.82	-0.91	-1.24	33.5	41.2	24.6	34.9	
$6-311G^{*}$	yes	0.32	0.66	0.11	0.16	-0.16	-0.39	0.03	-0.12	6.4	10.8	3.2	5.0	
$6-311+G^*$	no	0.88	1.36	0.62	0.63	-0.87	-1.33	-0.62	-0.63	19.3	22.7	16.9	18.2	
$6-311+G^{*}$	yes	0.33	0.71	0.09	0.16	-0.21	-0.44	-0.06	-0.13	6.1	10.9	2.7	4.6	
$6-311++G^{**}$	no	0.61	0.82	0.55	0.44	-0.61	-0.82	-0.55	0.44	13.7	13.0	15.1	12.8	
6-311++G**	yes	0.18	0.35	0.07	0.11	-0.12	-0.22	-0.06	-0.06	3.7	5.4	2.4	3.1	

Durin Cut	CD2	Mea	Mean Absolute Error (kcal/mol)			Mea	n Signed I	Error (kcal/m	Mean Absolute Percent Error (%)				
Basis Set	CP? -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	0.79	0.55	1.07	0.74	-0.79	-0.55	-1.07	-0.74	20.6	7.5	32.9	21.4
aug-cc-pVDZ	yes	0.08	0.04	0.15	0.06	-0.05	0.001	-0.11	-0.04	2.4	0.4	5.3	1.5
aug-cc-pVTZ	no	0.17	0.13	0.21	0.18	-0.17	-0.13	-0.21	-0.18	4.1	1.5	5.9	5.1
aug-cc-pVTZ	yes	0.02	0.04	0.02	0.02	0.005	0.04	-0.02	-0.01	0.5	0.4	0.8	0.4
aug-cc-pVQZ	no	0.02	0.03	0.02	0.02	-0.02	-0.03	-0.02	-0.02	0.5	0.3	0.6	0.4
aug-cc-pVQZ	yes	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.5	0.3	0.6	0.4
def2-SVP	no	2.04	3.55	1.10	1.37	-2.04	-3.55	-1.10	-1.37	38.8	48.1	29.2	39.0
def2-SVP	yes	0.37	0.38	0.36	0.35	0.15	-0.14	0.36	0.25	8.5	5.4	10.6	9.6
def2-SVPD	no	1.56	1.26	1.96	1.43	-1.56	-1.26	-1.96	-1.43	38.7	16.4	58.9	41.3
def2-SVPD	yes	0.18	0.23	0.20	0.08	-0.11	-0.23	-0.07	-0.00	3.9	2.8	6.5	2.3
def2-TZVP	no	0.42	0.70	0.21	0.35	-0.42	-0.70	-0.21	-0.35	8.7	11.1	5.4	9.9
def2-TZVP	yes	0.10	0.20	0.05	0.05	-0.00	-0.03	0.03	-0.01	2.0	3.0	1.4	1.6
def2-TZVPD	no	0.12	0.09	0.16	0.11	-0.11	-0.06	-0.16	-0.11	3.0	1.4	4.6	3.1
def2-TZVPD	yes	0.05	0.06	0.04	0.03	0.03	0.06	0.02	0.02	0.9	0.5	1.3	0.7
def2-QZVP	no	0.10	0.17	0.04	0.07	-0.09	-0.17	-0.03	-0.07	1.9	2.6	1.0	2.1
def2-QZVP	yes	0.03	0.04	0.03	0.02	0.03	0.04	0.02	0.02	0.8	0.6	1.1	0.7
def2-QZVPD	no	0.02	0.01	0.02	0.01	-0.00	0.01	-0.01	-0.01	0.4	0.2	0.5	0.4
def2-QZVPD	yes	0.03	0.03	0.03	0.02	0.03	0.03	0.02	0.02	0.7	0.4	1.0	0.6
6-31G*	no	1.84	2.76	1.30	1.41	-1.84	-2.76	-1.30	-1.41	38.2	37.0	37.4	40.3
6-31G*	yes	0.44	0.52	0.55	0.23	0.08	-0.41	0.55	0.11	11.1	8.9	16.6	7.2
$6-31+G^{*}$	no	0.63	1.14	0.37	0.35	-0.63	-1.14	-0.35	-0.35	12.6	18.5	8.7	10.3
$6-31+G^{*}$	yes	0.25	0.50	0.13	0.10	-0.06	-0.24	0.02	0.04	4.7	7.2	3.9	2.8
6-311G*	no	1.95	3.10	1.22	1.47	-1.95	-3.10	-1.22	-1.47	40.2	45.4	33.6	41.7
6-311G*	yes	0.37	0.67	0.19	0.25	-0.29	-0.46	-0.17	-0.24	8.4	11.4	6.2	7.6
$6-311+G^*$	no	1.02	1.46	0.83	0.75	-1.02	-1.44	-0.83	-0.75	23.1	24.5	22.9	21.6
$6-311+G^*$	yes	0.43	0.75	0.27	0.25	-0.36	-0.53	-0.27	-0.25	9.3	11.9	8.4	7.4
$6-311++G^{**}$	no	0.75	0.94	0.74	0.56	-0.75	-0.94	-0.74	-0.56	17.4	14.8	20.8	16.3
$6-311++G^{**}$	yes	0.29	0.39	0.27	0.20	-0.26	-0.33	-0.27	-0.18	7.0	6.5	8.7	5.8

Table S7: Convergence error statistics (with respect to the DFT/CBS limit) for interaction energies in the S66 data set computed using ω B97M-V.

Table S8: Error statistics in S66 interaction energies as compared to CCSD(T)/CBS benchmarks.

					Mean A	bsolute 1	Error (kcal/	(mol)				
Basis Set	M06-	2X	M06	M06-L		BLYP+D3(BJ)		+D4	$\omega B972$	X-V	$\omega B971$	M-V
	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP
aug-cc-pVDZ	0.62	0.28	0.66	0.87	0.71	0.24	0.84	0.27	0.64	0.13	0.80	0.18
aug-cc-pVTZ	0.27	0.32	0.28	0.71	0.25	0.21	0.34	0.28	0.18	0.14	0.24	0.16
aug-cc-pVQZ	0.26	0.29	0.85	1.11	0.23	0.21	0.31	0.29	0.15	0.14	0.16	0.16
def2-SVP	1.48	0.54	0.79	0.92	2.53	0.24	2.03	0.46	1.81	0.37	2.04	0.37
def2-SVPD	1.24	0.32	0.45	0.78	1.52	0.23	1.56	0.35	1.35	0.17	1.56	0.24
def2-TZVP	0.37	0.36	0.43	0.66	0.49	0.18	0.58	0.32	0.36	0.15	0.44	0.15
def2-TZVPD	0.28	0.34	0.38	0.73	0.23	0.23	0.31	0.28	0.13	0.15	0.18	0.14
def2-QZVP	0.30	0.33	0.56	0.81	0.22	0.19	0.35	0.29	0.15	0.14	0.18	0.16
def2-QZVPD	0.30	0.32	0.54	0.83	0.22	0.20	0.30	0.29	0.14	0.14	0.16	0.16
6-31G*	1.25	0.60	0.64	0.67	2.26	0.29	1.81	0.59	1.61	0.41	1.85	0.41
$6-31+G^{*}$	0.61	0.38	0.38	0.60	0.56	0.26	0.83	0.37	0.56	0.22	0.65	0.25
$6-311G^{*}$	1.54	0.39	0.94	0.46	1.86	0.31	1.82	0.49	1.66	0.26	1.96	0.33
$6-311+G^*$	0.96	0.43	0.56	0.39	0.69	0.33	1.10	0.48	0.86	0.28	1.02	0.39
$6-311++G^{**}$	0.64	0.27	0.31	0.40	0.45	0.22	1.14	0.48	0.60	0.16	0.76	0.27

