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ABSTRACT: The polarizable continuum model (PCM) is a computa-
tionally efficient way to incorporate dielectric boundary conditions into
electronic structure calculations, via a boundary-element reformulation
of Poisson’s equation. This transformation is only rigorously valid for an
isotropic dielectric medium. To simulate anisotropic solvation, as
encountered at an interface or when parts of a system are solvent-
exposed while other parts are in a nonpolar environment, ad hoc
modifications to the PCM formalism have been suggested, in which a
dielectric constant is assigned separately to each atomic sphere that
contributes to the solute cavity. The accuracy of this “heterogeneous”
PCM (HetPCM) method is tested here for the first time, by comparison
to results from a generalized Poisson equation solver. The latter is a
more expensive and cumbersome approach to incorporate arbitrary
dielectric boundary conditions, but one that corresponds to a well-defined scalar permittivity function, ε(r). We examine simple
model systems for which a function ε(r) can be constructed in a manner that maps reasonably well onto a dielectric constant for
each atomic sphere, using a solvent-exposed dielectric constant εsolv = 78 and a range of smaller values to represent hydrophobic
environments. For nonpolar dielectric constants εnonp ≤ 2, differences between the HetPCM and Poisson solvation energies are large
compared to the effect of anisotropy on the solvation energy. For εnonp = 4 and εnonp = 10, however, HetPCM and anisotropic
Poisson solvation energies agree to within 2 kcal/mol in most cases. As a realistic use case, we apply the HetPCM method to predict
solvation energies and pKa values for blue copper proteins. The HetPCM method affords pKa values that are more in line with
experimental results as compared to either gas-phase calculations or homogeneous (isotropic) PCM results.

1. INTRODUCTION
The polarizable continuum model1−3 (PCM) is a popular
approach for incorporating solvation into electronic structure
calculations, which describes electrostatic and polarization
interactions between an atomistic solute and its continuum
environment. Although accurate modeling of solvation
energies requires that this model be augmented by non-
electrostatic contributions,3−5 what the PCM does correctly is
to furnish boundary conditions for an electronic structure
calculation that are superior to gas-phase boundary conditions.
For typical solutes that are amenable to quantum mechanics
(QM) calculations, a PCM contributes only modest computa-
tional overhead. Furthermore, linear-scaling PCM algorithms
have been developed for much larger solutes,2,3,6−11 and PCM
calculations on full proteins have been reported.10−14

Elimination of explicit solvent is beneficial when “cluster-
QM” models are used to investigate enzymatic reaction
mechanisms,15−17 because truncated models can be susceptible
to the multiple-minimum problem18 when molecular dynamics
is eschewed in favor of geometry optimization. Use of
continuum boundary conditions might provide opportunities
for additional truncation, further limiting the appearance of
multiple minima. For large protein models, however, it is not

always clear that an isotropic dielectric medium is the
appropriate choice of boundary conditions. The heterogeneous
PCM (HetPCM) approach described herein is an attractive
alternative for this purpose.
The PCM approach is based on a reformulation of Poisson’s

equation for a sharp dielectric interface between an atomistic
solute region (characterized by relative electric permittivity ε =
1) and a continuum solvent that is characterized by
permittivity εs.3 This corresponds to an electric permittivity
function
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where Ω represents a molecule-sized cavity. Whereas solution
of Poisson’s equation requires discretization of the solute’s
charge density and electrostatic potential throughout three-
dimensional space,19−28 the PCM only requires the electro-
static potential to be evaluated on the surface of the cavity that
defines Ω, the interface with the continuum. The reformulation
of Poisson’s equation is exact if the entirety of the solute’s
charge density is contained within Ω,3 but is highly accurate
even when the tails of the charge distribution penetrate into
the dielectric medium,29−31 as they do in any QM calculation
with a realistic, molecule-sized cavity.
Derivation of the PCM starting from Poisson’s equation is

predicated on the assumption that the dielectric medium is
isotropic. To describe anisotropic solvation, such as an air/
water interface or a water/biomolecule interface, one can
always resort to solution of a generalized Poisson equation
with a permittivity function ε(r) that is defined pointwise
throughout three-dimensional space.24−27 This approach is
more common in plane-wave electronic structure codes,32

where solution of Poisson’s equation is already a part of the
standard computational machinery, but in localized Gaussian
orbital codes it sacrifices the efficiency advantages of the PCM
and the computational overhead to solve Poisson’s equation is
not negligible.
There have been various efforts to extend PCMs to

anisotropic solvation environments without sacrificing sim-
plicity and computational expedience. Some approaches with
good formal properties, but which lack the generality that we
are seeking, include methods that generalize the dielectric
“constant” to a 3 × 3 tensor,33−36 as appropriate for liquid
crystals, and other methods that modify the Green’s function
for the Coulomb potential appearing in Poisson’s equation, for
the case of a two-dimensional interface.37−44 However, the
most convenient (and potentially general) extension is the
heterogeneous model that we call HetPCM, in which each
atomic sphere that is used to construct the solute cavity is
assigned its own dielectric constant.45−47 In this way, one
might hope to provide appropriate boundary conditions for a
protein (for example), in which certain residues are exposed to
the aqueous solvent (ε = 78) while others are buried in the
protein’s hydrophobic interior. For the latter environment,
values ε ≈ 4 are often used in classical biomolecular
electrostatics calculations,48−53 e.g., to compute pKa val-
ues.52−62 In some cases, larger values have been used for the
nonpolar dielectric constant, up to ε = 10−20.53−55,63−67

The HetPCM approach has an appealing simplicity and
would be easy to combine with fragment-based methods that
can be used to extend the reach of quantum chemistry to
proteins.12−14,68 To the best of our knowledge, however, this
model is not derivable starting from a well-defined permittivity
model ε(r), in contrast to the original (homogeneous or
isotropic) PCM. Thus, HetPCM has been introduced as an ad
hoc modification of the original model, which has not been
rigorously tested against exact continuum electrostatics theory.
We do so in the present work, using a generalized Poisson
equation solver24−26 (PEqS) to provide a benchmark result for
the solute−continuum polarization energy associated with any
model permittivity function. This function, ε(r), is defined
pointwise in three-dimensional space, allowing different spatial
domains to have different permittivities. Crucial to this testing
regiment is the construction of model systems for which the
function ε(r) unambiguously places each continuum-exposed
atomic sphere into a region where the value of ε is

approximately constant, such that the model function ε(r)
can be used to assign a permittivity to each atomic sphere. We
accomplish this using model functions ε(r) based on Voronoi
cells, which can be mapped onto atomic dielectric constants.

2. THEORY
2.1. PCM Formalism. Theoretical underpinnings of the

PCM approach have been reviewed recently.3 The underlying
physical model is based upon a generalized form of Poisson’s
equation,

r r r( ) ( ) 4 ( )tot sol·[ ] = (2)

in which ρsol(r) is the charge density of the atomistic solute,
obtained herein from a quantum chemistry calculation, and
φtot(r) is the total electrostatic potential. The latter includes
the potential generated by ρsol(r) but also a contribution from
polarizing the continuum. Gaussian electrostatic units are used
in eq 2, such that 4πε0 = 1.
The original PCM solves the model problem defined by eq 2

and the sharp dielectric interface in eq 1, where r ∈ Ω in eq 1
indicates the interior of the molecular cavity (see Figure 1a)

and εs is the (static) dielectric constant of the solvent. In the
special case where ρsol(r) vanishes for r ∉ Ω, the model
defined by eqs 1 and 2 can be mapped onto an equivalent
boundary-element or apparent surface charge (ASC) problem,
defined at the cavity surface Γ that is indicated in Figure 1a.3,69

That remapping defines the PCM.3

The most fundamental version of this remapping has been
called the integral equation formulation (IEF).34,69,70 For

