Supporting Information

Importance of Orbital Invariance in Quantifying Electron–Hole Separation and Exciton Size

John M. Herbert^{*} and Aniket Mandal

Department of Chemistry & Biochemistry The Ohio State University, Columbus, Ohio 43210 USA

September 19, 2024

References	$\mathbf{S3}$
S1 Catastrophic Example: Dipeptide with Diffuse Basis Sets	$\mathbf{S4}$
S2 CT Diagnostics: Λ and Γ in Different Representations S2.1 Numerical Data for the Tozer Set S2.2 Error Correlation Plots	S6 S6 512
S3 Cases with Multiple NTO Pairs S S3.1 Linear Acenes S S3.2 Poly(p-Phenylene Vinylene) S S3.3 Triazine Benzobisthiadiazole Propeller S	516 516 518 520
S4 Charge-Transfer Complexes S	521

List of Figures

$\mathbf{S1}$	Principle NTO pairs for (a) $S_0 \rightarrow S_1$ excitation and (b) $S_0 \rightarrow S_3$ excitation of a dipeptide,
	computed at the CAM-B3LYP/6-31++G [*] level, in comparison to the (c) $S_0 \rightarrow S_1$ excitation
	and (d) $S_0 \rightarrow S_3$ computed at the CAM-B3LYP/6-31(9+,9+)G* level. Isocontours encapsu-
	late 90% of $ \psi ^2$ in each case, and results in the two basis sets are nearly indistinguishable.

^{*}herbert@chemistry.ohio-state.edu

S2	Errors in vertical excitation energies computed at the TD-B3LYP/triple- ζ level, plotted as a function of the A metric in both the (a) CMO (b) NTO and (c) Boys-localized representations	
	The data set is taken from Ref. 1, partitioned into localized. Rydberg, and CT excited states.	
	The basis set is d-aug-cc-pVTZ for N_2 . CO, and H_2 CO and cc-pVTZ for other molecules.	
	Blue shaded regions delineate where the absolute error is smaller than 0.5 eV. In (a), the data	
	point for the CT transition in the DMABN molecule is indicated explicitly and a suggested	
	threshold value ($\Lambda_{\rm CMO} = 0.3$) is indicated as well.	S12
$\mathbf{S3}$	Errors in vertical excitation energies computed at the TD-PBE/or TD-PBE0/triple- ζ level	
	(as indicated), plotted as a function of the Λ metric in both the CMO and Boys MO repre-	
	sentations. The data set is taken from Ref. 1, partitioned into localized, Rydberg, and CT	
	excited states. The basis set is d-aug-cc-pVTZ for N ₂ , CO, and H ₂ CO and cc-pVTZ for other	
	molecules. Blue shaded regions delineate where the absolute error is smaller than 0.5 eV; note	
	that the vertical scale is much different for TD-PBE, indicative of much larger errors for CT	
	states. Data in (a) and (c) are the same as those in Fig. 2.	S13
$\mathbf{S4}$	Errors in vertical excitation energies computed at the TD-PBE/or TD-PBE0/triple- ζ level	
	(as indicated), plotted as a function of the Γ metric in both the CMO and Boys MO repre-	
	sentations. The data set is taken from Ref. 1, partitioned into localized, Rydberg, and CT	
	excited states. The basis set is d-aug-cc-pVTZ for N_2 , CO, and H ₂ CO and cc-pVTZ for other	
	molecules. (Note that the scale for I' is slightly larger for the TD-PBE plots.) Blue shaded	
	regions delineate where the absolute error is smaller than 0.5 eV. Data in (a) and (c) are the	Q14
QE	Same as those in Fig. 4.	514
55	Errors in vertical excitation energies computed at the 1D-DDL11/triple- ζ level, pictud as a function of (a) Γ_{exc} or (b) Γ_{exc} . The data set is from Ref. 1 and the blue shaded region	
	delineates where the absolute error is smaller than 0.5 eV . These are the same data as in Fig. 5.	S15
S6	Overlay of the planar and distorted structures of ponacene from two different viewpoints	510
	with one structure shown in opaque red and the other in translucent gray. One of the struc-	
	tures is planar (D_{2h} symmetry, optimized at the ω B97X-D/6-31G* level) while the other has	
	C_1 symmetry. However, the RMS deviation between the two geometries is only 0.1387 Å	
	when evaluated in the standard nuclear orientation, ² <i>i.e.</i> , the principal axes of nuclear charge	
	coordinate system.	S16
S7	Principal NTO pairs for the $S_0 \rightarrow S_4$ transition of all-trans (PPV) ₆ , computed at the TD-	
	CAM-B3LYP/6-31+G [*] and plotted using an isocontour value of 0.02 $a_0^{-3/2}$. Metrics for this	
	state can be found in Table S13.	S19
S 8	Correlation between Δr (in either the canonical or the NTO representation) and the invariant	
	metric d_{e-h} , for excitation from S ₀ to (a) S ₁ , (b) S ₂ , or (c) S ₃ , for a set of 29 intermolecular	
	CT complexes 3. described at the TD-B3LYP/6-31+G* level. These are the same data as in	
	Fig. 13 but here the scale is the same in each panel.	S21

List of Tables

S1	CT metrics (in Å) for two transitions of a dipeptide computed at the TD-CAM-B3LYP/	
	$6-31(n+,n+)G^*$ level. These are the same transitions considered in Table 1.	S4
S2	CT metrics for two transitions of a dipeptide, computed at the TD-CAM-B3LYP/6-31 $(n+,n+)$ G*	
	level. Values of Γ in the CMO and Boys representations are the same as in Table S1	S5
$\mathbf{S3}$	CT metrics for two transitions of a dipeptide, computed at the TD-CAM-B3LYP/6-31 $(n+)$ G*	
	level.	S5
$\mathbf{S4}$	Exciton parameters (in Å) for two transition of a dipeptide, computed at the TD-CAM-	
	B3LYP/6-31 $(n+)$ G* level.	S5
$\mathbf{S5}$	Vertical excitation energies for the Tozer data set. ^{a}	S6
$\mathbf{S6}$	Vertical excitation energies for the Tozer data set, continued. ^{a}	S7
S7	Non-invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level. ^a	S8

$\mathbf{S8}$	Non-invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level. ^{<i>a</i>}	S9
$\mathbf{S9}$	Invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level. ^{<i>a</i>}	S10
S10	Invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level. ^{<i>a</i>}	S11
S 11	Descriptors for excited states of a distorted nonacene molecule with C_1 symmetry, computed	
	at the TD-B3LYP/cc-pVTZ level.	S17
S12	Descriptors for excited states of a $(PPV)_8$ isomer with two <i>cis</i> kinks. ^{<i>a</i>}	S18
S13	Descriptors for excited states of an all- <i>trans</i> $(PPV)_6$ isomer	S18
S14	Descriptors for excited states of a triazine benzobisthiadiazole propeller, computed at the	
	TD-CAM-B3LYP/6-31+G [*] level. This is a more complete version of Table 4. \ldots	S20

References

- Peach, M. J. G.; Benfield, P.; Helgaker, T.; Tozer, D. J. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 2008, 128, 044118.
- [2] Gill, P. M. W.; Johnson, B. G.; Pople, J. A. A standard grid for density-functional calculations. Chem. Phys. Lett. 1993, 209, 506–512.
- [3] Taka, A. A.; Herbert, J. M.; McCaslin, L. M. Ground-state orbital analysis predicts S₁ charge transfer in donor-acceptor materials. J. Phys. Chem. Lett. 2023, 14, 11063–11068.
- [4] Woon, D. E.; Dunning Jr., T. H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988.

