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ABSTRACT: We recently introduced a mixed quantum/classical model for the hydrated electron that includes electron/water
polarization in a self-consistent fashion, using a polarizable force field for the water molecules [ J. Chem. Phys. 2010, 133, 154506].
Calculation of the electronic absorption spectrum for this model is not straightforward, owing to the state-specific nature of the
Hamiltonian, the high density of electronic states, and the large solvent polarization response upon electronic excitation. Together,
these properties make it difficult or impossible to converge the polarizable solvent dipoles self-consistently for each excited-state
wave function. Here, we overcome this problem by means of an extended Lagrangian procedure for performing constrained
annealing in the space of electronic variables. By construction, this algorithm affords self-consistent, mutually orthogonal solutions
for any state-specific Hamiltonian, and we illustrate this approach by computing the optical spectrum of our polarizable model for
the aqueous electron. The spectrum thus obtained affords better agreement with experiment than previous, perturbative calculations
of solvent dipole relaxation. Strengths, weaknesses, and possible generalizations of this procedure are discussed.

I. INTRODUCTION

First observed directly in 1962,1 the aqueous (or hydrated)
electron, e�(aq), has since that time been the subject of
numerous experimental and theoretical investigations.2,3 Despite
numerous atomistic simulations of this species over the past 25
years,3 it was not until quite recently that the Lorentzian decay on
the high-energy side of the optical absorption spectrum was
reproduced even qualitatively.4,5

Due to the highly quantum mechanical nature of the solute
(an electron), the dynamics and the bulk structure of e�(aq)
have mostly been studied using one-electron pseudopotential
methods,3,6�9 in other words, hybrid quantum mechanics/
molecular mechanics (QM/MM) procedures with an one-elec-
tron QM region. The ostensible simplicity of such models (only
one QM electron), combined with the importance of e�(aq) in
the radiation chemistry of aqueous systems,2,10,11 means that
these one-electron pseudopotential models have historically
been used to test a variety of mixed quantum/classical simulation
techniques.

We have recently developed a new one-electron pseudopo-
tential model that incorporates self-consistent polarization be-
tween the solvent (water) and the single “excess” electron.5

Results from this model compare favorably to ab initio calcula-
tions in (H2O)n

�clusters, and various properties of the bulk
species, e�(aq), are also reproduced reasonably well.5 Ourmodel
utilizes the AMOEBAwater potential,12 which treats polarization
by means of inducible point dipoles located on each MM atom.
In our hydrated electron model,5,13 the electric field generated by
the QM wave function contributes to the total electric field that
polarizes these dipoles.

Because the induced dipoles represent electronic degrees of
freedom, they should respond (polarize) on the time scale of
electronic excitation. As such, it seems physically reasonable that
the calculation of excited states in our polarizable model should

require a self-consistent calculation in which the solvent dipoles
are converged with respect to each excited-state wave function.
Because the QMHamiltonian depends on the inducible dipoles,
the realization of such a procedure effectively renders the
Hamiltonian state specific, i.e., the nature of the Hamiltonian
depends upon the particular electronic state that one is attempt-
ing to calculate.

In previous work,5 we encountered difficulties in obtaining
self-consistent, excited-state solutions to this effective Hamilto-
nian, owing to the fact that the energy gaps between states are
small (∼0.1 eV), while the electronic relaxation energy of the
solvent is large (e.g., 1.4 eV for vertical electron detachment in
the bulk limit).5 This leads to frequent state switching during the
wave function/dipole optimization. Even if we were able to
converge the excited-state wave functions self-consistently with
the induced dipoles, the wave functions thus obtained would not
be mutually orthogonal, owing to the state-specific nature of the
effective Hamiltonian. In view of these difficulties, we have
previously resorted to the use of a perturbative correction for
the solvent’s polarization response upon excitation of the wave
function.4,5 While this approach allowed us to make progress in
understanding the role of solvent polarization, it suffers from a
lack of mutual orthogonality among the excited-state wave
functions, owing to the state-specific nature of the perturbation.
As such, one might reasonably be concerned about possible
artifacts in the predicted oscillator strengths.

Here, we report a simulated annealing procedure in the space
of electronic variables (wave function amplitudes and induced
dipoles) by means of which the classical dipoles are converged
self-consistently with respect to each wave function. In addition,
our algorithm employs Lagrange multipliers to ensure that all of
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the wave functions are orthonormal, despite the state-specific
nature of the Hamiltonian. As a numerical demonstration of this
procedure, we calculate the electronic absorption spectrum of the
aqueous electron, using our polarizable one-electron model. The
orthogonality issue is general to QM/MMmethods that employ
polarizable force fields, and therefore these ideas may be more
broadly applicable. (However, the large polarization energies that
we encounter may be unique to charged systems.)

Orthogonality is also an issue in certain self-consistent field
(SCF) methods. For example, Gill and co-workers14,15 have
recently introduced a maximum overlap method (MOM) that
attempts to find excited-state solutions to the SCF equations by
choosing the occupied orbitals at each SCF iteration, not in the
usual aufbau way but rather by selecting those molecular orbitals
that have the largest overlap with a set of user-specified guess
orbitals. This situation is similar to the problem outlined above in
that the effective Hamiltonian (Fock matrix) is state specific, and
the excited-state solutions are not mutually orthogonal. More-
over, there is a direct correspondence between our polarizable
QM/MM method and the SCF method. In the QM/MM
procedure, we use the one-electron density, |ψ|2, to compute
induced dipoles, then use these dipoles to construct an effective
Hamiltonian and finally diagonalize this Hamiltonian to obtain a
new density. This process is iterated to self-consistency. In the
SCF method, one uses the density to compute a new Fock
matrix. We believe that our algorithm can be modified for use
in the SCF procedure, in a manner that is conceptually (if not
computationally) straightforward, and we hope to report on
this in the future.

