Supporting Information for:

Convergent Protocols for Computing Protein–Ligand Interaction Energies Using Fragment-Based Quantum Chemistry

Paige E. Bowling,^{1,2}, Dustin R. Broderick,² and John M. Herbert^{1,2*}

¹Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210 USA ²Department of Chemistry and Biochemistry, The Ohio State University,

Columbus, Ohio 43210 USA

December 1, 2024

List of Figures

$\mathbf{S1}$	Interaction energies ΔE_{int} for the T4 lysozyme complexes, computed using the MBE(2) ap-	
	proximation at the HF-3c level as a function of the distance cutoff $R_{\rm cut}$.	S2
S2	Interaction energy for the benzene ligand in 1LI2, computed using radial enzyme models of	
	increasing size. Calculations were performed using ω B97X-V in conjunction with either the	
	def2-ma-SVP basis set (labeled "DZ" in the figure) or else the def2-ma-TZVP basis set	
	("TZ"). MBE(n) calculations use $R_{\rm cut} = 8$ Å. The "unfragmented" result is a conventional	
	supramolecular calculation using eq. 6.	S3
$\mathbf{S3}$	Three-body corrections ΔE_{IJK} for 1O48, computed using HF-3c.	S4
$\mathbf{S4}$	Three-body corrections ΔE_{IJK} for 1ZP5, computed using HF-3c.	S4
$\mathbf{S5}$	Three-body corrections ΔE_{IJK} for 1MMQ, computed using HF-3c.	S5
$\mathbf{S6}$	Three-body corrections ΔE_{IJK} for 1BOZ, computed using HF-3c	S5
$\mathbf{S7}$	Four-body corrections ΔE_{IJKL} for 1BOZ, computed using HF-3c with a 12 Å cutoff.	S6
$\mathbf{S8}$	Absolute errors for MBE(3) and MBE(4) calculations of ΔE_{int} at the HF-3c level, using a	
	variable value of $R_{\rm cut}$ for the highest-order terms. In each case, $R_{\rm cut} = 8$ Å for the two-body	
	interactions. For the calculations labeled "MBE(2) + ΔE_{IJK} ", MBE(2) is augmented with	
	all three-body terms up to the indicated value of $R_{\rm cut}$. For calculations labeled "MBE(3) +	
	ΔE_{IJKL} , MBE(3) is performed with $R_{\rm cut} = 8$ Å for both the two- and three-body terms,	
	then augmented with four-body terms up to the indicated value of $R_{\rm cut}$.	S6

List of Tables

$\mathbf{S1}$	Number of atoms for each supersystem.	S2
S2	Absolute error as a function of $R_{\rm cut}$ for MBE(2) calculations on the T4 lysozymes, using HF-3c.	S3
$\mathbf{S3}$	Absolute error as a function of $R_{\rm cut}$ for MBE(2) calculations on the large inhibitor data set,	
	using HF-3c.	S7
$\mathbf{S4}$	Supersystem corrections $\delta_{\rm frag}$ for the large inhibitor data set, evaluated at the HF-3c level.	S7

^{*}herbert@chemistry.ohio-state.edu

System	Data Set	No. Atoms
181L	T4L	2,636
4W54	T4L	$2,\!686$
1LI2	T4L	$2,\!637$
3HUA	T4L	$2,\!660$
1048	LIDS	1,781
1MMQ	LIDS	$2,\!637$
1ZP 5	LIDS	2,516
1BOZ	LIDS	3,124

Table S1: Number of atoms for each supersystem.

Fig. S1: Interaction energies ΔE_{int} for the T4 lysozyme complexes, computed using the MBE(2) approximation at the HF-3c level as a function of the distance cutoff R_{cut} .

