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ABSTRACT: Fragment-based quantum chemistry methods offer a
means to sidestep the steep nonlinear scaling of electronic structure
calculations so that large molecular systems can be investigated
using high-level methods. Here, we use fragmentation to compute
protein—ligand interaction energies in systems with several
thousand atoms, using a new software platform for managing
fragment-based calculations that implements a screened many-body
expansion. Convergence tests using a minimal-basis semiempirical
method (HF-3c) indicate that two-body calculations, with single-
residue fragments and simple hydrogen caps, are sufficient to
reproduce interaction energies obtained using conventional supramolecular electronic structure calculations, to within 1 kcal/mol at
about 1% of the computational cost. We also demonstrate that the HF-3c results are illustrative of trends obtained with density
functional theory in basis sets up to augmented quadruple-{ quality. Strategic deployment of fragmentation facilitates the use of
converged biomolecular model systems alongside high-quality electronic structure methods and basis sets, bringing ab initio quantum
chemistry to systems of hitherto unimaginable size. This will be useful for generation of high-quality training data for machine
learning applications.

1. INTRODUCTION Fragment-based quantum chemistry leverages distributed
computing by means of physics-based approximations, as an

There is an urgent and growing need to provide high-accuracy ! > O i ¢ Mo
alternative to parallelization of conventional algorithms.”™"" In

training data for machine learning (ML) applications. This is

especially true for biological systems, where understanding this way, O(N*) computational scaling (where N measures
protein—ligand interactions is crucial for advancing drug system size and the exponent p depends on the electronic
discovery and where ML-based screening is playing an structure method) is reduced to N, X O(n’), where n is a
increasingly prominent role.' "¢ Integration of quantum fixed subsystem size that does not grow with N, and N, is the
chemistry with ML has the potential to revolutionize number of subsystems, which increases with N. This is an
computational biology and to reduce the cost of drug discovery attractive approach to parallelization, in part because the
by enabling the use of nonempirical screening tools. storage footprint (memory and/or disk space), which is often

Encoding biomolecular systems requires a large, incon- the practical limitation, is reduced to that of the largest
sistently sized parameter space that is intractable to train and subsystem and checkpointing can be organized at the level of
use when considered as a whole. ML approaches commonly individual subsystem calculations. However, the number of
reduce complex systems into their component parts subsystems can be prohibitive for large molecules, and must be
(“tokens”), then infer properties of the system as a whole culled via some kind of screening algorithm.”””>° This is

based on relationships between tokens. This approach is
complementary to fragmentation methods in quantum
chemistry,'”'® which approximate supersystem properties by
systematically partitioning that system into numerous frag-
ments, for which it is relatively inexpensive to perform high-
quality calculations. This provides a hierarchy of well-defined
fragments and a database can be used to train ML models for
large systems. Generating high-quality training data for
protein—ligand binding is complicated, however, by the
requisite size of the chemical systems. Furthermore, the
noncovalent nature of many protein—ligand interactions means
that the electronic structure method must be chosen
carefully."”

necessary not only to reduce cost but also to forestall precision
issues associated with calculations that might involve 10° or
more separate subsystems.”_29

To this end, we have recently introduced a new software
framework, FracMeNT,”®*° with inherent database manage-
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Figure 1. Structures and binding affinities for the ligands used in this work along with the PDB code for the protein—ligand crystal structure: (a)

T4 lysozymes with small ligands and (b) large inhibitors (“LIDS”).

ment, parallelization, and screening capabilities. It is built upon
a generalized many-body expansion (MBE),"”*'™** and
interfaced with numerous quantum chemistry codes. In recent
applications, FRAGMENT has been used to investigate enzyme
thermochemistry in large active-site models,” and to perform
high-order n-body calculations on water clusters and ion—
water clusters.”*** In the present work, we apply fragmentation
to protein—ligand interaction energies using enzyme models
that include not just nearest-neighbor residues but which
afford energetically converged interaction energies. Even at the
level of density functional theory (DFT), there have been few
studies with converged results for full-protein models of ligand
binding.***

There has been other work applying fragment-based
quantum chemistry to calculate ligand—macromolecule inter-
action energies,”’ " mostly using DFT although a few studies
using second-order Moller—Plesset perturbation theory in
small basis sets have also been published.**™*’ The purpose of
the present work is to establish protocols that are robust and
reliable, which could eventually be used at better levels of
theory. Crucially, we aim to compute interaction energies AE;
that are faithful to a supramolecular calculation performed at
the same level of theory (method and basis set), and to use
sufficiently large molecular models so that AE;, is converged
with respect to further increases in system size. Our approach
is based on the MBE truncated at n-body interactions
[MBE(n)] and we examine convergence for n = 2—4 using
single-residue fragments, in models containing up to 3124
atoms. This represents unprecedented size and scope for
application of MBE(n).

The present calculations use DFT and semiempirical
quantum chemistry but extension to correlated wave function
models can be envisaged. Even for DFT calculations, our goal
is to reach the basis-set limit. For that purpose, the widely used
“fragment molecular orbital method” (FMO)* is inadequate.
FMO is tantamount to MBE(n), typically with n = 2, but
coupled to an electrostatic embedding scheme that is known to
be unstable (not just inaccurate) in large basis sets, especially
in the presence of diffuse functions.”"*” Although much of the
FMO literature on drug discovery is focused on pairwise
analysis of interaction energies,“g’s‘%_56 rather than accurate
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prediction of AE;,, for ML applications we desire a scheme
that is robust enough to target AE,, itself.

Other electrostatic embedding schemes may be more stable
in large basis sets, including point charges obtained from
natural population analysis,”’ from Hirshfeld analysis,”® or
derived from the electrostatic potential.’’~®" However, these
embedding charges are quite challenging to differentiate with
respect to nuclear positions,’” as is the FMO embedding.”* As
a result, each of these embeddings must be implemented deep
inside of an electronic structure code in a manner that is hardly
transferrable, which is contrary to our quantum-agnostic
approach to fragmentation. Without the necessary charge-
response contributions to the gradient, energy derivatives for
these electrostatically embedded fragmentation methods are
incorrect.'”®* Insofar as energy gradients are an important
source of data for ML applications, we demand correct analytic
gradients.

In addition, we wish to avoid complicated capping schemes,
as in the “molecular fragmentation with conjugate caps”
(MECC) approach.”® The “conjugate caps” amount to the
backbone of the neighboring amino acid residue, the size of
which makes MFCC difficult to generalize to arbitrary n-body
interactions.**® In contrast, we have found that MBE(n) with
simple hydrogen-atom caps can be used to obtain converged
thermochemical quantities for enzymatic reactions.”

Lastly, we desire a method that can be applied to enzymes in
their native protonation states, so the ability to describe ions
(and to use diffuse basis functions) is required. In fragment-
based calculations, ionizable side chains are often protonated
to obtain charge-neutral fragments,‘w_”'67 as this minimizes
many-body polarization effects. However, there is no guarantee
that the neutralized enzyme remains functional.

In previous work, MBE(n) has been successfully applied to
enzymatic thermochemistry with all of the aforementioned
caveats.” Inclusion of ionic residues required low-dielectric
boundary conditions to eliminate spurious many-body effects,
which is likely a consequence of delocalization error in DFT, as
discussed elsewhere.”* The present work extends the
thermochemical protocols developed in ref 25 to the case of
protein—ligand binding. We introduce a set of four T4-
lysozyme complexes with small aromatic ligands and four other
complexes with large ligands. These systems are then used to
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assess both the accuracy and the cost of various fragment-
based methods to compute AE, .

