Supporting Information for:

"Testing a heterogeneous polarizable continuum model against exact Poisson boundary conditions"

 Paige E. Bowling,^{1,2,} Montgomery Gray,² Suranjan K. Paul,² and John M. Herbert^{1,2,*}
 ¹Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210 USA
 ²Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 USA

January 23, 2025

Contents

List of Tables	$\mathbf{S2}$
S1 Details of the Voronoi Construction	$\mathbf{S3}$
S2 Numerical Convergence Tests	$\mathbf{S5}$
S3 Basis Set Dependence S3.1 Hartree-Fock Calculations S3.2 ω B97M-V Calculations	S6 S6 S11
S4 p $K_{\rm a}$ Calculations	S17
References	$\mathbf{S19}$

^{*}herbert@chemistry.ohio-state.edu

List of Tables

S1 S2	Solvation energies ΔG_{elst} as a function of the grid spacing. ^{<i>a</i>}	$\begin{array}{c} \mathrm{S5} \\ \mathrm{S5} \end{array}$
S3	Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{nonp}} = 1.^{a}$	$\mathbf{S6}$
S 4	Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{nonp}} = 2.^{a}$	S7
S5	Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 4.^{a}$	S7
S6	Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{nonp}} = 10.^{a}$.	S8
S7	HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{popp}} = 1$.	S8
S 8	HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{rel} = 78.4$ and $\varepsilon_{rec} = 2$	S9
S9	HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $c_{1} = -78.4$ and $c_{2} = -4$	50
S10	$\varepsilon_{solv} = 76.4$ and $\varepsilon_{nonp} = 4$. HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using	C10
S11	$\varepsilon_{\rm solv} = 78.4$ and $\varepsilon_{\rm nonp} = 10$. Voronoi-PEqS solvation energies computed using ω B97M-V in various basis sets, using $\varepsilon_{\rm solv} =$	510
S12	78.4 and $\varepsilon_{\text{nonp}} = 1.^{a}$	SII
S13	78.4 and $\varepsilon_{\text{nonp}} = 2.^{a}$	S12
S14	78.4 and $\varepsilon_{\text{nonp}} = 4.^{a}$	S12
S15	78.4 and $\varepsilon_{\text{nonp}} = 10.^{a}$	S13
S16	and $\varepsilon_{\text{nonp}} = 1$	S13
S17	$\varepsilon_{\text{solv}} = 78.4 \text{ and } \varepsilon_{\text{nonp}} = 2.$	S14
S18	$\varepsilon_{\text{solv}} = 78.4 \text{ and } \varepsilon_{\text{nonp}} = 4.$	S14
S10	$\varepsilon_{\text{solv}} = 78.4 \text{ and } \varepsilon_{\text{nonp}} = 10.$	S15
S19 S20	ω B97M-V/def2-TZVPD solvation energies (in kcal/mol) computed using $\varepsilon_{\text{nonp}} = 4$ or 10. ^{<i>a</i>}	S15 S16
S21	Relative energies of the imidazolium-flipped acid form to the acid form of various proteins, using atomic radii from Ref. $1.^a$	S17
S22 S23	$\Delta\Delta G_{\text{elst}}$ between the acid and imidazolium-flipped forms of various proteins. ^{<i>a</i>}	S17
S24	conjunction with united-atom radii from Ref. $1.^a$	S17
	two. ^a	S18

S1 Details of the Voronoi Construction

PEqS requires a dense three-dimensional grid with $\varepsilon(\mathbf{r})$ defined at every point. In this section, we describe the use of "fuzzy" Voronoi cells, otherwise known as Becke weights,² to construct permittivity functions $\varepsilon(\mathbf{r})$ that map onto a model in which individual atoms are assigned one of two dielectric constants, either $\varepsilon_{\text{nonp}}$ or $\varepsilon_{\text{solv}}$.

For the model environments considered here, where the dielectric constant is defined atomwise, this requires smooth interpolation between different atomic values of the dielectric constant (ε_A in eq. 28). values of ε . For this we use Becke's version of Voronoi cells with smooth boundaries.² This scheme was developed by Becke for numerical evaluation of three-dimensional integrals,

$$\int F(\mathbf{r}) \, d\mathbf{r} \approx \sum_{i} w_i F(\mathbf{r}_i) \,, \tag{S1}$$

where $\{\mathbf{r}_i\}$ and $\{w_i\}$ are a set of quadrature points and weights, respectively. For molecular integrals, it makes sense to partition the sum in eq. S1 into atomic regions and to use nuclear-centered grids for each region. The partition is accomplished using Voronoi polyhedra,³ defined by the nuclei.

The idea is to define a weight function $w_A(\mathbf{r})$ for each atom A, such that the normalization condition

$$\sum_{A} w_A(\mathbf{r}) = 1 \tag{S2}$$

holds at every point \mathbf{r} in three-dimensional space. This condition implies that the integrand in eq. (S1) can be decomposed into atomic contributions,

$$F(\mathbf{r}) = \sum_{A} F_A(\mathbf{r}) , \qquad (S3)$$

each given by

$$F_A(\mathbf{r}) = w_A(\mathbf{r}) F(\mathbf{r}) , \qquad (S4)$$

with $F_A(\mathbf{r})$ to be integrated by using a grid that is centered on nucleus A. The weight function $w_A(\mathbf{r})$ should have limits

$$w_A(\mathbf{r}) \to 1, \qquad \text{as } \|\mathbf{r} - \mathbf{R}_A\| \to 0$$

$$wA(\mathbf{r}) \to 0, \qquad \text{as } \|\mathbf{r} - \mathbf{R}_A\| \to \infty ,$$
(S5)

and should be well-behaved enough so that the quadrature subject to discontinuous jumps as the nuclei are displaced. In the present context, this allows for smooth interpolation between an atomwise definition of $\varepsilon(\mathbf{r})$, as in eq. 28.