S1 Catastrophic Example: Dipeptide with Diffuse Basis Sets

Fig. S1: Principle NTO pairs for (a) $S_0 \rightarrow S_1$ excitation and (b) $S_0 \rightarrow S_3$ excitation of a dipeptide, computed at the CAM-B3LYP/6-31++G^{*} level, in comparison to the (c) $S_0 \rightarrow S_1$ excitation and (d) $S_0 \rightarrow S_3$ computed at the CAM-B3LYP/6-31(9+,9+)G^{*} level. Isocontours encapsulate 90% of $|\psi|^2$ in each case, and results in the two basis sets are nearly indistinguishable.

Table S1: CT metrics (in Å) for two transitions of a dipeptide computed at the TD-CAM-B3LYP/ $6-31(n+,n+)G^*$ level. These are the same transitions considered in Table 1.

				$S_0 \to S_1$					$S_0 \rightarrow S_3$					
n	ΔE		CMO			NTO		ΔE		CMO			NTO	
	(eV)	Δr	$\Delta \sigma$	Г	Δr	$\Delta \sigma$	Г	(eV)	Δr	$\Delta \sigma$	Γ	Δr	$\Delta \sigma$	Γ
0	5.796	1.20	0.40	1.60	3.73	0.52	4.26	7.189	2.17	0.11	2.28	5.06	0.33	5.39
1	5.828	1.46	2.18	3.65	4.50	1.08	5.58	6.258	3.49	1.65	5.14	5.86	1.86	7.73
2	5.813	1.78	4.22	6.01	3.57	1.57	5.14	6.236	4.04	3.80	7.84	9.18	4.29	13.47
3	5.812	2.29	6.25	8.54	6.90	3.65	10.55	6.236	4.48	6.24	10.72	13.58	9.11	22.69
4	5.812	2.30	7.17	9.47	6.14	3.51	9.65	6.236	4.88	8.22	13.11	17.18	14.10	31.28
5	5.812	2.32	7.27	9.59	5.29	2.80	8.09	6.236	4.53	10.24	14.78	21.71	20.35	42.06
6	5.812	2.60	8.10	10.70	5.90	3.26	9.17	6.236	5.20	12.09	17.29	26.99	26.84	53.63
7	5.812	2.25	8.67	10.92	5.89	3.77	9.66	6.236	5.17	13.97	19.14	34.51	43.12	77.64
8	5.812	2.35	9.00	11.35	7.25	6.16	13.41	6.236	5.01	15.49	20.50	36.02	53.08	89.10
9	5.812	2.32	11.17	13.49	6.81	5.64	12.45	6.236	5.22	19.64	24.87	228.29	287.90	516.19

											C o \ C	20		
n	ΔE		Λ	$50 \rightarrow 5$	1	Γ (Å)		ΔE		Λ	$50 \rightarrow 5$	53	Γ (Å)	
	(eV)	CMO	Boys	NTO	CMO	Boys	NTO	(eV)	CMO	Boys	NTO	CMO	Boys	NTO
0	5.796	0.362	0.055	0.383	1.60	4.26	0.93	7.189	0.415	0.016	0.447	2.28	5.39	1.97
1	5.828	0.312	0.061	0.384	3.65	5.58	1.03	6.258	0.205	0.032	0.326	5.14	7.73	2.51
2	5.813	0.260	0.233	0.384	6.01	5.14	1.05	6.236	0.143	0.017	0.317	7.84	13.47	2.69
3	5.812	0.209	0.025	0.384	8.54	10.55	1.05	6.236	0.121	0.013	0.317	10.72	22.69	2.69
4	5.182	0.194	0.030	0.384	9.47	9.65	1.05	6.236	0.116	0.008	0.317	13.11	31.28	2.69
5	5.182	0.199	0.065	0.384	9.59	8.09	1.05	6.236	0.114	0.010	0.317	14.78	42.06	2.69
6	5.182	0.186	0.086	0.384	10.70	9.17	1.05	6.236	0.114	0.007	0.317	17.29	53.63	2.69
7	5.182	0.198	0.029	0.384	10.92	9.66	1.05	6.236	0.113	0.009	0.317	19.14	77.64	2.70
8	5.182	0.200	0.028	0.384	11.35	13.41	1.06	6.236	0.113	0.006	0.317	20.50	89.10	2.69
9	5.182	0.200	0.031	0.384	13.49	12.45	1.06	6.236	0.113	0.006	0.317	24.87	516.19	2.70

Table S2: CT metrics for two transitions of a dipeptide, computed at the TD-CAM-B3LYP/6-31(n+,n+)G* level. Values of Γ in the CMO and Boys representations are the same as in Table S1.

Table S3: CT metrics for two transitions of a dipeptide, computed at the TD-CAM-B3LYP/6-31(n+)G* level.

			1			$S_0 \rightarrow S_3$								
11	ΔE	\overline{E} Λ			Γ (Å)			ΔE Λ					Γ (Å)	
	(eV)	$\overline{\mathrm{CMO}}$	Boys	NTO	CMO	Boys	NTO	(eV)	$\overline{\mathrm{CMO}}$	Boys	NTO	CMO	Boys	NTO
0	5.796	0.362	0.055	0.383	1.60	4.26	0.93	7.189	0.415	0.016	0.447	2.28	5.39	1.97
1	5.842	0.345	0.076	0.385	3.30	5.72	0.98	6.430	0.247	0.041	0.349	4.09	7.68	2.09
2	5.820	0.265	0.048	0.384	5.17	7.33	1.04	6.242	0.151	0.024	0.317	6.93	11.75	2.68
3	5.818	0.308	0.208	0.384	5.12	4.26	1.04	6.241	0.123	0.013	0.317	10.10	18.76	2.70
4	5.818	0.261	0.052	0.384	6.95	8.74	1.04	6.241	0.117	0.025	0.317	12.63	13.80	2.69
5	5.818	0.229	0.086	0.384	8.42	8.37	1.04	6.241	0.116	0.007	0.317	14.87	48.90	2.70
6	5.818	0.235	0.044	0.384	8.72	9.23	1.04	6.241	0.115	0.007	0.317	16.57	89.90	2.70
7	5.818	0.233	0.041	0.384	8.57	11.28	1.04	6.241	0.114	0.007	0.317	17.39	88.97	2.70
8	5.818	0.231	0.083	0.384	9.41	10.64	1.04	6.241	0.114	0.007	0.317	19.00	154.45	2.70
9	5.818	0.235	0.108	0.384	10.96	11.16	1.04	6.241	0.114	0.007	0.317	21.58	413.20	2.70

Table S4: Exciton parameters (in Å) for two transition of a dipeptide, computed at the TD-CAM-B3LYP/ $6-31(n+)G^*$ level.