2. METHODS

2.1. Data Sets. Bacteriophage T4 lysozyme promotes the
release of phage particle from the wall of a cell by breaking
down peptidoglycan, allowing for the injection of genomic
DNA into the host Escherichia coli cell.®® The class of enzymes
considered here have apolar and polar binding sites and are
known as L99A and L99A/M102Q, respectively.”~"" For
these systems, calculation of protein—ligand interaction
energies has proven challenging for classical molecular
dynamics methods.”" Benchmark data sets of crystal structures
and binding energies for both sites, with a variety of
noncovalent ligands, were introduced in a recent review.”"
These examples having binding affinities within a narrow range
from 4.0 to 6.7 kcal/ mol,71 with estimated uncertainties that
are <0.2 keal/mol.”*~7

We selected two representative systems from the L99A data
set, with protein databank (PDB) codes 181L7° and 4W54.”
The L99A/M102Q data set introduces a point mutation at one
side of the binding site, replacing methionine residue 102 with
the polar side chain of glutamine to serve as a hydrogen-bond
accep7t0r. From this data set we selected representative systems
1L127° and 3HUA.”* The ligands for these four T4-lysozyme
complexes are benzene (for 181L), ethylbenzene (for 4W54),
phenol (for 1LI2), and indole (for 3HUA); see Figure la.

In addition to this T4 lysozyme data set, an additional set of
proteins with fewer than 200 residues but much larger ligands
was selected for testing. This data set ranges from the compact
tyrosine kinase structure (PDB: 1048)”” to a large inhibitor of
dihydrofolate reductase (PDB: 1BOZ).” In ascending order of
size, they are 1048,”” 1ZP5,”” 1IMMQ,* and 1BOZ.”® All of
the ligands, which are depicted in Figure 1b, serve as inhibitors
and we refer to this set of complexes as the “large inhibitor data
set” (LIDS).

The ligand of 1048 binds to the SH2 domain of PP*Src
kinase,”” which is important in the control of cell proliferation,
differentiation, motility, and adhesion.®’ This site serves as a
potential drug target because PP’Src kinase has been linked to
bone resorption.”” The ligands for 1ZPS and IMMQ serve as
inhibitors for metalloproteases; the ligand in 1ZPS serves as an
inhibitor for N-hydroxyurea and 1IMMQ’s inhibitor binds to
matrilysin (uterine metalloproteinase).””*’ Enzymes 1ZP5 and
IMMQ each contain two Zn** and two Ca** ions. In both of
these metalloproteinases, overregulation can lead to uncon-
trolled degradation of the extracellular matrix, which is seen in
diseases including cancer, arthritis, and multiple sclerosis.””*°
The design of the ligand in 1BOZ was meant to serve as an
inhibitor of Toxoplasma g7ondii dihydrofolate reductase and a
potential antitumor agent.”* In addition to the inhibitor, 1IBOZ
also contains NADPH as a cofactor.

2.2. System Preparation. Crystal structures were
obtained from the PDB and protonated using the H++ web
server,” for pH = 7.0, salinity of 0.15 M, and dielectric
constants g, = 10 and €, = 80. Ligands were protonated
separately using PyMOL.®* Except as noted below, the
resulting structures were relaxed using the semiempirical
GFN2-xTB model,*® with a generalized Born/solvent-acces-
sible surface area (GB/SASA) implicit solvation model for
water.*® GEN2-xTB affords reasonable protein geometries as
compared to crystal structures,”” whereas direct calculation of
protein—ligand interaction energies with GFN2-xTB affords
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mixed results as compared to DFT calculations.**™"° Both
metalloenzymes (1ZPS and IMMQ) proved difficult to relax
using GEN2-xTB, as the Zn>" ion was repeatedly expelled from
its binding site in numerous attempts to optimize the
geometry. For these two systems, we relaxed the geometry
using GEN-FF,°! a polarizable force field designed for
biological macromolecules.

Following structure relaxation, most crystallographic water
molecules were removed except for those that were directly
coordinated to the ligand or to ionic moieties. (All of the
ligands are charge neutral, but most of the proteins contain at
least one charged moiety.) Structures for 181L and 1LI2
contain two CI~ ions each, and 3HUA contains a charged
phosphate group. Within LIDS, the IMMQ and 1ZP5
structures each contain four charged metal ions (Zn®* and
Ca®"), with Zn>* loosely coordinated to the ligand. Ionic
cofactors were combined into a monomer with their nearest
neighbor residues (within 2.5 A) to improve monomer stability
of the MBE(n) calculations and to reduce the number of
fragments. For IMMQ_and 1ZPS, however, Zn** cannot be
combined with the ligand because that would be incompatible
with computing the interaction energy for removing the ligand.
This has implications for the magnitude of the many-body
effects in these systems, as discussed in Section 3.2.

2.3. Fragmentation. The MBE is a telescoping expansion
for the total ground-state energy E, starting from fragment
energies {E;} (for I =1, ..., meg):

Niog

+ Z DD AEp + -

I=1 J<I K<J

(1)
Two-body corrections are

AEy =E; — E - E (2)
where Ej; is the energy of a dimer formed from fragments I and
J. Similarly, the three-body corrections are

AEUK =Ep - AEU — AE — AE]K

— E; — E; — Eg (3)
If eq 1 is truncated at n-body terms, then we refer to the
resulting method as MBE(n).

Following previous work,” we deconstruct proteins into
single-residue fragments although we do not sever the polar
peptide (C—N) bond.”**” Instead, fragments are constructed
by cutting the C—C bond at C,—C(=0), which is standard
practice in hybrid quantum mechanics/molecular mechanics
schemes,” and in some other fragmentation approaches.”” We
refer to the fragments as “monomers” and each consists of one
amino acid along with the carbonyl moiety from the
neighboring residue. More complicated algorithms for
partitioning a protein into fragments have been suggested,”””*
but these have not proven necessary to obtain the accuracy
that we seek. Hydrogen-atom caps are used to saturate the
severed valencies, as in previous work.””*> These capping
atoms are positioned at

R, +R
Lp =10 + [1—H](r2 - l'1)

R, +R, (4)
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where r; and r, are the positions of the atoms in the original
C—C bond.”” The quantities R, = R, = 0.76 A and Ry = 0.31 A
are covalent radii for carbon and for hydrogen, respectively.”
This procedure is performed using FracMeNT,*® and results in
C—H bond lengths of about 1.07 A for the capping atoms.

Each of the ligands considered in this work is retained as a
single fragment. For the large ligands in Figure 1b this may
prove to be cost-prohibitive at levels of theory beyond DFT
and will be revisited at a later time. In other applications of
fragmentation to protein—ligand interaction energies, relatively
small fragments have been used for both ligand and
protein,”’ " 5o there is reason to expect that ligand
fragmentation is viable. In the present work, however, our
goal is to establish that the enzymatic host can be effectively
fragmented in a systematic manner that is conducive to
obtaining interaction energies that are converged with respect
to both the size of the enzyme model (N) and to the level of n-
body interactions that are included. Fragmentation of the
protein is relatively systematic whereas fragmentation of the
ligand is less so, and we choose not to intermingle these two
issues in the present work.