This paper is organized as follows: Section II provides a brief
overview of our one-electron pseudopotential model for e�(aq)
and introduces the electronic annealing method. Details of the
calculations are given in Section III. In Section IV, we present
results for the optical absorption spectrum of e�(aq) and draw a
comparison with results obtained previously, using a perturbative
treatment of the solvent’s polarization response. We discuss
certain formal aspects of the method, and some possible general-
izations, in Section V. Section VI provides a summary.

II. THEORY

A. Polarizable QM/MM Model. We will not discuss our
hydrated electron model in detail but will only highlight those
aspects that are important to understand the annealing proce-
dure. As in many polarizable QM/MM models, the total
Hamiltonian in our model is a function of both the coordinates
of theMM atoms, {RBi}, as well as the inducedMMdipoles, {μBi}.
The one-electron Hamiltonian can be written

Ĥðfμ~ig, f RBigÞ

¼ T̂ + Velec�waterðfμ~ig, f RBigÞ + VMMðfμ~ig, f RBigÞ ð1Þ

Here, T̂ is the one-electron kinetic energy operator, Velec�water is
the electron�water pseudopotential, and VMM is the molecular
mechanics (MM) potential energy function for the polarizable
water molecules. In our model, VMM is the AMOEBAwater force
field.12 The pseudopotential, Velec�water, contains electrostatic
interactions between the electron and both the permanent and
the induced multipole moments of the water molecules. In
addition, it contains a repulsive potential that keeps the electron
from collapsing into the core molecular region.

The induced dipoles are obtained by solution of the equation:5,13

μ~i ¼ Rið FB
MM

i + FB
QM

i Þ ð2Þ
in which Ri is an (isotropic) polarizability for site i, FBi

MM is the
electric field produced by the MM subsystem at site i, and FBi

QM is
the electric field due to the wave function, also evaluated at site
i. It can be shown that the induced dipoles defined by eq 2
minimize the total energy with respect to variations in μBi.

13,16

The one-electron wave function is determined by the solution of
the Schr€odinger equation:

Ĥðfμ~ig, f RBigÞjψæ ¼ Ejψæ ð3Þ
In practice, |ψæ is replaced by c, a vector of amplitudes on a real-
space grid. In order to obtain self-consistent polarization, we
iterate eqs 2 and 3 to self-consistency. This procedure works well
for the ground state but is difficult to converge for more than one
or two excited states.
As a result of this difficulty we have, in previous work,

computed approximate excited states by means of a simple
perturbative scheme.4,5 To define the perturbation, we first
calculate the ground-state wave function |ψ0æ and some number
of excited state wave functions, |ψnæ, using dipoles {μBi

(0)} that
are converged with respect to |ψ0æ. For each excited state, we
then obtain new dipoles, {μBi

(n)}, that are converged with respect
to |ψnæ, without relaxing |ψnæ. The quantity

Ŵn ¼ Ĥðfμ~ðnÞ
i g, f RBigÞ � Ĥðfμ~ð0Þ

i g, f RBigÞ ð4Þ
serves as the perturbation.4,5

The perturbatively corrected wave functions thus obtained are
not orthogonal, because the perturbation is state specific. How-
ever, they do turn out to be approximately orthogonal, with
typical overlaps on the order of∼0.1. Similar overlaps have been
reported in MOM-SCF calculations, yet oscillator strengths in
these calculations are in reasonable agreement with bench-
mark results.14 As such, we believe that the e�(aq) spectra
computed using the perturbative approach are at least quali-
tatively correct.
B. Electronic Annealing Procedure. We next describe our

new algorithm to determine orthogonal excited states for state-
specific effective Hamiltonians. The idea is not entirely new and
is inspired by the Car�Parrinello molecular dynamics (CPMD)
method,17,18 wherein the electronic degrees of freedom are
propagated dynamically as classical variables. The CPMD ap-
proach can also be used to obtain ground-state, single-determi-
nant wave functions by clamping the nuclei in place and
“annealing” a guessed wave function.17,19 This amounts to a
systematic removal of the fictitious kinetic energy associated with
the electronic degrees of freedom. So far as we are aware,
however, this technique has not been applied to the annealing
of excited states. The main difference here, apart from the
obvious difference of having only oneQM electron in the present
implementation, is that we constrain the wave function of interest
to be orthogonal to each previously determined wave function.
Doing this allows one to “march up” the manifold of excited
states. Each excited state will then be defined as the lowest energy
state that is orthogonal to all previously determined states. In a
sense, this is a natural generalization of the linear variation
method in elementary quantum mechanics.
Let c0 denote the vector of wave function amplitudes that we

are interested in optimizing, and let {ci}i = 1
N denote a set of
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previously determined states. Note that c0 need not (and
probably does not) represent the ground state, but the notation
for the equations of motion will be simpler if we adopt a common
index for all of the vectors. Only c0 is propagated in time, whereas
c1, ..., cN are fixed. We also find it convenient to define a dot
product

ci 3 cj ¼ Æψijψjæ ¼ ∑
Ngrid

μ¼ 1
ci, μcj, μΔτ ð5Þ

where the sum runs over grid points and Δτ is the volume
element defined by the cubic grid.
We insist that the new state, c0, be orthogonal to the pre-

viously determined states c1, ..., cN. Our method employs a
Lagrangian

L ¼ 1
2
~mel _c0 3 _c0 +

1
2
λ0ðc0 3 c0 � 1Þ + ∑

N

i¼ 1
λiðci 3 c0Þ

� E½c0, fμ~ig, f RBig� ð6Þ

where the λi are the undetermined multipliers that enforce
orthonormality constraints. The parameter ~mel is a fictitious
electron mass, and E[c0,{μBi},{RBi}] is the energy functional. In
principle, one could also propagate the induced dipoles dynami-
cally. Because updating the Hamiltonian is far more expensive
than minimizing the energy with respect to the induced dipoles,
however, we choose to converge the dipoles each time c0 is
updated.
From the Lagrangian in eq 6, one obtains the following

equations of motion:

