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ABSTRACT: A fundamental tenet of quantum mechanics is that
properties should be independent of representation. In self-
consistent field methods such as density functional theory, this
manifests as a requirement that properties be invariant with respect
to unitary transformations of the occupied molecular orbitals and
(separately) the unoccupied molecular orbitals. Various ad hoc
measures of excited-state charge separation that are commonly used
to analyze time-dependent density-functional calculations violate
this requirement, as they are based on incoherent averages of
excitation amplitudes rather than expectation values involving
coherent superpositions. As a result, these metrics afford markedly
different values in various common representations, including
canonical molecular orbitals, Boys-localized orbitals, and natural
orbitals. Numerical values can be unstable with respect to basis-set expansion and may afford nonsensical results in the presence of
extremely diffuse basis functions. In contrast, metrics based on well-defined expectation values are stable, representation-invariant,
and physically interpretable. Use of natural transition orbitals improves the stability of the incoherent averages, but numerical values
can only be interpreted as expectation value in the absence of superposition. To satisfy this condition, the particle and hole density
matrices must each be dominated by a single eigenvector so that the transition density is well described by a single pair of natural
transition orbitals. Counterexamples are readily found where this is not the case. Our results suggest that ad hoc charge-transfer
diagnostics should be replaced by rigorous expectation values, which are no more expensive to compute.

1. INTRODUCTION
Time-dependent density functional theory (TD-DFT),1 the
most widely used quantum chemistry technique for computing
electronic excitation energies, has a simple and conceptually
pleasing one-electron interpretation in terms of a particle (the
excited electron) and a hole.2 Excited-state properties can be
decomposed into contributions from each of these quasipar-
ticles. In particular, the particle and hole densities can be used to
define a mean electron−hole distance (de‑h) in the excited
state,2−8

d r re h elec hole= (1)

Over the years, a variety of ad hoc charge-transfer (CT)
diagnostics have been introduced in order to quantify electron−
hole separation in TD-DFT calculations,9−21 as reviewed
recently.2 The original purpose of these analysis tools was to
alert the user to the presence of a charge-separated state,9,20−25

for which TD-DFT with conventional semilocal and hybrid
functionals may fail badly.1,26−30 Remarkably, however, the
simple expectation value in eq 1 seems not to have been
considered as a diagnostic of CT character in TD-DFT
calculations until recently,31,32 where it was borrowed from
careful excited-state analyses in wave function theory.4−7

The problem of spurious CT states in TD-DFT is
substantially ameliorated using range-separated and long-range
corrected density functionals,30,33−41 yet measures of electron−
hole separation and exciton size remain important tools for
analysis of excited-state calculations.42−62 In the present work,
we demonstrate that some widely used charge-separation
metrics are not invariant under unitary transformations of the
occupied or virtual molecular orbitals (MOs). This implies that
their numerical values depend on the choice of representation.
This has been pointed out before,11,57,63 but the present work
explores the numerical and conceptual implications of this result
for the first time. Dependence on the choice of orbitals is not an
esoteric point; we will demonstrate substantial numerical
differences (including nonsensical results) using several
common MO representations.
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As an antidote to these problems, we suggest orbital-invariant
(and thus representation-independent) charge-displacement
metrics that attempt to model the same charge-separation
physics as earlier ad hoc definitions. These invariant metrics are
based on well-defined expectation values with respect to the
transition density, following a paradigm laid out for wave
function calculations by Plasser, Dreuw, and coworkers.3−8

Herein, we demonstrate that these measures can be used to the
same ends as previous CT metrics, namely, to diagnose
problems with TD-DFT or to quantify electron−hole separation
in a physically meaningful way.

2. THEORY
2.1. TD-DFT. Linear-response TD-DFT calculations involve

solution of a non-Hermitian pseudoeigenvalue problem,2

( )( ) ( )A B
B A

x
y

1 0
0 1

x
y* * =i

k
jjj y

{
zzz (2)

for excitation energies ω and amplitudes x y,{ }. Matrices A and
B are orbital Hessians, as discussed elsewhere.1,64 Transition
amplitudes xia and yia indicate excitation and de-excitation,
respectively, between an occupied MO ψi and an unoccupied
(virtual) MO ψa.

Importantly, TD-DFT excitation energies and excited-state
properties are invariant to unitary transformations of either the
occupied or the virtual MOs, so at this point it does not need to
be stipulated which MOs (canonical or otherwise) we mean by
ψi and ψa. This allows the freedom to use localizedMOs,65−72 or
other transformations that are favorable for visualization or
interpretative purposes,2 without affecting observables.

The de-excitation amplitudes yia are often neglected, resulting
in a Hermitian eigenvalue problem

Ax x= (3)

This is known as the Tamm-Dancoff approximation (TDA)1,2

and it is typically quite accurate for small-molecule excitation
energies,73 although larger errors have been noted in solids.74

Importantly, the TDA decouples the excitation energy problem
from the ground-state stability problem1,75 and this is sometimes
necessary in photochemical simulations.76−78 On the other
hand, the TDA violates gauge invariance and thus introduces
ambiguity for oscillator strengths,79 which are typically more
accurate in full linear response theory.80 In any case, the CT
metrics introduced below can be used with either eq 2 or eq 3,
although all calculations reported here are full linear response.
2.2. Conventional CT Metrics. A recent review2 provides

an overview of ad hoc CT metrics for TD-DFT calculations, the
most common of which are introduced here. Historically, the
first of these diagnostics (called Λ) was introduced by Tozer and
coworkers,9,22−25 who defined a metric

Oia ia ia

jb jb

2

2=
(4)

where
x yia ia ia= + (5)

and

O dr r r( ) ( )ia i a= | || | (6)

The integral in eq 6 quantifies spatial overlap between occupied
and virtual MOs.

The normalization condition for TD-DFT is1

x y( ) 1
ia

ia ia
2 2 =

(7)

so the denominator in eq 4 generally differs from unity unless the
TDA is invoked,81 although it does normalize Λ such that 0 ≤ Λ
≤ 1. Larger values indicate a localized excitation whereas Λ = 0
indicates complete spatial separation of the excited electron and
the hole. Several puzzling failures in early TD-DFT calculations
were explained by using Λ to measure “hidden” CT
character,24,25,82 although certain types of charge separation
elude this particular metric.22,63,83

The Λ metric has undeniable intuitive appeal as an amplitude-
weighted sum of donor−acceptor overlaps Oia, yet it is an
incoherent average that does not correspond to the expectation
value of any measurable (or even potentially measurable)
physical quantity. A proper expectation value is expressible as
the trace of an operator with a density matrix, as shown in
Appendix A. From another point of view, the definition of Λ
involves squaring the amplitudes, then constructing an
incoherent superposition of the quantities Oia associated with
ψi → ψa excitation, rather than evaluating an average using
coherent superposition (i.e., an expectation value). A con-
sequence is that Λ is not invariant to rotations of the occupied
and virtual MOs, even within the TDA. As such, its numerical
value depends on the choice of representation.

To the best of our knowledge, the Λ metric has only ever been
evaluated using canonical MOs (CMOs) but this choice is
arbitrary. Nevertheless, the value ΛCMO in the CMO
representation does provide a useful (albeit functional-specific)
threshold, beyond which TD-DFT excitation energies should
not be taken seriously unless range separation is used.9,22 For
interpretative purposes, a drawback of this dimensionless metric
is that it does not quantify electron−hole separation in a way
that is easily interpretable or visualizable.

To remedy this, other CT metrics have been suggested that
have dimensions of length and are intended to be interpreted as
quantitative measures of charge separation. A seemingly obvious
choice is to replace Oia in eq 4 with

R r ria i i a a= | | | | (8)

which is the vector displacement between the centroids of
orbitals ψi and ψa. Using the scalar norm ||Ria|| of this
displacement vector results in a charge-separation metric that
has been called Δr,10,11,17 defined as

r
Ria ia ia

jb jb

2

2=
(9)

This amounts to an incoherent average of the charge
displacements associated with ψi → ψa excitation. Like Λ, the
definition of Δr fails to satisfy orbital invariance so its numerical
value depends upon the choice of MOs.

Assuming that the MOs transforms like irreducible
representations of the molecular point group, then Δr = 0 for
any centrosymmetric system because the charge displacements
Ria must preserve inversion symmetry in that case. From a
symmetry perspective, this is a feature and not a bug. However, it
does mean that charge-resonance states2,3,41,84 (involving
counterbalancing contributions from forward and backward
CT) cannot be detected by Δr. To obtain a nonvanishing metric
for centrosymmetric systems, an “electron displacement”
measure
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r= + (10)

has been suggested.11 It combines Δr from eq 9 with

ia ia ia

jb jb

2

2=
(11)

which is the weighted sum of the quantities

r ria i i a a
2 2 1/2= | | | | | | (12)

Here, rr r
2| | is the second moment of orbital ψr, so σia is a

measure of the disparity between the size of the excited electron
and the size of the hole, for the excitation ψi → ψa.