Following Becke,² we define the Voronoi polyhedra using a two-center coordinate system, via confocal elliptical coordinates $\mathbf{r} = (\lambda_{AB}, \mu_{AB}, \phi_{AB})$ for the pair of nuclei situated at \mathbf{R}_A and \mathbf{R}_B . In this coordinate system, ϕ_{AB} is the angle between \mathbf{r} and the internuclear axis $\mathbf{R}_A - \mathbf{R}_B$. The other two coordinates are

$$\lambda_{AB} = \frac{r_A + r_B}{R_{AB}} \tag{S6}$$

and

$$\mu_{AB} = \frac{r_A - r_B}{R_{AB}} \tag{S7}$$

where $r_A = \|\mathbf{r} - \mathbf{R}_A\|$, $r_B = \|\mathbf{r} - \mathbf{R}_B\|$, and $R_{AB} = \|\mathbf{R}_A - \mathbf{R}_B\|$. Note that

$$-1 \le \mu_{AB} \le 1 . \tag{S8}$$

One may use this coordinate to define a step function

$$\delta(\mu_{AB}) = \begin{cases} 1, & -1 \le \mu_{AB} \le 0\\ 0, & 0 < \mu_{AB} \le 1 \end{cases}$$
(S9)

Using the fact the surface defined by $\mu_{AB} \equiv 0$ is the perpendicular bisector of $\mathbf{R}_A - \mathbf{R}_B$,² one may define the Voronoi polyhedron for nucleus A as

$$P_A(\mathbf{r}) = \prod_{B \neq A} \delta(\mu_{AB}) .$$
(S10)

This polyhedron has sharp boundaries. Specifically, $P_A(\mathbf{r}) = 1$ if \mathbf{R}_A is the closest nucleus to the point \mathbf{r} , and $P_A(\mathbf{r}) = 0$ otherwise.

To obtain a weight function that is continuous and smooth, we must introduce switching functions. In other words, there is a discontinuity at $\mu_{AB} = 0$ that needs to be resolved in order to obtain "fuzzy" Voronoi polyhedra. Again following Becke,² we use

$$\delta(\mu) = [1 - g_k(\mu)]/2 \tag{S11}$$

to replace the function defined in eq. S9, where $g_k(\mu)$ is defined by recursive application of a polynomial

$$p(\mu) = \frac{3}{2}\mu - \frac{1}{2}\mu^3 .$$
 (S12)

For example,

$$g_{1}(\mu) = p(\mu) g_{2}(\mu) = p(p(\mu)) g_{3}(\mu) = p(p(p(\mu)) .$$
(S13)

Smaller values of k in eq. S11 lead to slower switching, with sharper switching as $k \to \infty$.² On the basis of convergence tests presented in Table S2, the value k = 10 was selected for use in the present work.

This recursive definition of $\delta(\mu)$ is used to weight the grid points within each Voronoi cell, according to the function $P_A(\mathbf{r})$ in eq. S10. Normalizing the weights leads us to define

$$w_A(\mathbf{r}) = \frac{P_A(\mathbf{r})}{\sum_B P_B(\mathbf{r})} \,. \tag{S14}$$

Then $w_A(\mathbf{r}) \approx 1$ if \mathbf{r} is close to \mathbf{R}_A , whereas $w_A(\mathbf{r}) \to 0$ as $\mathbf{r} \to \mathbf{R}_B$ (for $B \neq A$), consistent with the limits in eq. S5.

S2 Numerical Convergence Tests

Moloculo	$\Delta G_{\rm elst} \; (\rm kcal/mol)$							
Molecule	0.29 Å	0.20 Å	0.15 Å	0.10 Å	0.05 Å			
NO_3^-	-61.4	-63.6	-63.6	-63.6	-63.6			
NH_4^+	-47.0	-79.5	-79.3	-79.3	-79.2			
NaCl	-23.0	-23.2	-23.1	-23.1	-23.0			
$\rm CHOO^-$	-68.2	-68.6	-68.6	-68.6	-68.5			
H_3O^+	-84.2	-75.5	-75.5	-87.6	-87.5			

Table S1: Solvation energies ΔG_{elst} as a function of the grid spacing.^{*a*}

 $\overline{{}^{a}$ All grids are cubic ($\Delta x = \Delta y = \Delta z$) and extend to 10 Å. Calculations were performed at the HF/STO-3G level.

Table S2: Solvation energies as a function of the k parameter in the Becke weight function (eq. S11).^a

Solute	Schomob		$\Delta G_{\rm elst}$ ((kcal/mol)	
Jointe	Scheme	k = 3	k = 7	k = 10	k = 15
NO_3^-	1	-42.5	-38.7	-37.7	-37.7
NO_3^-	2	-57.8	-55.7	-55.1	-55.1
NaCl	1	-11.9	-7.8	-7.5	-7.5
NaCl	2	-15.9	-13.7	-13.5	-13.5
$\rm CHOO^-$	1	-53.4	-50.5	-49.7	-49.7
$\rm CHOO^-$	2	-67.1	-66.7	-66.5	-66.5
NH_4^+	1	-50.3	-44.6	-43.0	-43.4
NH_4^+	2	-68.5	-64.2	-63.2	-63.2
H_3O^+	1	-61.4	-55.4	-54.0	-54.1
H_3O^+	2	-80.6	-77.5	-76.7	-76.7

^{*a*}All grids extend to 8 Å and calculations were performed at the HF/STO-3G level. ^{*b*}As defined in Fig. 3.

S3 Basis Set Dependence

S3.1 Hartree-Fock Calculations

Table S3: Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{nonp}} = 1.^{a}$

Soluto	Schomob			$\Delta G_{\rm elst}$ (kcal)	/mol)	
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-38.2	-38.9	-39.7	-39.6	-39.8
NO_3^-	2	-55.6	-55.8	-55.4	-55.8	-55.5
NaCl	1	-7.7	-7.3	-8.0	-7.6	-7.7
NaCl	2	-13.7	-11.3	-11.8	-11.7	-11.5
CHOO-	1	-50.3	-57.1	-58.2	-58.3	-58.2
$\rm CHOO^-$	2	-67.1	-73.7	-73.3	-73.8	-73.2
NH_4^+	1	-44.0	-44.7	-45.3	-45.0	-45.3
NH_4^+	2	-63.9	-64.0	-64.3	-64.2	-64.3
H_3O^+	1	-54.9	-54.4	-54.7	-54.6	-54.6
H_3O^+	2	-77.6	-76.8	-76.9	-77.0	-76.8
Glycine	1	-1.8	-3.0	-3.1	-3.1	-3.1
Glycine	2	-2.7	-4.2	-4.6	-4.6	-4.6
Benzene	1	-0.2	-0.9	-1.0	-1.0	-1.0
Benzene	2	-0.5	-2.0	-2.2	-2.2	-2.2
Phenol	1	-2.3	-4.0	-4.1	-4.1	-4.0
Phenol	2	-2.8	-5.6	-5.9	-5.8	-5.7