\overline{n}			$\mathrm{S}_0 \to \mathrm{S}$	1				$\mathrm{S}_0 \to \mathrm{S}$	3	
	$d_{\text{e-h}}$	$d_{\rm exc}$	$\sigma_{ m hole}$	$\sigma_{ m elec}$	$d_{\rm CD1}$	$d_{\text{e-h}}$	$d_{\rm exc}$	$\sigma_{ m hole}$	$\sigma_{ m elec}$	$d_{\rm CD1}$
0	0.69	2.03	1.27	1.49	0.91	1.80	3.18	1.98	1.84	1.94
1	0.71	2.09	1.29	1.54	0.96	1.48	3.56	2.23	2.85	2.10
2	0.70	2.14	1.29	1.61	1.02	1.70	4.03	2.32	3.33	2.71
3	0.70	2.15	1.29	1.62	1.02	1.70	4.03	2.31	3.33	2.72
4	0.70	2.15	1.29	1.62	1.02	1.70	4.03	2.31	3.33	2.72
5	0.70	2.15	1.29	1.62	1.03	1.70	4.03	2.31	3.33	2.72
6	0.70	2.15	1.29	1.62	1.03	1.70	4.03	2.31	3.33	2.72
7	0.70	2.15	1.29	1.62	1.03	1.70	4.04	2.31	3.33	2.72
8	0.70	2.15	1.29	1.62	1.03	1.70	4.04	2.31	3.34	2.72
9	0.70	2.15	1.29	1.62	1.03	1.70	4.05	2.31	3.34	2.73

S2 CT Diagnostics: Λ and Γ in Different Representations

S2.1 Numerical Data for the Tozer Set

Mologulo	Evolution	Trmo	TD-DI	FT/triple	$-\zeta \; (\mathrm{eV})^b$	Reference
Molecule	Excitation	Type .	PBE	PBE0	B3LYP	Value $(eV)^c$
Dipeptide	$n_1 \to \pi_2^*$	CT	4.61	6.65	6.31	8.07
Dipeptide	$\pi_1 \to \pi_2^*$	CT	5.16	6.40	6.15	7.18
Dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	5.35	5.62	5.55	5.62
Dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	5.67	5.86	5.77	5.79
β -dipeptide	$n_1 ightarrow \pi_2^*$	CT	4.78	7.66	7.26	9.13
β -dipeptide	$\pi_1 \rightarrow \pi_2^*$	CT	5.32	7.82	7.20	7.99
β -dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	5.38	5.73	5.66	5.40
β -dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	5.42	5.63	5.56	5.10
Tripeptide	$\pi_1 \to \pi_2^*$	CT	5.18	6.54	6.27	7.01
Tripeptide	$\pi_2 ightarrow \pi_3^*$	CT	5.51	6.92	6.60	7.39
Tripeptide	$\pi_1 \rightarrow \pi_3^*$	CT	4.76	6.33	6.06	8.74
Tripeptide	$n_1 \rightarrow \pi_3^*$	CT	4.26	6.51	6.12	9.30
Tripeptide	$n_2 \rightarrow \pi_3^*$	CT	5.16	7.20	6.83	8.33
Tripeptide	$n_1 \rightarrow \pi_2^*$	CT	4.61	6.71	6.33	8.12
Tripeptide	$n_1 \rightarrow \pi_1^*$	\mathbf{L}	5.36	5.66	5.57	5.74
Tripeptide	$n_2 \rightarrow \pi_2^*$	\mathbf{L}	5.58	5.85	5.74	5.61
Tripeptide	$n_3 \rightarrow \pi_3^*$	\mathbf{L}	5.74	5.96	5.88	5.91
Naphthalene	${}^{1}B_{2u}$	L	4.11	4.47	4.38	4.88
Naphthalene	${}^{1}\!B_{3u}$	\mathbf{L}	4.27	4.55	4.47	4.46
Anthracene	${}^{1}\!B_{2u}$	\mathbf{L}	2.94	3.29	3.21	3.69
Anthracene	${}^{1}\!B_{3u}$	\mathbf{L}	3.64	3.94	3.86	3.89
Tetracene	${}^{1}\!B_{2u}$	\mathbf{L}	2.17	2.50	2.43	2.90
Tetracene	${}^{1}\!B_{3u}$	\mathbf{L}	3.24	3.54	3.47	3.52
Pentacene	${}^{1}\!B_{2u}$	\mathbf{L}	1.63	1.95	1.89	2.35
Pentacene	${}^{1}\!B_{3u}$	\mathbf{L}	2.96	3.27	3.21	3.27
Hexacene	${}^{1}\!B_{2u}$	\mathbf{L}	1.23	1.54	1.48	1.95
Hexacene	${}^{1}\!B_{3u}$	\mathbf{L}	2.76	3.08	3.01	3.09
N-phenylpyrrole	$1 {}^{1}B_2$	L	4.33	4.89	4.76	4.85
N-phenylpyrrole	$2 {}^{1}\!A_{1}$	\mathbf{L}	4.61	5.11	4.96	5.13
N-phenylpyrrole	$2 {}^{1}\!B_2$	CT	3.98	4.74	4.58	5.47
N-phenylpyrrole	$3 {}^{1}\!A_{1}$	CT	3.90	4.82	4.64	5.94
DMABN	^{1}B	L	4.02	4.54	4.44	4.25
DMABN	^{1}A	CT	4.30	4.73	4.64	4.56
$H(C_2H_2)_2H$	$1 {}^1B_u$	L	5.74	5.96	5.88	5.92
$H(C_2H_2)_3H$	$1 {}^1\!B_u$	\mathbf{L}	4.63	4.88	4.81	4.95
$H(C_2H_2)_4H$	$1 {}^1\!B_u$	L	3.93	4.20	4.13	4.41
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{5}\mathrm{H}$	$1 {}^1\!B_u$	\mathbf{L}	3.44	3.73	3.66	4.27

Table S5: Vertical excitation energies for the Tozer data set.^a

^aTable is formatted for comparison to Table I of Ref. 1, although the data are from the calculations reported in this work. Continued in Table S6. ^bComputed using $\tau_{\text{ints}} = 10^{-12} E_{\text{h}}, \tau_{\text{shlpr}} = 10^{-12} \text{ a.u.}, \tau_{\text{SCF}} = 10^{-10} E_{\text{h}}, \tau_{\text{CIS}} = 10^{-6} E_{\text{h}}$, and the SG-1 quadrature grid.² For these molecules, the basis set is cc-pVTZ. ^cBenchmark excitation energy from Ref. 1.