Both Δr and Δσ involve incoherent sums, rather than
constructing a transition density and evaluating a proper
expectation value for the excited state in question. As such,
these quantities fail to preserve orbital invariance, and this failure
is inherited by Γ in eq 10. Nevertheless, Γ has been used to
define a critical threshold or “trust radius” for TD-DFT
excitation energies,10 which is similar to the manner in which
Λ has been used but with an ostensibly more direct physical
interpretation, since Γ has units of length. It was observed in ref
11 that Γ has a different numerical value in the CMO basis as
compared to the basis of natural transition orbitals (NTOs),
although no explanation was provided. (See Appendix B for a
brief overview of NTOs and ref 2 for more complete
discussion.). Furthermore, Δr was seen to be sensitive to the
presence of diffuse basis functions.11 The present work will
provide a physical and mathematical explanation for these
observations.
2.3. InvariantMeasures of CT. Lack of orbital invariance in

metrics such as Λ, Δr, Δσ, and Γ is problematic in applications,
as shown by examples that are discussed in Section 4. As such,
we propose alternative means to measure charge displacement
that are based on proper expectation values and thus invariant to
unitary transformations of the MOs. Some of these were
introduced previously by Plasser, Dreuw, and coworkers,4−7 and
can be defined also for correlated wave function models.4

Density matrices for the excited electron and the hole (eq A3),
constructed from the amplitudes x and y, are introduced in
Appendix A. In position space, these density matrices
correspond to (unrelaxed) difference densities Δρelec(r) and
Δρhole(r), which together afford the difference density with
respect to the ground state:

r r r( ) ( ) ( )elec hole= + (13)

From the density matrices corresponding to Δρelec and Δρhole,
expectation values of relec and rhole can be evaluated as discussed
in Appendix A.

Invariant measures of electron−hole separation and exciton
size are obtained from expectation values of the particle and hole
coordinates. For example, we define2

d dr r r r( ) ( )e h elec hole= [ ± ]±
(14)

More succinctly, this is

d r re h elec hole= ±± (15)

where

x x dr r( )elec elec= (16)

is the x component of relec , for example. The quantity de h is the
distance between the centroids of Δρelec(r) and Δρhole(r), or in
other words, the norm of the expectation value of the intracule
coordinate relec−rhole.85 It is the same quantity introduced in eq
1, and we henceforth omit the superscript and define

d de h e h (17)

The quantity de h
+ in eq 15 is the expectation value of the

extracule coordinate, relec + rhole.
85 The intracule and extracule

coordinates have sometimes been taken to be quasiparticle
coordinates for excitons in conjugated polymers,86−88 but the
extracule coordinate will not concern us here.

As elaborated in ref 2, the quantity de‑h is essentially the same
as a metric called “DCT”,

13 which is widely used to analyze TD-
DFT calculations13−16,21,42−50 but was introduced in a manner
that obscures its connection to the particle and hole density
matrices. As such, we prefer the straightforward definition in eq
15 and the intuitive nomenclature of “de‑h”.

2 More complicated
extensions of DCT have been suggested,16 though the need for
them is unclear to us.

Both Δr and de‑h are intended to measure electron−hole
separation but only the latter is invariant to unitary trans-
formations of the MOs. Like Δr, however, de‑h vanishes in any
centrosymmetric system and this may cause interpretative
problems, e.g., for symmetric or near-symmetric arrangements
of molecular chromophores.41 (The change in dipole moment is
proportional to de‑h and also vanishes for centrosymmetric
charge-resonance states, even when the forward and reverse CT
contributions are individually large.) To circumvent this
limitation, the quantity Δσ was added to Δr (eq 10) to indicate
size disparity between the donor and acceptor orbitals. Invariant
metrics along the same lines are

r r r r( )elec elec elec elec elec
1/2= · · (18a)

r r r r( )hole hole hole hole hole
1/2= · · (18b)

These are the root-mean-square (RMS) sizes of the excited
electron and the hole, respectively.2,6,7

Two other quantities worth mentioning are the “H-index” and
the “t-index” introduced by Ciofini and coworkers.13,14 The
former is essentially (σelec + σhole)/2 but restricted to a one-
dimensional donor−acceptor coordinate,13,14,42,43 while t =DCT
−H.13 These quantities will not be addressed directly in the
present work, as they do not appear to provide new information
beyond what is obtainable using the readily interpretable
expectation values defined above, combined in various ways.

To that end, results presented below suggest that the charge-
displacement metric

d dCD1 e h hole elec= + | | (19)

is a reasonable surrogate for Γ (eq 10) in some instances, yet one
that is based on rigorous expectation values and independent of
representation. The first term in eq 19 (de‑h) can be seen as a
representation-invariant alternative to Δr, while |σhole −σelec|
encodes any size disparity between the electron and the hole. In
previous work,1,2 it was speculated that the quantity

d d
1
2

( )CD2 e h hole elec= +
(20)

might provide a useful alternative to the aforementioned t =DCT
− H, although no data were provided. The quantity
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d d dCD3 e h exc= + (21)

was also suggested,1,2 where

d r rexc elec hole
2 1/2= (22)

is the RMS exciton size. The metrics dCD1, dCD2 and dCD3 are
explored for the first time in the present work and dCD1 will prove
to be particularly useful as an invariant replacement for Γ.

Other invariant CT metrics based upon particle and hole
densities have been introduced by Etienne et al.51−54 These
include a charge-overlap index (ϕS),

51 defined as

dr r r( ) ( )S
1

elec hole
1/2= [ ] (23)

where dr r r(1/2) ( ) ( )elec hole= [ ] is a normalizing
denominator.51 Evaluation of ϕS requires numerical integration
over a real-space grid and for that reason it is not considered
here.

In contrast, dCD1, dexc, de‑h, and other expectation values are no
more expensive to compute than Δr or Δσ, as they require the
same TD-DFT amplitudes and one-electron integrals. They are
even less expensive to calculate than Λ, which requires a
quadratic number of numerical quadrature steps in order to
evaluate the integrals Oia.

3. COMPUTATIONAL METHODS
The metrics introduced in Section 2.2 have been implemented
in a locally modified version of the Q-Chem program.89

Invariant metrics (Section 2.3) were evaluated using Q-
Chem’s implementation of the libwfa library.90 Orbital
isosurface plots were rendered using IQmol91 and VMD,92 with
isoprobability contour values computed using the OpenCub-
Man program.93

3.1. Numerics. Integrals Oia (eq 6) were evaluated by
numerical quadrature using a single-center Euler-MacLaurin-
Lebedev (EML) grid94 withNr = 300 radial points andNΩ = 302
angular points per atom, except in the calculations reported in
Section 4.1 where extremely diffuse basis functions were
employed. There, a denser grid (Nr = 400, NΩ = 434) was
used to compute the Oia. Either grid is considerably denser than
those that are typically used to integrate the exchange-
correlation functional.95 For the latter purpose, the SG-1
quadrature grid96 was used except in Sections 4.1 and 4.4 where
the SG-3 grid95 was used instead. For most calculations, the
integral drop tolerance was set at τints = 10−12 Eh and the shell-
pair drop tolerance was set at τshlpr = 10−12 a.u., although in
Sections 4.1 and 4.4 the tighter values τints = 10−14Eh and τshlpr =
10−16 a.u. were used instead. (See ref 97 for a discussion of
appropriate numerical thresholds for diffuse basis functions.)
The self-consistent field (SCF) convergence criterion was set to
τSCF = 10−8 Eh in the norm of the orbital gradient and eq 2 was
considered to be converged when the maximum element of the
residual vector fell below τCIS = 10−6 Eh.
3.2. Choice of Orbitals. In introducing the various CT

metrics of Section 2.2, it was not explicitly stated how the MOs
{ψi} and {ψa} are to be defined, and we will consider several
(seemingly reasonable) choices. The most obvious choice is to
use the CMOs that diagonalize the Fock matrix and have well-
defined one-electron energy levels. An opposite limit is to use
MOs that are localized in space rather than energy. For that
purpose, we will consider Boys-localized MOs,98 computed
using the iterative algorithm from ref 99. We have occasionally
noticed that the resulting Boys orbitals can be sensitive to the

initial set of orbitals used to seed the algorithm, especially in the
highly diffuse basis sets that are considered in Section 4.1. For
consistency, in all cases involving Boys orbitals the initial guess
for the SCF procedure consists of a superposition of atomic
densities generated in situ, using the target density functional
and basis set.