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Soluto	Schomob			$\Delta G_{\rm elst}$ (kcal)	/mol)	
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-49.0	-49.2	-49.0	-49.3	-49.1
NO_3^-	2	-59.0	-59.0	-58.3	-58.8	-58.4
NaCl	1	-13.8	-12.4	-13.5	-13.1	-13.2
NaCl	2	-17.3	-14.9	-15.7	-15.5	-15.4
$\rm CHOO^-$	1	-58.2	-63.9	-64.3	-64.6	-64.3
$\rm CHOO^-$	2	-68.2	-74.3	-73.9	-74.4	-73.8
NH_4^+	1	-58.4	-58.5	-58.8	-58.7	-58.8
NH_4^+	2	-69.8	-69.7	-69.9	-69.8	-69.9
H_3O^+	1	-67.9	-67.3	-67.4	-67.4	-67.3
H_3O^+	2	-81.6	-80.9	-81.0	-81.1	-80.9
Glycine	1	-3.0	-5.1	-5.3	-5.3	-5.3
Glycine	2	-3.6	-6.0	-6.5	-6.4	-6.4
Benzene	1	-0.4	-1.5	-1.6	-1.6	-1.6
Benzene	2	-0.6	-2.3	-2.5	-2.6	-2.5
Phenol	1	-2.5	-4.7	-4.8	-4.8	-4.7
Phenol	2	-2.8	-5.9	-6.2	-6.2	-6.0

Table S4: Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\rm solv} = 78.4$ and $\varepsilon_{\rm nonp} = 2.^{a}$

^aAll calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. $^b\mathrm{As}$ defined in Fig. 3.

Soluto	Schomob	Scheme ^b $\Delta G_{\text{elst}} \text{ (kcal/mol)}$				
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-55.4	-55.4	-54.7	-55.2	-54.8
NO_3^-	2	-61.0	-61.0	-60.0	-60.6	-60.1
NaCl	1	-17.6	-15.8	-17.1	-16.7	-16.8
NaCl	2	-19.5	-17.2	-18.2	-17.9	-17.9
CHOO-	1	-62.8	-68.0	-68.0	-68.4	-67.9
CHOO ⁻	2	-68.6	-74.3	-74.0	-74.4	-73.9
NH_4^+	1	-67.2	-67.0	-67.2	-67.2	-67.2
NH_4^+	2	-73.5	-73.3	-73.4	-73.4	-73.4
H_3O^+	1	-76.0	-75.3	-75.4	-75.5	-75.3
H_3O^+	2	-84.0	-83.4	-83.5	-83.6	-83.4
Glycine	1	-3.9	-6.9	-7.2	-7.2	-7.14
Glycine	2	-4.3	-7.4	-8.0	-7.9	-7.95
Benzene	1	-0.5	-2.0	-2.2	-2.2	-2.10
Benzene	2	-0.6	-2.6	-2.8	-2.9	-2.77
Phenol	1	-2.6	-5.3	-5.5	-5.5	-5.37
Phenol	2	-2.9	-6.2	-6.5	-6.5	-6.33

Table S5: Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\rm solv} = 78.4$ and $\varepsilon_{\rm nonp} = 4.^{a}$

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Soluto	Schomo ^b			$\Delta G_{\rm elst}$ (kcal)	/mol)	
Solute	Scheine	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-60.1	-60.1	-59.1	-59.7	-59.2
NO_3^-	2	-62.6	-62.6	-61.5	-62.1	-61.6
NaCl	1	-20.5	-18.5	-20.0	-19.6	-19.6
NaCl	2	-21.3	-19.1	-20.4	-20.0	-20.0
$\rm CHOO^-$	1	-66.2	-71.3	-71.1	-71.5	-71.0
$\rm CHOO^-$	2	-69.0	-74.4	-74.0	-74.5	-74.0
NH_4^+	1	-73.9	-73.7	-73.8	-73.8	-73.8
NH_4^+	2	-76.7	-76.4	-76.6	-76.6	-76.6
H_3O^+	1	-82.4	-81.8	-81.9	-82.0	-81.8
H_3O^+	2	-86.2	-85.6	-85.7	-85.8	-85.6
Glycine	1	-4.8	-8.6	-9.2	-9.1	-9.1
Glycine	2	-5.0	-8.9	-9.6	-9.4	-9.5
Benzene	1	-0.6	-2.5	-2.8	-2.8	-2.7
Benzene	2	-0.7	-2.8	-3.2	-3.2	-3.1
Phenol	1	-2.8	-6.0	-6.3	-6.3	-6.1
Phenol	2	-3.0	-6.5	-6.8	-6.8	-6.6

Table S6: Voronoi-PEqS solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{\text{solv}} = 78.4$ and $\varepsilon_{\text{nonp}} = 10.^{a}$

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Table S7: HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 1$.