Malaarda	Ensitation	Type —	TD-DI	T/triple	$-\zeta \ (eV)^b$	Reference
Molecule	Excitation	Type	PBE	PBE0	B3LYP	Value $(eV)^c$
N ₂	$^{1}\Pi_{u}$	R	11.67	12.37	12.05	13.24
N_2	${}^{1}\Sigma_{u}^{+}$	R	10.66	11.94	11.69	12.98
N_2	$^{1}\Pi_{u}$	R	10.76	11.97	11.71	12.90
N_2	${}^{1}\Sigma_{g}^{+}$	R	10.41	11.55	11.29	12.20
N_2	$^{1}\Delta_{u}$	\mathbf{L}	10.08	9.88	9.72	10.27
N_2	${}^{1}\Sigma_{u}^{-}$	\mathbf{L}	9.68	9.36	9.33	9.92
N_2	$^{1}\Pi_{g}^{-}$	\mathbf{L}	9.10	9.31	9.26	9.31
СО	$F^{1}\Sigma^{+}$	R	10.16	11.27	11.03	12.40
CO	$E^{1}\Pi$	R	9.45	10.50	10.28	11.53
CO	$C^{1}\Sigma^{+}$	R	9.40	10.44	10.20	11.40
CO	$B^{1}\Sigma^{+}$	R	9.09	10.08	9.86	10.78
CO	$D^{1}\Delta$	\mathbf{L}	10.18	10.19	10.03	10.23
CO	$I^{1}\Sigma^{-}$	\mathbf{L}	9.86	9.79	9.72	9.88
CO	$A {}^{1}\Pi$	\mathbf{L}	8.24	8.43	8.39	8.51
H_2CO	${}^{1}\!A_{2}$	R	7.43	8.46	8.19	9.22
H_2CO	${}^{1}\!A_{2}$	R	6.61	7.64	7.41	8.38
H_2CO	${}^{1}B_{1}$	\mathbf{L}	8.68	8.43	8.83	8.68
H_2CO	${}^{1}\!B_{2}$	R	6.50	7.45	7.21	8.12
H_2CO	${}^{1}\!A_{1}$	R	6.39	7.40	7.20	7.97
H_2CO	${}^{1}\!B_{2}$	R	5.78	6.72	6.47	7.09
H_2CO	$^{1}A_{2}$	\mathbf{L}	3.73	3.86	3.85	3.94
HCl	$^{1}\Pi$	CT	7.55	7.90	7.66	8.23

Table S6: Vertical excitation energies for the Tozer data set, continued.^a

 $a^{\rm C}$ Continued from Table S5. $b^{\rm T}$ Thresholds are the same as in Table S5 but the basis set is d-aug-cc-pVTZ. ⁴ $c^{\rm C}$ Benchmark excitation energy from Ref. 1.

Malazzla	Essitation	T	Error	CMO	Represe	ntation	Boys	Represen	tation		NTO Representation		
Molecule	Excitation	Type	$(eV)^b$	Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$	Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$		Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$
Dipeptide	$n_1 \to \pi_2^*$	CT	-1.76	0.291	2.56	0.23	0.087	5.52	0.87	0.	.221	3.48	0.17
Dipeptide	$\pi_1 \to \pi_2^*$	CT	-1.03	0.431	2.21	0.15	0.020	5.96	0.85	0.	.295	2.57	0.03
Dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	-0.07	0.378	1.50	0.32	0.484	1.93	0.23	0.	.425	0.84	0.40
Dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	-0.02	0.387	1.45	0.22	0.111	4.06	0.86	0.	.408	0.80	0.30
β -dipeptide	$n_1 \to \pi_2^*$	CT	-1.87	0.303	3.29	1.64	0.053	6.24	0.81	0.	.299	3.36	1.50
β -dipeptide	$\pi_1 \to \pi_2^*$	CT	-0.79	0.608	1.46	0.62	0.043	3.38	0.36	0.	.615	1.95	0.56
β -dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	0.26	0.363	1.36	0.95	0.492	1.22	0.37	0.	.369	0.87	0.38
β -dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	0.46	0.355	1.91	0.95	0.032	3.37	0.22	0.	.419	0.81	0.49
Tripeptide	$\pi_1 \to \pi_2^*$	CT	-0.74	0.435	2.91	0.30	0.003	8.37	0.11	0.	.424	3.49	0.04
Tripeptide	$\pi_2 \to \pi_3^*$	CT	-0.79	0.607	1.91	0.59	0.007	6.07	0.07	0.	.329	3.96	1.12
Tripeptide	$\pi_1 \to \pi_3^*$	CT	-2.68	0.287	4.58	0.11	0.002	8.91	0.09	0.	.337	3.53	0.35
Tripeptide	$n_1 \to \pi_3^*$	CT	-3.18	0.146	5.50	0.42	0.003	8.80	0.06	0.	.155	5.58	0.72
Tripeptide	$n_2 \to \pi_3^*$	CT	-1.50	0.396	1.77	0.16	0.016	5.71	0.05	0.	.167	4.06	0.12
Tripeptide	$n_1 \to \pi_2^*$	CT	-1.79	0.231	3.39	0.58	0.010	8.44	0.14	0.	154	4.57	1.07
Tripeptide	$n_1 \to \pi_1^*$	\mathbf{L}	-0.17	0.295	1.84	0.52	0.046	5.46	0.71	0.	.341	0.83	0.46
Tripeptide	$n_2 \to \pi_2^*$	\mathbf{L}	0.13	0.323	2.45	0.28	0.014	6.69	0.19	0.	.414	0.96	0.36
Tripeptide	$n_3 \to \pi_3^*$	\mathbf{L}	-0.03	0.426	1.25	0.15	0.030	4.58	0.06	0.	.442	0.82	0.10
Naphthalene	${}^{1}\!B_{2u}$	L	-0.50	0.863	0.00	0.11	0.137	2.64	0.24	0.	.868	0.00	0.10
Naphthalene	${}^{1}\!B_{3u}$	\mathbf{L}	0.01	0.623	0.00	0.11	0.176	2.41	0.47	0.	.621	0.00	0.11
Anthracene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.48	0.826	0.00	0.10	0.013	5.85	0.62	0.	.829	0.00	0.10
Anthracene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.03	0.608	0.00	0.10	0.026	5.15	0.62	0.	.609	0.00	0.10
Tetracene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.47	0.892	0.00	0.10	0.013	7.76	0.41	0.	.899	0.00	0.09
Tetracene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.05	0.631	0.00	0.14	0.057	4.14	0.31	0.	.630	0.00	0.09
Pentacene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.46	0.848	0.00	0.09	0.018	7.45	0.36	0.	.852	0.00	0.08
Pentacene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.06	0.701	0.00	0.73	0.028	6.60	0.22	0.	.687	0.00	0.91
Hexacene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.47	0.897	0.00	0.09	0.040	6.44	0.18	0.	.902	0.00	0.07
Hexacene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.08	0.654	0.00	0.40	0.017	8.05	0.25	0.	.649	0.00	0.28
N-phenylpyrrole	$1 {}^{1}B_2$	L	-0.09	0.595	1.91	0.67	0.079	3.70	0.19	0.	.627	1.55	0.51
N-phenylpyrrole	$2 {}^1\!A_1$	\mathbf{L}	-0.17	0.591	1.63	0.15	0.048	4.84	0.19	0.	.583	1.72	0.09
N-phenylpyrrole	$2 {}^{1}\!B_2$	CT	-0.89	0.522	2.55	0.93	0.013	7.19	0.12	0.	.491	2.81	0.70
N-phenylpyrrole	$3 {}^{1}\!A_{1}$	CT	-1.30	0.344	3.06	0.27	0.023	6.31	0.13	0.	.386	2.93	0.31
DMABN	^{1}B	\mathbf{L}	-0.19	0.559	0.79	0.64	0.051	4.54	0.66	0.	.556	0.80	0.61
DMABN	$^{1}\!A$	CT	0.08	0.722	1.37	0.12	0.110	3.59	0.33	0.	.704	1.54	0.02
$H(C_2H_2)_2H$	$1 {}^1B_u$	\mathbf{L}	-0.04	0.862	0.00	0.20	0.053	4.37	0.10	0.	.878	0.00	0.18
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{3}\mathrm{H}$	$1 {}^1\!B_u$	\mathbf{L}	-0.14	0.874	0.00	0.15	0.050	4.48	0.14	0.	.888	0.00	0.15
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{4}\mathrm{H}$	$1 {}^1\!B_u$	\mathbf{L}	-0.28	0.885	0.00	0.12	0.054	4.51	0.17	0.	.898	0.00	0.13
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{5}\mathrm{H}$	$1 {}^1\!B_u$	L	-0.61	0.897	0.00	0.12	0.013	8.94	0.53	0.	.907	0.00	0.12

Table S7: Non-invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level.^a

^aThese data correspond to the TD-B3LYP calculations reported in Table S5. ^bRelative to reference values listed in Table S5.