Table S9: Convergence error data (in kcal/mol) for MP2 calculations in the S66 data set, with respect to the MP2/CBS limit.

Dimer	6-31	.G*	6-31+	-G*	6-31	1G*	6-311	$+G^*$	6-311+	$+G^{**}$	def2-5	SVP	def2-S	VPD	def2-T	ZVP	def2-T	ZVPD	def2-Q	ZVP	def2-Q2	ZVPD
Index	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP
1	-1.95	-0.23	-1.83	0.16	-2.84	-0.35	-2.63	-0.24	-1.27	-0.51	-2.26	0.66	-0.71	0.66	-0.58	0.23	0.05	0.52	-0.11	0.28	0.06	0.28
2	-1.55	0.73	-1.55	0.58	-2.19	0.84	-1.91	0.47	-1.03	-0.32	-1.91	1.44	-1.13	0.72	-0.37	0.72	0.08	0.63	-0.05	0.37	0.06	0.33
3	-1.33	0.70	-1.36	0.83	-2.06	1.25	-1.33	0.69	-0.98	-0.28	-1.58	1.71	-1.28	0.82	-0.30	0.86	0.07	0.68	-0.01	0.43	0.09	0.33
4	-1.01	2.09	-0.47	1.41	-0.95	2.34	-0.41	1.58	-0.81	-0.38	-1.28	2.71	-1.56	1.15	0.09	1.24	0.16	0.91	0.03	0.52	0.11	0.46
5	-1.77	0.65	-1.61	0.80	-2.52	0.77	-1.88	0.68	-1.00	-0.20	-2.49	1.13	-1.52	0.73	-0.50	0.72	-0.04	0.63	-0.13	0.35	0.03	0.31
6	-1.64	0.76	-1.27	1.33	-2.45	1.20	-1.24	1.09	-0.86	-0.12	-2.22	1.44	-1.78	0.97	-0.45	0.85	-0.14	0.74	-0.06	0.40	0.03	0.34
7	-1.97	2.08	-0.57	1.86	-2.06	2.38	-0.29	2.04	-0.70	-0.16	-2.74	2.42	-2.05	1.18	-0.26	1.28	-0.01	0.92	-0.10	0.50	0.03	0.44
8	-2.08	-0.28	-1.90	0.38	-3.05	-0.41	-2.70	-0.01	-1.25	-0.39	-2.70	0.35	-1.00	0.67	-0.63	0.26	-0.04	0.53	-0.14	0.27	0.03	0.27
9	-1.21	0.72	-0.80	0.71	-1.34	0.68	-0.92	0.61	-0.68	-0.27	-1.66	1.03	-1.48	0.56	-0.25	0.52	-0.23	0.41	-0.08	0.21	-0.03	0.18
10	-0.89	1.18	-0.49	1.15	-1.44	1.07	-0.49	0.98	-0.56	-0.19	-1.53	1.57	-1.61	0.81	-0.31	0.69	-0.29	0.54	-0.07	0.25	-0.01	0.21
11	-1.07	2.16	-0.31	1.86	-1.27	2.04	-0.26	1.80	-0.45	-0.13	-1.74	2.43	-2.44	1.10	-0.10	1.12	-0.41	0.76	-0.02	0.41	-0.04	0.36
12	-1.25	1.00	-1.21	0.96	-2.17	1.36	-1.38	0.84	-0.90	-0.22	-1.55	1.87	-1.39	0.94	-0.38	0.88	0.04	0.73	0.01	0.44	0.09	0.35
13	-1.65	1.07	-1.33	0.98	-2.34	0.82	-1.74	0.71	-0.92	-0.37	-2.57	1.36	-2.41	0.84	-0.39	0.73	-0.35	0.64	-0.13	0.31	-0.07	0.28
14	-1.76	1.02	-1.18	1.37	-2.35	0.98	-1.25	1.14	-0.72	-0.12	-2.30	1.43	-2.48	0.94	-0.62	0.75	-0.52	0.62	-0.14	0.30	-0.10	0.25
15	-1.36	2.43	-0.47	2.05	-1.19	2.47	-0.39	2.07	-0.49	-0.08	-1.91	2.65	-3.28	1.14	-0.12	1.27	-0.55	0.81	-0.10	0.44	-0.16	0.37
16	-1.98	-0.10	-1.76	0.36	-2.80	-0.59	-3.02	-0.03	-1.28	-0.48	-2.73	0.32	-1.66	0.65	-0.66	0.11	-0.24	0.48	-0.16	0.20	-0.03	0.22
17	-1.53	3.42	-0.02	3.55	0.05	4.34	0.77	3.98	-0.63	0.08	-1.74	3.77	-3.49	2.13	0.71	2.11	-0.05	1.52	-0.09	0.71	-0.15	0.64
18	-0.46	1.80	-0.90	1.23	-0.59	2.14	-0.68	1.28	-0.48	0.02	-0.76	2.17	-2.20	0.82	0.12	1.16	0.03	0.71	0.04	0.49	0.09	0.37
19	-0.84	1.80	-1.01	1.53	-1.02	2.06	-0.66	1.51	-0.42	0.18	-1.47	1.92	-2.76	0.89	-0.08	1.11	-0.15	0.73	0.00	0.45	0.03	0.37
20	-1.18	4.42	1.30	5.10	0.22	5.60	2.38	5.79	-0.59	0.15	-2.57	4.03	-2.06	2.85	0.88	2.51	0.71	2.11	0.12	1.05	0.16	1.01
21	-2.02	3.15	0.60	3.43	-0.39	4.05	1.31	3.86	-0.31	0.16	-1.98	3.76	-2.21	2.16	0.77	2.12	0.32	1.56	0.00	0.76	0.05	0.71
22	-1.28	3.92	0.55	4.30	0.17	4.96	1.56	4.89	-0.60	0.12	-2.01	3.92	-2.64	2.58	0.83	2.32	0.41	1.87	0.03	0.90	0.04	0.85
23	-1.63	3.44	0.30	3.56	-0.03	4.35	1.08	4.05	-0.53	0.05	-1.72	3.88	-2.70	2.32	0.73	2.13	0.22	1.63	-0.05	0.76	-0.02	0.72
24	1.52	4.17	-1.14	2.67	0.57	2.75	-2.02	1.95	0.82	1.35	0.23	2.82	-5.45	0.80	-0.41	0.86	-1.73	0.33	-0.31	0.19	-0.76	0.09
25	1.37	4.15	-0.76	2.78	0.41	2.83	-1.52	2.09	1.13	1.70	0.19	3.13	-5.26	0.99	-0.26	1.05	-1.60	0.48	-0.20	0.33	-0.60	0.22
26	0.06	5.58	-2.88	3.97	-0.43	4.89	-3.33	3.81	-0.46	0.83	-0.94	5.73	-7.76	2.04	-0.79	2.00	-2.51	1.10	-0.36	0.80	-0.91	0.60
27	1.44	4.19	-1.04	2.72	0.43	2.79	-1.86	2.01	0.89	1.50	0.17	2.99	-5.39	0.88	-0.37	0.94	-1.71	0.40	-0.28	0.25	-0.70	0.14
28	1.07	5.17	-2.22	3.43	-0.04	3.95	-2.80	2.86	0.43	1.32	-0.24	4.46	-7.15	1.35	-0.61	1.45	-2.27	0.68	-0.39	0.48	-0.88	0.32
29	1.08	5.21	-1.90	3.42	0.14	4.20	-2.20	3.04	0.56	1.48	-0.08	4.73	-6.80	1.47	-0.41	1.61	-2.10	0.78	-0.26	0.60	-0.73	0.42
30	1.10	2.96	0.12	2.04	0.76	2.14	-0.28	1.60	0.51	0.64	0.40	2.07	-2.65	0.64	0.05	0.77	-0.85	0.34	-0.03	0.23	-0.31	0.14
31	0.73	3.10	-0.39	2.20	0.28	2.47	-0.63	1.93	0.06	0.45	0.02	2.03	-3.34	1.02	0.00	1.02	-0.99	0.55	-0.02	0.38	-0.30	0.28