Figure 1. (a) Schematic depiction of the CF3(CF2)3SO3H molecule
in a heterogeneous solvation environment, such that the acidic SO3H
group and the perfluorocarbon tail are embedding in media with
different dielectric constants, ε1 and ε2. A solute cavity consisting of
atom-centered spheres is indicated, whose boundary is denoted by Γ.
Note that ε = 1 within the solute cavity (r ∈ Ω). (b) Depiction of the
surface quadrature grid points used for PCM calculations. The size of
each discretization point si is an indication of its contribution ai to the
cavity surface area, as defined in eq 10.
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classical solutes where there is no charge leakage into the
continuum, IEF-PCM is an exact reformulation of isotropic
Poisson boundary conditions, as can be demonstrated
numerically.10,71 For QM charge densities, the tails of ρsol(r)
penetrate into the medium, to the tune of ∼0.1−0.2 electrons
for small molecules.72 However, an alternative derivation of the
IEF-PCM equation demonstrates that this approach implicitly
(albeit approximately) accounts for the volume polarization
due to this escaped charge.31 Therefore, IEF-PCM is an
accurate reformulation of Poisson boundary conditions even in
the case of a QM solute.29−31

In matrix form, the IEF-PCM equation is3

K q Y v= (3)

The input is a vector v containing the solute’s electrostatic
potential φsol(si), evaluated at a set of discretization points si
on the cavity surface (Figure 1b), while the output is a vector
of surfaces charges q at the same points. The charges {qi}
describe the polarizing effect of the medium. Several other
ASC-PCM methods can be cast in the form of eq 3,3,10,71 and
IEF-PCM is defined by a particular choice of the matrices Kε
and Yε:

f
K S DAS

2
IEF PCM =

(4)

and

fY 1 DA1
2

IEF PCM = i
k
jjj y

{
zzz (5)

Here, A is a diagonal matrix containing surface areas of
individual discretization elements and

f
1
1

s

s
=

+ (6)

The matrices S and D are discretized forms of so-called single-
and double-layer operators, Ŝ and D̂.3 The former generates
the surface electrostatic potential, and its matrix representation
S consists of the Coulomb interaction between surface
elements. The operator D†

generates the normal electric field
at the cavity surface.3 The IEF-PCM version of Poisson’s
equation provides a theoretical basis for several other
approaches to implicit solvation including Generalized Born
models73,74 and Debye−Hückel theory.75

Replacing DAS in eq 4 with (DAS + SAD†)/2 affords the
surface and simulation of volume polarization for electrostatics
[SS(V)PE] method,31,76 which is formally equivalent to IEF-
PCM at the level of integral equations.3,77 However, the
SS(V)PE form is more sensitive to the quality of the surface
discretization and may exhibit numerical artifacts at “crevices”
between atomic spheres.71 These artifacts generally disappear
for larger atomic spheres, which afford smoother cavities,3 but
for this reason we will use the IEF-PCM form exclusively.
The conductor-like C-PCM method78 is another popular

model that is derivable from IEF-PCM in the limit εs → ∞.75

It can be placed in the same form as eq 3 but with alternative
definitions for the matrices Kε and Yε.

3,10,71 For C-PCM, these
are

K SC PCM = (7)

and

fY 1( )C PCM = (8)

where

f ( )
1s

s
=

+ (9)

The conventional choice for C-PCM is ζ = 0 in eq 9,
corresponding to the conductor limit of IEF-PCM. Other
choices (chiefly ζ = 1/2) are sometimes encountered but will
not be used here. For εs ≳ 30, C-PCM is numerically
indistinguishable from IEF-PCM.71 Even for smaller values of
εs the differences are modest, perhaps 1−2 kcal/mol in the
electrostatic solvation energies of small molecules.71,75

2.2. HetPCM. The IEF-PCM and C-PCM methods are
defined by eq 3 and the dependence on εs is contained wholly
within the factors fε and f ( ) in eqs 6 and 9, respectively. The
HetPCM approach to be tested here, which was introduced in
ref 45 for IEF-PCM and in ref 46 for C-PCM, consists in
modifying this factor to use a different value of εs for each
atomic sphere. To fully specify the model, however, it is
necessary to consider how we discretize the solute cavity
surface.
We employ the switching/Gaussian (“SwiG”) discretization

algorithm,3,10,71,79−81 which uses atom-centered Lebedev
quadrature grids for each atomic sphere.82,83 Each surface
point si is assigned a Lebedev quadrature weight wi

Leb and a
switching amplitude Fi

sw with 0 ≤ Fi
sw ≤ 1, as shown in Figure

1b. The nature of the switching functions is detailed
elsewhere.10,79,80

The size of each discretization point si in Figure 1b
corresponds to the surface area ai that is assigned to that point,
which is the diagonal entry of the matrix A that was introduced
in Section 2.1. For a discretization point si on the surface of
atom B, whose atomic radius is RvdW,B, we set

a w F Ri i i B
Leb sw

vdW,
2= (10)

For a single spherical cavity, where every point si lies on the
exterior of the cavity (so that Fi

sw = 1), this ensures a surface
area of 4πRvdW,B

2 since

w 4
i

i
Leb =

(11)

For molecular cavities, the switching weights Fi
sw rapidly but

smoothly attenuate ai as this point passes into the interior of
the cavity.79,80 The total solvent-accessible surface area for
atom B in a molecular solute cavity is

R w FSAB B
i B

i ivdW,
2 Leb sw=

(12)

HetPCM modifies the PCM equations of Section 2.1 by
defining fε or f ( ) pointwise across the cavity surface. For
IEF-PCM, the factor fε in eq 6 is replaced by

f
1
1i

i

i
=

+ (13)

where εi = ε(si) is a dielectric constant for the surface element
si. For C-PCM, the factor f ( ) in eq 9 is modified
analogously. These are trivial modifications, in any existing
implementation of C-PCM or IEF-PCM. From a user
perspective, this simply entails specifying a dielectric constant
for each atom. In the examples considered herein, we use only
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two such values: εsolv = 78 for solvent-exposed parts of the
cavity surface, and something smaller (εnonp) for hydrophobic
portions of the surface. The latter will be varied up to εnonp =
10 for testing.
The same SwiG discretization that ensures continuity of the

potential energy surface also means that the energy gradient of
HetPCM is well-defined and continuous. For truncated cluster-
QM models of biomolecules, for which the method is
intended, it is already necessary to constrain certain atoms in
order to prevent collapse of the protein structure when the
geometry is relaxed.84,85 As such, these are local rather than
global optimizations and we do not foresee problems with the
use of heterogeneous boundary conditions.

2.3. Poisson Boundary Conditions. The HetPCM
approach is a simple but ad hoc modification of the ASC-
PCM formalism, which we intend to test against rigorous
Poisson boundary conditions that can describe an anisotropic
continuum environment in a general way, by specifying a
permittivity function ε(r).24−27 This flexibility facilitates the
use of a heterogeneous (anisotropic) dielectric environment.
The function ε(r) represents a model that can be used, for
example, to describe the air/water interface,24,25,86 or different
regions of a protein87−89 or other complex system.90 Given a
model ε(r), the corresponding Poisson boundary conditions
are implemented in an exact way, up to controllable
discretization errors. Such methods have a long history in
classical biomolecular electrostatics calculations,91−99 and a
variety of numerical solvers have been developed,92−99 but
implementations of Poisson boundary conditions for electronic
structure calculations have also been reported.21−27 The finite-
difference algorithms that are typically used to solve eq 2
require the permittivity function ε(r) to be smoothly
varying,100−102 else the induced charge may vary wildly in
space and adequate discretization becomes a challenge.
In the present work, eq 2 is solved for densities ρsol(r) from

Hartree−Fock (HF) or density-functional theory (DFT)
calculations, using the PEqS algorithm described previously.25

We partition the electrostatic potential φtot into a contribution
arising directly from the solute’s charge density (φsol) and a
polarization potential (φpol) arising from the charge induced in
the continuum:

r r r( ) ( ) ( )tot sol pol= + (14)

As compared to using ρsol(r) directly,24 we find that the
algorithm is more stable if φsol is computed from the one-
electron density matrix and electrostatic potential integrals and
used as the basic variable, from which the charge density can
be obtained.25 Formally, this means

r r( )
1

4
( )sol

2
sol=

(15)

The quantity φsol(r) is computed on a real-space Cartesian grid
and eq 2 is solved iteratively (because φsol polarizes the solute’s
charge density), using a multigrid algorithm.25

Following work by others,22,23 implementation of Poisson
boundary conditions for a smoothly varying (but otherwise
arbitrary) permittivity function ε(r) is accomplished by
reformulating eq 2 as a vacuum-like Poisson equation,25

r r( ) 4 ( )
2

tot tot= (16)

wherein the effects of anisotropic solvation manifest within the
polarization density ρpol(r), which is defined by a partition
analogous to that in eq 14:

r r r( ) ( ) ( )tot sol pol= + (17)

Spatial inhomogeneity in the permittivity ε(r) leads to
inhomogeneity in ρpol(r), represented as

r
r

r
r r( )

1 ( )
( )

( ) ( )pol sol iter= +
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (18)

The quantity ρiter(r) is updated iteratively in solving eq 16 for a
fixed solute charge density (ρsol), the latter of which is obtained
via self-consistent field (SCF) iterations.25 For the permittivity
function in eq 1 that forms the basis of PCM theory, the factor
[1 − ε(r)]/ε(r) in eq 18 vanishes inside of the solute cavity.
Following iterative solution of eq 16, the polarization density

is used to augment the one-electron contributions to the
solute’s Fock operator, to include the interaction between
ρsol(r) and ρpol(r).