~mel€c0 ¼ � 2Hc0 + ∑
N

i¼ 0
λici ð7Þ

Here, and in what follows, we use H to denote the Hamiltonian
matrix, and for convenience we omit from our notation the
explicit dependence ofH on {μBi} and {RBI}. In deriving eq 7, we
have assumed that all quantities are real valued.
In the limit that the fictitious kinetic energy goes to zero,

minimizing L with respect to c0 is equivalent to solving the time-
independent Schr€odinger equation. Therefore, if we propagate
the electronic degrees of freedom according to eq 7 and system-
atically remove kinetic energy, we should eventually find a local
minimum where ∂L /∂c0 = 0, although this minimum certainly
need not be the global minimum. To remove kinetic energy, we
add a velocity-dependent friction term to the equations of
motion. Equation 7 is thereby modified, affording

~mel€c0 ¼ � 2Hc0 + ∑
N

i¼ 0
λici � γ~mel _c0 ð8Þ

The friction parameter, γ, has dimensions of reciprocal time.
This modified equation of motion is not conservative and does
not arise from any Hamiltonian.
We next develop our algorithm for propagating the equations

of motion in eq 8. For this we use a modified form of the velocity
Verlet (VV) algorithm20 and follow closely the work and the
notation of Tuckerman and Parrinello,21 who developed a VV-
type algorithm to integrate the CPMD equations of motion. In
the case of no damping (γ = 0), the appropriate VV equations for

our purpose are

c0ðt + δtÞ ¼ c0ðtÞ + δt _c0ðtÞ + ðδtÞ
2

2~mel
fðtÞ + ðδtÞ

2

2~mel
∑
N

i¼ 0
λRi ciðtÞ

ð9aÞ

_c0 t +
1
2
δt

� �
¼ _c0ðtÞ + δt

2~mel
fðtÞ + δt

2~mel
∑
N

i¼ 0
λRi ciðtÞ ð9bÞ

_c0ðt + δtÞ ¼ _c0 t +
1
2
δt

� �
+

δt
2~mel

fðt + δtÞ

+
δt
2~mel

∑
N

i¼ 0
λVi ciðt + δtÞ ð9cÞ

Here, δt is the time step, and f(t) =�2Hc0(t) is the force on c0 at
time t. Although we have written all of the vectors ci as functions
of time (in order to use a common index for c0 and ci, which
facilitates a compact notation), the vectors {ci}i = 1

N are fixed, and
only c0 is propagated forward in time. In other words

ci 6¼0ðtÞ ¼ ci 6¼0ðt + δtÞ ð10Þ
As in the RATTLE method,22 the undetermined multipliers in
eqs 9a�9c are allowed to have two different values, λi

R and λi
V,

representing coordinate and velocity constraints, respectively.
This is similar to the approach used to maintain orthonormality
constraints when integrating the CPMD equations of motion.21

Upon substituting f(t)f f(t)� γ ~mel_c0(t) in eqs 9a�9c, one
obtains equations for the case of finite damping. The correspond-
ing VV algorithm can be expressed in three steps. The first step
consists of both “coordinate” (~c0) and half-step “velocity” ( _~c0)
updates:

~c0ðt + δtÞ ¼ c0ðtÞ + δt 1� 1
2
γδt

� �
_c0ðtÞ + ðδtÞ

2

2~mel
fðtÞ ð11aÞ

_~c 0 t +
1
2
δt

� �
¼ 1� 1

2
γδt

� �
_c0ðtÞ + δt

2~mel
fðtÞ ð11bÞ

The second step consists of corrections:

c0ðt + δtÞ ¼ ~c0ðt + δtÞ + ∑
N

i¼ 0
XiciðtÞ ð12aÞ

_c0 t +
1
2
δt

� �
¼ _~c 0 t +

1
2
δt

� �
+ ∑

N

i¼ 0

Xi

δt
ciðtÞ ð12bÞ

where the intermediate quantities Xi are defined below. The final
step is an update and a correction:

_~c 0ðt + δtÞ ¼ 1 +
1
2
γδt

� ��1

_c0 t +
1
2
δt

� �
+

δt
2~mel

fðt + δtÞ
� �

ð13aÞ

_c0ðt + δtÞ ¼ _~c 0ðt + δtÞ + ∑
N

i¼ 0
Yiciðt + δtÞ ð13bÞ

Equations 12a, 12b, 13a and 13b employ the intermediate
quantities:

Xi ¼ ðδtÞ2
2~mel

λRi ð14Þ
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and

Yi ¼ δt
2~mel

1 +
1
2
γδt

� ��1

λVi ð15Þ

The values of Xi and Yi are chosen to satisfy the constraint
equations:

c0 3 c0 ¼ 1 ð16aÞ

c0 3 ci 6¼0 ¼ 0 ð16bÞ
We start by substituting the first update of the second step of the
algorithm, eq 12a, into these constraint equations. The result of
this exercise is the following pair of equations:

1 ¼ X2
0 + 2X0½c0ðtÞ 3~c0ðt + δtÞ� + ½~c0ðt + δtÞ 3~c0ðt + δtÞ� � ∑

N

i¼ 1
X2
i

ð17aÞ

Xi 6¼0 ¼ � ~c0ðt + δtÞ 3 ci ð17bÞ
Equation 17b can be solved for Xi, for each i > 0, and then eq 17a
affords X0. To obtain Yi, we first obtain velocity constraints by
differentiating eqs 16a and 16b with respect to t and then
substitute the final velocity update, eqs 13a and 13b, into these
velocity constraints. The result is

Yi ¼ � _~c 0ðt + δtÞ 3 ciðt + δtÞ ð18Þ
In deriving eqs 17a and 17b, we have assumed that the

constraints are satisfied at time t, and in obtaining eq 18, we
have assumed that the position constraints (eqs 16a and 16b) are
satisfied at time t + δt. In practice, this means that the dynamics
cannot start from a vector c0 that does not satisfy the constraints
in eqs 16a and 16b. At the beginning of the annealing procedure
for a particular state, the guess vector must be orthogonalized
against all previously obtained vectors.

III. COMPUTATIONAL DETAILS

We compute the optical absorption spectrum of the bulk
hydrated electron under periodic boundary conditions, using
Ewald summation for the long-range interactions.5 Two hundred
geometries were taken from a ground-state MD run in a periodic
box that is 26.2015 Å on a side and contains 600 water molecules,
corresponding to a density of 0.997 g/cm3. We solve the
Schr€odinger equation on a grid with a spacing of 0.93 Å, for a
total of 283 = 21 952 grid points. Details of the simulation
protocol can be found in ref 5.

The zeroth-order states are obtained with the Davidson�Liu
method,23 using a convergence threshold )(Ĥ � E)ψ ) < 10�8

Eh as described in ref 13. We use these zeroth-order states to
generate a guess for the induced dipoles, {μBi}, which we use to
construct a Hamiltonian matrix. We then “anneal” the state of
interest, subject to the constraint that it remain normalized and
orthogonal to the previously determined states, as described
above. Prior to initiation of the MD procedure, we orthogonalize
the state of interest against all previous states, using the
Gram�Schmidt procedure, so that the constraints are satisfied
initially. The initial velocities (_c0) are taken to be zero. The
electronic degrees of freedom quickly pick up kinetic energy
since the guess vector is rarely near a minimum. Annealing
proceeds until the change in energy between successive MD

steps is less than 10�8 Eh. (By that point, the total electronic
kinetic energy is also ∼10�8 Eh.) At this point we have an
updated wave function that we use to induce new dipoles. This
procedure is repeated until the energy change between successive
dipole updates is less than 10�8 Eh.

In a typical CPMD calculation, one has to choose the fictitious
electron mass and time step in such a way that the electronic
degrees of freedom are adiabatically decoupled from the nuclear
dynamics. (See refs 24�26 for an interesting discussion in the
context of extended-Lagrangian MD.) This is not an issue here,
as we are not propagating the nuclei; rather, we are trying to find
the Born�Oppenheimer surface, not propagate dynamics along
or near it. For this reason, we simply choose a time step and an
electronic mass such that the annealing is stable. We use δt = 0.1
fs and ~mel= 400 au, but we have not attempted to optimize these
parameters. (We do find that for δt = 0.1 fs, masses less than
200 au lead to a failure to maintain the constraints.) In our
calculations, the position and the velocity constraints are typically
satisfied to an average absolute error of 10�14 and 10�16 au,
respectively.

The friction parameter, γ, is chosen according to the recom-
mendation in ref 27, which is based on a three-point fit using
energies from successive steepest-decent steps. Since the initial
wave function guess may be far from the minimum, we found it
helpful to generate γ several times during theMD routine; we do
this every 50 time steps. We find that the annealing typically
converges after 20�300 time steps if the guess is reasonable.
However, in cases where the guess is poor, it may take upward of
2000 steps. The Hamiltonian is not updated during this proce-
dure, so the annealing steps are quite inexpensive compared to
inducing new dipoles and updating the potential energy at each
grid point.

Below, we will compare the e�(aq) spectrum obtained from
the annealing procedure to that calculated using the perturbative
scheme that was described in Section II. In the latter scheme, we
do not allow the perturbed wave function to mix with the ground
state, so that each perturbed state remains orthogonal to the
ground state, even though the excited-state wave functions are
not mutually orthogonal. (This at least ensures that the transition
dipoles are translationally invariant.) An electronic spectrum is
constructed from a histogram of oscillator strengths

f0 f n ¼ 2me

3p2
ðEn � E0Þ ∑

k ∈ fx, y, zg
jÆψ0jk̂jψnæj2 ð19Þ

Wave functions were visualized with the Visual Molecular
Dynamics program,28 and isocontour values were generated with
OpenCubMan.29 Calculations were performed with a simulation
code that is described in refs 5 and 13.