The NTO representation (Appendix B) is now widely used
for interpretative purposes.2 NTOs are the best one-particle
orbitals in the well-defined sense of minimizing configuration
mixing by reducing the transition density to a minimal number
of nonvanishing amplitudes, λi (i = 1, . . . , nocc).

2 Although
sometimes defined using singular value decomposition of
x,51,100−103 a more general definition when y 0 is that the
NTOs diagonalize both ΔPelec and ΔPhole. For future reference,
note that the particle and hole densities in the NTO basis are

r r( ) ( )
i

n

i ielec
1

2 elec 2
occ

= | |
= (24a)

r r( ) ( )
i

n

i ihole
1

2 hole 2
occ

= | |
= (24b)

where the orbitals i
elec are eigenfunctions of ΔPelec (particle

NTOs), with eigenvalues λi
2, and the functions i

hole are
eigenfunctions of ΔPhole (hole NTOs), with eigenvalues −λi

2.81

In both eqs 24a and 24b, the number of nonzero eigenvalues is
no larger than nocc, the number of occupied MOs.2 (See
Appendix B.)

It has been suggested that Δr correlates with DCT in the NTO
basis,17 although reasonable correlation is also observed using
CMOs.57 For visualization purposes, one typically examines
only the occupied/virtual NTO pair having the largest
amplitude, namely, 1

hole and 1
elec (assuming that the

eigenvalues are ordered according to λ1
2 ≥ λ2

2 ≥ λ2
3 ···). However,

in present work we retain all of the NTOs so that the
transformation from CMOs to NTOs is unitary, without loss of
information. Changes in Λ, Γ, or other metrics from one
representation to another are thus inherent to the definitions of
these quantities and are not any kind of numerical artifact or
approximation.

4. RESULTS AND DISCUSSION
In the following discussion, we will present several examples that
reveal how the representation dependence of metrics such as Λ,
Γ, Δr, and Δσ negatively impacts their use as measures of CT
character and/or exciton size. We first consider a catastrophic
example (Section 4.1) where diffuse basis functions lead to
nonsensical results for a compact valence transition. In Section
4.2, we consider how different choices for the MOs impact the
use of Λ and Γ as metrics for assessing CT character, in the sense
that was originally envisaged by Tozer and coworkers9 and by
Guido et al.10,11 In Section 4.3, we consider several examples
that cannot be reduced to a single NTO pair (because λ2

2 ≫ 0),
which is not uncommon in conjugated polymers. These
examples demonstrate that Δr and Γ may lose their simple
physical interpretation in such cases. Finally, Section 4.4
considers a set of CT complexes in which the S1 state is well
described by electron transfer from the highest occupied MO
(HOMO) of a donor molecule into the lowest unoccupied MO
(LUMO) of its partner. These examples highlight that ΓNTO
does have intuitive and interpretative value in this idealized case.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01085
J. Chem. Theory Comput. 2024, 20, 9446−9463

9449

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4.1. Catastrophic Example. To illustrate how badly things
can go awry when orbital invariance is sacrificed, we begin with
an example of the low-lying excited states of a dipeptide that has
been used in previous tests of Λ and Γ.9,11 Guido et al.11 noted
that the CMO and NTO representations afford different values
of Δr and Γ for this system, but did not pursue this observation
in detail. We computed excited states at the TD-CAM-B3LYP/
6-31(n+,n+)G* level, meaning that n sets of diffuse functions are
added to all atoms, starting from 6-31G*.104,105 Beyond 6-31+
+G* (n = 1), diffuse functions are added in geometric
progression, scaling the exponents by successive factors of
(3.32)−1.104 Due to the ultradiffuse nature of these basis sets,
tighter thresholds and denser quadrature grids are used for these
calculations, as described in Section 3.1.

Principal NTOs for the S0 → S1 and S0 → S3 excitations of this
dipeptide are depicted in Figure 1. The S1 and S2 states both

have nπ* character, involving different carbonyl groups, but are
otherwise qualitatively similar to one another so only one of
them is considered. The S0 → S3 transition involves a Rydberg
state. Each of these transitions is well-described by a single
eigenvalue of ΔPelec, with λ1

2 > 0.94. For n > 2 sets of diffuse
functions, the excitation energies change by ≤ 0.001 eV (Table
1) and additional diffuse functions also have vanishingly little
impact on the nature of the NTOs, as shown in the side-by-side
comparison of 6-31++G* and 6-31(9+,9+)G* results that
appears in Figure S1. However, several of the CT metrics

continue to change their values as additional diffuse basis
functions are added.

4.1.1. CMO and Boys Representations. Numerical values of
Δr, Δσ and Γ are listed in Table 1, up to n = 9 sets of diffuse
functions, in both the CMO and the Boys-localized
representations. (See Table S2 for the Λ metric.) In the CMO
representation, the value of Γ continues to grow as additional
diffuse shells are added, driven mostly by growth in the value of
Δσ and reaching ΓCMO = 13.5 Å for the S1 state and ΓCMO = 24.9
Å for S3, for n = 9 sets of diffuse functions.

We first discuss the results in the CMO representation.
Depending on basis set, the dipeptide in question has at most
two (very slightly) bound virtual orbitals, with orbital energies
εLUMO = −0.15 eV and εLUMO+1 = −4.4 × 10−5 eV at the CAM-
B3LYP/6-31(9+,9+)G* level, whereas the 6-31G* and 6-31+
+G* basis sets do not afford any bound virtual orbitals at all.
Even the Rydberg state S3 (Figure 1b) is relatively compact as
compared to these unbound CMOs, which requires significant
configuration mixing among spatially diffuse basis functions in
order to generate the target state. The result is large values of σia
when εa > 0, with mixing that grows more pronounced as
additional diffuse shells are added. As evidence, in the 6-
31(9+,9+)G* basis set the largest CMO transition amplitude for
the S0 → S1 excitation represents only ∼25% of the transition
density (|xia|2 = 0.255), and for the S0 → S3 transition
|xHOMO,LUMO|2 = 0.364. In these cases, y 10 3 so TDA
results are quite similar.

In the Boys-localized representation, these metrics behave
somewhat similarly for S0 → S1 although their numerical values
are certainly different. For S0 → S3, however, Boys increases
dramatically as the basis set becomes more diffuse, reaching
ΓBoys = 516 Å for n = 9. As compared to ΓCMO, consistently larger
values of ΓBoys are driven by the fact that (Δr)Boys also becomes
very large, e.g., (Δr)Boys = 228 Å for n = 9 as compared to
(Δr)CMO = 5 Å. These outrageously large values in the Boys-
localized representation prompt us to remind the reader that this
is the same S0 → S3 state that is visualized in Figure 1b for n = 1,
and (with little difference) in Figure S1d for n = 9. Similar
artifacts are observed in the 6-31G(n+)G* basis set, e.g., ΓBoys =
413 Å for n = 9 (Table S3).

Boys localization is most commonly applied to the occupied
MOs but the algorithm is perfectly well-defined for the virtual
space and we have used it to localize both the occupied and
(separately) the virtual MOs. In the latter case, the unbound and
spatially diffuse nature of the canonical virtual orbitals leads to

Figure 1. Principal NTO pairs for (a) S S0 1 excitation and (b)
S S0 3 excitation of a dipeptide, computed at the TD-CAM-B3LYP/
6-31++G* level. Isosurfaces are plotted using a contour value of 0.02
a0

3/2 that encapsulates at least 94% of 2| | in each case. For both
transitions, the largest eigenvalue (λ1

2) of ΔPelec is indicated.

Table 1. CT Metrics for Transitions of a Dipeptide, Computed at the TD-CAM-B3LYP/6-31(n+,n+)G* Level

n nS S ( )0 1 * S S (Rydberg)0 3

Δr (Å) Δσ (Å) Γ (Å) Δr (Å) Δσ (Å) Γ (Å)

ΔE (eV) CMO Boys CMO Boys CMO Boys ΔE (eV) CMO Boys CMO Boys CMO Boys

0 5.796 1.2 3.7 0.4 0.5 1.6 4.3 7.189 2.17 5.06 0.11 0.33 2.28 5.39
1 5.828 1.5 4.5 2.2 1.1 3.6 5.6 6.258 3.49 5.86 1.65 1.86 5.14 7.73
2 5.813 1.8 3.6 4.2 1.6 6.0 5.1 6.236 4.04 9.18 3.80 4.29 7.84 13.47
3 5.812 2.3 6.9 6.2 3.7 8.5 10.6 6.236 4.48 13.58 6.24 9.11 10.72 22.69
4 5.812 2.3 6.1 7.2 3.5 9.5 9.7 6.236 4.88 17.18 8.22 14.10 13.11 31.28
5 5.812 2.3 5.3 7.3 2.8 9.6 8.1 6.236 4.53 21.71 10.24 20.35 14.78 42.06
6 5.812 2.6 5.9 8.1 3.3 10.7 9.2 6.236 5.20 26.99 12.09 26.84 17.29 53.63
7 5.812 2.3 5.9 8.7 3.8 10.9 9.7 6.236 5.17 34.51 13.97 43.12 19.14 77.64
8 5.812 2.4 7.2 9.0 6.2 11.3 13.4 6.236 5.01 36.02 15.49 53.08 20.50 89.10
9 5.812 2.3 6.8 11.2 5.6 13.5 12.5 6.236 5.22 228.29 19.64 287.90 24.87 516.19
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Boys orbitals that are extremely diffuse in a few cases. For
example, the Rydberg state S3 primarily involves a pair of
excitations (with opposite phase) into a single ultradiffuse virtual
orbital, such that R (Boys) 366ia Å and (Boys) 462ia Å
for both of the amplitudes in question. In contrast, the relatively
compact S0 → S1 excitation (Figure 1a) involves amplitudes for
which (Boys) 5ia Å, which is actually smaller than the
corresponding values for S0 → S1 in the CMO basis. The latter
range from σia(CMO) = 7.4 Å to σia(CMO) = 13.5 Å.