25 The total energy is

E E G0 elst= + (19)

where E0 is the ground-state SCF energy functional and

G r r r
1
2

( ) ( ) delst sol pol=
(20)

represents the interaction of the SCF density (ρsol) with the
polarized continuum. For a PCM, this polarized electrostatic
interaction is the entirety of the solvation energy.3

The permittivity function in eq 1 is the one that defines the
PCM but the equations outlined in this section can be solved
for any smoothly varying function ε(r), subject only to
numerical limitations. For example, it is not possible to use an
absolutely sharp dielectric boundary (as in eq 1), and for direct
comparison to PCM results this boundary must be smoothed
somewhat. In practice this must be done carefully. Too much
smoothing causes the model to deviate from the sharp
dielectric boundary that defines the PCM and other reaction-
field solvation models that are predicated on the use of a sharp
spherical boundary for the continuum.3,103 Conversely, an
absolutely sharp boundary will cause wild oscillations in
ρiter(r), leading to convergence failure, unless the discretization
grid is made extremely dense (at greatly increased cost). These
features make the PEqS approach cumbersome in practice,
even if its generality is appealing. HetPCM, on the other hand,
is just as computationally simple and robust as any other PCM,
requiring relatively inexpensive two-dimensional discretization
of the cavity surface rather than three-dimensional discretiza-
tion of all space. This makes it an attractive alternative to
PEqS, provided that it realistically models the same
phenomenology.

3. METHODS
The HetPCM method was implemented in a locally modified
copy of Q-Chem,104 where it can be used alongside the PEqS
algorithm25 and the isotropic SwiG-PCM algorithms.79,80 A
code to generate the Voronoi-PEqS grids (introduced in
Section 3.1.2) is available.105

3.1. Permittivity Models. PEqS calculations require
specification of the permittivity function ε(r) in three-
dimensional space. This procedure was originally introduced
for use with a van der Waals (vdW) molecular cavity,24−27 i.e.,
a sharp dielectric interface (as in eq 1), defined by atomic
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spheres, somewhat smoothed for the numerical reasons
discussed in Section 2.3. We will call this the “vdW-PEqS”
approach, for which the construction of ε(r) is described in
Section 3.1.1. Alternatively, the “Voronoi-PEqS” method
introduced in Section 3.1.2 uses atom-centered dielectric
regions to define ε(r), as a model that can be compared to
HetPCM.
3.1.1. van der Waals Construction of ε(r). In the original

PEqS approach,25 the permittivity function is constructed by
smoothing the sharp interface used in PCM (eq 1), connecting
the values ε = 1 (inside the cavity) and ε = εsolv (outside) by
means of a switching function. Mathematically, this can be
expressed as

Fr r R( ) 1 ( 1) ( )
A

A Asolv

atoms
PEqS= +

(21)

where

F r
r R

( )
1
2

1 erfA
APEqS vdW,= +

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

i
k
jjjj

y
{
zzzz

É

Ö
ÑÑÑÑÑÑÑÑÑÑ (22)

is an atom-centered switching function. The width parameter
in this function is set to Δ = 0.265 Å,25 which affords solvation
energies that are converged to within about 1 kcal/mol.23 For
this and other methods, the vdW radii are taken to be

R R1.2A AvdW, Bondi,= (23)

where the values RBondi,A are taken from ref 106 and differ from
Bondi’s original vdW radii107 in that RBondi,H is reduced from
1.2 to 1.1 Å.106 The use of eq 23 is a standard cavity
construction for PCM calculations.3

For a cavity consisting of a single sphere, however, we find
that better agreement with the Born ion model is obtained
using a switching function based on tanh(x) rather than erf(x).
For a single sphere of radius RvdW, centered at R0, we take the
permittivity function to be

r rr( )
1
2

( 1)tanh ( ) 1solv 0 mid solv{ }= [ ] + +

(24)

where

r r R0 0= (25)

and

r R L/2mid vdW= + (26)

is the distance (along the vector r − R0) to the center point of
the switching function. That point is situated at a distance L/2
outside of the sphere, as shown in Figure 2. We take L = 0.5 Å
as the length scale of the switching region and set α = 4/L.
3.1.2. Voronoi Construction of ε(r). To test the HetPCM

method against exact Poisson boundary conditions, we need a
model function ε(r) for the latter. For fair comparison, this
function must correspond reasonably well with a model in
which a dielectric constant (either εsolv or εnonp) is assigned to
each atomic sphere, at the user’s discretion. To construct a
corresponding function ε(r), we use Becke’s definition of
“fuzzy” Voronoi cells108 to define ε(r) in pointwise fashion
over the real-space grid that is used in the PEqS calculations.
This smoothing of the Voronoi cell boundaries is widely used
as a numerical quadrature device in DFT codes, and the atom-
based smoothing functions wA(r) are often called “Becke

weights”. Details are provided in Section S1 of the Supporting
Information and the weight function wA(r) is defined in eq
S14.
In the present context, the function wA(r) is used to smooth

the boundaries of the Voronoi cells defined by atom (nucleus)
A, and then we impose that ε(r) = 1 for all points inside of the
molecular cavity. The result is a “primitive” permittivity
function,

w
r

r r

r

( )
( ),

1,
A

A A

atoms

=

l
m
oooooo

n
oooooo (27)

where εA = εsolv if atom A is solvent exposed, or else εA = εnonp
for atoms embedded in hydrophobic regions. The choice of εA
for each atom is made by the user.
In the definition of ε̃(r), the transition to ε = 1 at the cavity

surface remains abrupt. This is addressed by means of a
switching function Fcav, and the permittivity function used in
what we call the “Voronoi-PEqS” method is

Fr r r( ) ( ) ( )cav= (28)

The function Fcav(r) interpolates between the interior value ε =
1 and the value εA that is just outside of the cavity surface, for a
given point r ∈ Ω. We use a tanh(x)-based form similar to that
in eq 24. Specifically

F r rr( )
1
2

( 1)tanh ( ) 1A A A Acav mid,= { [ ] + + }
(29)

where

r r RA A= (30)

and

r R L/2A Amid, vdW,= + (31)

in analogy to eqs 25 and 26, respectively. The index A̅ in these
equations denotes the sphere that is closest to the point r, as
shown in Figure 2. Formally,

Figure 2. Illustration of the atomic spheres (A, B, ...) that comprise
the vdW molecular cavity surface, along with distances used to define
switching functions in eqs 24 and 29. For the indicated point r, the
value minX∥r − RX∥ is obtained for the sphere centered at RA. As
such, A̅ = A in eq 32.
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A r Rargmin (min )X X= (32)

The effect of Fcav(r) in eq 28 is to make sure that ε ≈ 1 for
points near the vdW cavity surface, which is constructed using
the atomic radii defined in eq 23. We take L = 0.5 Å and α =
4/L, as for the single-sphere cavity, so that the switching
function is centered L/2 = 0.25 Å outside of the vdW surface
as shown in Figure 2.
As an example, Figure 3 presents two different versions of

the function ε(r) for several different solutes. These two
versions are labeled “scheme 1” and “scheme 2” and
correspond to different portions of each solute cavity being
exposed to solvent (ε = εsolv) or else classified as hydrophobic
(ε = εnonp). These two schemes are discussed in Section 4.3.
For now, it suffices to note that the Voronoi-based permittivity
functions that are plotted in Figure 3 can easily be mapped
onto atomic choices for εA in a HetPCM calculation.