IV. RESULTS

A. Benchmark Tests Using Fixed Dipoles. Prior to applying
our procedure to determine the fully relaxed excited states of the
aqueous electron, we would first like to demonstrate the meth-
od’s effectiveness in the case that the induced dipoles are not
updated. That is, we will first verify that the annealing procedure
reproduces the lowest few eigenstates of a Hamiltonian where
the induced dipoles are converged to the ground-state wave
function (only), in which case there is no orthogonality problem.
For this test, we first determine the ground-state wave function
and induced dipoles with our standard method,5,13 then solve for
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the lowest 30 eigenstates of Ĥ with fixed dipoles. Next, we take a
set of vectors composed of random numbers and use these as
initial guess vectors for the annealing algorithm, fixing the
induced dipoles at the values previously determined for the
ground-state wave function.
Table I shows that the annealing procedure reproduces—with

high accuracy—both the excitation energies and the oscillator
strengths that are obtained by a straightforward Davidson�Liu
procedure. In this particular case, where the dipoles are fixed, the
states emerge from the annealing procedure in ascending order
of energy, indicating that the procedure does not become
trapped in any local minima andmost likely locates globalminima
of the constrained optimization problem. (Of course, there is no
guarantee that this will be the case once we allow the dipoles to
relax.) Using the convergence thresholds specified in Section III,
we can reproduce excitation energies to within∼10�4 eV, which
is far smaller than the error intrinsic to the pseudopotential
model. Due to the completely random nature of the initial
guesses, the annealing procedure takes∼1500 steps to converge
in this example.

Because the annealing procedure employs a larger number of
constraints for higher-energy states as compared to lower-energy
states, one might question whether the accuracy of the computed
energies degrades as one marches up the manifold of states,
adding more and more constraints as the calculation proceeds.
The data in Table I suggest that this is not the case. For example,
the n = 8 excitation energy computed by means of the annealing
algorithm is closer to the Davidson�Liu result than is the n = 1
excitation energy. The accuracy is not degraded because the
annealing algorithm does not introduce any new constraints
beyond those imposed by linear algebra. For a fixed set of
dipoles, the exact (nondegenerate) eigenvectors of the Hamilto-
nian are necessarily orthogonal, and obtaining them via diag-
onalization or via Davidson’s procedure is equivalent to
minimizing the Rayleigh�Ritz quotient

R½ψ� ¼ ÆψjĤjψæ
Æψjψæ ð20Þ

subject to the constraint that |ψnæ must be orthogonal to all
lower-lying states, |ψ0æ, ..., |ψn�1æ. Our annealing algorithm
simply provides an alternative means to enforce these constraints
and to carry out the Rayleigh-Ritz variational procedure in a
robust way.
Unlike this benchmark test involving fixed dipoles, the “right”

answer is no longer well-defined once we let the MM dipoles
relax. However, the very close agreement between the annealing
results and the Davidson�Liu results in this test gives us
confidence that our approach is a reasonable one, if one insists
(as we do here) that the relaxed wave functions should be
orthogonal to one another.
The excited states need not emerge in energetic order once we

allow the induced dipoles to relax. They would do so only if
the annealing procedure managed to find the global minimum of
the effective potential (with constraints) on each annealing cycle.
The presence of inducible dipoles appears to make this quite
challenging, as the states do not come out of the calculations in
ascending order. This gives us some pause and calls into question
the nature of our guess. We have run additional calculations in
which the guess for the annealing procedure is provided by the

Table II. Excitation Energies (in eV) andOscillator StrengthsComputed byElectronic Annealing, UsingTwoDifferent Initial Guesses

ordered by na ordered by energyb

zeroth-order guess first-order guess zeroth-order guess first-order guess differencec

n En � E0 f0fn En � E0 f0fn En � E0 f0fn En � E0 f0fn En � E0 f0fn

1 1.73894 0.133993 1.73894 0.133927 1.73894 0.133993 1.73894 0.133927 0.00000 0.000066

2 1.95139 0.237197 1.95140 0.237188 1.93676 0.028331 1.93668 0.028360 0.00008 0.000029

3 1.93676 0.028331 1.93668 0.028360 1.95139 0.237197 1.95140 0.237188 0.00001 0.000029

4 2.10816 0.132911 2.10817 0.132922 2.10816 0.132911 2.10817 0.132922 0.00001 0.000011

5 2.11486 0.001157 2.28370 0.001407 2.11486 0.001157 2.11521 0.001104 0.00035 0.000053

6 2.28397 0.001359 2.11521 0.001104 2.15224 0.000537 2.14726 0.000641 0.00498 0.000104

7 2.46492 0.001676 2.26762 0.004268 2.26925 0.004114 2.26762 0.004268 0.00163 0.000154

8 2.26925 0.004114 2.14726 0.000641 2.28397 0.001359 2.28370 0.001407 0.00027 0.000048

9 2.42928 0.001936 2.43138 0.001780 2.36290 0.003176 2.36278 0.003178 0.00012 0.000002

10 2.15224 0.000537 2.36278 0.003178 2.42928 0.001936 2.43138 0.001780 0.00210 0.000156

11 2.36290 0.003176 2.46681 0.001478 2.46492 0.001676 2.46681 0.001478 0.00189 0.000198
a Excitation energies listed in the order that the states are generated by the annealing procedure. b Excitation energies listed in ascending order of energy.
cDifference in energies and oscillator strengths for the energy-ordered states computed using two different initial guesses.