Soluto	Schomo ^a			$\Delta G_{\rm elst}$ (kcal)	/mol)	
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-23.2	-25.3	-25.5	-25.4	-25.5
NO_3^-	2	-44.2	-46.9	-46.6	-46.7	-46.6
NaCl	1	-9.4	-9.0	-9.7	-9.3	-9.4
NaCl	2	-14.5	-11.8	-12.2	-12.1	-11.9
$\rm CHOO^-$	1	-34.6	-44.1	-46.2	-45.6	-45.9
$\rm CHOO^-$	2	-58.3	-70.9	-71.7	-71.4	-71.2
NH_4^+	1	-14.5	-14.8	-15.0	-15.1	-15.2
NH_4^+	2	-28.4	-28.7	-29.0	-29.4	-29.4
H_3O^+	1	-20.6	-21.2	-21.3	-21.4	-21.4
H_3O^+	2	-40.2	-41.2	-41.5	-41.7	-41.6
Glycine	1	-1.9	-3.1	-3.3	-3.2	-3.1
Glycine	2	-2.6	-3.6	-3.8	-3.9	-3.6
Benzene	1	-0.1	-0.5	-0.6	-0.6	-0.5
Benzene	2	-0.4	-1.6	-1.8	-1.8	-1.6
Phenol	1	-1.1	-1.8	-1.8	-1.8	-1.8
Phenol	2	-1.7	-3.4	-3.5	-3.4	-3.4

Soluto	Schomoa			$\Delta G_{\rm elst}$ (kcal/	/mol)	
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-43.9	-44.5	-43.8	-44.1	-43.8
NO_3^-	2	-54.2	-55.2	-54.4	-54.7	-54.3
NaCl	1	-16.9	-15.3	-16.3	-15.9	-15.9
NaCl	2	-19.5	-17.0	-18.0	-17.6	-17.6
CHOO-	1	-52.2	-59.3	-59.8	-59.8	-59.6
$\rm CHOO^-$	2	-64.3	-73.4	-73.6	-73.6	-73.2
NH_4^+	1	-48.1	-48.0	-48.2	-48.3	-48.3
NH_4^+	2	-54.9	-54.8	-55.0	-55.2	-55.2
H_3O^+	1	-55.7	-55.5	-55.6	-55.8	-55.6
H_3O^+	2	-65.3	-65.5	-65.6	-65.9	-65.7
Glycine	1	-4.0	-6.8	-7.0	-7.0	-6.8
Glycine	2	-4.4	-7.2	-7.6	-7.6	-7.2
Benzene	1	-0.5	-1.8	-2.0	-2.0	-1.8
Benzene	2	-0.6	-2.4	-2.7	-2.7	-2.4
Phenol	1	-1.6	-3.4	-3.5	-3.5	-3.4
Phenol	2	-1.9	-4.3	-4.5	-4.4	-4.3

Table S8: HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 2$.

Q = 1+ -	C -1 a	$\Delta G_{\rm elst} \; (\rm kcal/mol)$						
Solute	Scheme-	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD		
NO_3^-	1	-54.6	-54.8	-53.8	-54.2	-53.7		
NO_3^-	2	-59.7	-60.0	-58.9	-59.3	-58.8		
NaCl	1	-20.8	-18.8	-20.0	-19.6	-19.6		
NaCl	2	-22.1	-19.7	-20.9	-20.5	-20.5		
CHOO-	1	-61.4	-67.5	-67.5	-67.7	-67.3		
CHOO-	2	-67.3	-74.6	-74.5	-74.8	-74.2		
NH_4^+	1	-65.1	-64.9	-65.0	-65.1	-65.1		
NH_4^+	2	-68.4	-68.1	-68.3	-68.5	-68.5		
H_3O^+	1	-73.4	-73.0	-73.1	-73.3	-73.1		
H_3O^+	2	-78.1	-77.9	-78.0	-78.2	-78.0		
Glycine	1	-5.1	-9.1	-9.5	-9.4	-9.1		
Glycine	2	-5.3	-9.4	-9.9	-9.8	-9.4		
Benzene	1	-0.7	-2.6	-2.8	-2.9	-2.6		
Benzene	2	-0.8	-2.9	-3.2	-3.2	-2.9		
Phenol	1	-1.9	-4.4	-4.6	-4.5	-4.4		
Phenol	2	-2.1	-4.8	-5.0	-5.0	-4.8		

Table S9: HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 4$.

Solute	$Scheme^a$			ΔG_{elst} (kcal)	/mol)	
Solute	Scheme	STO-3G	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-61.2	-61.2	-60.0	-60.5	-60.0
NO_3^-	2	-63.0	-63.1	-61.9	-62.4	-61.8
NaCl	1	-23.2	-21.0	-22.4	-21.9	-21.9
NaCl	2	-23.6	-21.4	-22.8	-22.3	-22.3
CHOO ⁻	1	-67.0	-72.7	-72.4	-72.8	-72.2
$\rm CHOO^-$	2	-69.2	-75.3	-75.1	-75.4	-74.8
NH_4^+	1	-75.4	-75.0	-75.2	-75.3	-75.3
NH_4^+	2	-76.6	-76.2	-76.4	-76.6	-76.6
H_3O^+	1	-84.1	-83.6	-83.7	-83.9	-83.6
H_3O^+	2	-85.8	-85.4	-85.5	-85.7	-85.5
Glycine	1	-5.9	-10.6	-11.3	-11.1	-11.1
Glycine	2	-5.9	-10.7	-11.4	-11.3	-11.3
Benzene	1	-0.8	-3.1	-3.4	-3.4	-3.3
Benzene	2	-0.8	-3.2	-3.5	-3.6	-3.4
Phenol	1	-2.1	-5.0	-5.2	-5.2	-5.0
Phenol	2	-2.1	-5.2	-5.4	-5.4	-5.2

Table S10: HetPCM solvation energies computed using Hartree-Fock theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 10$.

S3.2 ω B97M-V Calculations

Soluto	Schomob		ΔG_{elst}	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-39.4	-40.0	-40.2	-40.2
NO_3^-	2	-56.0	-55.0	-56.0	-55.2
NaCl	1	-6.6	-7.6	-7.1	-7.3
NaCl	2	-9.7	-10.6	-10.5	-10.4
CHOO-	1	-54.6	-56.5	-56.7	-56.6
CHOO-	2	-70.4	-70.5	-71.3	-70.4
NH_4^+	1	-45.0	-45.7	-45.2	-45.6
NH_4^+	2	-64.2	-64.6	-64.4	-64.5
H_3O^+	1	-54.4	-54.9	-54.6	-54.7
H_3O^+	2	-76.6	-76.9	-76.9	-76.8
Glycine	1	-2.7	-3.0	-3.0	-3.0
Glycine	2	-3.8	-4.4	-4.4	-4.4
Benzene	1	-0.7	-0.8	-0.8	-0.8
Benzene	2	-1.6	-1.8	-1.9	-1.8
Phenol	1	-3.5	-3.8	-3.8	-3.7
Phenol	2	-4.9	-5.3	-5.4	-5.2