Absent some method to cull the number of subsystems, the
combinatorial nature of MBE(#n) quickly leads to an intractable
number of small calculations since

Nfrag) ~ Nn

l\rsubN(
n

©)

This combinatorial growth can lead to catastrophic loss of
precision under some circumstances.”” >’ Moreover, in some
cases fragment-based calculations can be more expensive than
the sulpramolecular calculation they are intended to approx-
imate."””**” In the present work, we use distance-based
screening to reduce the number of subsystems. Subsystems are
eliminated if the minimum interatomic distance between any
two fragments exceeds a specified threshold R, that we will
vary systematically to test for convergence. In the case of 181L,
where Ng,, = 164, setting R, = 8 A for MBE(3) reduces the
number of subsystem calculations from 708,561 to 16,016, a
97.7% reduction. This makes higher-order n-body expansions
feasible in large systems.”>*® Enzymatic reaction energies and
barrier heights converge quickly with respect to R.,,.”> Energy-
based screening (e.g, with GFN2-xTB) can be even more
efficient than distance-based screening,”* but was not fully
implemented in FRAGMENT when this work was undertaken.

Protein—ligand (P:L) interaction energies AE,,, are
computed via a supramolecular approach,

AE;, = Ep;, — Ep — E (6)
by applying MBE(n) consistently to Ep; and to Ep. A large
number of subsystem calculations cancel in eq 6 and can be
eliminated a priori, as described elsewhere.”* In principle, eq 6
should be combined with counterpoise correction to eliminate
basis-set superposition error (BSSE), which can be quite large
for sizable protein—ligand models, especially if double- basis
sets are used.”® Many-body counterpoise corrections that are
consistent order-by-order with MBE(n) have been developed
for this purpose,”””® but are not yet available in FRAGMENT. As
a result, and because we are interested in demonstrating that
our protocols are robust in large basis sets, we opt to push our
calculations to the complete basis-set (CBS) limit using triple-
and even quadruple-{ basis sets.

954

Because we allow the amino acids to inhabit their native
protonation states, leading to ionic side chains in some cases,
there may be concern about long-range polarization
interactions. The Zn>* ion that is present in two of the LIDS
proteins leads to especially large three- and four-body terms as
discussed in Section 3.2. FRAGMENT has the ability to add a
low-level, ONIOM-style” supersystem correction for long-
range polarization, with the subsystem MBE(n) calculations
described at a higher level of theory.”>*® Elsewhere, this
procedure has been called a two-layer “molecules-in-
molecules” approach (MIM2),'” and it has been used by
others under various names.' "' =% Applying this correction,
the total energy for any given calculation, meaning any of the
three terms in eq 6, is

_ - MBE(n) MBE(n) super
Etotal - Ehigh _Elow + Elow

(7)

The first two terms represent MBE(n) calculations at either the
target (high) level of theory or else the affordable (low) level
of theory. The final term (Ej2™) is the supersystem energy
evaluated at the low level of theory without fragmentation, thus
Ofrag can be viewed as a low-level correction for the effects of
fragmentation. In previous work on enzyme thermochemistry,
the Hartree—Fock (HF)/6-31G method (sans polarization
functions) was shown to be an adequate choice for Ej2er.>
Use of 6-31G keeps the cost relatively low as compared to
other double-{ basis sets, especially if the electronic structure
program can take advantage of the compound sp shells used in
Pople basis sets.'*"'° Due to the size of the enzyme models
considered here, however, we will use HF-3c for the low level
of theory in eq 7; see Section 3.2.3.

2.4, Quantum Chemistry Calculations. Calculations
were performed using FRagMENT***" interfaced to Q-CHEM
v. 6.0."° For timing data, calculations were run on 28-core
nodes (Dell Intel Xeon ES-2680 v4) using 7 worker processes
per node, with each individual Q-CHEM calculation employing
4 cores. Supersystem calculations were performed using a
single 48-core node (Intel Xeon Platinum 8268). Timings will
be reported in terms of aggregate computer time across all
processors. The self-consistent field convergence threshold was
set to 107% E, for all calculations. Integral screening and shell-
pair drop tolerances were both set to 107'? a.u., consistent with
recommendations for large-molecule calculations using diffuse
basis sets.'*

We use the @wB97X-V functional'”’” as our target level of
theory, as it performs well across a wide range of benchmarks
including noncovalent interaction energies for small mole-
cules,"”"”® where the benchmarks are well established. (For
molecules with 100+ atoms, benchmarks are more uncer-
tain.'”) Minimally augmented versions'®* of the Karlsruhe
basis sets'*”"'" are used for the ®B97X-V calculations. Diffuse
functions can be important for noncovalent interaction
energies but minimal augmentation is sufficient for this
purpose.””'* The semiempirical HF-3c model is used to
evaluate convergence and all HF-3c calculations use the
minimal “MINIX” basis set.''' Since HF-3c is specifically
parametrized for MINIX, that basis set will not be mentioned
in the discussion that follows. For @wB97X-V, we will
systematically test the basis-set convergence.

A dielectric constant in the range £ = 2—4 is often used to
represent the hydrophobic interior of a protein.'"*™""" In
previous work,”® we found that a continuum solvation model

g
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with & & 4 helps to avoid spurious oscillations in MBE(n) radius (A)

calculations, even for protein models with numerous charged o® oD & AD P ® o0

residues where MBE(n) with vacuum boundary conditions =57 - ' ! ' '

does oscillate.”® All calculations reported here use the g —e— unfragmented, DZ

conductor-like polarizable continuum model (C-PCM) with 1% - ® - MBE(2), DZ

e = 45" The interface with the continuum region is —104-\NN\g~— v MBE(3), Dz -
) . 119 & i | —e— unfragmented, TZ

represented using a van der Waals cavity, *~ constructed from i u - m- MBE(2), TZ

atomic radii that are 1.2X larger than values in the modified ] VA --¥-- MBE(3), TZ

Bondi set,lw’120 then discretized using the switching/Gaussian ‘h‘ ~

procedure."'®'*'~'** For @B97X-V calculations, 110 Lebedev
points were used for hydrogen and 194 points for other nuclei.
For HF-3c, we used 50 points for hydrogen and 110 points for
other nuclei. For supersystem calculations involving the entire
protein, a conjugate gradient implementation of C-PCM was
used.

3. RESULTS AND DISCUSSION

3.1. T4 Lysozyme Data Set. The primary goal of this
work is to develop reliable and reproducible protocols that
afford energetically converged protein—ligand models that are
usable across different levels of electronic structure theory. We
use HF-3c to test convergence with respect to model size, then
demonstrate AE; calculations using @B97X-V in basis sets up
to def2-ma-QZVP.'**

3.1.1. Radial Enzyme Models. First, we study convergence
of AE,;, with respect to the size of the enzyme model using
both MBE(n) and conventional supramolecular calculations.
We created reduced models of 181L based on a simple radial
cutoff around the benzene ligand, then computed AE;, using
each model for comparison to the result obtained using the
complete 2636-atom protein. (In follow-up work, we may
consider the use of automated construction of binding-site
models using residue interaction networks,'**7'?® but here we
use unsophisticated radial models as a simple means to
establish protocols.)