The most diffuse exponent in the 6-31(9+,9+)G* basis set is
a2.44 10 6

0
2× , corresponding to a half-width at half-

maximum of 533 Å.106 This means that much of the probability
density for the aforementioned ultradiffuse Boys orbitals lies
near the edges of the basis set, which may impair our ability to
numerically integrate the functions in question even though we
have used dense grids for these calculations, as described in
Section 3.1. However, there is good consistency in (Δr)Boys and
(Δσ)Boys up to n = 8 (Table 1), which might be considered more
reliable. Even for n = 8, the S S0 3 excitation has significant
contributions from amplitudes xiawith R (Boys) 49ia = Å and

(Boys) 76ia = Å. In a proper expectation value, such long-
distance charge separation would cancel in a coherent
superposition of i → a excitations with different phases, but
this does not occur in the Ria ia

2 and ia ia
2 terms that appear in

the definitions of Δr and Δσ.
It is worth emphasizing that we are not necessarily advocating

for the use of Boys orbitals in TD-DFT, although localized-
orbital implementations of TD-DFT have certainly been
reported65−72 and can be used to reduce cost for large
systems,65−69 for qualitative analysis,72 and to eliminate spurious
CT states.67,68 Similarly, we are not advocating for the use of
numerous diffuse shells when one or two is enough to obtain
converged properties. That said, Gaussian basis sets with up to n
= 8 diffuse shells,107−110 designed to approximate continuum
states, have been used to simulate molecular high-harmonic
generation induced by strong laser fields.108−115 (Such
calculations are typically performed using real-time Kohn−
Sham theory.1) Thus, applications of both localized orbitals and
ultradiffuse basis sets do exist in the TD-DFT literature.

More importantly, we believe that the metrics used to
characterize excited states should be robust and stable in any
basis set, so that the user need not worry that the wrong basis set
might afford nonsensical results. Orbital-invariant metrics might
be used to verify that amplitudes discarded in a low-cost,
localized-orbital implementation of TD-DFT make negligible
contributions to the transition density, and thus to expectation
values. This is only possible if the metrics are compatible with
orbital localization.

4.1.2. NTO Representation. In contrast to instabilities
observed in the CMO and Boys representations, values of Δr
and Δσ (and thus Γ as well) are quite stable in the NTO
representation, as shown in Table 2 for the problematic Rydberg
excitation. For n > 2 sets of diffuse functions, there is absolutely
no change in either (Δr)NTO = 1.71 Å or (Δσ)NTO = 0.98 Å. The
NTO basis also affords stable results for the S S0 1 transition
and for the Λ metric, as documented in Table S2.

This stability originates in the fact that both transitions are
dominated by a single pair of principal NTOs, with λ1

2 ≥ 0.99 for
S0 → S1 and λ1

2 ≥ 0.94 for S0 → S3, even when the basis set
contains numerous diffuse shells. If λ1

2 ≈ 1 then Δρelec(r) and
Δρhole(r) in eq 24 can be approximated using just a single term

involving r( )1
elec or r( )1

hole . Expressions for (Δr)NTO and
(Δσ)NTO reduce to a single term under these conditions, and use
of the NTO representation approximates an expectation value
that is stable with respect to additional diffuse shells.

Such stability is obviously desirable so it is worth noting that
exciton properties such as de‑h, dexc, dCD1, σhole, etc., which were
introduced in Section 2.3, are inherently stable because they are
formulated as expectation values. Results for a few of these
invariant metrics are shown in Table 2, confirming this stability.
Note also that these exciton properties are no more expensive to
compute than Δr or Δσ yet there is no ambiguity regarding
which representation is the best choice because proper
expectation values are invariant to unitary transformations of
the MOs.

Finally, it is worth noting that r d( )NTO e h (see Table 2).
For a transition that is dominated by a principal NTO pair, it
follows that the quantity (Δr)NTO does measure electron−hole
separation. The same cannot be said for (Δr)CMO or (Δr)Boys,
even if λ1

2 ≈ 1. Furthermore, we find that (Δσ)NTO is a good
approximation to elec hole| |, which makes sense in terms of
the definition of Δσ (eq 11) and implies that dNTO CD1 when
λ1
2 ≈ 1. This is clear in the data provided in Table 2, where

2.69NTO = Å as compared to d 2.72CD1 = Å. This provides a
rationale for the stability of NTO that was observed but not
explained in ref 11.

At the same time, this observation suggests that correspond-
ences between proper expectation values and the numerical
values of (Δr)NTO, (Δσ)NTO, and ΓNTO may degrade in cases
wheremore than one principal NTOpair is significant (i.e.,when
λ2
2 ≫ 0). Such cases will be examined in Section 4.3. Before that,

we consider the use of Γ and Λ for their original purpose:
detecting errors in TD-DFT excitation energies by correlating
those errors with a measure of CT character.
4.2. CT Diagnostics. The Λ metric (eq 4) and the Γ metric

(eq 10) have often been used to detect errors in TD-DFT
calculations.9−11,22−25,82 With few exceptions,63 it has been
tacitly assumed that Λ should be evaluated in the CMO basis.
The Γ metric was originally introduced with the same
assumption,10 although in that case it was quickly realized that
Δr (and thus Γ) is sensitive to diffuse functions for Rydberg
transitions.11 The use of NTOs was suggested as a means to
mitigate that dependence,11 and results in Section 4.1 explain
why.

Table 2. Exciton Parameters (in Å) for the S0 → S3 Rydberg
Transition of a Dipeptide, Computed at the TD-CAM-
B3LYP/6-31(n+,n+)G* Levela

n NTO Invariant

Δr Δσ de‑h σhole σelec dCD1

0 1.83 0.15 1.80 1.98 1.84 1.94
1 1.68 0.84 1.68 2.28 3.14 2.53
2 1.71 0.98 1.71 2.31 3.32 2.72
3 1.71 0.98 1.71 2.31 3.32 2.72
4 1.71 0.98 1.71 2.31 3.32 2.72
5 1.71 0.98 1.71 2.31 3.32 2.72
6 1.71 0.98 1.71 2.31 3.32 2.72
7 1.71 0.98 1.71 2.31 3.32 2.72
8 1.71 0.98 1.71 2.31 3.32 2.72
9 1.71 0.99 1.71 2.31 3.33 2.73

aSame S0 → S3 transition as in Table 1.
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In the present section, we examine the representation-
dependence of both Λ and Γ in the context of their use as CT
diagnostics. We use the data set assembled by Tozer and
coworkers for testingΛ;9,116 the same data set has also been used
to evaluate the diagnostic properties of Γ.10,11 (Geometries are
provided in the Supporting Information; see Tables S5 and S6
for the excitation energies.) This data set consists of 59 singlet
excited states including numerous 1n * and 1 * transitions of
two dipeptides and a tripeptide, the 1B u2 and 1B u3 states of
acenes up to hexacene, the 1Bu state of polyacetylenes
H(C2H2)nH up to n = 5, several excited states of N-
phenylpyrrole and 4-(N,N-dimethylamino)benzonitrile
(DMABN), and finally a variety of singlet excited states of N2,
CO, H2CO, and HCl. Benchmark excitation energies are taken
from ref 9 and used to determine errors that are plotted below as
functions of Λ or Γ. Following ref 9, we use the cc-pVTZ basis
set for all calculations in this section, except for the molecules
N2, CO, and H2CO that are responsible for all of the Rydberg
transitions in the data set. For these molecules, we use the
doubly augmented d-aug-cc-pVTZ basis set instead.117 For
brevity, we refer to these calculations as “TD-DFT/triple-ζ”. We
focus on the hybrid functionals B3LYP and PBE0 since errors
are much larger for semilocal functionals. (See Figure S3 for a
side-by-side comparison of TD-PBE and TD-PBE0 errors.)