Table S11: Voronoi-PEqS solvation energies computed using ω B97M-V in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 1.^{a}$

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Soluto	Schomob	$\Delta G_{\rm elst} \ (\rm kcal/mol)$				
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD	
NO_3^-	1	-49.2	-49.0	-49.3	-49.1	
NO_3^-	2	-59.0	-58.3	-58.8	-58.4	
NaCl	1	-12.4	-13.5	-13.1	-13.2	
NaCl	2	-14.9	-15.7	-15.5	-15.4	
CHOO-	1	-63.9	-64.3	-64.6	-64.2	
$\rm CHOO^-$	2	-74.3	-73.9	-74.4	-73.8	
NH_4^+	1	-58.5	-58.8	-58.7	-58.8	
NH_4^+	2	-69.7	-69.9	-69.8	-69.9	
H_3O^+	1	-67.3	-67.4	-67.4	-67.3	
H_3O^+	2	-80.9	-81.0	-81.1	-80.9	
Glycine	1	-4.4	-4.9	-4.9	-4.9	
Glycine	2	-5.2	-6.0	-6.0	-6.0	
Benzene	1	-1.2	-1.3	-1.4	-1.3	
Benzene	2	-1.8	-2.1	-2.2	-2.1	
Phenol	1	-4.1	-4.4	-4.4	-4.3	
Phenol	2	-5.2	-5.6	-5.7	-5.5	

Table S12: Voronoi-PEqS solvation energies computed using ω B97M-V in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 2.^{a}$

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Table S13: Voronoi-PEqS solvation energies computed using ω B97M-V in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 4.^{a}$

Soluto	Schomob		ΔG_{elst}	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-55.4	-54.7	-55.2	-54.8
NO_3^-	2	-61.0	-60.0	-60.6	-60.1
NaCl	1	-15.8	-17.1	-16.7	-16.8
NaCl	2	-17.2	-18.2	-17.9	-17.9
CHOO-	1	-68.0	-68.0	-68.4	-67.9
$\rm CHOO^-$	2	-74.3	-74.0	-74.4	-73.9
NH_4^+	1	-67.0	-67.2	-67.2	-67.2
NH_4^+	2	-73.3	-73.4	-73.4	-73.4
H_3O^+	1	-75.3	-75.4	-75.5	-75.3
H_3O^+	2	-83.4	-83.5	-83.6	-83.4
Glycine	1	-5.8	-6.6	-6.6	-6.5
Glycine	2	-6.4	-7.4	-7.3	-7.3
Benzene	1	-1.6	-1.8	-1.8	-1.8
Benzene	2	-2.0	-2.4	-2.5	-2.4
Phenol	1	-4.6	-5.0	-5.0	-4.9
Phenol	2	-5.4	-5.8	-5.9	-5.8

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Soluto	Schomob	$\Delta G_{\rm elst} \; (\rm kcal/mol)$				
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD	
NO_3^-	1	-60.1	-59.1	-59.7	-59.2	
NO_3^-	2	-62.6	-61.5	-62.1	-61.6	
NaCl	1	-18.5	-20.0	-19.6	-19.6	
NaCl	2	-19.1	-20.4	-20.0	-20.0	
CHOO-	1	-71.3	-71.1	-71.5	-71.0	
CHOO-	2	-74.4	-74.0	-74.5	-74.0	
NH_4^+	1	-73.7	-73.8	-73.8	-73.8	
NH_4^+	2	-76.4	-76.6	-76.6	-76.6	
H_3O^+	1	-81.8	-81.9	-82.0	-81.8	
H_3O^+	2	-85.6	-85.7	-85.8	-85.6	
Glycine	1	-7.3	-8.4	-8.2	-8.3	
Glycine	2	-7.5	-8.8	-8.6	-8.7	
Benzene	1	-2.0	-2.3	-2.4	-2.3	
Benzene	2	-2.3	-2.6	-2.8	-2.7	
Phenol	1	-5.2	-5.6	-5.7	-5.5	
Phenol	2	-5.6	-6.1	-6.2	-6.0	

Table S14: Voronoi-PEqS solvation energies computed using ω B97M-V various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 10.^{a}$

^{*a*}All calculations use an 8 Å total grid size with k = 10, L = 0.5 Å, and $\Delta x = \Delta y = \Delta z = 0.05$ Å. ^{*b*}As defined in Fig. 3.

Table S15: HetPCM solvation energies computed using ω B97M-V in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 1$.

Soluto	Schomoa		ΔG_{elst}	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-25.0	-25.4	-25.6	-25.5
NO_3^-	2	-46.3	-46.1	-46.5	-46.2
NaCl	1	-8.1	-9.2	-8.7	-8.9
NaCl	2	-10.1	-11.0	-10.9	-10.8
$\rm CHOO^-$	1	-40.0	-43.7	-43.0	-43.6
$\rm CHOO^-$	2	-64.9	-67.3	-67.1	-67.0
NH_4^+	1	-14.6	-14.9	-15.1	-15.1
NH_4^+	2	-28.4	-28.9	-29.3	-29.4
H_3O^+	1	-20.8	-21.0	-21.2	-21.1
H_3O^+	2	-40.4	-40.9	-41.2	-41.1
Glycine	1	-2.9	-3.2	-3.2	-3.1
Glycine	2	-3.3	-3.7	-3.8	-3.8
Benzene	1	-0.4	-0.5	-0.5	-0.5
Benzene	2	-1.3	-1.5	-1.5	-1.5
Phenol	1	-1.4	-1.6	-1.5	-1.5
Phenol	2	-2.8	-3.0	-3.0	-2.9