Sustam	\mathbf{P} $(\mathbf{\hat{\lambda}})$	Error^a	
System	$n_{\rm cut}$ (A)	$(\rm kcal/mol)$	
	6	0.94	
1911	8	0.30	
101L	10	0.24	
	12	0.18	
	6	0.02	
4W54	8	0.99	
41104	10	1.02	
	12	1.06	
	6	0.67	
1T T9	8	0.95	
1112	10	1.01	
	12	1.08	
	6	0.15	
3HITV	8	0.54	
JIIUA	10	0.79	
	12	0.74	

Table S2: Absolute error as a function of $R_{\rm cut}$ for MBE(2) calculations on the T4 lysozymes, using HF-3c.

 $^a{\rm With}$ respect to a full-system calculation using HF-3c.

Fig. S2: Interaction energy for the benzene ligand in 1LI2, computed using radial enzyme models of increasing size. Calculations were performed using ω B97X-V in conjunction with either the def2-ma-SVP basis set (labeled "DZ" in the figure) or else the the def2-ma-TZVP basis set ("TZ"). MBE(n) calculations use $R_{\rm cut} = 8$ Å. The "unfragmented" result is a conventional supramolecular calculation using eq. 6.

Fig. S3: Three-body corrections ΔE_{IJK} for 1O48, computed using HF-3c.

Fig. S4: Three-body corrections ΔE_{IJK} for 1ZP5, computed using HF-3c.

Fig. S5: Three-body corrections ΔE_{IJK} for 1MMQ, computed using HF-3c.

Fig. S6: Three-body corrections ΔE_{IJK} for 1BOZ, computed using HF-3c.

Fig. S7: Four-body corrections ΔE_{IJKL} for 1BOZ, computed using HF-3c with a 12 Å cutoff.

Fig. S8: Absolute errors for MBE(3) and MBE(4) calculations of ΔE_{int} at the HF-3c level, using a variable value of R_{cut} for the highest-order terms. In each case, $R_{\text{cut}} = 8$ Å for the two-body interactions. For the calculations labeled "MBE(2) + ΔE_{IJK} ", MBE(2) is augmented with all three-body terms up to the indicated value of R_{cut} . For calculations labeled "MBE(3) + ΔE_{IJKL} ", MBE(3) is performed with $R_{\text{cut}} = 8$ Å for both the two- and three-body terms, then augmented with four-body terms up to the indicated value of R_{cut} .

Systom	$P(\hat{\lambda})$	Error^a
System	$n_{\rm cut}$ (A)	$(\rm kcal/mol)$
	6	0.66
1049	8	1.29
1040	10	0.01
	12	0.19
	6	1.25
	8	0.49
IMMQ	10	0.35
	12	0.54
	6	0.26
1705	8	0.40
171.0	10	0.18
	12	0.34
	6	3.48
1007	8	3.74
IBOZ	10	2.23
	12	0.99

Table S3: Absolute error as a function of R_{cut} for MBE(2) calculations on the large inhibitor data set, using
HF-3c.

 a With respect to a full-system calculation using HF-3c.

Table S4: Supersystem corrections δ_{frag} for the large inhibitor data set, evaluated at the HF-3c level.

Sustom	Mathad	$\delta_{ m frag}$	CPU time
System	Method	$(\rm kcal/mol)$	$(hours)^a$
	MBE(2)	3.77	871
1048	MBE(3)	-0.04	1,094
	MBE(4)	-1.34	$1,\!475$
	MBE(2)	-21.35	$3,\!179$
$1 \mathrm{MMQ}$	MBE(3)	1.04	$3,\!672$
	MBE(4)	-0.18	$6,\!575$
	MBE(2)	0.09	$5,\!664$
1ZP 5	MBE(3)	-28.67	$6,\!273$
	MBE(4)	-3.61	$10,\!214$
	MBE(2)	5.51	5,056
1BOZ	MBE(3)	3.65	$5,\!623$
	MBE(4)	0.45	$10,\!525$

 $\frac{10,520}{a \text{ Time required to evaluate } \delta_{\text{frag}} = E_{\text{low}}^{\text{super}} - E_{\text{low}}^{\text{MBE}(n)} \text{ (eq. 7)}}$ at the HF-3c level.