3.2. Computational Details. This section provides
computational details for the electronic structure calculations
and, separately, the PCM and PEqS boundary conditions that
are applied to them. All calculations were performed using a
locally modified copy of Q-Chem v. 5.4.104

3.2.1. Electronic Structure Calculations. Calculations used
to benchmark the model were performed using HF theory for
the solute because solvation energies computed with
continuum models are no more accurate when DFT is used
instead.109,110 (A matching set of calculations performed with
the ωB97M-V functional111 can be found in Tables S19 and
S20 and will be referenced briefly in the discussion that
follows.) The B3LYP+D3(BJ) functional is used for
applications to protein pKa prediction in Section 4.5, as a
representative use case. Here, D3(BJ) indicates Grimme’s D3
dispersion correction based on Becke−Johnson damping.112

For all calculations, the integral screening threshold and
shell-pair drop tolerance were set to τints = 10−12 a.u., as
appropriate for medium-size systems with diffuse basis
functions.113 The SCF convergence threshold was set to τSCF
= 10−8 Eh.
3.2.2. PCM Boundary Conditions. All PCM calculations use

the C-PCM model and the HetPCM adaptation of it, meaning
eqs 7−9 with ζ = 0. The cavity surface is constructed using
scaled vdW radii, as in eq 23, then discretized using atom-
centered Lebedev grids. Except where noted, we use 110

Lebedev points per atomic sphere for hydrogen and 194 points
per sphere for other atoms.
3.2.3. Poisson Boundary Conditions. Solution of Poisson’s

equation requires discretization of three-dimensional space, to
a distance sufficiently far from the molecule such that φtot(r) ≈
0. In PEqS,24−27 this is accomplished using a dense Cartesian

grid so that the requisite Laplacian, r( )
2

tot , can be evaluated
using a finite-difference procedure and a Cartesian multigrid
algorithm.25 For some of the results presented in Sections 4.1
and 4.2, where the solute cavities are spherical, we use a
relatively coarse grid spacing Δx = Δy = Δz = 0.2877 Å, which
is comparable to the spacing used in previous work on
excitation and ionization energies.24−26,86,90 These quantities
are relatively insensitive to the grid spacing as compared to
ΔGelst, which is quite sensitive to how quickly ε(r) changes at
the boundaries of the molecular cavity. As such, when the
cavity is constructed from atomic spheres (as in Section 4.3),
we use a very fine grid spacing of Δx = Δy = Δz = 0.05 Å. See
Table S1 for tests of how ΔGelst converges as a function of the
grid spacing.
The coordinate origin is placed at the centroid of the atomic

coordinates and the grid extends to a total length of 8 Å in
each direction. In most cases, this means that all nuclei are at
least 2 Å away from the edges of the grid. The multigrid PEqS
algorithm described in ref 25 is used to solve Poisson’s
equation at each SCF iteration.

3.3. Protein Systems. Previously, Su and Li114 used a
heterogeneous PCM46 to investigate the active sites of five
type-1 copper proteins (1EY5, 1ID2, 1KDI, 1PZA, and
2CAK), and we will explore the same systems in this work.
Relaxed structures were not provided in ref 114 so we started
from crystal structures. Following previous work,12−14 we first
protonated these structures using the H++ web server (pH =
7.0, salinity of 0.15 M, εin = 10, and εout = 80),115,116 then
relaxed the geometries using GFN2-xTB117,118 in conjunction
with a generalized Born/surface area implicit solvent model for
water.119

The relaxed structures were trimmed prior to further
relaxation at the DFT level, following the protocol in ref
114. A significant number of atoms were fixed (i.e., not
relaxed); see Figure 1 of ref 114. These fixed-atom models
were then relaxed at the B3LYP+D3(BJ)/6-31+G* level, in

Figure 3. Permittivity functions ε(r), generated using the fuzzy Voronoi method of eq 28, for: (a,b) NO3
−, (c,d) CHOO−, (e,f) NH4

+, (g,h) H3O+,
(i,j) NaCl, (k,l) glycine, (m,n) benzene, and (o,p) phenol. Red regions represent εsolv = 78.4 whereas light blue represents εnonp (set to εnonp = 10 in
these particular images), and finally the dark blue region is the cavity interior where ε = 1. The switching regions between these values are
highlighted in white but that switching smoothly interpolates between the indicated values of ε. For each solute, two different constructions of ε(r)
are tested: scheme 1 (along the top row) places less of the solute in contact with the polar region whereas scheme 2 (bottom row) puts more of it
into that region.
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isotropic PCM with εs = 78.4. (Note that we use the VWN5
version of B3LYP,120 which is slightly different from the
version used in ref 114.) Relaxed structures are provided in the
Supporting Information and are similar to those reported in ref
114.
In 1E5Y, 1KDI, 1PZA, and 2CAK the copper ion is in its

reduced form (Cu+), whereas in 1ID2 it is in the oxidized form
(Cu2+). These charge states were specified as part of the SCF
initial guess. For HetPCM calculations, a dielectric constant
εsolv = 78.4 was assigned to the solvent-exposed histidine side
chains, whereas the remaining atoms were assigned a value of
either εnonp = 4 or 10. The solute cavity was constructed and
discretized as described in Section 3.2.

4. RESULTS AND DISCUSSION
For reproducibility purposes, PEqS and HetPCM solvation
energies for various molecules and ions can be found in
Section S3 of the Supporting Information, computed in a
variety of basis sets and using either HF or ωB97M-V for the
solute. The detailed discussion of solvation energies that
follows is focused on calculations at the HF/def2-TZVPD
level, as this separates the comparison of PEqS and HetPCM
from any issues related to DFT, such as delocalization error for
the ionic solutes.

4.1. Evaluating Discretization Errors. As a test of the
PEqS setup, including the use of smooth Voronoi cells to
construct ε(r), we first consider several examples using
spherical cavities. These are not intended as realistic models
of solvation but they do furnish model problems for which
exact analytic results can be obtained, under the assumption
that the cavity is large enough so that there is no charge
penetration into the continuum. Then, the only source of error
in an isotropic PCM calculation is the discretization procedure,
while errors in numerical PEqS calculations arise both from
discretization and from the fact that the sharp dielectric
interface (eq 1) that is assumed in the analytic solution must
be smoothed in practice for numerical implementation.
Comparison against analytic results allows us to quantify
these numerical errors, before moving to realistic molecular
cavities.

The Born ion model affords an analytic result for solvation
of a monatomic ion in a spherical cavity,3 and Table 1
compares exact values for ΔGelst to PEqS and PCM results for
several such ions. PCM calculations reproduce the analytic
results essentially exactly (errors <0.01 kcal/mol), whereas
PEqS errors average about 1% of ΔGelst for either of two
versions of PEqS boundaries that are examined. These include
a standard vdW cavity construction, as in the original PEqS
approach,24−26 which simply means smoothing the sharp
dielectric boundary according to eq 21. (For the present
calculations, that boundary surface consists of a single sphere.)
In addition, we consider pointwise construction of ε(r)
according to the Voronoi scheme in eq 28. These calculations
use large atomic radii (R = 3.12RvdW) to ensure that there is no
escaped charge, since the analytic Born model is only exact
under that assumption. A 21 Å × 21 Å × 21 Å grid is
employed, with Δx = Δy = Δz = 0.2877 Å, which is typical of
earlier PEqS calculations.25