4.2.1. Representation Dependence of Λ and Γ. Figure 2
plots TD-DFT errors as a function of Λ, computed using PBE0,
where the metric is evaluated using either CMOs or else Boys-
localized MOs. (See Figure 3 for TD-B3LYP errors versus
ΛCMO, which can be compared directly to analogous data plotted
in ref 9.) Data in Figure 2a demonstrate that ΛCMO correlates
reasonably well with errors in excitation energies. Localized
valence excitations have errors that are generally smaller than 0.5
eV in magnitude but may be positive or negative, and are
furthermore characterized by ΛCMO ≥ 0.3. In principle, this
critical value might be functional dependent although valence
excitations computed using TD-PBE are also characterized by
ΛCMO ≥ 0.3; see Figure S3b. Rydberg states have larger errors
and are characterized by smaller values of the metric, e.g., ΛCMO
< 0.3 for the TD-PBE0 data in Figure 2a. Finally, errors for CT
excitation energies grow larger as the metric CMO gets smaller.
The DMABNmolecule is a special case that is often classified as
a CT state, but whose excitation is relatively accurate even for a
global hybrid functional such as B3LYP.118 The explanation is
that the nominal CT state has a rather large value of CMO, due
to the molecule’s compact size, indicating that electron and hole
are not well separated.2,9,24

Because Λ is not invariant to unitary transformations, its
numerical value may change dramatically upon rotating the
orbitals. A vivid demonstration comes from using Boys-localized
orbitals; see Figure 2b. Nearly all transitions, including localized
valence excitations, exhibit rather small values of Boys, such that
the overall scale is quite compressed even while the theoretical
limits (0 ≤ ΛBoys ≤ 1) remain the same. In the Boys MO
representation, Λ provides no diagnostic ability whatsoever, as
the Rydberg and CT states have similar values of ΛBoys as
compared to localized excitations.

Figure 3 correlates Λ against errors in TD-B3LYP
calculations, comparing the CMO and NTO representations
within the same plot. For several of the CT states, ΛCMO is
numerically quite different from ΛNTO and this is highlighted for
a few of the CT transitions. A threshold value ΛCMO = 0.3,
suggested by Tozer and co-workers9 for calculations involving

hybrid functionals, works reasonably well in the CMO
representation but rotation into the NTO representation
moves a few of these transitions across the line. Furthermore,

Figure 2. Errors in vertical excitation energies for Tozer’s data set,9

computed at the TD-PBE0/triple-ζ level and plotted as a function of
the Λ metric, which is evaluated using either (a) the CMO
representation or (b) the Boys-localized MO representation. Data are
partitioned into localized, Rydberg, and CT excited states and the blue
shaded regions delineate where the absolute error is smaller than 0.5 eV.
In (a), the data point for the CT transition in the DMABN molecule is
indicated explicitly and a suggested threshold value (ΛCMO = 0.3) is also
indicated.

Figure 3. Errors in vertical excitation energies for Tozer’s data set,9

computed at the TD-B3LYP/triple-ζ level and plotted as a function of
either ΛCMO (open symbols) or else ΛNTO (filled symbols). The blue
shaded region delineates where the absolute error is smaller than 0.5 eV.
A threshold value ΛCMO = 0.3, suggested in ref 9 for hybrid functionals,
is indicated. Thin horizontal lines (in magenta) connect ΛCMO and
ΛNTO for the same transition in several cases.
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not all of the shifts between ΛCMO and ΛNTO are in the same
direction.

Errors are correlated against ΓCMO and ΓBoys in Figure 4, using
the same data set. As with ΛCMO, the metric ΓCMO does a

reasonably good job of separating the localized excitations from
the CT and Rydberg transitions, with errors in the CT
transitions that increase in rough proportion to the value of
ΓCMO. Here, the Boys-localized basis does not compress the data
in the same way that it does with Λ. Part of this difference may
stem from the fact that unlike Λ, which is bounded, Γ is not
bounded except by the basis-set size. In addition, Boys-localized
MOs need not (and typically do not) transform as irreducible
representations of the molecular point group, which means that
(Δr)Boys need not (and typically does not) vanish in the presence
of inversion symmetry. This increases the value of ΓBoys relative
to ΓCMO since (Δr)CMO = 0 in centrosymmetric molecules. In
any case, the transformation to Boys orbitals once again destroys
the utility of themetric, asΓBoys cannot separate the Rydberg and
CT transitions from the localized excitations.

Guido et al.11 suggest using ΓNTO rather than ΓCMO as the
metric, due to instabilities in (Δr)CMO for Rydberg excitations.
Figure 5 plots errors in TD-B3LYP excitation energies as a
function of both quantities. (They are plotted separately in
Figure S5. See Tables S7 and S8 for the data set.) Both
representations manage to separate localized excitations from
the others, yet the fact that the numerical value of Γ is sensitive
to the choice of MOs is problematic if one wants to interpret its
value as a quantitative measure of charge displacement, or a

“trust radius” for TD-DFT.11 The absolute difference |ΓCMO −
ΓNTO| averages 0.60 ± 0.76 Å but there are significant outliers,
and ΓCMO − ΓNTO does not have a consistent sign. For the
localized excitations, the largest difference is |ΓCMO − ΓNTO|=1.4
Å (for the tripeptide) while for the Rydberg and CT states the
largest differences are 3.25 Å (for a Rydberg state of H2CO) and
2.6 Å (for a * state of the tripeptide), respectively.

4.2.2. Invariant Metrics. In contrast, invariant metrics do not
depend on the choice of MOs and these are the only metrics that
can be interpreted as genuine physical properties of the excitonic
wave function. Perhaps the simplest such property is de‑h, the
mean electron−hole separation, but the present data set
contains centrosymmetric molecules for which d 0e h . Even
for molecules lacking inversion symmetry, typical values for
localized valence excitations are d 1.5e h Å, with most values
<1 Å, and this is not much different from values obtained for
Rydberg excitations (d 2e h < Å). This is readily apparent in
Figure 6a, which plots errors in Tozer’s data set versus de‑h.
Similarly, dexc cannot distinguish between valence excitations
and Rydberg or CT transitions as shown in Figure 6b.

Analogous plots of errors versus de‑h and dexc for other
functionals can be found elsewhere.119 These results indicate
that dexc cannot distinguish localized excitations from either
Rydberg or CT states, while de‑h cannot discriminate between
localized and Rydberg excitations. For these reasons, we
discount both de‑h and dexc as diagnostics for CT character.
Nevertheless, they remain physically interpretable measures of
electron−hole separation and exciton size, respectively.

More useful as diagnostics are themetrics dCD1, dCD2, and dCD3
that were defined in eqs 19−21, and especially dCD1. TD-DFT
errors are plotted against these quantities in Figure 7; see Tables
S9 and S10 for the numerical data. The dCD1 metric does the best
job of separating the localized excitations from the two other
types of transitions. The distribution of dCD1 values (Figure 7a)
closely resembles that of ΓNTO in Figure 5, and from these data
one might infer a trust radius of about 2 Å. Indeed, that is the
value put forward previously based on analysis of ΓNTO.

11

As compared to the error distribution versus de‑h (Figure 7a),
the additional term hole elec| | that is included in the definition
of dCD1 functions to separate the Rydberg states from the
localized excitations, because valence excitations are charac-
terized by similar sizes for the electron and the hole

Figure 4. Errors in vertical excitation energies for Tozer’s data set,9

computed at the TD-PBE0/triple-ζ level and plotted as a function of
(a) CMO or (b) Boys. Blue shaded regions delineate where the absolute
error is smaller than 0.5 eV.

Figure 5. Errors in vertical excitation energies for Tozer’s data set,9

computed at the TD-B3LYP/triple-ζ level and plotted as a function of
either ΓCMO (open symbols) or ΓNTO (filled symbols). The blue shaded
region delineates where the absolute error is smaller than 0.5 eV and the
data point for DMABN’s CT transition is indicated explicitly.
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( )elec hole whereas Rydberg states involve excitation from a
compact occupied MO into a relatively diffuse virtual MO
( )elec hole . Adding dexc to de‑h, which defines the quantity
dCD3 that was suggested in previous work (eq 21),1,2 does not
separate the localized excitations to nearly the same extent
(Figure 7c) because dexc does not separate the localized
excitations. Lastly, dCD2 (eq 20) exhibits both positive and
negative values and the CT states tend to have d 0CD2 > , driven
by relatively large values of de‑h. However, both localized and
Rydberg excitations exhibit negative values of dCD2 so this metric
does not discriminate between these two types of states.