Table I. Excitation Energies (in eV) and Oscillator Strengths,
in the Absence of Dipole Relaxation, Computed Using Two
Different Algorithms

Davidson�Liu diagonalization electronic annealing

n En � E0 f0fn En � E0 f0fn

1 2.13004 0.294897 2.13009 0.294889

2 2.22616 0.306758 2.22618 0.306793

3 2.45889 0.271951 2.45890 0.272044

4 2.89899 0.002009 2.89901 0.001878

5 3.35058 0.007256 3.35084 0.007513

6 3.36738 0.001328 3.36724 0.001038

7 3.42538 0.000995 3.42542 0.001048

8 3.47247 0.010379 3.47247 0.010336

9 3.57655 0.000950 3.57662 0.000979

10 3.62341 0.006859 3.62349 0.006142
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first-order corrected wave function from the perturbative
scheme. Inspection of the energies and oscillator strengths
indicates that typically, the first four states are identical and
emerge in the same order for either initial guess. Table II shows a
typical case. The first four excitation energies are nearly identical
for either initial guess and emerge in the same order, but the
ordering is different starting with n = 5. However, both initial
guesses do find the same set of excitation energies through at
least n = 11.
The fact that the states do not come out energetically ordered

is worrisome because the constraints placed on a particular state
depend upon the order in which it is determined, and this should
effect the energy. In the latter columns of Table II we have
reordered the states energetically, and tabulated the differences
in excitation energies and oscillator strengths between the two
different initial guesses. The largest discrepancy in the energies
between the two initial guesses is only 0.005 eV. This is smaller
than the typical energy gap between states, and we therefore find
this to be a tolerable error. In principle, one could probably ensure
energetic ordering by annealing the same state several times,
starting from a variety of different guesses and taking the lowest
energy result in an attempt to find the global minimum for each set
of constraints. Another possibility would be to perform the
annealing, reorder the states energetically, and repeat the entire
procedure using the annealed states as guesses. We have not done
so here, owing to the smallness of the discrepancies between
energies obtained using different initial guesses.

B. Aqueous Electron Absorption Spectrum. Figure 1a com-
pares the absorption spectrum obtained using perturbative
techniques5 to that obtained using the annealing algorithm that
is described here. The experimental spectrum (reproduced from
the line shape parameters in ref 30) is also shown. With the
exception of the annealed spectrum, which is new, these spectra
have been described in detail in our previous work,3�5 but for
completeness, we briefly summarize these results here. At zeroth-
order in the perturbation, the peak intensity is blue-shifted
relative to experiment, and although this zeroth-order spectrum
does reproduce the main, Gaussian feature in the experimental
spectrum, it exhibits a gap in intensity just below 3 eV, which is
followed by a “hump” centered around 3.5 eV that is essentially a
photoelectron spectrum. The first-order correction for Ŵn shifts
the maximum into quantitative agreement with experiment and
also binds states that were (vertically) unbound at zeroth order,
meaning that the excitation energies were greater than the
vertical detachment energy. A second-order treatment of Ŵn

affords a correction to the wave function and hence the transition
dipoles, and this has the effect of increasing intensity in the “blue
tail”.
The spectrum obtained from electronic annealing agrees

quantitatively with the second-order perturbation theory spec-
trum in the Gaussian region, but the annealing procedure shifts
even more oscillator strength into the higher-lying bound states
that comprise the blue tail. (All of the spectra in Figure 1 are
normalized to unit intensity at their respective absorption
maxima.) If anything, the blue tail in the annealed spectrum is
in better agreement with experiment than is the second-order
perturbation theory result.
Figure 1b decomposes the annealed spectrum into contribu-

tions from 1s f 1p transitions versus excitations into higher-
lying bound states. The 1p states are the only bright states, for an
aqueous electron modeled as a particle in a spherical box,3 and
indeed the 1s f 1p excitations carry much of the oscillator
strength in the annealed spectrum. However, the 1p band has
significant energetic overlap with the higher-lying bound states,
which borrow intensity from the 1p states and give rise to a
significant “blue tail”. The states that comprise this tail are
unbound in the zeroth-order treatment, and we have previously
referred to them as “quasi-continuum, polarization-bound” ex-
cited states.4 These states have very little oscillator strength at
zeroth order, but relaxation of the solvent dipoles allows them to
mix with (and borrow intensity from) the 1p states. For the
annealed spectrum, all 30 states that we calculate are vertically
bound. (The average vertical binding energy for the simulation
cell used in this work is 3.35 eV,5 well into the blue tail in the
spectra shown in Figure 1.)
At zeroth-order in Ŵn (what we have previously called the

“unrelaxed” approximation),4,5,3 the states are ordered as follows.
The ground state is spherical (1s) and resides in a roughly
spherical solvent cavity, while the first three excited states are
p-like (1p). The fourth excited state is typically more diffuse and
can be identified as the 2s state by virtue of a radial node. Above
the 2s state are several states that resemble 1d states, but above
this it becomes difficult to assign particle-in-a-cavity quantum
numbers to the excited states, whose wave functions are quite
diffuse and contain many different lobes. The qualitative nature
of these states is not altered significantly by application of
second-order perturbation theory.
The annealing procedure, on the other hand, sometimes does

alter the initial guess wave functions in a qualitative way. In

Figure 1. Absorption spectra for e�(aq) in bulkwater: (a) comparison of
spectra computed using zeroth-, first-, and second-order perturbative
treatments of the Ŵn (eq 4) to the spectrum computed using the
annealing procedure proposed here; and (b) decomposition of the
annealed spectrum into contributions from various types of excited states.
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particular, the annealing procedure appears to have the ability to
localize diffuse electronic states composed of largely disjoint
lobes and in some cases may enhance the oscillator strength
associated with these states, relative to the nominal bright states.
In cases where we observe such localization, the nodal character
of the state appears to be preserved, although this is only evident
if the wave function is plotted using an isosurface that encapsu-
lates nearly all of the electron density.
As an example, Figure 2 depicts the unrelaxed n = 2 and n = 4

