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Figure S1: TDKS spectra near the oxygen K-edge for methionine, computed at the
B3LYP/6-31G(d) level for different simulation times tmax, with a time step of (a)
At = 0.01 a.u. versus (b) At = 0.02 a.u.. These spectra were computed using a
conventional FFT, without the use of Padé approximants. Spectra for ¢, = 1200 a.u.
are the same as those in Fig. 1.
. o Excitation Energy (eV)
Molecule - Functional - Excitation —po o oo o oy G#  6311(4,+)0"F  c.PVIZ aug-ccPVTZ del-TZVPD
SRC1-r1  O(1ls) —» n*  530.82 530.92 530.92 530.98 531.04 530.96
H2CO SRC2-r1  O(1s) —» 7* 530.82 530.82 530.82 530.90 530.94 530.84
SRC1-r1  C(1s) — n*  285.59 285.62 285.62 285.67 285.63 285.57
SRC1-r1  O(1ls) —» n* 531.3 531.35 531.35 531.40 531.46 531.38
(CH3)2CO SRC2-r1  O(1s) —» n* 531.3 531.08 531.08 531.14 531.18 531.09
SRC1-r1  C(1s) — n*  287.10 286.07 286.06 286.13 286.08 286.02
Uracil SRC1-r1  O(1ls) —» n* 532.10 531.78 531.78 531.85 531.89 531.81
Methionine SRC1-r1  O(1ls) — =* 532.44 532.28 531.27 532.38 532.40 532.32

aData from Refs. 1-5. ®Mean absolute deviation, with respect to experiment.

Table S1: Comparison of the performance of various basis sets for LR-TDDFT, as applied to oxygen and

carbon K-edge excitations for small molecules.
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Figure S2: TDKS spectra near the nitrogen K-edge for the ionic liquid dimer
[C4C1ImT][SCN ], computed at the B3BLYP/6-311(2+,24)G(d,p) level. The spectrum
for tmax = 600 a.u. is the same as that shown in Fig. 6, and is compared where to
a simulation based on 1/3 of the propagation time, using Padé approximants in both
cases. Minor artifacts are evident in the latter spectrum.
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Figure S3: LR-TDDFT convergence tests for methionine spectra at the oxygen K-edge.
(a) Test of the Tamm-Dancoff approximation (in which y is neglected) versus a full
LR-TDDFT calculation, performed at the SRC1-r1/def2-TZVPD level. (b) Test of
the CVS approximation at the SRC1-r1/6-31G(d) level, comparing to a calculation in
which all orbitals are active.
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(a) tnax = 120 a.u. (b) tnax = 240 a.u.
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Figure S4: TDKS simulations of XAS for methionine at the oxygen K-edge, computed
at the BBLYP/STO-3G level with different time steps, for total propagation times of
(a) tmax = 120 a.u. (= 2.9 fs), versus (b) tmax = 240 a.u. (& 5.8 fs). All spectra were
computed using Padé approximants.
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Figure S5: LR-TDDFT/CVS spectra of acetone at the oxygen K-edge using various
basis sets. All spectra include the lowest 25 excited states, within the O(1s) CVS
approximation, and have been broadened using a Lorentzian function with a width of
0.7 eV, consistent with other LR-TDDFT results presented in this work. In each case,

results are present for the conventional basis set alongside a version in which the core

functions have been uncontracted. The quantity AFEyncontr 1S the energy shift in the

O(1s) — LUMO transition upon uncontracting the basis set.
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Figure S6: LR-TDDFT spectrum of methionine, computed using the SRC1-r1 func-
tional in two different basis sets, by computing all o X v roots of the A matrix in
Eq. (22). (What is plotted is excitation energy versus oscillator strength for the se-
quence of states, and the lines that connect the data points points are a guide for the
eye rather than a properly broadened intensity profile.) The section of the spectrum
that is shown here connects the nitrogen K-edge (starting just above 400 eV) with the
oxygen K-edge starting around 530 eV. It can be seen that there is a semi-continuous
sequence of spectroscopically dark excitations that connect the two, corresponding to
excitations from N(1s) to very high-energy virtual orbitals that constitute orthogonal-
ized discretized continuum states. Looking at the spectrum just below 400 eV, it is

clear that C(1s) — continuum excitations are present right up to the nitrogen K-edge.
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Figure S7: TDKS spectra near the nitrogen K-edge for the ionic liquid dimer
[C4C1ImT][SCN™], computed at the B3LYP/6-311(2+,2+)G(d,p) level using tmax =
37.5 a.u. of simulation time, i.e., only half as long as the simulation in Fig. 7a. The
too-short simulation time causes the two near-edge peaks in the filtered N(1s) spectrum
to merge.
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Figure S8: TDDFT spectra near the nitrogen K-edge for (a) (uracil)(H2O)g1 and (b)
(uracil)(H20O)gs, computed at the CAM-B3LYP/6-31G(d) level The TDKS spectrum
(in orange) and the LR-TDDFT/CVS spectrum (in black) are the same as those in
Fig. 9, computed using At = 0.02 a.u. and n = 100 states, respectively. The thicker
blue curve shows a LR-TDDFT/CVS spectrum that is also computed using 100 states
but with a virtual orbital cutoff of 0.5 E},. Both LR-TDDFT spectra are plotted on the
same absolute scale (oscillator strength), whereas the TDKS spectrum has been scaled
to match the intensity of the first peak in the LR-TDDFT spectrum with no cutoff.
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Figure S9: LR-TDDFT/CVS spectra at the titanium K-edge for (a) TigO16Hy and
(b) Ti16032Hz, computed at the PBE0/def2-SV(P) level. Spectra including all virtual
orbitals in the active space are the same as those plotted in Fig. 10, whereas the dashed
spectra include only those virtual MOs with e, < 0.5 E},. The absolute scale is absolute
oscillator strength.
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