32	0.94	3.10	-0.49	2.10	0.57	2.44	-0.00	1.81	0.06	0.41	0.46	2.73	-2.71	1.03	0.14	0.98	-0.76	0.50	0.04	0.40	-0.23	0.29
33	1.00	2.91	-0.03	2.01	0.58	2.09	-0.30	1.59	0.53	0.72	0.30	2.11	-2.05	0.09	0.06	0.81	-0.83	0.37	-0.03	0.25	-0.29	0.17
34	1.53	3.20	0.59	2.91	1.32	2.03	0.22	2.43	-0.70	-0.35	0.76	2.50	-4.82	0.81	-0.07	1.18	-1.40	0.55	-0.23	0.15	-0.45	0.09
30	0.09	2.18	0.13	1.97	0.67	1.82	-0.13	1.00	-0.52	-0.31	0.15	1.07	-4.16	0.55	-0.05	0.81	-1.06	0.34	-0.19	0.08	-0.30	0.04
30	0.12	1.37	-0.28	1.27	0.27	1.21	-0.29	1.07	-0.57	-0.20	-0.06	1.00	-3.44	0.32	0.01	0.55	-1.00	0.22	-0.12	0.00	-0.27	0.03
31	0.00	2.04	0.12	1.80	0.63	1.08	-0.25	1.52	-0.58	-0.29	0.11	1.00	-3.87	0.49	-0.02	0.72	-1.13	0.31	-0.19	0.07	-0.37	0.03
38	0.87	2.44	0.40	2.20	0.96	2.02	-0.27	1.80	-0.64	-0.20	0.55	1.87	-3.13	0.62	0.04	0.88	-1.09	0.41	-0.19	0.11	-0.38	0.07
39	0.47	3.20	-0.39	2.59	-0.12	2.20	-1.37	1.92	-0.07	0.44	-0.55	2.33	-5.76	0.76	-0.30	0.85	-1.68	0.39	-0.35	0.11	-0.67	0.05
40	0.11	2.00	-0.07	2.02	-0.33	2.13	-1.20	2.06	-0.11	0.21	-0.00	2.67	-3.28	1.94	-0.30	1.59	-1.34	0.31	-0.28	0.09	-0.57	0.04
41	0.27	9.51	-0.08	3.44	-0.19	3.01	-1.09	3.00	-0.30	0.38	-0.82	2.07	-0.37	1.04	-0.40	1.00	-1.64	0.79	-0.20	0.49	-0.59	0.30
42	0.31	2.01	-0.74	2.69	-0.08	2.90	-1.20	2.04	-0.33	0.38	-0.11	3.00	-0.01	1.09	-0.32	1.27	-1.71	0.03	-0.20	0.40	-0.01	0.29
45	0.50	2.99	-0.09	1.91	-0.10	2.45	-0.94	2.09	-0.41	0.14	-0.33	1.64	-3.26	0.66	-0.29	0.78	-1.30	0.32	-0.21	0.32	-0.31	0.23
45	0.09	1.05	0.32	1.01	0.00	1.09	0.01	1.02	-0.05	0.07	0.45	1.04	-2.23	0.01	0.14	0.18	-0.39	0.40	-0.04	0.17	-0.10	0.15
40	0.30	2.50	0.39	2.08	0.01	2.01	0.03	2.60	0.03	0.21	0.00	2.10	-1.07	1.14	0.13	1.26	-0.48	0.30	0.01	0.21	-0.12	0.10
40	0.45	0.09	1.95	1.76	0.00	1.61	-0.21	2.09	-0.48	0.66	-0.00	1.02	-4.00	1.14	-0.21	1.50	-1.30	0.71	-0.20	0.30	-0.41	0.20
48	0.20	2.20	-0.71	1.10	-0.23	1.01	-1.00	1.52	0.27	0.00	-0.43	9.15	-4.03	0.00	-0.12	0.00	-0.95	0.31	-0.12	0.25	-0.32	0.00
40	0.02	2.02	-1.08	1.80	-0.25	1.69	-1.59	1.02	0.34	0.69	-0.45	1.03	-4.53	0.00	-0.12	0.63	-1.23	0.40	-0.12	0.20	-0.44	0.10
50	-0.08	1.70	-0.68	1.60	-0.23	1.33	-1.05	1.33	0.18	0.02	-0.35	1.66	-3.16	0.72	-0.27	0.54	-0.66	0.38	-0.22	0.10	-0.26	0.16
51	-0.38	0.58	-0.05	0.73	-0.02	0.61	-0.27	0.66	0.10	0.13	-0.08	0.83	-1.08	0.53	-0.12	0.34	-0.17	0.30	-0.00	0.14	-0.03	0.10
52	-0.65	2.20	-0.91	2.91	-0.81	2.15	-1.24	1.03	0.04	0.54	-0.55	2.68	-4.39	1 14	-0.27	0.94	-1.03	0.58	-0.16	0.34	-0.34	0.27
53	-0.81	2.16	-0.79	1.69	-0.84	1.81	-0.91	1.66	-0.09	0.94	-0.61	2.00	-3.30	0.93	-0.21	0.85	-0.77	0.50	-0.10	0.30	-0.23	0.23
54	-0.51	1.36	-0.79	1.37	-0.74	1.30	-1.18	1.40	-0.38	0.13	-0.36	1.75	-2.49	0.33	-0.21	0.68	-0.50	0.45	-0.10	0.30	-0.17	0.20
55	-0.24	2.00	-0.58	2.19	-0.50	2.05	-0.97	1.82	-0.04	0.50	-0.32	2.43	-3.83	1.00	-0.43	0.00	-0.89	0.56	-0.21	0.28	-0.29	0.20
56	0.20	2.20	-0.27	2.10	-0.02	1.04	-0.63	1.68	0.10	0.41	-0.17	2.10	-3.77	0.81	-0.26	0.83	-0.99	0.45	-0.18	0.20	-0.35	0.14
57	-0.21	2.83	-0.82	2.55	-0.50	2.24	-1.47	1.00	0.15	0.62	-0.47	2.75	-5.47	0.98	-0.46	0.00	-1.56	0.50	-0.32	0.20	-0.56	0.15
58	-0.87	1.31	-0.30	1.19	-1.10	1.13	-0.29	1.07	-0.04	0.26	-1.64	1.40	-3.44	0.80	0.02	0.73	-0.43	0.48	0.00	0.27	-0.06	0.22
59	-1.21	-0.08	-1.32	0.26	-1.73	-0.57	-2.17	-0.08	-1.02	-0.45	-1.94	0.17	-0.98	0.61	-0.49	0.03	-0.11	0.33	-0.08	0.13	0.01	0.16
60	-0.82	1.81	0.12	1.91	-0.17	2.04	0.31	1.89	-0.11	0.09	-0.12	2.46	-1.10	1.46	0.45	1.09	0.10	0.80	0.13	0.43	0.07	0.38
61	-0.06	2.56	0.07	2.32	-0.26	2.33	-0.22	2.11	-0.37	0.10	-0.71	2.34	-3.41	0.94	-0.09	1.12	-0.89	0.61	-0.07	0.36	-0.24	0.29
62	-0.31	3.03	0.14	2.60	-0.49	2.65	-0.24	2.35	-0.41	-0.01	-1.27	2.72	-4.00	1.04	-0.18	1.25	-1.02	0.67	-0.13	0.37	-0.27	0.29
63	0.33	2.87	-0.61	2.33	-0.27	2.33	-1.12	1.94	-0.14	0.39	-0.35	2.65	-4.38	0.98	-0.18	1.01	-1.22	0.53	-0.16	0.31	-0.45	0.22
64	-0.24	2.20	-0.13	1.79	-0.36	1.87	-0.41	1.58	-0.10	0.09	-0.61	2.11	-2.21	0.89	0.04	0.90	-0.54	0.54	0.02	0.32	-0.10	0.27
65	-0.91	0.77	-0.45	0.84	-0.79	0.77	-0.27	0.76	-0.31	-0.01	-1.31	0.93	-2.21	0.77	0.01	0.52	-0.23	0.38	0.04	0.21	-0.03	0.18
66	0.06	2.41	-0.31	1.90	-0.25	2.09	-0.39	1.70	0.06	0.44	-0.41	2.35	-3.17	0.86	-0.01	1.00	-0.64	0.55	-0.07	0.31	-0.19	0.23
	0.00		0.04		0.20		0.00		0.00					0.00	0.01		0.01	0.00	0.01		0.20	0.20