For the PEqS calculations using the standard vdW cavity
construction, the discretized Poisson model solvates the ions
slightly more strongly than the exact analytic solution to
Poisson’s equation, although the discretization errors are
smaller than 0.3 kcal/mol or about 1% of ΔGelst. For the
Voronoi construction of ε(r), the errors are in the other
direction but also about 1% of ΔGelst.
The Born model can be generalized to multipoles of

arbitrary order (Kirkwood model),3 centered in a spherical
cavity surrounded by an isotropic medium with a sharp
dielectric interface. To use this model, ρsol(r) is represented by
a multipole expansion (up to = 20 for these examples) and
the analytic result is applied for each spherical harmonic
function.103 In Table 2, we present results for two polar
diatomic molecules and one polyatomic ion, using spherical
cavities with R = 5.5−6.5 Å. These are large cavities (R ∼
3RvdW), to ensure that there is no escaped charge so that the
Kirkwood multipolar result is exact. Consequently, the
solvation energies are correspondingly small. (For comparison,
C-PCM calculations for the same species afford ΔGelst = −5
kcal/mol for ClH, ΔGelst = −8 kcal/mol for FH, and ΔGelst =
−64 kcal/mol for NO3

−.) Due to the smallness of the solvation

Table 1. Solvation Energies for Monatomic Ions, in kcal/mola

solute Born model PEqS (vdW cavity) PEqS (Voronoi) PCM (spherical)

ΔGelst error ΔGelst error ΔGelst error

abs. (%) abs. (%) abs. (%)

F− −25.02 −25.21 0.19 (0.7%) −24.76 0.26 (1.1%) −25.02 0.00 (0.0%)
Cl− −29.80 −30.08 0.28 (1.1%) −29.44 0.36 (1.4%) −29.80 0.00 (0.0%)
Li+ −24.18 −24.35 0.17 (0.7%) −23.93 0.25 (1.0%) −24.18 0.00 (0.0%)
Na+ −19.28 −19.39 0.11 (0.4%) −19.12 0.16 (0.7%) −19.28 0.00 (0.0%)

aHF/6-31+G* for anions and HF/6-31G* for cations, with εsolv = 78.4, using radii R = 5.55 Å (F−), 6.55 Å (Cl−), 6.78 Å (Li+), and 8.50 Å (Na+).

Table 2. Solvation Energies for Small Molecules and Ions, in kcal/mola

solute Kirkwood modelb PEqS (vdW cavity) PEqS (Voronoi) PCM (spherical)

ΔGelst error ΔGelst error ΔGelst error

abs. (%) abs. (%) abs. (%)

ClH −0.08 −0.07 0.01 (8.5%) −0.12 0.04 (56.8%) −0.07 0.01 (8.9%)
FH −0.22 −0.22 0.00 (0.8%) −0.12 0.10 (45.9%) −0.21 0.01 (3.5%)
NO3

− −29.89 −30.18 0.29 (1.0%) −29.52 0.37 (1.2%) −29.89 0.00 (0.0%)
aHF/6-31+G* level with εsolv = 78.4, using spherical cavities with R = 5.50 Å (FH), 6.55 Å (ClH), and 5.50 Å (NO3

−). bMultipole expansion up to
= 20 to represent ρsol(r).
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energies for the two neutral diatomic molecules, the PEqS grid
spacing is set to Δx = Δy = Δz = 0.05 Å in order to provide
well-converged results.
For the standard vdW cavity construction, PEqS calculations

reproduce analytic results to <0.01 kcal/mol accuracy for the
molecules FH and ClH, although the solvation energies
themselves are |ΔGelst| = 0.1−0.2 kcal/mol. For the Voronoi
construction, the error for FH is large in relative terms but is
only 0.1 kcal/mol in absolute terms, while the error for ClH is
negligibly small. The NO3

− ion has a much larger solvation
energy and larger absolute errors for PEqS as compared to the
analytic Kirkwood result, on the order of 0.3−0.4 kcal/mol and
thus similar to discretization errors for the monatomic ions. As
in that case, this error is only about 1% of |ΔGelst|. This level of
agreement suggests that we can use the PEqS code, in
conjunction with the Voronoi construction of ε(r), to generate
near-exact benchmarks that can be used as reference values for
other methods. As such, only the Voronoi construction of ε(r)
will be used in subsequent PEqS calculations.

4.2. Comparison to Isotropic PCM. Before testing
HetPCM, we first confirm that the isotropic PCM agrees
with the Voronoi-PEqS method, in the case of a homogeneous
dielectric environment. Table 3 compares solvation energies
for aqueous ions and small molecules using these two methods.
A grid spacing of 0.05 Å is used for the Voronoi-PEqS
calculations.

The Voronoi-PEqS solvation energies are systematically
smaller than PCM values, with absolute differences ranging up
to 2.9 kcal/mol. However, these differences amount to no
more than 6% of ΔGelst, except in the case of phenol where the
error is 21% although the solvation energy is also smaller than
that of most other solutes in Table 3. Errors for ions are ≲3%.

4.3. Quantitative Evaluation of HetPCM. In order to
justify the use of HetPCM, we next compute solvation energies
using different dielectric setups and compare HetPCM results
to Voronoi-PEqS values, as the Voronoi construction of ε(r)
best maps onto the concept of “different dielectric constants
for different atoms”. We use εsolv = 78.4 for all of these
calculations but vary εnonp. Results are provided in Table 4 for
εnonp = 1 and 2, and in Table 5 for εnonp = 4 and 10. These data
use HF/def2-TZVPD calculations for the solute but analogous
calculations using ωB97M-V/def2-TZVPD can be found in
Tables S19 and S20.
For each combination of dielectric constants, we examine

two different Voronoi-based constructions of ε(r) that are
called “scheme 1” and “scheme 2” in Tables 4 and 5. This is a
reference to the numbering scheme introduced in Figure 3,

which shows how three-dimensional space is partitioned into
polar and nonpolar regions characterized by εsolv and εnonp,
respectively. Taking NO3

− as an example, the difference
between schemes 1 and 2 lies in whether a single N−O
moiety is exposed to the high-dielectric region (scheme 1,
Figure 3a) or else two N−O moieties are immersed in εsolv
(scheme 2, Figure 3b). One may object that this is not a
physically realistic setup for a strongly polarizing species such
as NO3

−, although it is a well-defined model problem.
Considering glycine as another example, the difference
between schemes 1 and 2 lies in whether the carboxylate
moiety is solvent-exposed (scheme 1, Figure 3k) or whether
the amino group is instead solvent-exposed (scheme 2, Figure
3l). For other solutes, the meaning of scheme 1 versus scheme
2 can be gleaned from Figure 3, and in each case amounts to
exposing different parts of the vdW cavity surface to εsolv = 78.4
versus a smaller dielectric value, εnonp. In the Voronoi-PEqS
calculations this is done in a smooth way�and Figure 3 is
actually a color map of the permittivity function ε(r) that is
constructed�whereas for HetPCM, εsolv and εnonp are assigned
at the atomic level, in a manner that should be obvious from
Figure 3.
The most extreme example of heterogeneity is to set εnonp =

1, for which results are provided in Table 4. Here, the mean
absolute difference between the HetPCM and Voronoi-PEqS
values of ΔGelst is 11.2 kcal/mol (or 64% of ΔGelst) with a
maximum deviation of 35.2 kcal/mol. These very large
deviations reflect the ad hoc nature of the HetPCM
construction. It is notable, however, that the largest errors
are incurred for the least realistic solvation environments. For
example, in the case of NO3

− there is a 56% difference between
HetPCM and Voronoi-PEqS values of ΔGelst when one N−O
moiety is in contact with the solvent (represented by εsolv =
78.4), which is reduced to 19% error when the high-dielectric
environment surrounds two N−O moieties. Similar remarks
can be made for the other ions, for which scheme 1 is a less
realistic solvation model because it puts less of the ion’s vdW
surface in contact with εsolv. In contrast, scheme 2 surrounds
more of the vdW surface with εsolv, which is closer to
homogeneous solvation.
For the neutral species (NaCl, glycine, benzene, and

phenol), absolute differences between HetPCM and Vor-
onoi-PEqS solvation energies are ≲1 kcal/mol even for the
case where εnonp = 1 and εsolv = 78.4. These solvation energies
are much smaller as compared to those for ions, and in several
of the charge-neutral cases the percentage errors in ΔGelst are
rather large. For example, phenol exhibits the largest absolute
differences in ΔGelst among the neutral solutes (at 2 kcal/mol),
which translates into relative errors as large as 118% since the
Voronoi-PEqS benchmarks lie in the range |ΔGelst| = 4−6 kcal/
mol.
However, these deviations are substantially reduced simply

by increasing εnonp from 1 to 2 (Table 4). For the combination
of εnonp = 2 and εsolv = 78.4, the maximum deviation between
the HetPCM and Voronoi-PEqS methods is no greater than
1.7 kcal/mol (41% of ΔGelst) for the neutral solutes. Including
the ions, the average deviation is 4.8 kcal/mol. (The average
deviation is 5.2 kcal/mol at the ωB97M-V/def2-TZVPD level;
see Table S19.) Although the change from εnonp = 1 to 2 seems
quite modest, there is precedent for such a change inducing
relatively large changes in reaction energies in QM/PCM
calculations on cluster models of enzymes. Those changes are