Figure 2 shows how the results converge with respect to the
size of the enzyme model, for both conventional supra-
molecular DFT and also for MBE(2) and MBE(3)
approximations to it. Conventional calculations at the
®B97X-V/def2-ma-SVP level are converged using a model
with 665 atoms, corresponding to all residues within 7 A of the
ligand. Resource limitations preclude @B97X-V/def2-ma-
TZVP calculations for models larger than this, but the
convergence behavior for smaller models seems to mirror
that obtained using the double-{ basis set, hence we expect
that @B97X-V/def2-ma-TZVP calculations are also converged
for the 665-atom model. Analogous testing was completed for
1LI2, which has phenol as a ligand, and the convergence
behavior is very similar (Figure S2). In that case, a 7 A (617-
atom) model affords a converged value of AE,, at the ®B97X-
V/def2-ma-SVP level, while the convergence behavior of
wB97X-V/def2-ma-TZVP calculations is similar.

Examining the MBE(n) results in Figure 2, we observe that
MBE(2) consistently underestimates |AE, | in both basis sets,
due to missing nonadditive polarization. Meanwhile, MBE(3)
calculations overestimate |AE, |. In the def2-ma-SVP basis set,
where we are able to demonstrate convincing convergence with
respect to system size, the two-body result is underbound by
about 2 kcal/mol while the three-body result is overbound by
about 1 kcal/mol, as compared to a conventional calculation at
the same level of theory. For models larger than 700 atoms,
convergence of the MBE(2) and MBE(3) approximations
using wB97X-V/def2-ma-SVP tracks the conventional result
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Figure 2. Interaction energy AE,, for the benzene ligand in 181L,
computed using radial enzyme models of increasing size. Model size is
indicated along the bottom axis, measured by the number of atoms,
while the top axis shows the radius used to generate each model.
Calculations were performed using wB97X-V in conjunction with
either the def2-ma-SVP basis set (labeled “DZ” in the figure) or else
the def2-ma-TZVP basis set (“TZ”). All MBE(n) calculations use R,
= 8 A. The “unfragmented” result is a conventional supramolecular
calculation of AE;

int*

quite well, albeit with constant offsets. For small models,
however, that offset does not appear and both the MBE(2) and
MBE(3) results are in fortuitously good agreement with a
conventional supramolecular calculation. Unless these studies
are pushed to the N — oo limit, one might erroneously
conclude that three-body effects are unimportant. Further-
more, a 200-atom model affords an interaction energy |AE; |
that is 10 kcal/mol smaller than the converged value!

If the triple-{ calculations are indeed converged at the 665-
atom model, then the MBE(2) calculations are underbound in
that case by about 2 kcal/mol while MBE(3) calculations are
overbound by perhaps 3 kcal/mol. Regardless of where the
converged triple-{ result for AE;, may lie, we can state that
MBE(2) and MBE(3) estimates bracket the conventional value
by about 3.5 kcal/mol at the double-{ level versus
approximately 5.5 kcal/mol at the triple- level. These are
large ranges by the standards of benchmark accuracy in small-
molecule quantum chemistry calculations and it is not
immediately clear whether this level of agreement is acceptable.
That issue is taken up in Section 3.1.4, where we discuss the
appropriate level of accuracy for large-scale electronic structure
calculations of protein—ligand interaction energies. Before that,
however, we examine convergence of the radial enzyme models
with respect to both model size (N) and level of approximation
(n), in Section 3.1.2. Basis-set convergence is examined in
Section 3.1.3.

3.1.2. Convergence with N and n. To understand what is
required in order to obtain converged values of AE;,, we first
study the behavior of MBE(2) as a function of R_,,. Results for
the 2636-atom 181L system that was considered in Section
3.1.1 are shown in Figure 3, examining how MBE(2) converges
with respect to R, the distance threshold for discarding
subsystems. Previously,25 we showed that R, = 8 A affords
converged thermochemistry for a 632-atom model of a
different enzyme, exploring several functional and basis-set
combinations. (That 632-atom model affords converged results

nt
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Figure 3. Interaction energies AE; for the benzene ligand in 181L,
computed using MBE(2) at the indicated levels of theory, using a
distance cutoff (R.,) to cull the dimers that are included in the
calculation.

cut.

with respect to larger radial models of the same enzyme.'*”)

The value R, = 8 A also works well here. Increasing it to 10 A
changes AE;,, by ~0.1 kcal/mol but increases the number of
subsystem calculations from 2534 to 3496. Convergence
behavior for the other three T4-lysozyme systems is quite
similar (see Figure S1 and Table S2) and converged MBE(2)
interaction energies are obtained using R, = 8 A in those cases
as well.

Convergence behavior as a function of R, is also quite
similar for the minimal-basis HF-3c method as compared to
@B97X-V calculations in basis sets ranging from def2-ma-SVP
to def2-ma-QZVP, although the converged values of AE;,
certainly differ in each case. Interaction energies computed at
the wB97X-V/def2-ma-QZVP level, which ought to lie close to
the wB97X-V/CBS limit, differ by about 6 kcal/mol from
double-( results. Most of the overbinding in the latter case is
likely a BSSE artifact and is clearly not negligible even though
DFT/double-{ interaction energies are still (much too) widely
used in biomolecular AE,, calculations.””"*° Implementation
of many body counterpoise corrections”””® within FRAGMENT
is underway, and should provide better-converged results in
smaller basis sets.

For now, we can use def2-ma-QZVP to establish the basis-
set limit.”® This reveals that HF-3c results are closer to
®wB97X-V/def2-ma-SVP than they are to @wB97X-V/CBS.
However, the minimal-basis HF-3c method can be run in a
tiny fraction of the computational cost, meaning tens of hours
for HF-3c versus hundreds of hours for ®B97X-V/def2-ma-
SVP, or ~10* h for @B97X-V/def2-ma-QZVP.

The smallest of the T4-lysozyme systems contains 2636
atoms, which taxes our ability to perform supersystem
benchmarks using high-quality basis sets. In an effort to obtain
better convergence data, we turn to HF-3c to make
supersystem calculations more feasible. Results in Table 1
demonstrate that MBE(2) estimates of AE,, consistently fall
within 1 kcal/mol of the supramolecular HF-3c result. Timing
data in Table 1 demonstrate that the MBE(2) cost is 1% or less
of the conventional cost to compute AE;,. This actually
overstates the MBE(2) cost somewhat, because the full-system
calculations were performed on slightly newer hardware as
described in Section 2.4. MBE(2) and MBE(3) values of AE,,
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Table 1. HF-3c Results for T4 Lysozymes

system method energy (kcal/mol) CPU time (h)“
AE,,,  error per monomer

181L supersys’ -19.4 4156
MBE(2)°  -19. 0.002 21
MBE(3)°  —188 0.004 298

4W54  supersys”  —25.6 2576
MBE(2)°  -266 0.006 21
MBE(3)°  —262 0.004 300

1LI2 supersys’ —-18.8 5542
MBE(2)°  —19.8 0.006 21
MBE(3)¢ -19.5 0.004 303

3HUA supersysb -30.0 2313
MBE(2)°  —305 0.003 25
MBE(3)°  —302 0.002 351

“Hardware is described in Section 2.4. “Conventional (unfrag-
mented) calculation. Timings include Ep,;, Ep, and E;. “MBE(n)
calculations use R, = 8 A.
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differ by only 0.3 kcal/mol on average, but the latter are more
than 10X more expensive, even with R, = 8 A.