4.3. Failure of the Single-NTO Approximation. In
Section 4.1 we saw that r d( )NTO e h and dNTO CD1
when λ1

2 ≈ 1. It follows that ( )NTO elec hole| | in that
case. In other words, these metrics approximate rigorous
expectation values if the transition in question is dominated
by a single eigenvalue of Pelec, and then only when the metrics
are evaluated in the NTO representation. The criterion λ1

2 ≈ 1 is
satisfied by many (though not all) of the transitions in the data
set used in Section 4.2, which has also been used elsewhere to
calibrate TD-DFT errors versus metrics such as Γ or Λ.9−11 The
distribution of errors versus ΓNTO (Figure 5) strongly resembles
the distribution versus dCD1 (Figure 7a) for the transitions in that
data set.

Although NTOs provide the most compact basis in which to
visualize an excitation, it cannot be assumed that an arbitrary
transition is dominated by a single pair of NTOs. From Tozer’s
data set that was used in Section 4.2, the 1B u3 state of the linear
acenes is a good example where there are two significant
eigenvalues of Pelec with comparable magnitudes. Since the
eigenvalues λi

2 are related directly to natural occupation
numbers,2,102 this indicates unresolvable multiconfigurational
character in the excited state.2 This phenomenon, which is also
known as excited-state entanglement,120 can occur even when
the ground state is comfortably single-reference and implies that
individual MOs alone are no longer sufficient to characterize the
excited state in question. This section will explore several such
examples, including linear acenes (Section 4.3.1), conjugated
polymers (Section 4.3.2), and an example with multiple
electronically coupled chromophore units (Section 4.3.3).

4.3.1. Linear Acenes. The 1B u2 (1La) and 1B u3 (1Lb) states of
linear acene molecules121 have attracted considerable interest
because 1Lb is accurately described by global hybrid functionals
such as B3LYP but 1La is not.83,122 The latter exhibits ionic
character that is not detected by standard metrics such as
ΛCMO.

63,83

For each of the acenes in Tozer’s data set (naphthalene
through hexacene), we find that 1La is well described by one
NTO pair but 1Lb requires two pairs. Representative results for
hexacene are shown in Figure 8, including principal NTOs and
the metrics ΓNTO and dCD1. For the 1La state with λ1

2 = 0.977,
dNTO CD1 to within 0.004 Å but the difference is more

substantial for the 1Lb state, where λ1
2 = 0.555. In the latter case,

ΓNTO=0.28 Å but dCD1 = 0.06 Å.

Figure 6. Errors in vertical excitation energies for Tozer’s data set,9

computed at the TD-B3LYP/triple-ζ level and plotted as a function of
the invariant measures (a) de‑h and (b) dexc. Blue shaded regions
delineate where the absolute error is smaller than 0.5 eV.

Figure 7. Errors in vertical excitation energies for Tozer’s data set,9 computed at the TD-B3LYP/triple-ζ level and plotted as a function of the invariant
measures (a) dCD1, (b) dCD2, and (c) dCD3. The vertical scale is the same in each panel but the horizontal scales differ. Blue shaded regions delineate
where the absolute error is smaller than 0.5 eV.
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Figure 9a correlates the difference ΓNTO − dCD1 with the value
of λ1

2, for a data set consisting of the lowest 30 singlet transitions
for each acene in the sequence from naphthalene to hexacene. A
cluster of transitions with λ1

2 ≈ 1 confirms that dNTO CD1
under these circumstances. However, there are numerous states

where λ1
2 deviates significantly from unity, indicating that two or

more NTO pairs are qualitatively important. (Note also that λ1
2

may exceed unity in full linear response theory; see the
discussion surrounding eq B5.) All of the geometries used to
generate Figure 9a are planar and centrosymmetric D( h2
symmetry), so (Δr)NTO = 0 = de‑h and

d ( )
D

NTO CD1 NTO elec hole
h2= | | (25)

As such, values d 0NTO CD1 reflect different estimates of
how the size of the hole compares to the size of the excited
electron, rather than electron−hole separation per se. Sometimes
( )NTO elec hole| | even when λ1

2 deviates significantly
from unity but the overall trend is that the difference ΓNTO −
dCD1 increases as λ1

2 gets smaller and additional NTOs
participate in the transition, or participate to a greater degree.

By constraining r( )NTO and de‑h to be zero, the symmetry of
these planar acenes limits the disparity between ΓNTO and dCD1.
To understand the effect of this constraint, we lift it by
examining a slightly distorted geometry for nonacene obtained
by small displacements of a few atoms at one end of the
molecule. The RMS displacement between this perturbed
geometry (with C1 symmetry), and a D h2 geometry optimized at
the ωB97X-D/6-31G* level, is only 0.14 Å in the standard
nuclear orientation.96 An overlay of the two geometries (Figure
S6) shows that they are essentially indistinguishable to the eye.
However, the reduced symmetry does allow de‑h to differ from
zero.

This rather benign distortion of nonacene’s geometry
exacerbates disparities between dCD1 and ΓNTO, as depicted in
Figure 9b for the lowest 30 singlet transitions of both the planar
D h2 and the distorted C1 geometries. For the D h2 structure, the
behavior as a function of λ1

2 resembles what was observed for
smaller acenes in their D h2 geometries, with |ΓNTO − dCD1| < 2.0
Å in all cases. However, r( )NTO is quite large for a few excited
states in the C1 geometry, e.g., ΓNTO(S19) = 9.96 Å, ΓNTO(S21) =
8.85 Å, and ΓNTO(S29) = 10.75 Å (see Table S11). Because the
actual electron−hole separation is much smaller (d 3e h < Å for
all 30 transitions), some of the differences ΓNTO − dCD1 are quite
large in the distorted geometry.

The largest such difference, ΓNTO − dCD1 = 8.9 Å, occurs for S0
→ S19 so we examine that transition in detail. The numerical
difference between dCD1 and NTO in this case is driven almost
entirely by the difference between de‑h and r( )NTO, values for
which are provided in Figure 10 alongside the principal NTOs.
The 1

hole
1
elec and 2

hole
2
elec excitations are charac-

terized by right-to-left and left-to-right CT, but their coherent
superposition (to form S0 → S19) does not displace much charge
at all, with d 0.13e h = Å. Because NTO is computed as an
incoherent average, it consists of a sum of two large R ia values
corresponding to the two basis states 1

hole
1
elec and

2
hole

2
elec. The result is (Δr)NTO = 9.45 Å. This example

dramatically illustrates the failure of incoherent averages as
compared to proper expectation values involving coherent
superpositions.

4.3.2. Poly(phenylenevinylene). Excitons in conjugated
polymers sometimes require two or more * orbitals with
different phases in order to describe the excited-state wave
function, analogous to the 1Lb state of the linear acenes (Figure
8b). Alternatively, exciton localization can create a situation in

Figure 8. Principal NTOs for (a) the S1 (1B u2 or 1La) state and (b) the
S4 (1B u3 or 1Lb) state of hexacene, computed at the TD-B3LYP/cc-
pVTZ level. Values for certain metrics are also shown.

Figure 9. Difference ΓNTO − dCD1 versus λ1
2 for the lowest 30 singlet

excited states of linear acene molecules. (a) Planar acenes from the
Tozer data set. (b) Nonacene, comparing results for a planar and a
slightly distorted geometry (RMSD = 0.14 Å). All calculations were
performed at the TD-B3LYP/cc-pVTZ level.
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which a single molecule effectively exhibits more than one
chromophore, which are then electronically coupled due to their
spatial proximity.2,87 Typically, that situation also leads to more
than one significant eigenvalue of ΔPelec.

2 Poly(p-phenyl-
enevinylene) or PPV chromophores exhibit these behaviors
and we next examine an isomer of (PPV)8 in which two of the
vinylene moieties are in the cis configuration while the others are
trans, which creates “kinks” in the geometry that can induce
excited-state localization. An all-trans isomer of (PPV)8 is
considered in the Supporting Information (Table S13 and
Figure S7) and exhibits many of the same features and trends,
demonstrating that the observations presented below are not
unique to the “bent” isomer.

Figure 11 depicts the principal NTO pairs for three low-
energy excitations in bent (PPV)8. Each transition requires more
than one pair of NTOs to reach at least 80% of the norm of the
transition density, i.e., so that λ1

2 + λ2
2 + ··· ≥ 0.8. For example, in

the S1 state the primary NTO pair captures only 61% of the
transition density and for S5, four NTO pairs are required to
reach 80%. In the latter case, one can identify two effective
chromophores within the (PPV)8 molecule, on the left side and
in the middle segment, whose localized excitations each require
a pair of NTOs to describe and which are electronically coupled.
Although this state is optically dark, the S1 state has a large

oscillator strength (see Table 3) so the need for multiple NTO
pairs affects bright and dark states alike.