Mologulo	Evoltation	Trme	Error	CMO	Represer	ntation		Boys	Represen	tation		NTO Representation			
Molecule	Excitation	rybe	$(eV)^b$	Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$	-	Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$	-	Λ	$\Delta r/\text{\AA}$	$\Delta \sigma/\text{\AA}$	
N ₂	$^{1}\Pi_{u}$	R	-1.19	0.173	0.00	3.32		0.060	3.64	3.82		0.213	0.00	2.88	
N_2	Σ_u^+	R	-1.29	0.113	0.00	5.04		0.049	5.23	5.00		0.160	0.00	4.26	
N_2	$^{1}\Pi_{u}$	R	-1.19	0.108	0.00	3.88		0.097	2.92	3.89		0.139	0.00	3.57	
N_2	${}^{1}\Sigma_{g}^{+}$	R	-0.91	0.235	0.00	3.09		0.062	4.28	3.90		0.247	0.00	2.88	
N_2	$^{1}\Delta_{u}$	\mathbf{L}	-0.55	0.870	0.00	0.44		0.069	3.89	4.50		0.890	0.00	0.28	
N_2	${}^{1}\Sigma_{u}^{-}$	\mathbf{L}	-0.59	0.543	0.00	0.45		0.059	4.00	4.50		0.559	0.00	0.25	
N_2	$^{1}\Pi_{g}^{-}$	\mathbf{L}	-0.05	0.687	0.00	0.24		0.092	2.97	3.92		0.681	0.00	0.11	
CO	$F^{1}\Sigma^{+}$	R	-1.37	0.105	0.93	5.21		0.052	4.724	4.11		0.107	0.17	5.51	
CO	$E^{1}\Pi$	R	-1.25	0.141	0.35	5.29		0.058	4.66	4.12		0.175	0.12	4.58	
CO	$C^{1}\Sigma^{+}$	\mathbf{R}	-1.20	0.120	1.39	4.92		0.042	3.73	5.34		0.162	1.08	4.23	
CO	$B^{1}\Sigma^{+}$	\mathbf{R}	-0.92	0.224	1.11	3.71		0.088	3.20	2.45		0.234	0.95	3.40	
CO	$D^{1}\Delta$	\mathbf{L}	-0.20	0.760	0.75	0.66		0.076	3.650	2.71		0.795	0.66	0.41	
CO	$I^{1}\Sigma^{-}$	\mathbf{L}	-0.16	0.475	0.75	0.67		0.076	3.52	2.71		0.500	0.65	0.38	
CO	$A^{1}\Pi$	\mathbf{L}	-0.12	0.696	0.35	0.52		0.111	2.74	2.50		0.696	0.24	0.35	
H_2CO	${}^{1}\!A_{2}$	R	-1.03	0.124	0.70	4.48		0.054	6.02	3.13		0.154	0.35	4.26	
H_2CO	${}^{1}\!A_{2}$	\mathbf{R}	-0.97	0.078	1.40	5.27		0.050	5.29	3.41		0.093	1.14	4.48	
H_2CO	${}^{1}\!A_{2}$	\mathbf{L}	0.15	0.197	1.80	6.31		0.067	3.62	2.00		0.188	1.91	6.90	
H_2CO	${}^{1}\!B_{1}$	\mathbf{R}	-0.91	0.151	1.60	5.24		0.055	5.65	3.62		0.237	0.12	3.47	
H_2CO	${}^{1}\!B_{2}$	\mathbf{R}	-0.77	0.112	1.93	6.81		0.058	4.74	2.05		0.185	1.40	4.24	
H_2CO	${}^{1}\!A_{1}$	R	-0.62	0.217	2.53	3.21		0.053	5.33	3.49		0.272	1.91	2.29	
H_2CO	${}^{1}\!A_{2}$	\mathbf{L}	-0.09	0.506	0.53	0.25		0.145	2.17	4.33		0.503	0.49	0.11	
HCl	$^{1}\Pi$	CT	-0.57	0.472	1.01	0.63		0.074	2.10	1.61		0.472	0.99	0.60	