It is common in fragment-based calculations to report errors
on a per-monomer basis, recognizing that overall errors may be
size-extensive. A target accuracy of 0.1 X (3/2)ksT, or ~0.1
kcal/mol at T = 298 K, has been suggested.131 This threshold
represents 10% of the available thermal energy per fragment,
with the idea that fragmentation errors should be rendered
negligible in comparison to thermal fluctuations in the energy.
While it is not clear that this is the right target accuracy for
biomolecular AE;, calculations, our T4-lysozyme calculations
do achieve this stringent criterion: the largest errors in Table 1
are only 0.006 kcal/mol/monomer.

For these examples, which involve very small ligands, a two-
body calculation with no electrostatic embedding at all meets
the highest-fidelity standard for fragmentation, while keeping
the cost extremely low in comparison to fully converged
supramolecular calculations. Avoiding embedding renders
these calculations stable in large basis sets, including basis
sets that contain diffuse functions. This will be important for
future work, where we intend to push fragmentation to levels
of theory beyond DFT. As such, we next take a closer look at
basis-set convergence.

3.1.3. Basis-Set Convergence. Having used HF-3c to
establish that MBE(2) provides reliably converged interaction
energies (which is not the same as accurate interaction
energies), we next examine MBE(2) calculations using
wB97X-V in various basis sets; see Table 2. The value of
|AE,,| is reduced as the basis set is enlarged, consistent with a
reduction in BSSE, and we expect that DFT/def2-ma-QZVP
results lie near the DFT/CBS limit even without counterpoise
correction.”® Smaller models of 181L and 1LI2 were examined
in a previous study,”® where it was concluded that ®B97M-V/
def2-ma-QZVP calculations without counterpoise correction
were within 0.2 kcal/mol of the @B97M-V/CBS limit. For
comparison, uncorrected wB97M-V/def2-ma-TZVP calcula-
tions were 1.1—1.7 kcal/mol from the CBS limit, erring toward
overbinding, while uncorrected wB97M-V/def2-ma-SVP cal-
culations overestimated |IAE; | by 5.0—6.1 kcal/mol as
compared to the ®B97M-V/CBS limit.”® These results from
ref 96 use a different functional (wB97M-V) as compared to
the one used here (wB97X-V), but this is unlikely to affect
convergence to the CBS limit. However, the previous
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Table 2. MBE(2) Calculations for T4 Lysozymes Using
®@B97X-V in Various Basis Sets”

system basis set AE;,, (kcal/mol) CPU time (h)
181L def2-ma-SVP —20.99 763
def2-ma-TZVP —16.34 2543
def2-ma-QZVP —15.39 34,474
4W54 def2-ma-SVP -30.52 778
def2-ma-TZVP —24.93 2749
def2-ma-QZVP —23.69 36,030
1LI2 def2-ma-SVP —-23.14 771
def2-ma-TZVP —18.00 2585
def2-ma-QZVP —16.76 34,941
3HUA def2-ma-SVP —34.73 924
def2-ma-TZVP —=27.28 3246
def2-ma-QZVP —25.42 42,449

“All calculations use R., = 8 A.

calculations use small (5 A) enzyme models with less than 300
atoms, so the BSSE is likely somewhat smaller than it is in the
present calculations.

3.1.4. Discussion. The def2-ma-QZVP results in Table 2 are
certainly converged well enough to conclude that single-pose
interaction energies (AE,,) obtained with high-quality DFT
are considerably larger in magnitude than the free energies of
binding (AGg,4) that are measured experimentally, the latter
of which range from AGg,q = —4.6 kcal/mol to AGg,q = —5.8
kcal/mol for the T4-lysozyme data set. The same observation
has been made in full-protein DFT calculations.”*° In
particular, single-pose interaction energies for 1LI2, computed
at the PBE+D level, are on the order of AE,, = —28 kcal/
mol,* somewhat larger in magnitude than the @B97X-V/def2-
ma-SVP value reported in Table 2.

The difference between a single-pose AE; and AGy4 can
be partitioned into several different contributions.’® These
include conformational averaging (which is not included in the
present work), the differential solvation energy between the
protein—ligand complex and its separated constituents
(denoted AG?,,, below), and finally vibrational entropy
(—TAS,p, where AS, is the change in vibrational entropy
upon complexation). Following ref 36, one may express the
free energy according to

(G) = (E) + (G

solvn>

- TASvib (8)

where (--) represents conformational averaging. The free
energy for ligand binding can be expressed as

AGpyg = (AE,) + AGg,, — TAS,

olvn

)

The quantity (AE,,) represents the interaction energy
averaged over a molecular dynamics trajectory, and results
for 1LI2 indicate that (AE,,) converges in fewer than 100
snapshots.”*® The correction AG2),, can be estimated using
implicit solvation models that are compatible with large-scale
electronic structure calculations.''”"** Finally, AS,, can be
computed from DFT (or perhaps semiempirical) vibrational
frequency calculations.*®'**'** These corrections are not
included in the present work, however, as our focus is to
establish fragment-based protocols to compute AE;,,. As such,
we do not expect to recover AGy,,4 in these calculations.

In selecting between DFT and semiempirical methods, or
between double- and triple-{ basis sets for DFT, it is worth
considering what level of accuracy is required from the
calculations. Convergence of ensemble averages (AE;,,) using
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single-pose interaction energies AE;,, appears to be rapid, using
classical molecular dynamics to sample structures,® yet the
result will not approximate AGy;,q without a calculation of
AS ;.. The latter requires vibrational frequency calculations, as
SASA-dependent corrections are insufficient to bridge the
quantitative gap between (AE,,) and AGg,q.”""” As compared
to the disparity between these two values, changes in AE;,
with respect to n-body order are small.

That said, prior fragment-based DFT calculations of single-
pose interaction energies establish that single-pose AE;; values
often exhibit remarkably good correlations with experimental
AGgq values,””* even while they differ by an order-of-
magnitude in absolute value. In some cases, very simple SASA-
dependent entropy corrections'*>'*® have been added to
fragment-based DFT calculations of AE, .*** In other cases,
however, good correlations are observed even without such a
correction.” For the purpose of obtaining training data for
ML, direct correlation with experiment is not the most
important consideration; sampling, solvation, and entropic
corrections can be added later, using a low-cost ML force field
trained on AE,, values from electronic structure calcula-
tions."*”"** What is more important is obtaining high-quality
quantum-chemical benchmark data.

For that purpose, the computational efficiency of MBE(2) at
the DFT/def2-ma-TZVP level presents a compelling advant-
age. Such calculations constitute less than 10% of the cost of
MBE(2) using def2-ma-QZVP, yet afford interaction energies
that differ by ~1 kcal/mol from what is likely the DFT/CBS
limit. Even that difference may very well disappear once many-
body counterpoise corrections are incorporated.”® Moreover,
®B97X-V/def2-ma-TZVP calculations using MBE(2) require
only about half the computer time that is required for an
unfragmented (full-system) calculation at the minimal-basis
HEF-3c level. The former do require 2500—3200 h of computer
time, which is not a trivial investment. However, wall times can
be significantly reduced by exploiting the inherent paralleliz-
ability of the pairwise MBE(2) approach. For example, the
181L system consists of 2534 dimers when R, = 8 A, and each
of these calculations is completely independent of the others.
This makes MBE(2)-based DFT/triple-{ calculations an
attractive choice if a realistic value of AE is sought.