Metrics for a few excited states are presented in Table 3 and
additional metrics can be found in Table S12. Both de‑h and dCD1
are rather small ( 0.5 Å) for each of the ten excited states in the
table, whereas Δr and Γ span a wider range. It is no longer clear
that r( )NTO is a good approximation to de‑h, nor is NTO a good
approximation to dCD1. This is especially evident for the S0 → S6
transition, which has a much larger RMS exciton size (dexc = 10.1
Å) as compared to the other excited states (where dexc = 4.2−5.5
Å). The S6 state represents a CT exciton whereas other excited
states are Frenkel excitons, meaning superpositions of localized
excitations.2,3,41 (Frenkel excitons can nevertheless span a large
distance in a conjugated molecule.) The distinction between
Frenkel and CT excitons is challenging to understand based on
NTOs alone but a few such excitons appear consistently in the
spectra of different PPVs, where they stand out as especially
large values of dexc (Tables S12 and S13). Frenkel and CT
excitons can be distinguished by plotting the transition density
T r r( , )hole elec , which facilitates visualization of correlations
between the positions of the excited electron (relec) and the
hole (rhole).

2,41,123

For the S6 state in Table 3, the larger value of dexc is also
reflected in a larger value 6.45NTO = Å, whereas 1.7NTO < Å
for all other states up to S10. This is partly driven by a larger value
of r( ) 3.65NTO = Å that is not reflected in d 0.1e h = Å. The
latter is consistent with an exciton in which both the electron
and the hole are delocalized over eight of the nine PPV units so
there is little net change in the center of charge. Values of

r( )CMO do not correlate at all with de‑h, nor does CMO correlate
with dCD1.

4.3.3. Triazine Benzobisthiadiazole Propeller. The “triazine
propeller” depicted in Figure 12 has been considered as a
platform for optoelectronic applications.124 Three benzobis-
thiadiazole (C6H2N4S2) substituents function as the blades of
the propeller, connected by a central triazine unit. The
substituents have strong dipole-allowed 1 * transitions but

Figure 10. Principal NTOs for the S0 → S19 transition of a slightly
distorted (C1) nonacene molecule, for which (Δr)NTO differs
substantially from de‑h. Calculations were performed at the TD-
B3LYP/cc-pVTZ level.

Figure 11. Principal NTOpairs for the (a) S0 → S1, (b) S0 → S5, and (c) S0 → S6 transitions of a bent isomer of (PPV)8. In each case, the NTOs needed
to recover 80% of the transition density are shown. Calculations were performed at the TD-CAM-B3LYP/6-31+G* level and orbitals are plotted using
an isocontour value of a0.02 0

3/2, which is sufficient to capture 90% of the densities r( )i
elec 2| | and r( )i

hole 2| | .
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excited states on different benzobisthiadiazole units are
excitonically coupled, leading to delocalization.

Each of the lowest ten singlet excited states requires at least
two NTO pairs to recover 80% of the transition density,
including the S0 → S4 transition depicted in Figure 12. This is a
good example of an excitation where the various NTOs exhibit
rather different delocalization patterns. Whereas r( )1

hole is

delocalized across the entire molecule, r( )1
elec is spread over

only two of the three propeller blades. The opposite is true for
the second principal NTO pair: r( )2

hole is supported on two

chromophores but r( )2
elec is delocalized across all three. Both

excitations have comparable weights.
Charge-separation metrics for S1 through S10 are provided in

Table 4 and additional metrics can be found in Table S14. For
none of theses states can it be quantitatively stated that r( )NTO
matches the value of de‑h, or that NTO matches dCD1. For the S4
and S5 states, the values are substantially different with NTO
being more than 3 Å larger than dCD1, driven by a similar
disparity between r( )NTO and de‑h. Both of these states are
characterized by (de)localization patterns similar to what is
observed for S4 in Figure 12, and the disparities between charge-
displacement measures represent the difference between an

incoherent metric (Δr or Γ) and a proper expectation value that
involves a coherent superposition of orbitals.
4.4. Electron−Hole Separation in CT Complexes.

Finally, we investigate some systems characterized by long-
range electron transfer where the donor and acceptor orbitals
have vanishingly little spatial overlap. It has been suggested that

r( )NTO correlates with DCT,
17 meaning de‑h, although

reasonable correlation is also observed using CMOs.57 Given
what we now understand from the analysis presented herein, we
can state that because long-range CT transitions are dominated
by a single NTO pair, we expect excellent correspondence
between r( )NTO and de‑h.

As a first example, we consider low-lying singlet excitations in
a set of 29 intermolecular CT dimers assembled from common
small-molecule electron donors (acenes, stilbenes, thiophenes,
etc.) and acceptors (tetracyanoquinone and its fluorinated
analogues).125 In calculations at the TD-B3LYP/6-31+G* level,
we find that the S0 → S1 and S0 → S2 transitions are dominated
by a single NTO pair in every single case, with λ1

2(S ) 0.991 and
λ1
2(S ) 0.942 . For S0 → S3, λ1

2 ≥ 0.90 except for a few cases
involving meso-diphenyl tetrathia[22]annulene[2,1,2,1]
(DPTTA) complexed with fluorinated tetracyanoquinone, for
which λ1

2 = 0.83. As a result, we expect that r( )NTO should
correlate reasonably well with de‑h for the S1, S2, and S3 states of
these dimers.

That expectation is borne out by plots of r( )NTO versus de‑h
in Figure 13. Deviations r d( )NTO e h are strictly positive and

Table 3. Descriptors for Excited States of (PPV)8 with Two cis Kinksa

Non-Invariant Metrics (Å) Invariant Metrics (Å)

CMO NTO

State ΔE (eV) Osc. Str. λ1
2 Δr Γ Δr Γ de‑h dCD1 dexc

S1 3.30 2.29 0.61 0.84 1.07 0.07 0.13 0.02 0.05 5.53
S2 3.55 1.52 0.47 2.99 4.60 0.11 0.20 0.03 0.05 5.41
S3 3.88 1.42 0.54 6.55 7.54 0.14 0.29 0.04 0.07 5.12
S4 4.17 0.16 0.34 3.77 5.24 0.26 0.40 0.04 0.06 5.12
S5 4.46 0.07 0.27 3.05 4.29 0.80 1.31 0.17 0.25 4.82
S6 4.56 0.00 0.49 3.92 5.37 3.65 6.45 0.12 0.23 10.14
S7 4.62 0.01 0.52 4.34 5.91 0.54 1.23 0.19 0.42 4.40
S8 4.64 0.03 0.46 6.92 9.02 1.44 1.69 0.32 0.52 5.36
S9 4.66 0.03 0.49 4.78 6.44 0.21 1.08 0.73 0.10 4.25
S10 4.67 0.01 0.41 4.81 7.08 0.29 0.83 0.09 0.20 4.30

aTD-CAM-B3LYP/6-31+G* level.

Figure 12. NTOs for the S0 → S4 transition of a triazine
benzobisthiadiazole propeller, computed at the TD-CAM-B3LYP/6-
31+G* level. Isosurfaces are plotted using a contour value of 0.02 a0

3/2

that encapsulates at least 94% of 2| | .

Table 4. Descriptors for Excited States of a Triazine
Benzobisthiadiazole Propeller.a

Metrics (Å)

State ΔE (eV) λ1
2 r( )NTO NTO de‑h dCD1

S1 2.595 0.65 0.15 0.75 0.06 0.52
S2 2.597 0.53 0.14 0.63 0.06 0.52
S3 2.718 0.33 0.16 0.73 0.00 0.45
S4 3.435 0.55 3.69 4.22 0.62 1.09
S5 3.480 0.66 4.93 5.83 1.93 2.61
S6 3.481 0.68 2.81 3.47 2.11 2.93
S7 3.568 0.72 2.84 3.57 1.94 2.75
S8 3.569 0.73 3.33 4.18 1.96 2.78
S9 3.592 0.66 0.94 1.42 0.52 0.96
S10 3.909 0.50 0.25 0.64 0.01 0.46

aTD-CAM-B3LYP/6-31+G* level.
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the average deviation is no larger than 0.06 Å for any of the these
excited states. Despite this strong correspondence, r( )NTO
remains numerically distinct from de‑h. It is clear from from the
S1 data in Figure 13a that the difference is not some systematic
error, despite the fact that λ1

2 ≥ 0.99 in these cases. The formula
for Δr (eq 9), which involves squaring the amplitudes κia
separately from the quantity R ia that is to be averaged, is
still not an exact expectation value even in these cases. These
calculations were carried out with tight thresholds and dense
grids as described in Section 3.1, to answer any question of
whether residual differences between r( )NTO and de‑h might be
numerical artifacts. In any case, the correlation between

r( )NTO and de‑h is much better than the correlation between
r( )CMO and de‑h.
Our last example involves long-range intramolecular CT in a

sequence of α-N(CH3)2-ω-NO2(phenylene)n push−pull chro-
mophores, n = 1−8. The principal NTO pair for the largest of
these molecules is depicted in Figure 14a and accounts for the
entirety of the density change (λ1

2 = 1.000), so that r( )NTO and
de‑h are essentially identical. One can also watch dexc converge to
de‑h as the polymer’s length increases (Figure 14b). This
convergence is driven by vanishing correlations (as a function of
increasing n) between r( )1

hole and r( )1
elec , which are localized

on the dimethylamino donor moiety and the nitro acceptor
moiety, respectively. Notably, the S S0 1 excitation energy has
essentially converged (as a function of length) by n = 8, which is
consistent with convergence of dexc to de‑h.