Table S10: Convergence error statistics (with respect to the MP2/CBS limit) for interaction energies in the S66 data set computed using MP2.

Decia Set	CD2	Mea	n Absolute	e Error (kcal/	mol)	Me	an Signed	Error (kcal/r	nol)	Mea	n Absolute	e Percent Err	or (%)
Dasis Set	Or: -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	1.70	0.66	2.69	1.77	-1.70	-0.65	-2.69	-1.77	39.8	9.1	66.8	44.1
aug-cc-pVDZ	yes	0.80	1.13	0.61	0.63	0.80	1.13	0.61	0.63	14.2	12.7	14.3	15.7
aug-cc-pVTZ	no	0.78	0.40	1.13	0.80	-0.78	-0.40	-1.13	-0.80	17.4	5.0	27.9	19.6
aug-cc-pVTZ	yes	0.32	0.52	0.20	0.22	0.32	0.52	0.20	0.22	5.1	5.9	4.1	5.5
aug-cc-pVQZ	no	0.28	0.14	0.42	0.28	-0.28	-0.14	-0.42	-0.28	6.4	1.8	10.5	6.9
aug-cc-pVQZ	yes	0.16	0.28	0.10	0.10	0.15	0.28	0.08	0.10	2.7	3.1	2.2	2.6
def2-SVP	no	1.02	1.97	0.41	0.62	-0.89	-1.97	-0.05	-0.62	18.2	27.8	10.4	16.2
def2-SVP	yes	2.27	2.09	2.69	1.99	2.27	2.09	2.69	1.99	45.1	23.6	63.5	48.8
def2-SVPD	no	3.31	1.99	4.65	3.29	-3.31	-1.99	-4.65	-3.29	73.0	25.5	113.8	80.7
def2-SVPD	yes	0.99	1.20	0.90	0.87	0.99	1.20	0.90	0.87	18.7	13.5	21.1	21.9
def2-TZVP	no	0.31	0.44	0.24	0.23	-0.15	-0.08	-0.19	-0.17	5.4	5.5	4.8	5.9
def2-TZVP	yes	0.99	1.12	1.03	0.79	0.99	1.12	1.03	0.79	19.0	12.2	25.5	19.5
def2-TZVPD	no	0.79	0.22	1.38	0.76	-0.72	-0.04	-1.38	-0.75	18.2	2.8	33.3	18.5
def2-TZVPD	yes	0.63	0.90	0.50	0.48	0.63	0.90	0.50	0.48	11.5	10.2	12.1	12.2
def2-QZVP	no	0.13	0.07	0.19	0.13	-0.12	-0.05	-0.19	-0.11	2.9	1.1	4.5	3.1
def2-QZVP	yes	0.34	0.47	0.28	0.26	0.34	0.47	0.28	0.26	6.0	5.4	6.2	6.5
def2-QZVPD	no	0.27	0.07	0.49	0.24	-0.24	0.01	-0.49	-0.24	6.0	0.8	11.4	5.8
def2-QZVPD	yes	0.28	0.42	0.19	0.20	0.28	0.42	0.19	0.20	4.7	4.8	4.2	5.2
6-31G*	no	0.89	1.45	0.75	0.42	-0.34	-1.45	0.75	-0.31	17.4	20.4	19.9	11.0
$6-31G^{*}$	yes	2.34	1.70	3.29	1.97	2.32	1.65	3.29	1.96	48.7	18.0	79.8	48.3
$6-31+G^{*}$	no	0.77	0.99	0.72	0.58	-0.61	-0.75	-0.52	-0.55	14.7	15.2	14.1	14.8
$6-31+G^{*}$	yes	2.00	1.72	2.50	1.75	2.00	1.72	2.50	1.75	41.1	17.7	62.7	43.4
6-311G*	no	0.84	1.54	0.44	0.49	-0.56	-1.50	0.32	-0.49	17.3	25.3	13.6	12.4
6-311G*	yes	2.12	2.05	2.56	1.71	2.07	1.93	2.56	1.66	41.8	20.9	62.1	42.4
$6-311+G^{*}$	no	1.07	1.32	0.99	0.87	-0.84	-0.70	-0.97	-0.84	20.0	19.1	19.0	22.2
$6-311+G^{*}$	yes	1.78	1.75	2.08	1.48	1.77	1.73	2.08	1.47	34.9	16.8	51.5	36.6
$6-311++G^{**}$	no	0.48	0.76	0.44	0.22	-0.29	-0.76	-0.002	-0.08	9.8	11.4	11.4	6.1
6-311++G**	yes	0.39	0.22	0.59	0.35	0.20	-0.15	0.47	0.30	8.4	3.5	13.2	8.5