At the same time (and for the same reason), fragmentation
enables large-scale quantum chemistry calculations using
modest hardware, which is an important consideration in
making these approaches accessible to investigators at
underresourced institutions. As an example, consider that a
full-system calculation on 181L (2636 atoms) means 50,558
basis functions for def2-ma-TZVP, or 116,483 basis functions
for def2-ma-QZVP. Even the triple- calculation lies outside
the realm of single-node (workstation) computing, requiring
supercomputer resources that are not available to everyone. In
contrast, low-order MBE(n) remains feasible on workstation
hardware even for the largest enzyme models considered here.
The present calculations represent some of the largest
applications to date of DFT for protein—ligand binding with
full (or at least, converged) protein models. Such studies have
also been carried out recently using semilocal DFT and a full
T4-lysozyme protein,”® using a linear-scaling DFT code.'*”
This requires supercomputer resources,”® whereas all calcu-
lations reported herein exploit only single-node parallelism.

The target fidelity of 0.1 X (3/2)ksT that was discussed in
Section 3.1.2 is a stringent criterion posited with an eye toward
ab initio molecular dynamics studies using fragmentation."’
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Fragment-based dynamics is often stymied by the complexity
of analytic gradients in the presence of charge embedding,'”**
and likely unnecessary since force fields or semiempirical
quantum chemistry can be used to better and (much) more
efficiently sample the conformational space. Thus, it is worth
asking what eventual purpose fragment-based ab initio
calculations of protein—ligand binding will serve, and what
level of accuracy and convergence is necessitated by that
application. We do not have a simple answer to that question
but it is probably safe to assume that for ML, one desires a
method that accurately reflects the interaction potential for
short-range protein—ligand interactions, eg, to replace
docking models®™"* or classical force fields."”*'** For that
purpose, the highest-quality ab initio interaction energies may
not be necessary and DFT or even semiempirical calculations
might suffice.

That said, we do worry that def2-ma-SVP affords interaction
energies that are too far removed from those obtained in
higher-quality basis sets. The BSSE that is inherent in double-{
calculations may skew the conformational landscape toward
compact structures, which exhibit larger BSSE and thus
ostensibly stronger interactions in small-basis calcula-
tions.'*'~'** It is also worth considering that the accuracy of
DFT for small-molecule van der Waals complexes does not
seem to extend to complexes in the 150-atom size regime,'” so
the quality of supramolecular DFT “benchmarks” is uncertain
in sizable protein—ligand models. These are important
questions to explore in future work. For now, we simply
note that the conventional “chemical accuracy” standard of 1
kcal/mol may be overly conservative for the present purpose.

3.2. Large Inhibitor Data Set. The T4-lysozyme data set
was a useful starting point to establish best practices for large
systems with small ligands. Good accuracy for very small
ligands is important in order to meet the requirements of
fragment-based approaches to drug design and discov-
ery,”s_150 which search for “hits” based on small-molecule
probes rather than larger ligand models that resemble existing
drugs. This strategy has been suggested as a salve to remedy a
slow drift toward drug candidates with larger molecular
weight,151 a trend that has been blamed for increased attrition
rates in clinical trials.">*”">° That said, with an eye toward
computational investigation of existing drug molecules, or
structure-based drug design, it is important to understand how
fragmentation protocols fare for much larger ligands,
epitomized by those in Figure 1b. Each of these ligands is
larger than 40 atoms and there is also more variety in the
enzymatic targets as compared to the T4-lysozyme data set.

3.2.1. Radial Enzyme Models. In the T4 lysozymes, errors
associated with fragmentation appeared to stabilize as the size
of the model system increases (Figure 2). Here, we perform
analogous testing using 1048, where the ligand is much larger.
Figure 4 plots the results for a sequence of radial models of
increasing size, comparing MBE(2) and MBE(3) calculations
to unfragmented (supramolecular) values of AE,,, computed at
the same level of theory, namely, DFT in either a double- or a
triple- basis set. The largest model in Figure 4 uses a 6 A
radius and contains 619 atoms but convergence to within 1
kcal/mol is achieved using a 3 A model with 381 atoms.

In the smallest models, MBE(3) yields a marginally smaller
interaction energy as compared to a full-system calculation but
converges to the full-system result in larger models. For the
largest model (619 atoms), the difference in AE, with respect
to the full-system calculation is 1.3 kcal/mol for MBE(2) and
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Figure 4. Interaction energy AE,;, for the large ligand in 1048,
computed using radial enzyme models of increasing size. Model size is
indicated along the bottom axis, measured in number of atoms, while
the top axis provides the radius used to generate each model.
Calculations were performed using @B97X-V with either the def2-ma-
SVP basis set (“DZ”) or else the def2-ma-TZVP basis set (“TZ”).
MBE(n) calculations used R, = 8 A. The “unfragmented” result is a
conventional supramolecular calculation of AE, .

0.4 kcal/mol for MBE(3), at the ®B97X-V/def2-ma-SVP level.
If the def2-ma-TZVP basis set is used instead, the error is 1.0
kcal/mol for MBE(2) and 1.7 kcal/mol for MBE(3). Strictly
speaking, MBE(3) is less accurate than MBE(2) for the largest
enzyme model and basis set, but the difference with respect to
MBE(2) is only a tiny fraction (<1%) of the total interaction,
which is AE;;; = —80 kcal/mol. For all practical purposes, we
conclude that MBE(3) provides negligible improvement upon
MBE(2) in this case.

3.2.2. Convergence of the MBE. Calculations on the T4
lysozymes reveal that HF-3c and @wB97X-V exhibit similar
convergence behavior as a function of R, so in what follows
we use the much cheaper HF-3c method to examine
convergence for the large-inhibitor models. Figure 5 plots
the convergence behavior of MBE(2) calculations as a function
of R, relative to a baseline where all dimers are retained. That
full-MBE(2) limit is obtained, to within 0.2 kcal/mol, when

difference (kcal/mol)

10

12°
Rcut (A)

Figure S. Difference in AE; for the large-inhibitor complexes, based
on MBE(2) calculations at the HF-3c level as a function of R, The
baseline calculation is MBE(2) with no cutoff and the shaded region
indicates +1 kcal/mol with respect to that baseline.
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R, = 20 A. Adopting a more permissive 1 kcal/mol tolerance,
we can use R, = 9 A for 1048, R, = 8 A for IMMQ and
1ZPS, and R, = 12 A for 1BOZ. (See Table S3 for the
numerical data.) Notably, the IMMQ and 1ZPS systems are
approximately the same size as the T4 lysozymes that were also
converged by R, = 8 A, whereas 1BOZ is the largest system
considered here, and it exhibits the slowest convergence as
measured by R, In future studies of new enzymes, two-body
screening at a semiempirical level of theory may offer a way to
test convergence at only modest cost, and this is an avenue that
we are currently pursuing.