Table 3. Solvation Energies for Small Molecules and Ionsa

solute ΔGelst (kcal/mol) difference

PCM PEqSb Abs. (%)

NO3
− −63.7 −62.5 1.2 (2.0%)

NH4
+ −81.3 −79.1 2.2 (2.8%)

NaCl −23.3 −22.1 1.3 (5.7%)
CHOO− −75.2 −73.1 2.1 (2.9%)
H3O+ −89.9 −86.9 2.9 (3.4%)
glycine −12.2 −11.5 0.7 (6.0%)
benzene −3.7 −3.5 0.2 (5.5%)
phenol −8.0 −6.6 1.4 (20.9%)

aHF/def2-TZVPD with εsolv = 78.4 and atomic radii from eq 23.
bVoronoi construction of ε(r), eq 28.
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often large upon passing from vacuum dielectric boundaries to
ε = 2, with the effect saturating by ε = 4.12,84,85,121−124

The agreement between HetPCM and Voronoi-PEqS
improves even further for εnonp = 4 or 10, as demonstrated
in Table 5. For εnonp = 4, which is often used to represent the
hydrophobic interiors of proteins,48−53,91 the absolute differ-
ences for charge-neutral solutes are all <2 kcal/mol, which is
no more than a 32% error, while the errors for ions are all
<10%. For εnonp = 10, this difference drops to ≲2% for both
neutral and ionic solutes. Nevertheless, there remain
substantial differences between HetPCM solvation, with εnonp
= 10 and εsolv = 78 (Table 5), and isotropic PCM solvation
with εs = 78 (Table 3). It is not the case that the former simply
converges to the latter by εnonp = 10.

For ωB97M-V/def2-TZVPD calculations with εnonp = 10,
the average deviation between HetPCM and Voronoi-PEqS is
1.1 kcal/mol for the same data set (Table S20). For context,
we note that absolute errors in C-PCM solvation energies
average 1.6 kcal/mol for small, charge-neutral solutes in water,
if one compares calculated values of ΔGelst to the experimental
free energies of solvation (ΔG°), with no corrections for
nonelectrostatic interactions.3,125 (The experimental data have
estimated uncertainties of only ±0.2 kcal/mol.126,127) As such,
discrepancies of 1−2 kcal/mol between HetPCM and
Voronoi-PEqS are of the same order of magnitude as the
intrinsic accuracy of continuum solvation models themselves.
For ions, the accuracy of C-PCM drops to 7−8 kcal/mol for

Table 4. Solvation Energies (in kcal/mol) Computed Using εnonp = 1 or 2a

solute schemeb

εnonp = 1, εsolv = 78.4 εnonp = 2, εsolv = 78.4

ΔGelst difference ΔGelst difference

PEqSc HetPCM Abs. (%) PEqSc HetPCM Abs (%)

NO3
− 1 −39.8 −25.5 14.4 (56%) −49.1 −43.8 5.3 (12%)

NO3
− 2 −55.5 −46.6 8.9 (19%) −58.4 −54.3 4.1 (8%)

CHOO− 1 −58.2 −45.9 12.3 (27%) −64.3 −59.6 4.7 (8%)
CHOO− 2 −73.2 −71.2 2.0 (3%) −73.8 −73.2 0.6 (1%)
NH4

+ 1 −45.3 −15.2 30.1 (199%) −58.8 −48.3 10.5 (22%)
NH4

+ 2 −64.3 −29.4 34.8 (118%) −69.9 −55.2 14.6 (26%)
H3O+ 1 −54.6 −21.4 33.2 (156%) −67.3 −55.6 11.7 (21%)
H3O+ 2 −76.8 −41.6 35.2 (85%) −80.9 −65.7 15.3 (23%)
NaCl 1 −7.7 −9.4 1.6 (18%) −13.2 −15.9 2.7 (17%)
NaCl 2 −11.5 −11.9 0.4 (3%) −15.4 −17.6 2.2 (12%)
glycine 1 −3.1 −3.1 0.0 (1%) −5.3 −6.8 1.5 (23%)
glycine 2 −4.6 −3.6 1.0 (29%) −6.4 −7.2 0.8 (11%)
benzene 1 −1.0 −0.5 0.4 (85%) −1.6 −1.8 0.3 (15%)
benzene 2 −2.2 −1.6 0.5 (33%) −2.5 −2.4 0.0 (1%)
phenol 1 −4.0 −1.8 2.1 (118%) −4.7 −3.4 1.3 (37%)
phenol 2 −5.7 −3.4 2.3 (68%) −6.0 −4.3 1.7 (41%)

aCalculations at the HF/def2-TZVPD level. bPermittivity construction; see Figure 3. cVoronoi construction of ε(r) using L = 0.5 Å, k = 10, and a
0.05 Å grid spacing.

Table 5. Solvation Energies (in kcal/mol) Computed Using εnonp = 4 or 10a

solute schemeb

εnonp = 4, εsolv = 78.4 εnonp = 10, εsolv = 78.4

ΔGelst difference ΔGelst difference

PEqSc HetPCM Abs. (%) PEqSc HetPCM Abs. (%)

NO3
− 1 −54.8 −53.7 1.1 (2%) −59.2 −60.0 0.8 (1%)

NO3
− 2 −60.1 −58.8 1.3 (2%) −61.6 −61.8 0.3 (0%)

CHOO− 1 −67.9 −67.3 0.7 (1%) −71.0 −72.2 1.2 (2%)
CHOO− 2 −73.9 −74.2 0.4 (1%) −74.0 −74.8 0.9 (1%)
NO4

+ 1 −67.2 −65.1 2.1 (3%) −73.8 −75.3 1.5 (2%)
NH4

+ 2 −73.4 −68.4 5.0 (7%) −76.6 −76.6 0.0 (0%)
H3O+ 1 −75.3 −73.1 2.2 (3%) −81.8 −83.6 1.9 (2%)
H3O+ 2 −83.4 −78.0 5.4 (7%) −85.6 −85.5 0.2 (0%)
NaCl 1 −16.8 −19.6 2.7 (14%) −19.6 −21.9 2.3 (10%)
NaCl 2 −17.9 −20.5 2.6 (13%) −20.0 −22.3 2.3 (10%)
glycine 1 −7.1 −9.1 1.9 (21%) −9.1 −11.1 2.1 (18%)
glycine 2 −8.0 −9.4 1.4 (15%) −9.5 −11.3 1.8 (16%)
benzene 1 −2.1 −2.6 0.5 (19%) −2.7 −3.3 0.6 (18%)
benzene 2 −2.8 −2.9 0.1 (4%) −3.1 −3.4 0.4 (10%)
phenol 1 −5.4 −4.4 1.0 (23%) −6.1 −5.0 1.1 (21%)
phenol 2 −6.3 −4.8 1.5 (32%) −6.6 −5.2 1.4 (27%)

aCalculations at the HF/def2-TZVPD level. bPermittivity construction; see Figure 3. cVoronoi construction of ε(r) using L = 0.5 Å, k = 10, and a
0.05 Å grid spacing.
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aqueous solvation,3,125 although the uncertainties associated
with the experimental data are ±3 kcal/mol for ions.127

In our judgment, HetPCM behaves reasonably well as
assessed by comparison to the Voronoi-PEqS method and in
comparison to the inherent accuracy of continuum solvation
models, provided that εnonp ≥ 4. The explanation for this is
likely the rapidity with which the continuum solvation energy
converges to the ε → ∞ limit,71 which is at least part of the
reason why values ε > 4 have so little effect in enzyme
modeling.12,84,85,121−124 In contrast, the combination of εnonp =
1 with εsolv = 78.4 affords much larger discrepancies between
HetPCM and Poisson electrostatic solvation energies.