Basis Set aug-cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVQZ	CD2	Mea	n Absolute	e Error (kcal/	'mol)	Me	ean Signed	Error (kcal/r	nol)	Mear	Mean Absolute Percent Error (%)			
Dasis Set	CF: -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	
aug-cc-pVDZ	no	1.31	0.68	1.87	1.38	-1.31	-0.68	-1.87	-1.38	67.3	9.7	132.0	59.3	
aug-cc-pVDZ	yes	0.18	0.33	0.09	0.10	0.15	0.33	0.04	0.05	4.6	3.9	5.7	4.1	
aug-cc-pVTZ	no	0.96	0.67	1.19	1.03	-0.96	-0.67	-1.19	-1.03	45.1	8.4	83.5	43.2	
aug-cc-pVTZ	yes	0.10	0.12	0.09	0.10	0.00	0.12	-0.05	-0.08	4.5	1.5	8.0	4.0	
aug-cc-pVQZ	no	0.36	0.25	0.45	0.39	-0.36	-0.25	-0.45	-0.39	17.2	3.2	32.1	16.3	
aug-cc-pVQZ	yes	0.11	0.06	0.11	0.15	-0.08	-0.01	-0.11	-0.14	5.4	0.8	9.5	6.0	
def2-SVP	no	1.52	2.59	0.80	1.10	-1.52	-2.59	-0.80	-1.10	42.7	37.5	46.2	44.5	
def2-SVP	yes	0.73	0.57	0.93	0.68	0.67	0.45	0.93	0.62	32.5	7.2	61.6	28.1	
def2-SVPD	no	2.35	1.62	3.12	2.30	-2.35	-1.62	-3.12	-2.30	112.2	21.9	216.4	96.2	
def2-SVPD	yes	0.18	0.21	0.17	0.16	0.18	0.21	0.16	0.16	6.6	2.5	10.7	6.6	
def2-TZVP	no	0.42	0.46	0.36	0.44	-0.41	-0.45	-0.36	-0.44	15.7	8.2	21.4	17.7	
def2-TZVP	yes	0.29	0.39	0.30	0.17	0.25	0.32	0.30	0.12	10.9	4.4	20.5	7.3	
def2-TZVPD	no	0.57	0.20	0.91	0.61	-0.56	-0.18	-0.91	-0.61	31.0	3.1	63.2	25.9	
def2-TZVPD	yes	0.17	0.30	0.11	0.08	0.14	0.30	0.08	0.04	5.1	3.6	8.0	3.5	
def2-QZVP	no	0.31	0.25	0.36	0.32	-0.31	-0.25	-0.36	-0.32	13.8	3.4	24.8	13.1	
def2-QZVP	yes	0.10	0.10	0.09	0.10	0.01	0.09	-0.01	-0.06	4.3	1.4	7.5	4.0	
def2-QZVPD	no	0.39	0.17	0.60	0.41	-0.39	-0.17	-0.60	-0.41	20.5	2.1	41.5	17.5	
def2-QZVPD	yes	0.09	0.08	0.08	0.10	-0.01	0.07	-0.04	-0.08	4.3	1.1	7.6	4.1	
6-31G*	no	1.21	2.07	0.50	1.02	-1.20	-2.07	-0.49	-1.02	33.2	30.0	30.1	40.5	
6-31G*	yes	0.85	0.65	1.27	0.59	0.66	0.17	1.27	0.51	41.5	8.2	88.7	25.5	
$6-31+G^{*}$	no	0.92	1.25	0.76	0.75	-0.92	-1.24	-0.75	-0.75	30.3	20.6	40.1	30.1	
$6-31+G^{*}$	yes	0.61	0.56	0.78	0.48	0.54	0.38	0.78	0.45	28.1	5.3	57.4	20.5	
6-311G*	no	1.36	2.24	0.67	1.13	-1.36	-2.24	-0.67	-1.13	38.9	35.8	36.5	45.0	
6-311G*	yes	0.69	0.82	0.77	0.44	0.47	0.29	0.77	0.32	27.8	9.9	53.6	18.7	
$6-311+G^*$	no	1.20	1.41	1.13	1.05	-1.18	-1.34	-1.13	-1.05	45.4	24.4	68.7	42.9	
$6-311+G^*$	yes	0.55	0.72	0.56	0.33	0.36	0.24	0.56	0.26	21.1	8.0	40.3	14.3	
$6-311++G^{**}$	no	0.99	0.83	1.20	0.93	-0.98	-0.82	-1.20	-0.93	43.6	13.9	77.2	39.1	
$6-311++G^{**}$	yes	0.39	0.45	0.41	0.30	0.36	0.40	0.41	0.26	14.2	4.0	26.1	12.1	

Table S11: Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in the S66 data set computed using PBE-QIDH.

Table S12: Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in the S66 data set computed using B2GPPLYP.