wave functions from the calculation reported in Table I as well as
the corresponding annealed wave functions from the calculation
reported in Table II. (The states are labeled in the order that they
are calculated by the annealing procedure, which need not be in
energetic order.) The unrelaxed 1p state shown in Figure 2a is
not altered by the annealing process in any substantive way
and is nearly identical to the n = 2 state in the manifold of
annealed excited states (Figure 2b). However, the annealed
analogue (Figure 2d) of the n = 4 zeroth order wave function
(Figure 2c) is more localized than its counterpart. The annealed
function appears p-like rather than s-like, if a large isosurface
contour value is used to plot the wave function. However, a
smaller contour that encapsulates more of the wave function
reveals s-like character. The transition from the unrelaxed to
the annealed wave function ( i.e., Figure 2cfd) enhances the
transition dipole of the state in question, because the localized,
annealed state has better overlap with the ground state and
furthermore sheds some of the pseudo-s-type symmetry that
causes the unrelaxed state in Figure 2c to exhibit a rather small
oscillator strength.
Comparison of Tables I and II seems to indicate that the n = 3

state loses significant oscillator strength upon annealing, but an
inspection of the wave functions reveals that the state that
emerges as n = 3 from the annealing procedure actually corre-
sponds to the fourth excited state at zeroth-order. The latter
acquires significant oscillator strength upon annealing and drops
below a state with p-type character to become n = 3. While this
sort of reordering does not occur in the majority of the cases, it is
also not entirely uncommon.

From the spectrum in Figure 1b, it appears that the highest-
lying 1p state carries somewhat less intensity than the two lower-
lying 1p states. This is partly an artifact of themanner in which we
analyzed the data, namely, we assumed in constructing Figure 1b
that the first three states are the 1p states, which is always true in
the perturbative approach but is occasionally not true following
annealing. Despite this occasional reordering of states, the 1p
states still carry the vast majority of the oscillator strength and are
still responsible for the Gaussian feature in the absorption
spectrum.
Figure 3 shows the zeroth-order and the annealed wave

functions for a d-type state. Using an isosurface that encapsulates
90% of |ψ|2 (Figure 3b), it appears as though the annealed state is
effectively a “charge hop”, in which the electron is transferred a
sizable distance away from the cavity in which the ground-state
wave function is localized. However, Figure 3c depicts the same
annealed wave function, plotted using an isosurface that encap-
sulates 99% of |ψ|2. In the latter depiction, it is clear that the wave
function remains d-like, but the electron has largely localized into
one of the lobes. In this example, the annealed state has very little
overlap with the ground state, which results in a very small
transition dipole. States that have localized to such an extent as to
exhibit charge-transfer or charge-hopping character exhibit very
small oscillator strengths and thus do not contribute greatly to
the absorption spectrum. These states are most likely not
accessed in experiments that probe vertically excited states.
The “blue tail” does not arise from localized charge-hopping
states, such as that shown in Figure 3b and c. Rather, it arises due
to higher-lying, diffuse excited states that do have reasonable
overlaps with the ground-state wave function.4,5

V. DISCUSSION

According to the Thomas�Reiche�Kuhn (TRK) sum rule31

∑
n > 0

f0 f n ¼ Ne ð21Þ

where Ne is the number of electrons. By construction, Ne = 1 in
our pseudopotential model. In previous work,5 we observed that
f0f1 + f0f2 + 3 3 3 + f0f29≈ 0.95 at zeroth-order, that is, the first
29 excited states account for 95% of the total oscillator strength.
A first-order correction for Ŵn reduces the electronic energy
gaps (En � E0) but does not affect the wave functions, and as a
result, the total oscillator strength carried by the first 29 excited
states is reduced to ≈0.8. At second order, the wave function is
corrected, and the total oscillator strength recovers, to ≈0.9.
In the present treatment, however, we find that f0f1 + 3 3 3 +
f0f29 ≈ 0.65.

Figure 3. An excited electronic state of the aqueous electron with
d-type character. Panels (a) and (b) depict the zeroth-order (unrelaxed)
and annealed wave functions, respectively, using opaque and translucent
isosurfaces that encapsulate 70% and 95% of |ψ|2, respectively. Panel (c)
depicts the same annealed wave function as in (b) but plotted using
isosurfaces that encapsulate 70% and 99% of |ψ|2.

Figure 2. Examples of 1p- and 2s-like excited states of the aqueous
electron. Panels (a) and (c) depict the “unrelaxed” states (zeroth order
in Ŵn), while panels (b) and (d) depict the wave functions that are
obtained by electronic annealing. The opaque and translucent isosur-
faces encapsulate 70% and 95% of |ψ|2, respectively.
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The question then arises as to whether the TRK sum rule is
preserved in the case of a state-dependent Hamiltonian and
whether or not the expression for f0fn in eq 19 is even valid in
such a case. Here, we address these questions in the context of the
proposed annealing procedure.

In principle, the annealing procedure provides a way to obtain
an infinite number of mutually orthogonal states, each of which is
an eigenfunction of a different Hamiltonian. For the purpose of
analyzing the sum rule in eq 21, let us make the (perhaps
dubious) assumption that this set of eigenfunctions forms a
complete orthonormal basis. Then to derive eq 21, one employs
the identity:

½Ĥ, x̂� ¼ � ip
m
p̂x ð22Þ

In principle, Ĥ could be any of the aforementioned Hamilto-
nians. Inserting eq 22 into the expression

1
ip
Æ0j½x̂, p̂x�j0æ ¼ 1 ð23Þ

and using a resolution of the identity, one obtains
m

p2
∑
n
½Æ0jx̂jnæÆnj½Ĥ, x̂�j0æ� Æ0j½Ĥ, x̂�jnæÆnjx̂j0æ� ¼ 1 ð24Þ

This equation is valid for any Hamiltonian and any complete
orthonormal basis. However, in order to obtain the sum rule in
eq 21 from eq 24, the basis states |næ must in addition be
eigenstates of the same Hamiltonian. In the present case, how-
ever, each state is a solution to a different Hamiltonian so the sum
rule is not preserved by the annealing procedure. (As such,
nothing rests upon our dubious assumption that the states |næ
form a complete basis; the sum rule is not preserved, whether or
not this is in fact the case.)