Soluto	Schomoa		ΔG_{elst}	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-44.3	-43.2	-44.0	-43.3
NO_3^-	2	-54.9	-53.6	-54.4	-53.6
NaCl	1	-13.7	-15.3	-14.8	-14.9
NaCl	2	-15.0	-16.6	-16.3	-16.2
CHOO-	1	-55.7	-57.0	-57.2	-56.9
$\rm CHOO^-$	2	-68.7	-69.8	-70.2	-69.6
NH_4^+	1	-48.0	-48.3	-48.4	-48.4
NH_4^+	2	-54.7	-55.1	-55.3	-55.3
H_3O^+	1	-55.2	-55.4	-55.6	-55.4
H_3O^+	2	-64.9	-65.3	-65.6	-65.4
Glycine	1	-5.8	-6.5	-6.4	-6.4
Glycine	2	-6.2	-7.0	-7.0	-7.0
Benzene	1	-1.5	-1.6	-1.7	-1.7
Benzene	2	-1.9	-2.2	-2.3	-2.2
Phenol	1	-2.7	-3.0	-3.0	-2.9
Phenol	2	-3.5	-3.8	-3.9	-3.7

Table S16: HetPCM solvation energies computed using ω B97M-V theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 2$.

Table S17: HetPCM solvation energies computed using ω B97M-V theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 4$.

Soluto	Schomo ^a		$\Delta G_{\rm elst}$	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-54.6	-53.0	-54.0	-53.05
NO_3^-	2	-59.8	-58.0	-59.1	-58.1
NaCl	1	-16.9	-18.8	-18.2	-18.3
NaCl	2	-17.6	-19.5	-19.1	-19.1
$\rm CHOO^-$	1	-64.1	-64.5	-65.1	-64.4
$\rm CHOO^-$	2	-70.7	-71.0	-71.7	-70.9
NH_4^+	1	-64.9	-65.2	-65.3	-65.3
NH_4^+	2	-68.2	-68.5	-68.6	-68.6
H_3O^+	1	-72.7	-73.0	-73.1	-72.9
H_3O^+	2	-77.4	-77.8	-78.0	-77.8
Glycine	1	-7.7	-8.6	-8.6	-8.5
Glycine	2	-7.9	-9.0	-8.9	-8.9
Benzene	1	-2.1	-2.4	-2.4	-2.4
Benzene	2	-2.3	-2.6	-2.8	-2.7
Phenol	1	-3.5	-3.9	-3.9	-3.8
Phenol	2	-3.9	-4.3	-4.4	-4.2

 $^a\mathrm{As}$ defined in Fig. 3.

Soluto	Schomoa		ΔG_{elst}	(kcal/mol)	
Solute	Scheme	def2-SVP	def2-SVPD	def2-TZVP	def2-TZVPD
NO_3^-	1	-61.1	-59.2	-60.3	-59.2
NO_3^-	2	-63.0	-61.0	-62.1	-61.1
NaCl	1	-18.9	-21.0	-20.4	-20.6
NaCl	2	-19.2	-21.3	-20.8	-20.9
CHOO-	1	-69.4	-69.3	-70.1	-69.2
$\rm CHOO^-$	2	-71.8	-71.8	-72.6	-71.7
NH_4^+	1	-75.2	-75.4	-75.5	-75.5
NH_4^+	2	-76.4	-76.6	-76.7	-76.7
H_3O^+	1	-83.2	-83.6	-83.7	-83.5
H_3O^+	2	-85.0	-85.4	-85.5	-85.3
Glycine	1	-9.0	-10.2	-10.1	-10.1
Glycine	2	-9.0	-10.4	-10.2	-10.3
Benzene	1	-2.5	-2.8	-2.9	-2.9
Benzene	2	-2.6	-2.9	-3.0	-3.0
Phenol	1	-4.0	-4.5	-4.5	-4.4
Phenol	2	-4.2	-4.7	-4.7	-4.6

Table S18: HetPCM solvation energies computed using ω B97M-V theory in various basis sets, using $\varepsilon_{solv} = 78.4$ and $\varepsilon_{nonp} = 10$.

Table S19: ω B97M-V/def2-TZVPD solvation energies (in kcal/mol) computed using $\varepsilon_{nonp} = 1$ or 2.^a

Solute	Scheme ^b	Scheme ^b $\varepsilon_{\text{nonp}} = 1, \varepsilon_{\text{so}}$			= 78.4		$\varepsilon_{\rm nonp} = 2, \varepsilon_{\rm solv} = 78.4$			
Dorate	benefite	Δc	$G_{\rm elst}$	Diffe	erence		Δc	G_{elst}	Diffe	erence
		$PEqS^{c}$	HetPCM	Abs.	(%)		$PEqS^{c}$	HetPCM	Abs.	(%)
NO_3^-	1	-40.2	-25.5	14.6	(57%)		-49.1	-43.3	5.8	(13%)
NO_3^-	2	-55.2	-46.2	9.0	(20%)		-58.4	-53.6	4.8	(9%)
NaCl	1	-7.3	-8.9	1.6	(17%)		-13.2	-14.9	1.7	(11%)
NaCl	2	-10.4	-10.8	0.3	(3%)		-15.4	-16.2	0.9	(5%)
CHOO-	1	-56.6	-43.6	13.0	(30%)		-64.2	-56.9	7.3	(13%)
$\rm CHOO^-$	2	-70.4	-67.0	3.47	(5%)		-73.8	-69.6	4.2	(6%)
NH_4^+	1	-45.6	-15.1	30.4	(201%)		-58.8	-48.4	10.4	(22%)
NH_4^+	2	-64.5	-29.4	35.2	(120%)		-69.9	-55.3	14.6	(26%)
H_3O^+	1	-54.7	-21.1	33.6	(159%)		-67.3	-55.4	11.9	(21%)
H_3O^+	2	-76.8	-41.1	35.7	(87%)		-80.9	-65.4	15.6	(24%)
Glycine	1	-3.0	-3.1	0.2	(5%)		-4.9	-6.4	1.5	(24%)
Glycine	2	-4.4	-3.8	0.6	(17%)		-6.0	-7.0	1.0	(14%)
Benzene	1	-0.8	-0.5	0.3	(72%)		-1.3	-1.7	0.3	(21%)
Benzene	2	-1.8	-1.5	0.4	(24%)		-2.1	-2.2	0.1	(5%)
Phenol	1	-3.7	-1.5	2.2	(148%)		-4.3	-2.9	1.4	(47%)
Phenol	2	-5.2	-2.9	2.3	(80%)		-5.5	-3.7	1.8	(47%)

^aSee Table 4 for the corresponding HF/def2-TZVPD calculations. ^bPermittivity construction; see Fig. 3. ^cVoronoi construction of $\varepsilon(\mathbf{r})$ using L = 0.5 Å, k = 10, and a 0.05 Å grid spacing.