Dania Cat	CD2	Mea	n Absolute	e Error (kcal/	'mol)	Me	an Signed	Error (kcal/r	nol)	Mea	n Absolute	Percent Erro	r (%)
Basis Set	CP? -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	1.29	0.70	1.84	1.34	-1.29	-0.70	-1.84	-1.34	103.7	10.4	223.4	73.3
aug-cc-pVDZ	yes	0.24	0.40	0.17	0.12	0.23	0.40	0.16	0.10	11.3	5.1	22.5	5.7
aug-cc-pVTZ	no	1.01	0.71	1.24	1.09	-1.01	-0.71	-1.24	-1.09	71.8	9.2	146.5	57.8
aug-cc-pVTZ	yes	0.11	0.13	0.08	0.11	0.01	0.13	-0.03	-0.09	6.8	1.7	13.0	5.5
aug-cc-pVQZ	no	0.36	0.25	0.44	0.39	-0.36	-0.25	-0.44	-0.39	25.5	3.3	52.0	20.7
aug-cc-pVQZ	yes	0.10	0.07	0.09	0.14	-0.06	0.01	-0.08	-0.13	7.2	0.9	13.8	7.1
def2-SVP	no	1.70	2.90	0.85	1.29	-1.70	-2.90	-0.85	-1.29	62.5	43.8	80.1	63.9
def2-SVP	yes	0.87	0.74	1.13	0.73	0.83	0.66	1.13	0.69	62.9	9.7	137.8	37.9
def2-SVPD	no	2.41	1.66	3.19	2.37	-2.41	-1.66	-3.19	-2.37	184.0	23.7	395.1	125.6
def2-SVPD	yes	0.26	0.30	0.27	0.20	0.26	0.30	0.27	0.20	16.2	3.8	34.4	9.6
def2-TZVP	no	0.48	0.54	0.40	0.50	-0.48	-0.54	-0.40	-0.49	24.1	9.9	37.6	25.0
def2-TZVP	yes	0.31	0.40	0.34	0.18	0.28	0.34	0.34	0.13	20.4	4.9	45.4	9.7
def2-TZVPD	no	0.61	0.23	0.96	0.65	-0.61	-0.21	-0.96	-0.65	52.4	3.6	116.0	35.2
def2-TZVPD	yes	0.18	0.31	0.12	0.09	0.16	0.31	0.10	0.04	8.5	3.9	16.2	4.9
def2-QZVP	no	0.34	0.29	0.38	0.35	-0.34	-0.29	-0.38	-0.35	21.4	4.1	41.4	18.2
def2-QZVP	yes	0.10	0.11	0.09	0.11	0.01	0.09	0.01	-0.07	7.2	1.5	14.4	5.4
def2-QZVPD	no	0.42	0.19	0.62	0.45	-0.42	-0.19	-0.62	-0.45	34.6	2.4	75.8	24.0
def2-QZVPD	yes	0.09	0.09	0.08	0.11	-0.01	0.07	-0.03	-0.09	6.7	1.2	13.2	5.8
6-31G*	no	1.38	2.29	0.62	1.22	-1.38	-2.29	-0.61	-1.22	49.5	34.1	56.2	59.5
6-31G*	yes	0.93	0.66	1.46	0.62	0.79	0.31	1.46	0.56	81.6	8.2	195.9	34.6
$6-31+G^{*}$	no	0.84	1.16	0.62	0.71	-0.83	-1.14	-0.61	-0.71	34.3	20.0	48.0	35.2
$6-31+G^{*}$	yes	0.73	0.60	1.00	0.56	0.68	0.49	1.00	0.54	59.3	5.9	137.4	30.8
6-311G*	no	1.41	2.44	0.58	1.18	-1.39	-2.44	-0.53	-1.18	45.8	40.3	41.7	56.9
6-311G*	yes	0.82	0.87	1.03	0.52	0.64	0.44	1.03	0.41	60.1	10.4	137.5	28.0
$6-311+G^{*}$	no	1.06	1.33	0.90	0.94	-1.03	-1.22	-0.90	-0.94	52.4	24.0	85.1	47.5
$6-311+G^{*}$	yes	0.66	0.73	0.79	0.43	0.51	0.36	0.79	0.36	46.7	8.0	105.8	23.3
$6-311++G^{**}$	no	0.86	0.76	0.99	0.84	-0.85	-0.73	-0.99	-0.84	54.8	13.3	105.2	44.4
$6-311++G^{**}$	yes	0.51	0.53	0.61	0.38	0.49	0.50	0.61	0.35	34.0	5.1	75.3	19.8

Table S13: Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in the S66 data set computed using ω B97X-2(LP).

Decia Cat	CD2	Mea	n Absolute	e Error (kcal/	mol)	Me	an Signed	Error (kcal/r	nol)	Mea	n Absolute	e Percent Err	or (%)
Dasis Set	CF! -	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	1.54	0.82	2.22	1.59	-1.54	-0.82	-2.22	-1.59	38.0	10.1	61.0	43.6
aug-cc-pVDZ	yes	0.28	0.50	0.17	0.16	0.26	0.50	0.13	0.12	4.6	5.5	4.2	4.1
aug-cc-pVTZ	no	1.31	0.92	1.61	1.42	-1.31	-0.92	-1.61	-1.42	30.6	10.2	43.9	38.6
aug-cc-pVTZ	yes	0.14	0.16	0.11	0.14	0.00	0.16	-0.07	-0.11	3.0	1.9	3.5	3.8
aug-cc-pVQZ	no	0.48	0.33	0.59	0.52	-0.48	-0.33	-0.59	-0.52	11.2	3.7	16.1	14.2
aug-cc-pVQZ	yes	0.13	0.09	0.13	0.18	-0.09	0.01	-0.13	-0.17	3.2	1.0	4.0	4.9
def2-SVP	no	1.46	2.62	0.62	1.09	-1.45	-2.62	-0.59	-1.09	25.7	33.5	14.5	29.4
def2-SVP	yes	1.27	1.17	1.54	1.09	1.25	1.14	1.54	1.05	27.2	13.2	40.1	28.6
def2-SVPD	no	2.72	1.82	3.65	2.70	-2.72	-1.82	-3.65	-2.70	64.6	21.9	100.0	72.9
def2-SVPD	yes	0.35	0.47	0.31	0.27	0.35	0.47	0.30	0.27	6.7	5.2	7.9	7.0
def2-TZVP	no	0.48	0.47	0.46	0.52	-0.46	-0.44	-0.46	-0.50	10.6	7.2	11.2	13.9
def2-TZVP	yes	0.41	0.55	0.41	0.26	0.38	0.51	0.41	0.21	7.9	5.8	10.9	6.9
def2-TZVPD	no	0.79	0.27	1.26	0.85	-0.78	-0.25	-1.26	-0.85	20.0	3.6	33.7	23.1
def2-TZVPD	yes	0.22	0.40	0.13	0.12	0.19	0.40	0.09	0.05	3.7	4.4	3.5	3.2
def2-QZVP	no	0.41	0.32	0.48	0.43	-0.41	-0.32	-0.48	-0.43	9.3	3.9	12.7	11.6
def2-QZVP	yes	0.13	0.14	0.11	0.13	0.02	0.12	0.00	-0.08	2.8	1.7	3.3	3.6
def2-QZVPD	no	0.57	0.26	0.84	0.60	-0.57	-0.26	-0.84	-0.60	13.7	2.8	22.4	16.3
def2-QZVPD	yes	0.12	0.11	0.11	0.14	-0.02	0.09	-0.06	-0.11	2.8	1.3	3.3	3.9
$6-31G^{*}$	no	1.09	2.01	0.35	0.90	-1.03	-2.01	-0.17	-0.90	19.3	25.4	9.1	24.1
$6-31G^{*}$	yes	1.32	0.91	1.96	1.04	1.25	0.75	1.96	0.99	30.2	9.5	53.0	27.8
$6-31+G^{*}$	no	0.85	1.08	0.73	0.73	-0.83	-1.03	-0.71	-0.73	17.5	16.0	16.4	20.4
$6-31+G^{*}$	yes	0.95	0.80	1.24	0.79	0.93	0.75	1.24	0.77	20.9	7.1	34.7	21.0
$6-311G^{*}$	no	1.22	2.15	0.47	1.01	-1.18	-2.15	-0.37	-1.01	22.7	30.7	11.0	27.0
$6-311G^{*}$	yes	1.07	1.10	1.29	0.79	0.94	0.82	1.29	0.68	22.2	11.0	34.5	21.0
$6-311+G^{*}$	no	1.13	1.31	1.06	1.01	-1.07	-1.14	-1.06	-1.01	24.4	20.0	25.6	28.1
$6-311+G^*$	yes	0.81	0.86	0.95	0.59	0.71	0.64	0.95	0.53	16.5	7.7	25.9	15.8
$6-311++G^{**}$	no	0.96	0.73	1.19	0.96	-0.94	-0.68	-1.19	-0.94	22.5	11.0	30.6	26.3
6-311++G**	yes	0.66	0.74	0.73	0.50	0.65	0.73	0.73	0.48	12.9	6.7	18.8	12.3