Table S8: Non-invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level.^a

a These data correspond to the TD-B3LYP calculations reported in Table S6. b Relative to reference values listed in Table S6.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Moloculo	Excitation	Type	Error			Metrics	(Å)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Molecule	Excitation	rype	$(eV)^b$	$\overline{d_{\text{e-h}}}$	$d_{\rm exc}$	$\sigma_{ m hole}$	$\sigma_{ m elec}$	$d_{\rm CD1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dipeptide	$n_1 \to \pi_2^*$	CT	-1.76	3.40	4.27	1.92	1.76	3.56
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dipeptide	$\pi_1 \to \pi_2^*$	CT	-1.03	2.57	3.50	1.70	1.67	2.59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	-0.07	0.81	2.33	1.49	1.83	1.15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	-0.02	0.73	2.50	2.02	1.79	0.96
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β -dipeptide	$n_1 \to \pi_2^*$	CT	-1.87	4.25	5.40	1.32	1.77	5.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β -dipeptide	$\pi_1 \to \pi_2^*$	CT	-0.79	1.79	3.97	2.59	2.39	1.99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β -dipeptide	$n_1 \to \pi_1^*$	\mathbf{L}	0.26	0.87	2.24	1.44	1.77	1.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β -dipeptide	$n_2 \to \pi_2^*$	\mathbf{L}	0.46	0.80	2.30	1.42	1.86	1.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$\pi_1 \to \pi_2^*$	CT	-0.74	3.48	4.58	2.51	2.47	3.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$\pi_2 \to \pi_3^*$	CT	-0.79	3.94	5.24	2.82	1.87	4.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$\pi_1 \to \pi_3^*$	CT	-2.68	3.52	4.57	2.09	2.38	3.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$n_1 \to \pi_3^*$	CT	-3.18	5.49	6.49	2.15	2.41	5.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$n_2 \to \pi_3^*$	CT	-1.50	3.95	4.81	1.98	1.87	4.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$n_1 \to \pi_2^*$	CT	-1.79	4.49	5.44	2.02	2.56	5.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tripeptide	$n_1 \to \pi_1^*$	\mathbf{L}	-0.17	0.78	2.42	1.66	2.02	1.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tripeptide	$n_2 \to \pi_2^*$	\mathbf{L}	0.13	0.84	2.90	2.57	2.36	1.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tripeptide	$n_3 \to \pi_3^*$	\mathbf{L}	-0.03	0.75	2.38	2.15	1.98	0.91
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Naphthalene	${}^{1}\!B_{2u}$	L	-0.50	0.00	3.50	2.35	2.44	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Naphthalene	${}^{1}B_{3u}$	\mathbf{L}	0.01	0.00	3.29	2.33	2.44	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Anthracene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.48	0.00	4.21	2.89	2.98	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Anthracene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.03	0.00	3.95	2.85	2.95	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tetracene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.47	0.00	4.87	3.38	3.47	0.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tetracene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.05	0.00	4.59	3.36	3.45	0.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pentacene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.46	0.00	5.51	3.84	3.92	0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pentacene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.06	0.00	5.19	3.94	4.49	0.54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexacene	${}^{1}\!B_{2u}$	\mathbf{L}	-0.47	0.00	6.11	4.28	4.35	0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hexacene	${}^{1}\!B_{3u}$	\mathbf{L}	-0.08	0.00	5.76	4.35	4.41	0.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-phenylpyrrole	$1 {}^{1}B_2$	L	-0.09	1.55	3.70	2.61	2.12	2.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-phenylpyrrole	$2 {}^{1}\!A_{1}$	\mathbf{L}	-0.17	1.70	4.07	2.49	2.55	1.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-phenylpyrrole	$2 {}^{1}\!B_2$	CT	-0.89	2.80	4.17	1.84	2.49	3.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-phenylpyrrole	$3 {}^{1}\!A_{1}$	CT	-1.30	2.93	4.39	2.09	2.36	3.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DMABN	^{1}B	\mathbf{L}	0.19	0.80	3.30	2.53	2.03	1.31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DMABN	^{1}A	CT	0.08	1.53	3.92	2.57	2.58	1.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H(C_2H_2)_2H$	$1 {}^{1}B_{u}$	L	-0.04	0.00	2.97	1.91	2.09	0.18
$H(C_2H_2)_4H$ 1 ${}^{1}B_u$ L-0.280.004.763.163.290.00 $H(C_2H_2)_5H$ 1 ${}^{1}B_u$ L-0.610.005.613.773.890.12	$H(C_2H_2)_3H$	$1 {}^1\!B_u$	\mathbf{L}	-0.14	0.00	3.88	2.54	2.69	0.15
$H(C_2H_2)_5H$ 1 ¹ B_u L -0.61 0.00 5.61 3.77 3.89 0.12	$H(C_2H_2)_4H$	$1 {}^1\!B_u$	\mathbf{L}	-0.28	0.00	4.76	3.16	3.29	0.00
	$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{5}\mathrm{H}$	$1 {}^1\!B_u$	\mathbf{L}	-0.61	0.00	5.61	3.77	3.89	0.12

Table S9: Invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level.^a

 a These data correspond to the TD-B3LYP calculations reported in Table S5. b Relative to reference values listed in Table S5.

Molecule	Evoitation	Tuno	Error			Metrics	(Å)	
Molecule	Excitation	rybe	$(eV)^b$	$d_{\rm e-h}$	$d_{\rm exc}$	$\sigma_{ m hole}$	$\sigma_{ m elec}$	$d_{\rm CD1}$
N_2	$^{1}\Pi_{u}$	R	-1.19	0.00	3.96	0.95	3.83	2.88
N_2	${}^{1}\Sigma_{u}^{+}$	R	-1.29	0.00	5.50	1.16	5.42	4.26
N_2	$^{1}\Pi_{u}$	R	-1.19	0.00	4.84	1.16	4.72	3.57
N_2	${}^{1}\Sigma_{g}^{+}$	R	-0.91	0.00	4.20	1.16	4.03	2.88
N_2	$^{1}\Delta_{u}$	\mathbf{L}	-0.55	0.00	1.55	0.94	1.23	0.28
N_2	$^{1}\Sigma_{u}^{-}$	\mathbf{L}	-0.59	0.00	1.51	0.94	1.20	0.25
N_2	$^{1}\Pi_{g}^{-}$	\mathbf{L}	-0.05	0.00	1.69	1.14	1.25	0.11
СО	$F^{1}\Sigma^{+}$	R	-1.37	0.17	6.61	1.02	6.53	5.68
CO	$E^{1}\Pi$	R	-1.25	0.12	5.70	1.02	5.61	4.70
CO	$C {}^{1}\Sigma^{+}$	R	-1.20	1.08	5.45	1.02	5.26	5.31
CO	$B^{1}\Sigma^{+}$	R	-0.92	0.95	4.64	1.02	4.43	4.35
CO	$D^{1}\Delta$	\mathbf{L}	-0.20	0.66	1.70	0.89	1.30	1.06
CO	$I^{1}\Sigma^{-}$	\mathbf{L}	-0.16	0.64	1.67	0.89	1.27	1.02
CO	$A {}^{1}\Pi$	\mathbf{L}	-0.12	0.22	1.82	1.09	1.44	0.57
H ₂ CO	${}^{1}\!A_{2}$	R	-1.03	0.31	5.68	1.24	5.54	4.62
H_2CO	${}^{1}\!A_{2}$	R	-0.97	1.14	5.97	1.24	5.73	5.62
H_2CO	${}^{1}B_{1}$	\mathbf{L}	0.15	0.15	1.90	1.06	1.39	0.15
H_2CO	${}^{1}\!B_{2}$	R	-0.91	0.12	4.86	1.24	4.71	3.59
H_2CO	${}^{1}\!A_{1}$	R	-0.77	1.40	5.79	1.24	5.48	5.64
H_2CO	${}^{1}B_{2}$	R	-0.62	1.91	4.20	1.25	3.54	4.20
H_2CO	${}^{1}\!A_{2}$	\mathbf{L}	-0.09	0.49	1.87	1.23	1.34	0.60
HCl	$^{1}\Pi$	CT	-0.57	0.99	2.23	1.08	1.68	1.59

Table S10: Invariant metrics for the Tozer data set, computed at the TD-B3LYP/triple- ζ level.^a

 $^a{\rm These}$ data correspond to the TD-B3LYP calculations reported in Table S6. $^b{\rm Relative}$ to reference values listed in Table S6.

S2.2 Error Correlation Plots

Fig. S2: Errors in vertical excitation energies computed at the TD-B3LYP/triple- ζ level, plotted as a function of the Λ metric in both the (a) CMO, (b) NTO, and (c) Boys-localized representations. The data set is taken from Ref. 1, partitioned into localized, Rydberg, and CT excited states. The basis set is d-aug-cc-pVTZ for N₂, CO, and H₂CO and cc-pVTZ for other molecules. Blue shaded regions delineate where the absolute error is smaller than 0.5 eV. In (a), the data point for the CT transition in the DMABN molecule is indicated explicitly and a suggested threshold value ($\Lambda_{\rm CMO} = 0.3$) is indicated as well.