4.4. Surface Potentials. Solvation energies are used in the
analysis above because they provide a single, interpretable
number to compare HetPCM and PEqS results. However, the
HetPCM method is not actually intended for calculation of
solvation energies, as these are not meaningful for the
truncated protein models that we have in mind to investigate
with this approach. In this section, we consider some
qualitative comparisons of surface quantities computed using
the HetPCM and PEqS methods.
4.4.1. Anisotropic Solvation of NO3

−. We begin with a
detailed examination of an intentionally unrealistic model,
namely, NO3

− in permittivity scheme 2 (Figure 3b), where one
oxygen atom is exposed to a low-dielectric region. This setup
provides an incisive probe of how differences between
HetPCM and PEqS arise. Figure 4 provides a side-by-side
comparison of the PEqS polarization charge density, ρpol (eq
18), interpolated onto the vdW cavity surface for NO3

−, along
with the HetPCM surface charges {qi}. Both quantities are
evaluated at the same set of surface discretization points {si}
that are used in the HetPCM calculation.
As εnonp is increased from 1 to 10 (from left to right in

Figure 4), both ρpol(s) and the PCM surface charge gradually
increase from a uniform value of zero, over the entire oxygen
sphere that is exposed to εnonp = 1, to a larger, positive value as
εnonp increases. This change is more gradual for the PEqS
method, however, and for HetPCM the surface charge is much
closer to isotropic (across the three oxygen atoms) by εnonp =
10 than it is in the PEqS case. We speculate that this behavior

arises due to the increased locality of the HetPCM method,
where the value of the solute’s electrostatic potential φsol(si)
induces a charge in proportion to εi at the discretization point
si. In contrast, the Poisson model is controlled by a global
electrostatic potential φtot that is obligated to be continuous
and smooth across the boundaries between atomic regions
with different dielectric constants. This implies that the
neighboring high-dielectric regions have a somewhat greater
influence on the polarization charge in the low-dielectric
region, in the PEqS calculation, as compared to the HetPCM
calculation.
4.4.2. Protein Surface Potentials. In contrast to the highly

construed example of NO3
− with different environments for

different oxygen atoms, a more compelling rationale for
development of anisotropic solvation models is to provide
dielectric boundary conditions that can be used with sizable
biomolecular models. In such cases, it may not make sense to
use the same dielectric constant for all residues because some
of them may be solvent-exposed while others are buried within
the hydrophobic interior of the protein. What we desire is a
qualitative means to provide compensating charge when an
ionic residue is solvent-exposed, while not overpolarizing the
hydrophobic regions with a large dielectric constant.
Figure 5 compares the induced surface charge for a

protonated His(+)-Ile-His-Ile tetrapeptide, computed using
either a conventional PCM with εs = 78.4, or else HetPCM
with εsolv = 78.4 and εnonp = 4. The first histidine in the
sequence is protonated and positively charged, so we select
εsolv for the atoms of this cationic histidine and εnonp for the
other three residues.
For the protonated histidine residue that we select to be

solvent-exposed, there is essentially no difference in the surface
charge predicted by the isotropic PCM and HetPCM methods
(Figure 5b). However, subtle differences emerge on the other
three residues, which are described with nonpolar boundaries
in HetPCM but are solvent-exposed in the conventional PCM
calculation. In the latter case, there is buildup of charge
associated with the nitrogen and oxygen atoms that is not
observed with HetPCM, where the residues in question are
exposed to a low-dielectric environment that apparently cannot

Figure 4. Comparison of (a−d) the PEqS polarization charge interpolated onto the vdW cavity surface, versus (e−h) the corresponding HetPCM
surface charge distribution, for NO3

− in dielectric scheme 2 (see Figure 3b). The two N−O moieties farthest from the viewer are immersed in εsolv =
78.4 while that nearest the observer resides in a region described by εnonp with the values indicated.
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support such a charge buildup. We expect this to be important
in biomolecular modeling, in order to prevent anomalous
buildup of charge on what are supposed to be hydrophobic
parts of the surface. In contrast, and not unexpectedly, the
surface charge at the alkyl groups is more similar between these
two models.

4.5. pKa Calculations for Type-1 Cu Proteins. As an
illustrative application, we consider pKa calculations in protein
models containing ca. 140 atoms, comparing homogeneous
PCM and HetPCM boundary conditions. For biomolecular
model systems of this size, Voronoi-PEqS calculations are
intractable due to the requisite dense three-dimensional grid.
Whereas tests against exact Poisson boundaries in Section

4.3 suggest that HetPCM should probably not be used to
predict absolute solvation energies, results below demonstrate
that the use of an appropriate reference state does allow
calculation of a relative solvation energy, and thus a pKa. This
methodology builds upon work by others to compute relative
ΔG° and pKa values using a heterogeneous PCM.114 We also
provide an assessment of how the HetPCM results change with
respect to the value of εnonp that is used for the surface
boundary of the hydrophobic portions of the protein model.
The type-1 Cu centers considered here are critical to

electron transfer in biological systems. The Cu center is
coordinated by two histidines and one cysteine residue in a
trigonal planar structure, and mutations or modifications of
this site are known to cause disorders related to copper
homeostasis.128 Two protonated forms of these centers exist in
solution, which are depicted for the enzyme fern plastocyanin
(PDB code 1KDI) in Figure 6. In the HetPCM models, a
singular histidine residue is exposed to a higher dielectric, as
indicated.

Following ref 114, 1KDI is used as a reference for relative
pKa calculations in other enzymes. The free energy of each
protein (Pro), relative to that of plastocyanin (Plc), is
estimated using the reaction

ProH Plc Pro PlcH
G

+ +
°

(33)

where PlcH is the protonated form of fern plastocyanin. The
standard-state free energy change ΔG° will be approximated
using the electronic energies for each system, neglecting
entropic effects. From this, the pKa of each protein is calculated
(at T = 298 K) using 1KDI as a reference (pKa = 4.4 ± 0.1),129

so the pKa for Pro in eq 33 is

K G
RT

p 4.4
ln(10)a = + °

(34)

Relative energies of two different acid forms, analogous to
the 1KDI structures in Figure 6a,c, are listed in Table 6 with a

sign convention such that the imidazolium-flipped form is
more stable when ΔE < 0. These calculations, performed at the
B3LYP+D3(BJ)/6-31+G* level, suggest that the flipped form
is preferred for the enzymes 1E5Y, 1ID2, and 2CAK, as it
emerges lower in energy regardless of the boundary conditions.
For the other two examples (1KDI and 1PZA), it is unclear
which form is preferred because different boundary conditions
afford different relative energies.
Experiments on 1ID2 suggest that the imidazolium-flipped

acid form is more stable than the unflipped form by about 1
kcal/mol, in solution at T = 297 K.130 Focusing on 1ID2, the

Figure 5. (a) Protonated His(+)-Ile-His-Ile tetrapeptide structure,
with the solvent-exposed atoms enveloped in blue. (b) Surface map of
the difference Δqi in the induced surface charges, comparing a
HetPCM calculation (εnonp = 4, εsolv = 78.4) to a homogeneous PCM
calculation (εs = 78.4), at the B3LYP+D3(BJ)/6-31+G* level.

Figure 6. Relaxed structure of fern plastocyanin (1KDI) in its (a)
acid, (b) base, and (c) flipped acid forms. Coordination distances to
the Cu ion are labeled, in Å. Atoms enveloped in blue are described
using εsolv = 78.4 in HetPCM models, whereas the remaining atoms
are described using εnonp = 4 or 10.