Using the aforementioned system-specific R, values, we
next examine how MBE(n) converges toward the supersystem
result, again using HF-3c calculations, with results up to n = 4
presented in Table 3. We extended these calculations to the

Table 3. Summary of HF-3c Calculations for the Large-
Ligand Systems

system method energy (kcal/mol) CPU time (h)
AEint error per monomer

1048 supersys” —89.9 854
MBE(2)" —94.8 0.05 21
MBE(3)" -91.3 0.01 366
MBE(4)" —88.9 0.01 3045

IMMQ  supersys” —-178.6 3138
MBE(2)°  —1572 0.13 41
MBE(3)°  —179.6 0.01 534
MBE(4)°  —1784 0.00 3437

1ZP5 supersys” —108.7 5619
MBE(2)°  —108.7 0.00 45
MBE(3)* —80.0 0.18 654
MBE(4)°  —105.0 0.02 4595

1BOZ supersys” -31.3 5018
MBE(2)“ —34.1 0.01 93
MBE(3)* —34.8 0.02 2857
MBE(4)“ —-112 0.11 46,276

“Conventional supramolecular calculation. “R.,; = 9 A. ‘R, = 8 A.
TR = 12 A.

cut

four-body level because the two-body accuracy is inferior to
what we observed for the T4-lysozyme data set. For example,
in the case of IMMQ the accuracy of MBE(2) lies outside of
the strict 0.1 kcal/mol/monomer tolerance but that is rectified
at the three-body level, and MBE(3) calculations also
noticeably improve the result for 1048. The three-body
terms provide little change for 1BOZ, where the MBE(2)
result is already within 3 kcal/mol of the supersystem
calculation. However, MBE(3) calculations for 1ZPS and
MBE(4) calculations for 1BOZ afford very large errors, which
we next examine.

For 1ZPS, MBE(2) is fortuitously accurate but MBE(3) is
much worse, deviating from the full-system value of AE;, by
29 kcal/mol. That observation, combined with the dramatic
failure of MBE(2) for IMMQ_ (21 kcal/mol error) hints at
additional complexities for these two metalloproteins. Both
systems feature Zn>* coordinated to the inhibitor ligand (as
shown in Figure 6 for 1ZPS), leading to sizable many-body
polarization.

Histograms of all three-body interactions for 1ZPS (Figure
S4) exhibit a few significant outliers where |AEyl 2 0.01 Ej.
The largest of these three-body contributions is about 30 kcal/
mol. The metalloenzyme 1MMQ has one very large three-body
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Figure 6. Active site of 1ZPS with Zn** labeled. The two hydrogen
atoms coordinated to Zn** are from the neighboring histidine
residues. A second Zn>* (not in the active site) is visible at the top

right.

interaction (23 kcal/mol, see Figure SS), whereas for 1048
and 1BOZ the three-body corrections are much smaller
(Figures S3 and S6). Inspecting the fragments that give rise to
the outliers in 1ZPS and 1IMMQ_confirms that each contains
the Zn?>" cation, the ligand, and a residue whose side chain is
coordinated to the ligand. For example, the large three-body
term for IMMQ_contains GLU121, which is coordinated to
the carboxylic acid group in the binding site. While it is not
surprising that a divalent cation engenders significant non-
additive polarization, these results underscore the fact that
MBE(2) is not always a good approximation for protein—
ligand interaction energies.

Inclusion of four-body terms affords notable improvement in
the case of 1ZPS, reducing the error from almost 30 kcal/mol
to less than 4 kcal/mol, albeit at significant computational
expense. Nevertheless, this demonstrates what seems to be
convergent MBE(n) results for the two Zn*'-containing
enzymes although MBE(4) calculations for IMMQ are more
expensive than the conventional supersystem calculation.
Elsewhere, we have addressed this problem using energy-
based screening,”**® but that has not been attempted for these
systems. MBE(3) remains significantly cheaper than a full-
system calculation for these systems, and MBE(2) is at least
one order of magnitude less expensive still. This points to the
need for future work in which a limited set of energetically
important four-body terms might be included in order to
recover comparable accuracy at greatly reduced cost. We are
presently implementing this capability within the FrRagMENT
code.

The need for additional screening is dramatically under-
scored by MBE(4) results for 1BOZ, the largest enzyme
considered here. For this system, the difference between a 8 A
cutoff and a 12 A cutoff increases the number of tetramers
from 82,975 to 758,495 and increases the error from 0.5 to
20.1 kcal/mol. The MBE(4) entry in Table 3 represents the
larger cutoff radius, which two-body calculations suggest is
required to reach convergence, but using that cutoff results in a
MBE(4) estimate of AE,, that is substantially less accurate
than the MBE(3) estimate. Meanwhile, MBE(4) results with
an 8 A cutoff afford AE,,, = —31.8 kcal/mol for 1BOZ, which
within 0.5 kcal/mol of the supersystem result.

Thus, 1BOZ appears to be a case where cumulative errors
from an enormous number of subsystem calculations skew the
result, a possibility that we have noted previously.”””* A
histogram of four-body terms for IBOZ with a 12 A cutoff can
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Table 4. Interaction Energies for the Large-Ligand Complexes Computed Using @ B97X-V*

system basis Set MBE(2) MBE(3) MBE(2) + &gy’
AE,,. (kcal/mol) CPU time (h) AE,,,, (kcal/mol) CPU time (h) AE,, (kcal/mol) CPU time (h)¢
1048 def2-ma-SVP —101.6 629 —103.6 8736 -97.8 1500
def2-ma-TZVP —82.5 2440 —86.3 35,642 —78.8 3311
def2-ma-QZVP —80.6 32,032 —85.6 470,973 —76.8 32,903
1IMMQ def2-ma-SVP —132.1 1150 —154.0 15,885 —153.4 4329
def2-ma-TZVP —118.7 4350 —142.4 62,962 —140.0 7529
def2-ma-QZVP —118.0 53,052 —-142.9 776,176 —139.4 56,231
1ZPS def2-ma-SVP —110.1 1285 =77.5 19,827 —110.1 4939
def2-ma-TZVP —94.2 5005 —61.5 81,679 —-94.1 8658
def2-ma-QZVP —91.8 60,585 -59.9 1,004,143 -91.8 64,238
1BOZ def2-ma-SVP —-53.6 1349 —68.0 22,942 —48.1 6405
def2-ma-TZVP —34.1 5351 —S1.1 92,890 —28.6 10,407
def2-ma-QZVP —-30.4 68,310 —48.9 1,128,189 —-24.9 73,366

“MBE(n) calculations use R, = 8 A.

bUsing HF-3c¢ to evaluate Jg,, in eq 7.

“Includes the cost to compute &g, (Table S4).

be found in Figure S7. Energetically, these terms are two
orders of magnitude smaller than the three-body terms (shown
in Figure S6), but considerably more numerous. An interesting
idea is to use a smaller value of R_, for the three- and four-
body interactions. This is explored in Figure S8 although we do
not observe any opportunity for a significant reduction in the
error. In future work, we plan to implement bottom-up energy-
based screening for enzyme fragmentation, in the same manner
that we have previously reported for water and ion—water
clusters.”*** We hope that this may reduce the cost of higher-
order MBE(n) calculations without sacrificing accuracy due to
error accumulation, enabling routine application of MBE(4) to
model systems of the size considered in this work.

3.2.3. Two-Layer Approach. The need for four-body terms
drastically increases the requisite number of subsystem
calculations. Automatic energy screening using GFN2-
XTB,”*** which is being developed in parallel with this work,
should ultimately be useful in this regard. As an alternative, we
examine the use of a two-layer supersystem correction (eq 7).
For the calculation of thermochemical quantities in enzymes,
this approach worked quite well using low-level methods such
as HF/6-31G for the supersystem correction, combined with
MBE(2) at a higher level of theory.”® Versions of this “MIM2”
procedure (and also a three-layer “MIM3”) have been used in
other fragment-based calculations of protein—ligand inter-
action energies,”’ " typically using the semiempirical
PM6+D3"%"7 method for the low-level correction, and
with smaller (sub-residue) fragments as compared to the
present work. Here, we examine the efficacy of using HF-3c to
compute g, in eq 7, since we know that HF-3c is
computationally feasible in very large enzyme models.