Fig. S3: Errors in vertical excitation energies computed at the TD-PBE/or TD-PBE0/triple- ζ level (as indicated), plotted as a function of the Λ metric in both the CMO and Boys MO representations. The data set is taken from Ref. 1, partitioned into localized, Rydberg, and CT excited states. The basis set is d-aug-cc-pVTZ for N₂, CO, and H₂CO and cc-pVTZ for other molecules. Blue shaded regions delineate where the absolute error is smaller than 0.5 eV; note that the vertical scale is much different for TD-PBE, indicative of much larger errors for CT states. Data in (a) and (c) are the same as those in Fig. 2.

Fig. S4: Errors in vertical excitation energies computed at the TD-PBE/or TD-PBE0/triple- ζ level (as indicated), plotted as a function of the Γ metric in both the CMO and Boys MO representations. The data set is taken from Ref. 1, partitioned into localized, Rydberg, and CT excited states. The basis set is d-aug-cc-pVTZ for N₂, CO, and H₂CO and cc-pVTZ for other molecules. (Note that the scale for Γ is slightly larger for the TD-PBE plots.) Blue shaded regions delineate where the absolute error is smaller than 0.5 eV. Data in (a) and (c) are the same as those in Fig. 4.

Fig. S5: Errors in vertical excitation energies computed at the TD-B3LYP/triple- ζ level, plotted as a function of (a) $\Gamma_{\rm CMO}$ or (b) $\Gamma_{\rm NTO}$. The data set is from Ref. 1 and the blue shaded region delineates where the absolute error is smaller than 0.5 eV. These are the same data as in Fig. 5.

S3 Cases with Multiple NTO Pairs

S3.1 Linear Acenes

Fig. S6: Overlay of the planar and distorted structures of nonacene from two different viewpoints, with one structure shown in opaque red and the other in translucent gray. One of the structures is planar (D_{2h} symmetry, optimized at the ω B97X-D/6-31G* level) while the other has C_1 symmetry. However, the RMS deviation between the two geometries is only 0.1387 Å when evaluated in the standard nuclear orientation,² *i.e.*, the principal axes of nuclear charge coordinate system.

					I	Non-Inva	ariant Metri	cs		In	variant 1	Metrics	(Å)
State	ΔE	Osc.	λ_1^2		CMO			NTO			<i>.</i>	<i>a</i> .	
	(eV)	Str.		Λ	$\Delta r/\text{\AA}$	$\Gamma/Å$	Λ	$\Delta r/\text{\AA}$	Γ/Å	u_{e-h}	0 hole	0 _{elec}	$u_{\rm exc}$
S_1	0.68	0.012	1.138	0.760	0.55	0.61	0.765	0.60	0.61	0.59	5.74	5.73	7.99
S_2	1.23	0.000	0.834	0.643	0.51	1.74	0.641	0.81	2.34	0.63	6.68	5.72	10.33
S_3	1.36	0.000	0.862	0.626	0.60	1.88	0.625	0.56	1.96	0.31	5.98	6.93	6.71
S_4	2.00	0.039	1.000	0.649	0.52	0.67	0.655	0.30	0.47	0.27	6.99	7.07	8.94
S_5	2.11	0.000	0.689	0.689	1.87	2.87	0.689	1.39	2.28	0.50	6.43	6.10	8.50
S_6	2.35	0.001	0.700	0.665	1.97	2.98	0.668	1.61	2.81	0.82	6.18	6.56	9.79
S_7	2.75	0.000	0.376	0.645	1.09	1.84	0.609	1.67	3.81	0.25	6.92	6.66	7.99
S_8	2.88	0.000	0.459	0.650	0.89	1.67	0.651	0.85	1.86	0.22	7.00	6.29	11.66
S_9	2.90	0.000	0.536	0.602	1.48	1.84	0.599	1.43	1.83	0.49	6.80	7.13	7.27
S_{10}	2.96	0.061	0.601	0.568	3.26	3.66	0.584	1.53	1.72	0.36	5.80	5.83	7.28
S_{11}	3.15	0.000	0.780	0.664	0.89	2.14	0.662	1.12	2.44	1.07	6.05	6.83	9.83
S_{12}	3.37	0.000	0.514	0.653	0.54	1.58	0.652	0.44	1.19	0.26	6.91	6.46	6.22
S_{13}	3.45	0.001	0.379	0.652	2.34	4.03	0.671	1.01	2.26	0.29	7.26	6.93	6.04
S_{14}	3.52	4.426	0.604	0.578	3.46	3.87	0.559	4.45	4.88	0.60	6.27	6.48	9.31
S_{15}	3.59	0.002	0.725	0.678	0.48	0.83	0.654	0.55	1.36	0.09	6.94	6.86	10.79
S_{16}	3.65	0.004	0.556	0.640	0.32	0.90	0.635	0.61	1.37	0.58	6.82	6.81	6.56
S_{17}	3.75	0.003	0.563	0.630	0.33	1.24	0.599	2.06	3.50	0.60	6.27	6.65	9.32
S_{18}	3.80	0.002	0.569	0.646	0.55	1.39	0.646	2.63	3.35	1.67	6.21	6.17	7.78
S_{19}	3.81	0.160	0.497	0.607	2.61	4.13	0.431	9.45	9.96	0.13	7.33	6.41	11.68
S_{20}	3.91	0.062	0.842	0.718	0.24	0.36	0.713	0.41	0.46	0.14	6.81	6.83	11.53
S_{21}	3.97	0.564	0.539	0.696	2.07	3.75	0.602	5.85	8.85	1.38	6.38	7.62	11.32
S_{22}	4.06	0.032	0.377	0.649	1.63	3.02	0.640	2.56	4.01	0.93	7.13	6.77	6.75
S_{23}	4.07	0.002	0.662	0.600	2.35	3.36	0.646	0.79	2.35	0.54	5.96	4.37	6.16
S_{24}	4.14	0.000	0.555	0.640	1.35	2.20	0.627	3.05	3.33	3.03	6.09	6.32	7.55
S_{25}	4.16	0.000	0.748	0.567	0.98	1.59	0.472	3.67	5.10	2.82	5.70	5.08	6.85
S_{26}	4.20	0.000	0.431	0.629	0.84	1.33	0.598	1.79	2.66	1.01	6.99	6.68	10.64
S_{27}	4.24	0.000	0.760	0.559	1.14	1.89	0.517	3.44	4.59	2.85	5.91	5.08	7.81
S_{28}	4.32	0.000	0.564	0.596	1.08	1.46	0.585	0.71	1.40	0.34	6.93	7.00	9.41
S_{29}	4.33	0.370	0.512	0.606	1.62	2.93	0.414	9.95	10.74	0.77	8.02	6.42	12.16
S_{30}	4.51	0.001	0.649	0.673	2.14	2.87	0.674	2.22	2.91	0.27	6.43	6.11	7.90

Table S11: Descriptors for excited states of a distorted nonacene molecule with C_1 symmetry, computed at the TD-B3LYP/cc-pVTZ level.