Table 6. Energy Difference between the Acid and
Imidazolium-Flipped Forms of Proteins under Different
Boundary Conditionsa

protein

ΔE (kcal/mol)b

gas phase PCM (εs = 78.4)

HetPCM (εsolv = 78.4)

εnonp = 4 εnonp = 10

1E5Y −1.92 −0.32 −0.07 −0.24
1ID2 −4.89 −1.75 −2.46 −2.03
1KDI 4.01 1.35 −0.58 0.60
1PZA 0.04 0.29 −0.44 0.01
2CAK −0.12 −0.19 −4.24 −1.71

aB3LYP+D3(BJ)/6-31+G*. bΔE < 0 indicates that the imidazolium-
flipped structure is more stable.
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conventional PCM with εs = 78.4 is closest to that
experimental value, predicting that the flipped form is 1.75
kcal/mol more stable, although the two HetPCM methods
predict that the flipped form is 2.0−2.5 kcal/mol more stable,
which is much closer to experiment than the gas-phase value
(4.9 kcal/mol more stable).
Relative energies reported in Table 6 are not consistent in

sign with the B3LYP-based heterogeneous PCM calculations
reported previously by Su and Li.114 We have not attempted to
mimic their computational paradigm exactly; for example,
calculations in ref 114 omit diffuse functions and any
dispersion correction. Experiments suggest that π−π inter-
actions near the active sites of Cu-containing metalloenzymes
have a significant impact on pKa values,131 suggesting that
dispersion effects may be important. Another difference,
relative to the calculations reported in ref 114, is that the
latter employ a united-atom cavity construction with no
explicit atomic spheres for the hydrogen atoms. Although this

seems like an odd choice for pKa calculations, we have
performed calculations at the B3LYP+D3(BJ)/6-31+G* level
using the same cavity construction, for comparison. Results in
Table S21 demonstrate that the relative energies are rather
erratic in sign and magnitude.
The polarized electrostatic interaction ΔGelst is a key factor

in determining how amino acid residues interact with their
surroundings, which is essential for understanding protein
stability in biological environments. Table 7 compares ΔGelst
for the three forms of each protein (acid, base, and
imidazolium-flipped acid), computed using different PCM-
based boundary conditions. We now understand that absolute
HetPCM solvation energies do not always agree with Poisson
benchmarks, and there is significant variation in ΔGelst across
different solvation models in Table 7. The isotropic PCM
affords the largest values of |ΔGelst|, because it allows the most
polarization charge to accumulate at the solute cavity surface.

Table 7. Solvation Energies for Protein Models Computed with PCM Boundary Conditionsa

protein

ΔGelst (kcal/mol)

HetPCM (εsolv = 78.4)

PCM (εs = 78.4) εnonp = 4 εnonp = 10

base acid flipped base acid flipped base acid flipped

1E5Y −68.5 −99.0 −97.4 −50.3 −77.1 −75.3 −61.6 −90.7 −89.0
1ID2 −73.3 −108.0 −104.9 −53.3 −84.6 −82.2 −65.6 −99.1 −96.3
1KDI −66.1 −99.2 −101.9 −48.7 −77.6 −82.1 −59.5 −91.0 −94.4
1PZA −75.8 −99.5 −99.2 −55.7 −77.3 −77.8 −68.1 −91.1 −91.1
2CAK −60.1 −100.6 −100.7 −44.8 −76.0 −80.2 −54.3 −91.3 −92.9

aB3LYP+D3(BJ)/6-31+G*.

Figure 7. Absolute differences in pKa values, as compared to experiment, for (a) acid forms of Cu proteins, (b) imidazolium-flipped forms of the
same proteins, and (c) the average pKa for these two forms.
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One might anticipate that relative solvation energies
(comparing different isomers of the same protein) are likely
to be more accurate than absolute solvation energies, and
indeed we find that differences in ΔGelst are more consistent,
comparing HetPCM with εnonp = 4 versus εnonp = 10 (Table
S22). These results are consistent in trend (but not necessarily
in magnitude) with those presented by Su and Li.114 In
general, our calculations afford larger values of |ΔGelst| as
compared to those reported in ref 114, consistent with the use
of smaller atomic radii in the present work. Results obtained
with united-atom radii (Table S23) are more consistent with
those in ref 114.
Finally, we compute pKa values for these Cu-containing

proteins. Prediction of pKas is a notoriously difficult computa-
tional problem,53 but one where continuum solvation has
historically played a role.132−135 Figure 7 reports pKa values for
each system in its flipped and unflipped forms using various
PCM-type boundary conditions. (Numerical data are provided
in Table S24.). Experimental values, used here and in ref 114
to assess errors, are pKa < 2 for 1E5Y and 2CAK,136−140 pKa =
7.2 for 1ID2,141 pKa = 4.4 for 1KDI,129 and pKa = 4.8 for
1PZA.142

For each system except 2CAK, we see a considerable
decrease in the predicted pKa upon application of any solvent
model. Reduction in pKa upon solvation is expected based on
stabilization of the charged species, and the one exception is
also the only system to exhibit a negative pKa. This indicates
that 2CAK is a much stronger acid than fern plastocyanin.
Looking at the different solvation models, the best-performing
one (as compared to experiment) is HetPCM with εnonp = 10.
However, all of the solvation models reduce the error as
compared to the gas-phase result. Excluding fern plastocyanin
(1KDI), which is the reference value, the average absolute
difference from experiment, expressed in pKa units, is 4.6 (gas
phase), 1.3 (isotropic PCM), 1.4 (HetPCM with εnonp = 4)
and 1.1 (HetPCM with εnonp = 10). Expressed in energy units
(ΔG°), both versions of HetPCM predict these values within
1.3 kcal/mol of experiment.
Results obtained with gas-phase (vacuum) boundary

conditions are effectively useless, with average pKa errors
that exceed 2 in most cases and exceed 6 in several cases. The
largest differences with respect to experiment are for the
enzyme 1PZA, which was also true in ref 114. (In the present
work, the relaxed structure for 1PZA exhibits coordination
distances to the Cu center that differ by only about 0.1 Å from
those reported in ref 114.) Moreover, gas-phase calculations
cannot rationalize differences in pKa upon imidazolium
flipping. The difference between the two acid forms (ΔpKa),
averaged across the data set in Figure 7, is ΔpKa > 1 for gas-
phase calculations but ΔpKa < 1 for solvated calculations.
On average, HetPCM with εnonp = 4 shows a smaller

difference from the experimentally measured pKa value for the
flipped acid form (1.16 pKa units) and the HetPCM model
using εnonp = 10 has a smaller difference for the acid form (1.28
pKa units). For the unflipped acid, the homogeneous PCM has
a very slightly smaller average difference (1.26 pKa units) as
compared to the HetPCM methods. To obtain better
agreement with experiment, one might construct a larger
QM model of the active site, or else include a larger number of
low-energy configurations in the averaging.
Overall, HetPCM with εnonp = 10 is in better agreement with

the homogeneous PCM representation with εs = 78.4 across all
three metrics investigated, as compared to the HetPCM with

εnonp = 4. This behavior highlights the diminishing sensitivity
of the model to differences in the nonpolar dielectric constant.
At higher values of εnonp, the effects of using dielectric
boundary conditions become saturated and the differences
between internal and external dielectric environments is less
pronounced. This convergence suggests that the choice of
dielectric constant (within a reasonable range) may not
significantly impact the predictions for solvation free energies
or pKa values. These findings emphasize the importance of
using a PCM to improve the accuracy of cluster-QM enzyme
models, while showcasing a range of εnonp values within which
the results are not too sensitive to the specific choice.

5. CONCLUSION
The Voronoi-PEqS method has been shown to replicate exact
(Kirkwood multipolar) solvation results for spherical cavities,
and near-exact PCM results for molecular cavities. This
justifies our smooth Voronoi construction of the permittivity
function ε(r), as a way to define atom-specific dielectric
constants that are consistent with a physical model, namely,
Poisson’s equation. Numerical solution of the latter can then
be used as a test of the ad hoc HetPCM approach. As
compared to this Voronoi-PEqS methods, the much simpler
HetPCM procedure affords solvation energies (ΔGelst) within
2 kcal/mol when the nonpolar dielectric constant is set to εnonp
= 4 or 10. Agreement deteriorates considerably for εnonp ≤ 2.
As an exemplary application, we tested HetPCM (with εnonp

= 4 and 10) for DFT prediction of pKa values in a set of Cu
proteins, using εnonp to represent hydrophobic parts of a
protein model and εsolv = 78 for solvent-exposed parts.
Reasonable agreement with experiment is obtained, in contrast
to results computed using vacuum boundary conditions.
HetPCM may thus represent a simple means to implement
heterogeneous dielectric boundary conditions for cluster-QM
enzymatic modeling with electronic structure theory.
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