Next, we address the question of whether or not eq 19 is a valid
formula for computing absorption intensities. In what follows, we
assume that the nuclei are clamped, and we consider the
electronic dynamics. The oscillator strength formula in eq 19
follows from time-dependent perturbation theory.31 If the sys-
tem is in state |næ at time t = 0, then it seems reasonable that the
system evolves under the influence of the Hamiltonian for state
|næ, Ĥn. That is,

jΨðtÞæ ¼ e�iĤnt=pjnæ ¼ e�iEnt=pjnæ ð25Þ
where we have used the fact that Ĥn|næ = En|næ.

We now investigate the time evolution in the presence of a
time-dependent perturbation. We assume that the time-depen-
dent wave function can be written

jΨðtÞæ ¼ ∑
n
cnðtÞe�iEnt=pjnæ ð26Þ

This expansion may seem suspicious in light of questions
regarding whether the basis {|næ} is complete. However, we
assume below that the system is initially in the ground state, and
we are only interested in the dynamics within the finite subset of
states that we have determined by means of annealing. In other
words, this basis constitutes the region of interest in Hilbert
space. To derive a formula for the transition probabilities, the
ansatz in eq 26 should next be inserted into the time-dependent
Schr€odinger equation, but with which Hamiltonian? In the weak-
field limit, the traditional assumption is that the system occupies
the ground state at t = 0, cn(0) = δn,0. It therefore seems

reasonable to assume that the dynamics is governed by the
ground-state Hamiltonian, so that

ipj _ΨðtÞæ ¼ ðĤ0 + VðtÞÞjΨðtÞæ ð27Þ
These assumptions, together with the fact that the basis is
orthonormal, lead to the textbook31 dynamical equations for
the expansion coefficients cn(t). For this reason, we would argue
that eq 19 is still valid, even though the TRK sum rule is not.

The ambiguity regarding which Hamiltonian guides the
dynamics of the system is clearly an artifact of the model. The
inducible dipoles represent electronic degrees of freedom and
should respond on the time scale of electronic motion, i.e., these
degrees of freedom participate in the short-time dynamics that
results in absorption of radiation, and they ought to be included
in the quantummechanical description of the system. Our decision
to treat some of the electronic variables (solvent dipoles) classically
leads to some ambiguity (multiple Hamiltonians) since we
do not have information regarding the short-time quantum
dynamics of these variables. This is to be contrasted with the
MOM-SCF technique14,15 that was mentioned in Section I. In
that method, there is a single Hamiltonian but multiple
stationary points (solutions to the SCF equations). Since the
SCF energy, at least in Hartree�Fock theory, is the expectation
value of the true Hamiltonian, there is no ambiguity as to the
quantum dynamics.

In the case of the methodology pursued here, one way around
these difficulties would be to use a linear-response formalism,
which has been explored in the context of time-dependent
density functional theory (TD-DFT) in the presence of a
polarizable medium.32,33 Here, however, we were interested in
a self-consistent, nonperturbative approach. In the future, it
might be interesting to compare results obtained from linear-
response theory to those obtained from our electronic annealing
procedure.

Finally, we would like to speculate that this annealing proce-
dure might be useful for MOM-SCF calculations. The MOM-
SCF method appears quite promising and avoids some problems
associated with TD-DFT. However, the excited-state wave
functions obtained in MOM-SCF calculations are not orthogo-
nal, although preliminary results do not seem to exhibit any
adverse effects on oscillator strengths, possibly because the
deviations from orthogonality are small in cases examined so
far.14 In any case, it is possible that the sort of electronic annealing
that is introduced here could eliminate any concern over
oscillator strengths. This technique might also be useful in the
context of excited-state Kohn�Sham simulations,34 nonadia-
batic (surface hopping) simulations utilizing CPMD,35 or “con-
strained” DFT calculations,36,37 each of which is potentially
subject to nonorthogonality problems. Extensions to many-
electron QM/MM methods using polarizable force fields are
also worth exploring.

VI. SUMMARY

We have introduced a novel “electronic annealing” procedure
that is capable of finding orthogonal solutions to a state-
dependent Hamiltonian. This procedure appears to be robust
and is capable of finding many such solutions. When applied to a
polarizable QM/MM model of the aqueous electron in bulk
water,5 the electronic absorption spectrum computed by means
of electronic annealing is in reasonable agreement with results
obtained previously4,5 based on a perturbative treatment of the
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MM polarization response following excitation of the QM
region. In fact, the annealed spectrum is in slightly better
agreement with experiment, as compared to perturbative results.
In any case, these computed spectra all support the hypothesis
that electronic polarization (as described theoretically via atom-
centered inducible dipoles) binds additional excited states of the
aqueous electron and facilitates intensity borrowing from the 1p
states that carry most of the oscillator strength. The “blue tail” in
the optical spectrum of e�(aq) arises from what we have termed
“polarization-bound quasi-continuum states”.4 Here, we find that
electronic reorganization of the solvent can also cause diffuse
excited states of the electron to localize into “charge-hopping”
states. These excitations, however, carry very little oscillator
strength and do not make a substantial contribution to the
optical absorption spectrum.

In the future, we plan to explore generalizations of this
electronic annealing algorithm that are suitable for many-
electron QM calculations.
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