S3.2 Poly(*p*-Phenylene Vinylene)

						Λ	Nor	Non-Invariant Measures (Å)				Invari	ant Mea	sures (Å	r)
State	ΔE	λ_1^2	λ_2^2	$\eta_2^{\ b}$	CMO	NTO	C	MO	Ν	ITO		danı	d	<i>(</i>),)	σ.
	(eV)				OMO	NIO	Δr	Γ	Δr	Г	u _{e-h}	aCD1	$u_{\rm exc}$	0 hole	0 elec
S_1	3.30	0.61	0.26	0.13	0.704	0.744	0.84	1.08	0.07	0.13	0.02	0.05	5.53	7.92	7.96
S_2	3.54	0.47	0.39	0.14	0.655	0.762	2.99	4.60	0.11	0.20	0.03	0.05	5.41	9.69	9.70
S_3	3.88	0.54	0.28	0.18	0.551	0.641	6.55	7.54	0.14	0.29	0.04	0.07	5.12	9.82	9.85
S_4	4.17	0.34	0.25	0.42	0.573	0.623	3.77	5.24	0.26	0.40	0.04	0.06	5.12	10.36	10.37
S_5	4.46	0.27	0.21	0.52	0.574	0.649	3.05	4.29	0.80	1.31	0.17	0.24	4.82	10.37	10.30
S_6	4.56	0.49	0.44	0.07	0.624	0.582	3.92	5.37	3.65	6.45	0.12	0.24	10.14	6.94	7.06
S_7	4.62	0.52	0.23	0.25	0.452	0.471	4.34	5.92	0.54	1.23	0.19	0.42	4.40	5.04	4.81
S_8	4.64	0.46	0.35	0.18	0.423	0.630	6.92	9.02	1.44	1.69	0.32	0.52	5.36	5.78	5.58
S_9	4.66	0.49	0.35	0.16	0.450	0.590	4.78	6.44	0.21	1.08	0.07	0.10	4.25	6.00	6.02
S_{10}	4.67	0.41	0.28	0.32	0.425	0.617	4.81	7.08	0.29	0.83	0.09	0.20	4.30	7.04	7.04

Table S12: Descriptors	for excited states	of a (PPV) ₈ is	somer with two	cis kinks. ^a
Table Dia: Debelipterb	for onered beautob		Jointon miton onto	ovo minito.

 $\frac{1}{a}$ This is an expanded version of the top portion of Table 3, and calculations were performed at the TD-CAM-B3LYP/6-31+G* level. ${}^{b}\eta_{2} = 1 - \lambda_{1}^{2} - \lambda_{2}^{2}$.

Table S13: Descriptors for excited states of an all-trans $(PPV)_6$ isomer.

]	Nor	n-Invaria	nt Metrio	cs (.	Å)			Invar	iant Met	trics (Å)
State	ΔE	λ_1^2	λ_2^2	$\eta_2{}^b$	C	MO		Bo	oys		N	ГО	-	<i>d</i> ,	danı	d
	(eV)				Δr	Г	-	Δr	Г		Δr	Г	-	u_{e-h}	$u_{\rm CD1}$	$u_{\rm exc}$
S_1	3.18	0.77	0.16	0.07	0.10	0.29		15.86	16.50		0.04	0.11		0.00	0.06	6.12
S_2	3.65	0.48	0.45	0.07	0.62	3.40		16.60	17.77		0.17	0.15		0.00	0.03	5.57
S_3	4.12	0.35	0.33	0.32	0.35	2.48		15.68	16.30		0.14	0.30		0.01	0.05	5.13
S_4	4.48	0.54	0.38	0.08	0.71	3.36		15.98	17.14		0.18	4.16		0.04	0.10	10.46
S_5	4.55	0.54	0.21	0.25	1.59	3.60		16.10	17.00		0.49	0.76		0.04	0.25	4.86
S_6	4.57	0.41	0.26	0.33	0.90	3.03		11.46	12.24		0.80	1.75		0.02	0.28	5.64
S_7	4.66	0.35	0.23	0.42	2.88	5.66		17.51	18.42		0.21	1.21		0.01	0.25	5.37
S_8	4.67	0.31	0.25	0.44	2.94	5.88		16.76	17.52		0.22	0.67		0.01	0.04	4.21
S_9	4.69	0.31	0.24	0.45	2.27	5.56		14.86	15.84		0.26	0.65		0.03	0.17	4.65
S_{10}	4.84	0.45	0.36	0.19	0.46	3.25		13.39	13.85		0.21	4.68		0.03	0.05	9.42

 a^{a} This is an expanded version of the bottom portion of Table 3, and calculations were performed at the TD-CAM-B3LYP/6-31+G* level. ${}^{b}\eta_{2} = 1 - \lambda_{1}^{2} - \lambda_{2}^{2}$.

Fig. S7: Principal NTO pairs for the $S_0 \rightarrow S_4$ transition of all-trans (PPV)₆, computed at the TD-CAM-B3LYP/6-31+G^{*} and plotted using an isocontour value of 0.02 $a_0^{-3/2}$. Metrics for this state can be found in Table S13.

S3.3 Triazine Benzobisthiadiazole Propeller

Table S14: Descriptors for excited states of a triazine benzobist hiadiazole propeller, computed at the TD-CAM-B3LYP/6-31+G* level. This is a more complete version of Table 4.

State	ΔE	Osc.	λ^2	λ^2	Noi	n-Invaria	nt Metric	s (Å)		Invariant Metrics (Å)						
	(eV)	Str.	λ_1	$^{\lambda_2}$	C	MO	NT	0	d	d	d	-	-			
					Δr	Г	Δr	Г	u_{e-h}	$u_{\rm CD1}$	$u_{\rm exc}$	$o_{\rm hole}$	$\sigma_{\rm elec}$			
S_1	2.595	0.245	0.65	0.18	2.52	3.01	0.15	0.75	0.06	0.52	3.92	4.28	4.74			
S_2	2.597	0.244	0.53	0.43	1.75	2.23	0.14	0.63	0.06	0.52	3.91	4.29	4.75			
S_3	2.718	0.000	0.33	0.32	1.00	1.51	0.16	0.73	0.00	0.45	3.91	4.78	5.23			
S_4	3.435	0.001	0.55	0.45	3.49	3.95	3.69	4.22	0.62	1.09	7.67	4.55	5.02			
S_5	3.480	0.001	0.66	0.34	2.94	3.26	4.93	5.83	1.93	2.61	7.89	4.38	5.06			
S_6	3.481	0.001	0.68	0.31	1.57	1.89	2.81	3.47	2.11	2.93	7.90	4.25	5.07			
S_7	3.568	0.007	0.72	0.25	1.97	2.66	2.84	3.57	1.94	2.75	7.90	4.34	5.15			
S_8	3.569	0.007	0.73	0.24	1.99	2.70	3.33	4.18	1.96	2.78	7.89	4.33	5.15			
S_9	3.592	0.000	0.66	0.17	0.55	0.99	0.94	1.42	0.52	0.96	8.05	4.71	5.15			
S_{10}	3.909	0.193	0.50	0.37	2.51	3.09	0.25	0.64	0.01	0.46	4.00	4.27	4.72			

S4 Charge-Transfer Complexes

Fig. S8: Correlation between Δr (in either the canonical or the NTO representation) and the invariant metric d_{e-h} , for excitation from S₀ to (a) S₁, (b) S₂, or (c) S₃, for a set of 29 intermolecular CT complexes 3. described at the TD-B3LYP/6-31+G^{*} level. These are the same data as in Fig. 13 but here the scale is the same in each panel.