Soluto	Schomob		$\varepsilon_{\rm nonp} = 4, \varepsilon_{\rm sol}$	$_{lv} = 78.4$	ε	$\varepsilon_{\rm nonp} = 10, \varepsilon_{\rm solv} = 78.4$			
Source	Scheme	ΔG_{elst}		Diffe	rence	Δ	ΔG_{elst} Difference		
		$PEqS^{c}$	HetPCM	Abs.	(%)	$PEqS^{c}$	HetPCM	Abs.	(%)
NO_3^-	1	-54.8	-53.05	1.74	(3%)	-59.2	-59.2	0.0	(0%)
NO_3^-	2	-60.1	-58.1	2.0	(3%)	-61.6	-61.1	0.5	(1%)
NaCl	1	-16.8	-18.3	1.5	(8%)	-19.6	-20.6	0.9	(5%)
NaCl	2	-17.9	-19.1	1.2	(6%)	-20.0	-20.9	0.9	(4%)
CHOO-	1	-67.9	-64.4	3.6	(6%)	-71.0	-69.2	1.8	(3%)
$\rm CHOO^-$	2	-73.9	-70.9	3.0	(4%)	-74.0	-71.7	2.2	(3%)
NH_4^+	1	-67.2	-65.3	1.9	(3%)	-73.8	-75.5	1.7	(2%)
NH_4^+	2	-73.4	-68.6	4.8	(7%)	-76.6	-76.7	0.2	(0%)
H_3O^+	1	-75.3	-72.9	2.4	(3%)	-81.8	-83.5	1.7	(2%)
H_3O^+	2	-83.4	-77.8	5.6	(7%)	-85.6	-85.3	0.3	(0%)
Glycine	1	-6.5	-8.5	2.0	(23%)	-8.3	-10.1	1.8	(18%)
Glycine	2	-7.3	-8.9	1.6	(18%)	-8.7	-10.3	1.6	(16%)
Benzene	1	-1.8	-2.4	0.6	(25%)	-2.3	-2.9	0.5	(18%)
Benzene	2	-2.4	-2.7	0.3	(11%)	-2.7	-3.0	0.3	(10%)
Phenol	1	-4.9	-3.8	1.1	(29%)	-5.5	-4.4	1.1	(26%)
Phenol	2	-5.8	-4.2	1.5	(36%)	-6.0	-4.6	1.5	(33%)

Table S20: ω B97M-V/def2-TZVPD solvation energies (in kcal/mol) computed using $\varepsilon_{\text{nonp}} = 4$ or $10.^{a}$

^aSee Table 5 for the corresponding HF/def2-TZVPD calculations. ^bPermittivity construction; see Fig. 3. ^cVoronoi construction of $\varepsilon(\mathbf{r})$ using L = 0.5 Å, k = 10, and a 0.05 Å grid spacing.

S4 pK_a Calculations

Protoin	$\Delta E \; (\text{kcal/mol})^b$						
1 IOtem	gas	PCM	HetPCM	$(\varepsilon_{\rm solv} = 78.4)$			
	phase	$(\varepsilon_{\rm s} = 78.4)$	$\varepsilon_{\rm nonp} = 4$	$\varepsilon_{\rm nonp} = 10$			
1E5Y	-1.0	1.0	1.6	1.3			
1ID2	-4.0	-1.2	1.8	-1.5			
1KDI	7.2	3.3	1.6	2.6			
1PZA	1.0	0.8	0.3	-7.9			
2CAK	-0.0	-0.2	-0.9	-0.4			

Table S21: Relative energies of the imidazolium-flipped acid form to the acid form of various proteins, using atomic radii from Ref. $1.^{a}$

^{*a*}Analogous to Table 6 but using $R_{\rm vdW,C} = 2.124$ Å, $R_{\rm vdW,N} = 2.016$ Å, $R_{\rm vdW,O} = 1.908$ Å, $R_{\rm vdW,S} = 2.52$ Å, and $R_{\rm vdW,Cu} = 2.76$ Å, with no atomic spheres used for H. ^{*b*}B3LYP+D3(BJ)/6-31+G^{*} level.

Table S22: $\Delta\Delta G_{elst}$ between the acid and imidazolium-flipped forms of various proteins.^a

Protoin		$\Delta\Delta G_{\rm elst} \ (\rm kcal/mol)$					
1 IOtem	gas	PCM	HetPCM ($\varepsilon_{\rm solv} = 78.4$)				
	phase	$(\varepsilon = 78.4)$	$\varepsilon_{\rm nonp} = 4$	$\varepsilon_{\rm nonp} = 10$			
1E5Y	5.9	1.7	-0.5	0.8			
1ID2	8.9	3.1	1.9	2.6			
1PZA	4.0	1.1	-0.1	0.6			
2CAK	4.1	1.5	3.7	2.3			

 a B3LYP+D3(BJ)/6-31+G* level.