Basis Set	CD2	Mea	n Absolute	e Error (kcal/	(mol)	Me	an Signed	Error (kcal/n	nol)	Mea	an Absolute	e Percent Err	or (%)
Basis Set	CP?	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed	All	H-Bond	Dispersion	Mixed
aug-cc-pVDZ	no	1.34	0.74	1.91	1.37	-1.34	-0.74	-1.91	-1.37	39.9	10.1	66.5	43.5
auv-cc-pVDZ	yes	0.18	0.33	0.09	0.11	0.14	0.33	0.03	0.05	3.2	3.8	2.8	3.1
aug-cc-pVTZ	no	0.99	0.69	1.23	1.07	-0.99	-0.69	-1.23	-1.07	27.7	8.3	41.8	33.7
aug-cc-pVTZ	yes	0.11	0.11	0.10	0.12	-0.03	0.09	-0.09	-0.11	2.9	1.3	3.7	3.8
aug-cc-pVQZ	no	0.39	0.28	0.47	0.41	-0.39	-0.28	-0.47	-0.41	10.7	3.3	16.2	12.9
aug-cc-pVQZ	yes	0.11	0.06	0.13	0.15	-0.09	-0.02	-0.13	-0.15	3.3	0.7	4.6	4.7
def2-SVP	no	1.65	2.88	0.82	1.19	-1.65	-2.88	-0.81	-1.19	33.5	39.9	24.1	36.8
def2-SVP	yes	0.86	0.71	1.08	0.78	0.81	0.62	1.08	0.72	22.8	8.8	36.0	23.6
def2-SVPD	no	2.43	1.69	3.22	2.36	-2.43	-1.69	-3.22	-2.36	69.0	22.2	111.7	73.6
def2-SVPD	yes	0.18	0.21	0.16	0.17	0.17	0.21	0.15	0.16	4.2	2.4	5.3	5.1
def2-TZVP	no	0.44	0.52	0.35	0.46	-0.44	-0.51	-0.35	-0.45	10.8	8.7	10.0	14.1
def2-TZVP	yes	0.32	0.43	0.32	0.20	0.29	0.37	0.32	0.15	7.5	4.9	11.3	6.2
def2-TZVPD	no	0.56	0.19	0.90	0.61	-0.55	-0.17	-0.90	-0.61	17.2	2.7	30.2	19.0
def2-TZVPD	yes	0.16	0.31	0.09	0.09	0.14	0.31	0.06	0.03	3.1	3.6	3.1	2.6
def2-QZVP	no	0.33	0.28	0.36	0.33	-0.33	-0.28	-0.36	-0.33	8.6	3.7	11.8	10.4
def2-QZVP	yes	0.09	0.10	0.07	0.10	0.00	0.08	-0.02	-0.07	2.4	1.3	2.8	3.2
def2-QZVPD	no	0.41	0.20	0.61	0.43	-0.41	-0.20	-0.61	-0.43	12.0	2.3	20.5	13.6
def2-QZVPD	yes	0.09	0.08	0.08	0.11	-0.04	0.05	-0.07	-0.10	2.5	0.9	3.2	3.6
6-31G*	no	1.34	2.25	0.62	1.13	-1.34	-2.25	-0.62	-1.13	28.1	30.9	19.4	34.8
6-31G*	yes	0.93	0.65	1.41	0.70	0.80	0.33	1.41	0.63	26.3	7.6	49.2	21.5
$6-31+G^*$	no	0.86	1.18	0.70	0.68	-0.85	-1.16	-0.70	-0.68	19.8	18.9	19.4	21.4
$6-31+G^*$	yes	0.66	0.57	0.83	0.55	0.60	0.44	0.83	0.52	17.5	5.2	30.2	16.9
$6-311G^{*}$	no	1.42	2.44	0.64	1.16	-1.41	-2.44	-0.61	-1.16	29.8	37.2	17.5	35.4
6-311G*	yes	0.77	0.88	0.87	0.52	0.58	0.45	0.87	0.39	18.7	9.9	30.0	16.0
$6-311+G^*$	no	1.08	1.33	0.98	0.92	-1.04	-1.20	-0.98	-0.92	27.0	22.3	29.7	29.2
$6-311+G^{*}$	yes	0.57	0.73	0.59	0.37	0.41	0.32	0.59	0.30	13.6	7.6	21.1	11.7
$6-311++G^{**}$	no	0.88	0.77	1.03	0.82	-0.87	-0.75	-1.03	-0.81	23.8	12.7	33.0	26.0
6-311++G**	yes	0.43	0.47	0.46	0.30	0.40	0.43	0.46	0.30	9.9	4.1	15.3	10.2

Table S14: Convergence error statistics (with respect to DH-DFT/CBS limit) for interaction energies in the S66 data set computed using ω B97M-(2).