5. CONCLUSIONS
The present work points out serious flaws in the definition of
several commonly used CT diagnostics for TD-DFT calcu-
lations. These metrics are not independent of representation so
cannot truly be said to measure electron−hole separation or
exciton size. Proper measures ought to be invariant with respect
to rotations of the occupied MOs and (separately) the virtual
MOs, which is guaranteed for genuine expectation values but not
for incoherent averages over excitation amplitudes. Metrics that
fail to preserve orbital invariance can become unstable in diffuse
basis sets, even when changes in the basis set do not affect
excitation energies or properties. Lack of orbital invariance also
introduces an arbitrary decision regarding which representation
should be used to evaluate the metric in question. Different
representations may afford dramatically different numerical

values for putative CT diagnostics, leading to ambiguity in what
is or is not classified as a CT excitation.

For small molecules, transition densities are often (but
certainly not always) dominated by a principal pair of NTOs;
long-range electron-transfer excitations sometimes fall into this
category. In these special cases, the noninvariant metrics Δr, Δσ,
and Γ are stable and interpretable in terms of expectation values,
when evaluated in the NTO representation. Under these
circumstances, r( )NTO does measure electron−hole separation
and

r( ) ( )NTO NTO NTO= + (26)

Figure 13. Correlation between Δr (in either the canonical or the NTO representation) and the invariant metric de‑h, for excitation from S0 to (a) S1,
(b) S2, or (c) S3, for a set of 29 intermolecular CT complexes125 described at the TD-B3LYP/6-31+G* level. The length scale is different in each panel;
see Figure S8 for a version in which all three panels are plotted on the same scale.

Figure 14. (a) Principal NTO pair for the S0 → S1 transition of α-
N(CH3)2-ω-NO2(phenylene)8, with isosurfaces that encapsulate 80%
of 2| | . (b) Descriptors for the S0 → S1 transition in a sequence of α-
N(CH3)2-ω-NO2(phenylene)n chromophores. In (b), distances

r( )NTO, de‑h, and dexc should be read from the scale at left whereas
excitation energies ΔE should be read from the scale on the right.
Calculations were performed at the TD-B3LYP/6-31+G* level on
geometries that were optimized at the ωB97X-D/6-31G* level.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01085
J. Chem. Theory Comput. 2024, 20, 9446−9463

9458

https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig13&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c01085/suppl_file/ct4c01085_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01085?fig=fig14&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


measures overall charge displacement, including any size
disparity between the excited electron and the hole. However,
it is easy to find molecules where many of the excited states
cannot be described by a single pair of NTOs. These cases,
involving multiconfigurational character or excited-state en-
tanglement, cannot be properly described by incoherent
superpositions of orbitals, even in the NTO basis. As a result,
interpretability of the various terms in eq 26 is lost. Examples
include linear acenes, conjugated polymers, and systems with
multiple electronically coupled chromophores.

Fortunately, invariant metrics such as de‑h (mean electron−
hole separation), dexc (RMS exciton size), and dCD1 (charge
displacement) are no more complicated or expensive to evaluate
as compared to the aforementioned noninvariant metrics.
Invariant metrics never lose their physical interpretability, are
stable with respect to basis-set expansion, and do not require
arbitrary choices regarding representation. For that reason, we
suggest that proper expectation values should be used
exclusively when characterizing excited-state wave functions
and transition densities.

■ APPENDIX A: EXPECTATION VALUES
In practice, the libwfa code90 that is used to evaluate de‑h,
σelec, and σhole relies upon treating the one-electron transition
density matrix as a wave function in order to compute
expectation values, as described elsewhere.6,119 In order to
motivate the introduction of NTOs in Appendix B, however, it is
useful to consider the construction of density matrices for the
excited electron ( Pelec) and for the hole ( Phole). These are the
matrix representations of the real-space quantities r( )elec and

r( )hole introduced in eq 1.
Consider an arbitrary operator A. Its expectation value in a

TD-DFT calculation is expressed as a change relative to the
ground-state expectation value (A0),

A A A0= + (A1)

The change in A upon excitation is computed according to

A A P Ztr ( )= [ + ] (A2)

where

P P Pelec hole= + (A3)

is the unrelaxed difference density matrix and Z is the
contribution from orbital relaxation.49,75,126 The quantity

P Z+ in eq A2 is called the relaxed difference density
matrix.49

Matrix elements of the unrelaxed difference density matrix
P( ) are given by

x x y yP( ) ( )ab
i

ia ib ia ibelec = +
(A4a)

x x y yP( ) ( )ij
a

ia ja ia jahole = +
(A4b)

when expressed in any orthonormal basis that preserves
occupied/virtual separation.2,127 Elsewhere, the unrelaxed
density matrices defined in eq A4 have been called attachment
( Pelec) and detachment ( Phole) density matrices,2,128 with
corresponding attachment and detachment densities r( )elec
and r( )hole . In the present work, the orbital relaxation or Z-
vector contribution is omitted, in which case there is no

distinction between attachment/detachment and particle/hole
quantities. More generally, the particle density matrix would be
constructed from those eigenvectors of P Z+ (“natural
difference orbitals”) that have positive eigenvalues, while the
hole matrix would be constructed from eigenvectors corre-
sponding to negative eigenvalues.2

Finally, the unrelaxed contribution to ΔA can be expressed in
terms of particle and hole contributions based on eq A3:

A AA Ptr ( ) ( ) ( )elec hole[ ] = + (A5)

These two contributions are

A xAx yAy( ) tr( ) tr( )elec = +† † (A6a)

A x Ax y Ay( ) tr( ) tr( )hole = † † (A6b)

■ APPENDIX B: NATURAL TRANSITION ORBITALS
A thorough discussion of NTOs can be found in ref 2 and is
summarized here. By definition, these are the orbitals that
diagonalize Pelec and Phole in eq A4.2,51 Specifically, NTOs for
the hole ( i

hole) are defined by a unitary transformation Uo of the
occupiedMOs that diagonalizes the negative semidefinite matrix

Phole. We express this transformation as81

U P U( )

0 0
0 0

0
0 0 n

o hole o

1
2

2
2

2
occ

2

=†

i

k

jjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzz

µ

µ

µ
Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(B1)

This notation for the eigenvalues reflects the fact that each λi is a
singular value of the coefficient matrix x, if y 0= as in the TDA
(see below). The values λi

2 are connected to the natural
occupation numbers of the excited-state density matrix.2,102

NTOs for the excited electron ( i
elec) are defined by a unitary

transformation Uv of the virtual MOs that diagonalizes the
positive semidefinite matrix Pelec. The values λ1

2 ≥ λ2
2 ≥ λ3

2 ≥ ···
in eq B1 are precisely the nonzero eigenvalues of Pelec, so the
transformation of the virtual space can be expressed as81

U P U 0
0 0

( )v elec v
2

=† i
k
jjj y

{
zzz (B2)

This illustrates that the rank of Pelec is equal to the number of
occupied MOs (nocc). The NTOs occur in corresponding
electron/hole pairs whose contribution to the norm of the
transition density is λi

2, hence the expressions for r( )elec and
r( )hole in eq A4.

Note that

x yPtr( ) ( )
i

n

i
ia

ia iaelec
2 2 2

occ

= = | | + | |
(B3)

and that

P Ptr( ) tr( )elec hole= (B4)

The second equality in eq B3 differs from the normalization
condition in eq 7, with the effect that tr P( )elec may differ from
unity. Within the TDA,

Ptr( ) 1elec
TDA= (B5)
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In our experience, y 10 3 for small molecules so deviations
from eq B5 in full linear response are typically small. (The yia
amplitudes are somewhat larger for larger acenes.) Equation B4
holds in any case.

Within the TDA, P x xelec = † and P xxhole = †. In that
case, it follows that Uo and Uv consist of the left and right singular
values of x, respectively. NTOs within the TDA can thus be
obtained via singular value decomposition,2

( )U xU 0
0 0o v

TDA=†
(B6)

consistent with earlier definitions that considered the TDA case
only.100−103 The more general definitions in eqs B1 and B2 still
hold, however.
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