Table S23: Solvation energies for protein models computed using different PCM boundary conditions in conjunction with united-atom radii from Ref. $1.^a$

Protein	$\Delta G_{\rm elst} \; (\rm kcal/mol)^b$									
1 1000111					HetPCM ($\varepsilon_{\rm solv} = 78.4$)					
	PCM ($\varepsilon_{\rm s} = 78.4$)				$\varepsilon_{\rm nonp} = 4$			$\varepsilon_{\rm nonp} = 10$		
	Base	Acid	Flipped	Base	Acid	Flipped	Base	Acid	Flipped	
1E5Y	-66.3	-97.3	-95.2	-49.6	-76.1	-73.5	-59.9	-89.3	-87.1	
1ID2	-70.4	-104.7	-101.9	-52.0	-82.3	-80.1	-63.4	-96.3	-93.7	
1KDI	-65.2	-97.4	-101.3	-48.8	-76.5	-82.0	-59.0	-89.5	-94.0	
1PZA	-72.5	-97.0	-97.3	-54.0	-75.8	-76.6	-65.5	-89.1	-97.3	
2CAK	-60.7	-98.9	-99.1	-45.9	-78.1	-79.0	-55.1	-91.1	-91.5	

^aAnalogous to Table 7 but using $R_{\rm vdW,C} = 2.124$ Å, $R_{\rm vdW,N} = 2.016$ Å, $R_{\rm vdW,O} = 1.908$ Å, $R_{\rm vdW,S} = 2.52$ Å, and $R_{\rm vdW,Cu} = 2.76$ Å, with no atomic spheres used for H. ^bB3LYP+D3(BJ)/6-31+G* level.

Protein	Gas Phase		PCM (PCM ($\varepsilon_{\rm s} = 78.4$)		HetPCM $(\varepsilon_{\text{nonp}} = 4)^b$		HetPCM $(\varepsilon_{\text{nonp}} = 10)^b$				
	pK_a	error^{c}	pK_a	error^{c}	pK_{a}	error^{c}	pK_a	error^{c}				
Acid												
1E5Y	4.70	2.70	2.71	0.71	3.23	1.23	2.95	0.95				
1ID2	4.63	2.57	5.77	1.43	6.45	0.75	6.06	1.14				
1KDI	4.40	0.00	4.40	0.00	4.40	0.00	4.40	0.00				
1PZA	13.33	8.93	6.33	1.93	8.04	3.64	7.03	2.63				
2CAK	-2.40	4.40	2.95	0.95	-0.66	2.66	1.59	0.41				
Flipped Acid												
1E5Y	9.04	7.04	3.94	1.94	2.85	0.85	3.57	1.57				
1ID2	11.15	3.95	8.05	0.85	7.84	0.64	7.99	0.79				
1KDI	4.40	0.00	4.40	0.00	4.40	0.00	4.40	0.00				
1PZA	16.24	11.44	7.11	2.31	7.94	3.14	7.47	2.67				
2CAK	0.62	1.38	4.08	2.08	2.02	0.02	3.29	1.29				
Average												
1E5Y	6.87	4.87	3.33	1.33	3.04	1.04	3.26	1.26				
1ID2	7.89	0.69	6.91	0.29	7.14	0.06	7.03	0.17				
1KDI	4.40	0.00	4.40	0.00	4.40	0.00	4.40	0.00				
1PZA	14.79	9.99	6.72	1.92	7.99	3.19	7.25	2.45				
2CAK	-0.89	2.89	3.52	1.52	0.68	1.32	2.44	0.44				

Table S24: pK_a for the acid and imidazolium-flipped forms of Cu proteins, along with the average of the two.^{*a*}

^aB3LYP+D3(BJ)/6-31+G* level. These data are plotted in Fig. 6. ${}^{b}\varepsilon_{solv} = 78.4$ used for HetPCM. ^cErrors relative to experimental values: $pK_a < 2$ for 1E5Y and 2CAK, ${}^{4-8}$ $pK_a = 7.2$ for 1ID2, 9 $pK_a = 4.4$ for 1KDI, 10 and $pK_a = 4.8$ for 1PZA. ¹¹ 1KDI is used as a reference value; see eq. 34.

References

- Su, P.; Li, H. Protonation of type-1 Cu bound histidines: A quantum chemical study. *Inorg. Chem.* 2010, 49, 435–444.
- [2] Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553.
- [3] Medvedev, N. N. The algorithm for three-dimensional Voronoi polyhedra. J. Comput. Phys. 1986, 67, 223–229.
- [4] Groeneveld, C. M.; Feiters, M. C.; Hasnain, S. S.; Rijn, J. V.; Reedijk, J.; Canters, G. W. The pH and redox-state dependence of the copper site in azurin from *Pseudomonas aeruginosa* as studied by EXAFS. *Biochim. Biophys. Acta* 1986, 873, 214–227.
- [5] McGinnis, J.; Ingledew, W. J.; Sykes, A. G. Kinetic studies of 1:1 electron-transfer reactions of blue copper proteins. 13. reactions of rusticyanin from *Thiobacillus ferrooxidans* with inorganic redox partners. *Inorg. Chem.* **1986**, 25, 3730–3733.
- [6] Hunt, A. H.; Toypalmer, A.; Assamunt, N.; Cavanagh, J.; Blake, R. C.; Dyson, H. J. Nuclear magnetic resonance ¹⁵N and ¹H resonance assignments and global fold of rusticyanin: Insights into the ligation and acid stability of the blue copper site. J. Mol. Biol. 1994, 244, 370–384.
- [7] Jeuken, L. J. C.; van Vliet, P.; Verbeet, M. P.; Camba, R.; McEvoy, J. P.; Armstrong, F. K.; Canters, G. W. Role of the surface-exposed and copper-coordinating histidine in blue copper proteins: The electron-transfer and redox-coupled ligand binding properties of His117Gly azurin. J. Am. Chem. Soc. 2000, 122, 12186–12194.
- [8] Jeuken, L. J. C.; Ubbink, M.; Bitter, J. H.; van Vliet, P.; Meyer-Klaucke, W.; Canters, G. W. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin. J. Mol. Biol. 2000, 299, 737–755.
- [9] Lommen, A.; Canters, G. W. pH-dependent redox activity and fluxionality of the copper site in amicyanin from *Thiobacillus yersutus* as studied by 300- and 600-MHz ¹H NMR. J. Biol. Chem. 1990, 265, 2768–2774.
- [10] Hulsker, R.; Mery, A.; Thomassen, E. A.; Ranieri, A.; Sola, M.; Verbeet, M. P.; Kohzuma, T.; Ubbink, M. Protonation of a histidine copper ligand in fern plastocyanin. J. Am. Chem. Soc. 2007, 129, 4423–4429.
- [11] Impagliazzo, A. Transient Protein Interactions: The Case of Pseudoazurin and Nitrite Reductase, Thesis, Universiteit Leiden, 2005.