Table S15: Distribution of errors in $\Delta E_{\rm int}$ predictions (in kcal/mol) for the S66 data set.

					RMS	SD vs. C	CSD(T)/CI	BS				
Basis Set	M06-	·2X	M06	-L	BLYP+	D3(BJ)	PBE0	+D4	$\omega B972$	X-V	$\omega B971$	M-V
	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP
aug-cc-pVDZ	0.86	0.21	1.10	0.63	0.79	0.18	0.95	0.44	0.71	0.09	0.86	0.12
aug-cc-pVTZ	0.17	0.09	1.08	0.85	0.13	0.08	0.56	0.46	0.13	0.05	0.19	0.03
aug-cc-pVQZ	0.05	0.05	0.21	0.21	0.06	0.06	0.52	0.49	0.03	0.03	0.02	0.02
def2-SVP	1.86	0.50	1.67	0.86	2.92	0.36	2.53	0.67	2.22	0.41	2.46	0.43
def2-SVPD	1.49	0.18	1.50	0.85	1.59	0.16	1.69	0.57	1.11	1.44	1.66	0.21
def2-TZVP	0.36	0.24	1.00	0.85	0.59	0.19	0.77	0.46	0.44	0.17	0.51	0.16
def2-TZVPD	0.10	0.17	0.95	0.85	0.11	0.15	0.48	0.43	0.10	0.11	0.29	0.13
def2-QZVP	0.10	0.13	0.88	0.84	0.16	0.07	0.55	0.48	0.09	0.05	0.12	0.04
def2-QZVPD	0.07	0.10	0.89	0.84	0.04	0.06	0.50	0.48	0.02	0.04	0.02	0.03
6-31G*	1.54	0.85	0.58	0.80	2.48	0.52	2.14	0.76	1.87	0.67	2.10	0.64
$6-31+G^{*}$	0.87	0.57	0.93	0.94	0.73	0.37	1.09	0.49	0.81	0.43	0.86	0.40
6-311G*	1.84	0.70	1.28	0.71	2.24	0.56	2.19	0.70	1.99	0.63	2.24	0.64
$6-311+G^*$	1.25	0.66	0.82	0.61	0.99	0.48	1.37	0.64	1.13	0.56	1.25	0.60
$6-311++G^{**}$	0.78	0.34	0.39	0.49	0.60	0.25	1.38	0.63	0.69	0.21	0.86	0.34

				R	MSD vs. CC	$\overline{\text{SD}(T)}$	/CBS			
Basis Set	MP	2	PBE-G	QIDH [B2GP-I	PLYP	$\omega B97X$ -	2(LP)	$\omega B97$	M(2)
	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP
aug-cc-pVDZ	2.66	0.80	0.54	1.32	0.34	1.80	1.99	0.19	1.23	0.14
aug-cc-pVTZ	1.54	0.64	0.64	1.22	0.72	1.61	1.70	0.32	0.84	0.14
aug-cc-pVQZ	1.00	0.67	0.94	1.17	1.27	1.56	0.81	0.41	0.25	0.14
def2-SVP	1.63	1.98	1.69	1.99	1.76	2.54	2.09	1.13	1.86	0.14
def2-SVPD	4.33	0.85	1.55	1.39	1.14	1.87	3.24	0.19	2.37	0.14
def2-TZVP	0.96	0.82	0.98	1.48	1.27	1.90	0.81	0.27	0.40	0.14
def2-TZVPD	1.67	0.70	0.63	1.33	0.93	1.74	1.20	0.20	0.46	0.14
def2-QZVP	0.86	0.58	1.00	1.25	1.31	1.63	0.75	0.30	0.24	0.14
def2-QZVPD	1.06	0.62	0.86	1.22	1.17	1.60	0.94	0.34	0.31	0.14
6-31G*	1.15	2.09	1.47	2.12	1.53	2.64	1.64	1.28	1.44	0.17
$6-31+G^{*}$	1.53	1.76	1.03	1.84	1.25	2.40	1.29	0.87	0.88	0.15
6-311G*	1.41	1.93	1.49	1.85	1.64	2.43	1.77	1.00	1.56	0.19
$6-311+G^{*}$	1.89	1.67	1.05	1.70	1.21	2.27	1.58	0.79	1.10	0.18
6-311++G**	0.86	0.34	0.67	1.59	0.93	2.15	1.34	0.57	0.77	0.78

Table S16: Distribution of errors in $\Delta E_{\rm int}$ predictions (in kcal/mol) for the S66 data set.

Table S17: Timing data for pentane dimer.

					Wall Tin	$(\min)^a$				
Functional	M06	5-2X	PBE	0+D4	BLYP+	D3(BJ)	$\omega B9$	7X-V	$\omega B9'$	7M-V
	no CP	CP	no CP	CP	no CP	CP	no CP	CP	no CP	CP
aug-cc-pVDZ	2.7	7.0	1.8	4.8	1.2	2.7	4.4	10.4	4.8	10.9
aug-cc-pVTZ	37.9	102.8	34.0	94.7	7.3	16.4	37.4	87.0	41.0	92.9
aug-cc-pVQZ	486.1	1351.1	417.8	1093.8	75.0	169.3	434.0	1001.6	450.0	1032.7
def2-SVP	0.5	1.1	0.2	0.4	0.2	0.3	1.2	2.2	1.2	2.4
def2-SVPD	1.8	4.0	0.9	2.4	0.5	1.0	2.5	5.1	2.6	5.4
def2-TZVP	2.2	5.2	1.4	3.5	0.5	1.1	2.6	5.4	2.8	5.9
def2-TZVPD	5.6	14.1	4.3	11.3	1.5	3.0	6.5	14.5	6.8	15.3
def2-QZV	49.5	129.1	45.0	110.9	9.3	18.5	46.5	92.6	48.0	96.8
def2-QZVPD	91.0	243.4	78.6	207.0	15.7	33.3	84.5	182.8	87.7	191.1
6-31G*	0.3	0.7	0.1	0.2	0.1	0.1	0.9	1.7	0.9	1.8
$6-31+G^{*}$	0.4	1.0	0.1	0.3	0.1	0.2	1.0	2.0	1.1	2.1
$6-311G^{*}$	0.4	1.0	0.2	0.4	0.1	0.2	1.0	2.0	1.1	2.2
$6-311+G^*$	0.6	1.4	0.2	0.6	0.2	0.3	1.2	2.5	1.4	2.7
$6-311++G^{**}$	1.3	2.9	0.6	1.5	0.3	0.6	1.8	3.8	2.1	4.1

 $\overline{{}^a \text{Using 14}}$ processors on a single compute node (Dell Intel Xeon E5-2680 v4)