Although the overall errors in AE;, are larger for the large-
ligand data set, the system sizes are also larger so error per
monomer becomes a useful point of comparison. With the
incorporation of four-body terms, that metric achieves the
strict criterion of 0.1 kcal/mol/monomer, but at the same time
the number of subsystem calculations becomes nearly
intractable for any level of theory beyond semiempirical.
Large three-body terms in 1ZPS require higher-order
expansions but in all of the remaining systems, the error per
monomer is below the target accuracy already at the MBE(2)
level. In other fragment-based studies of metalloproteins, the
fragment that includes the metal ion cofactor is typically
chosen to include all proximal molecules such as side chains
and crystallographic water molecules.”">® This is not possible
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for the metalloproteins investigated here, however, because the
ligand coordinates to the metal ion. Since the ligand must be
removed in order to compute AE, ,, no atoms from the enzyme
can be included in the ligand fragment(s).

With this in mind, a supersystem HF-3c correction has been
applied to all MBE(n) calculations for the large inhibitors, with
results listed in Table 4. These calculations use the full enzyme
although MBE(n) calculations are applied with R, = 8 A
rather than the system-specific cutoffs used in Table 3. The
number of subsystems approximately doubles for every 2 A
that is added to R_,; for example, in the case of IBOZ at the
MBE(3) level we obtain 22,001 subsystems for R, = 8 A,
45,433 subsystems for R, = 10 A, and 88,811 subsystems for
R = 12 A. To perform MBE(3) at the wB97X-V/def2-ma-
QZVP level requires ~1.1 X 10° h of computer time for the
largest of these systems, 1BOZ.

Supersystem-corrected MBE(2)+5frag interaction energies
for IMMAQ are quite close to those obtained using uncorrected
MBE(3), but at a fraction of the cost. Results for the other
systems do not align quite as well. The average difference
between the MBE(3) and MBE(2)+5frag estimates of AE,, is
~20 kcal/mol across all basis sets, although the difference
increases marginally with increasing basis set size. The
supersystem correction actually increases the disparity between
MBE(2) and MBE(3) in several cases. It appears that the two-
layer approach is no substitute for MBE(3), at least when the
supersystem correction is performed using the minimal-basis
HEF-3c model.

In view of the success of MIM3 methods using PM6+D3 as
the lowest level of theory (and B97+D3/6-311++G** as the
highest),‘w_39 it is worth considering whether alternative
semiempirical models would fare better. In previous work on
enzyme thermochemistry,25 supersystem corrections computed
using either HF-3c or HF/6-31G afforded nearly identical
results. The performance of the PBEh-3¢ model,"*” which uses
a double-{ basis set rather than a minimal one, was also
comparable.”® As such, it is perhaps more beneficial to work on
ways to reduce the cost of MBE(3) calculations via screening,
rather than cycle through a long list of low-cost electronic
structure methods that could be used for the supersystem
correction, with no clear physical reason why one performs
better than others.

Basis set trends are similar to what is observed for the T4-
lysozyme data set, with a reduction in BSSE as the basis-set

quality improves, leading to a reduction in |AE;,|. Numerical
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values change much more dramatically than they did for the
T4 lysozymes, however, because the much larger LIDS ligands
engender larger BSSE, which increases with system size
because the number of neighbor atoms increases.”® For
example, swapping def2-ma-SVP for def2-ma-QZVP changes
AE;,, by an average of 7.0 kcal/mol for the T4 lysozyme data
set but for the LIDS systems, the change is a staggering 19.2
kcal/mol. For the large ligands, results obtained using the def2-
ma-SVP basis set seem inappropriate to use. This is important
information given that many DFT calculations of protein—
ligand interactions continue to use double-{ basis sets for
reasons of cost. Many-body counterpoise corrections may
facilitate the use of double-{ basis sets and we intend to
explore this in future work.

4. CONCLUSIONS

Fragment-based approximations provide a means to tackle
dramatically larger system sizes using quantum chemistry
calculations. In recent work,”>**** we have pursued a stripped-
down n-body expansion that makes no attempt at classical
electrostatic embedding, as a robust means to converge
fragment-based calculations to a well-defined supersystem
limit, at essentially arbitrary levels of electronic structure
theory including arbitrary basis sets. In the present work, we
have extended this approach to protein—ligand interaction
energies AE,, exploring the affect of distance cutoffs (both for
the n-body terms and for the enzymatic model itself), and
considering up to four-body terms. These considerations are
unprecedented in studies of this kind. As in previous work on
enzyme thermochemistry,” we aim for results that are fully
converged with respect to the size of the enzyme model, while
systematically testing the effects of basis set and higher n-body
interactions. Our goal is to develop robust protocols that can
be widely deployed with relatively minor modifications, using a
new software framework called FracmenT.”**°

For noncovalent binding of small ligands with fewer than 20
atoms to T4 lysozyme proteins, we are able to achieve
remarkable accuracy for AE, as assessed by comparison to a
conventional supramolecular calculation at the same level of
theory. Fragmentation errors are smaller than 0.01 kcal/mol/
fragment, in enzyme models with over 1000 atoms, although
600—800 atoms is typically enough to obtain a converged
result. This level of fidelity is an order of magnitude better than
the very conservative standard of 0.1 X (3/2)ksT that has been
suggested for fragment-based ab initio molecular dynamics
simulations.”" This can be achieved in a total computing time
(aggregated across all processors) that is only a tiny fraction of
what is required for a conventional supersystem calculation
using DFT. The cost is also small in comparison to
supramolecular calculations using semiempirical models.

For significantly larger ligands, exemplified by the “LIDS”
data set assembled for this work, we are able to obtain tightly
converged results in some cases but two metalloenzymes prove
to be problematic, due to the presence of Zn** near the ligand
binding site. In these cases, we are unable to obtain results that
are converged to sub-kcal/mol accuracy at reasonable cost.
However, if the intent of these calculations is to generate ab
initio data sets for ML approaches, then there is some question
as to whether sub-kcal/mol accuracy is a reasonable standard,
given significant disparities between AE,, (computed for a
single binding pose) and AGy,,. Although further testing is
needed, the protocols developed here may already be
sufficiently accurate to generate ab initio training data that
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do not rely on experimental inhibition constants, which might
be trusted for novel ligands that do not resemble existing
drugs.

Ours is the first systematically improvable fragmentation
protocol to be applied to systems of this size. Our approach is
robust in high-quality basis sets (up to augmented quadruple-
quality) and can be extended beyond the two-body level
should the desired accuracy prove to be unobtainable using
MBE(2). In future work, we will consider the use of
counterpoise corrections that are compatible with
MBE(n).”””® Furthermore, we will implement energy screen-
ing to identify the most important subset of the three-body
terms, as the data presented here indicate that these are few in
number even for the problematic Zn*'-containing enzymes.
Our scheme holds the potential to enable rigorous electronic
structure theory calculations for large-scale computational
biochemistry applications.
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