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ABSTRACT: The traditional many-body expansionin
which a system’s energy is expressed in terms of the energies
of its constituent monomers, dimers, trimers, etc.has
recently been generalized to the case where the “monomers”
(subsystems, or “fragments”) overlap. Two such general-
izations have been proposed, and here, we compare the two,
both formally and numerically. We conclude that the two
approaches are distinct, although in many cases they yield
comparable and accurate results when truncated at the level of
dimers. However, tests on fluoride−water clusters suggest that
the approach that we have previously called the “generalized
many-body expansion” (GMBE) [J. Chem. Phys. 137, 064113
(2012)] is more robust, with respect to the choice of
fragments, as compared to an alternative “many overlapping body expansion” [J. Chem. Theory Comput. 8, 2669 (2012)]. A
more detailed justification for the GMBE is also provided here.

I. BACKGROUND
Fragment-based quantum chemistry methods,1,2 in which the
energy of a large molecule or cluster is approximated in terms
of numerous, smaller calculations, can largely be grouped into
two categories depending upon whether the fragments are
disjoint (containing no nuclei in common) or not. For a
collection of N disjoint fragments, the ground-state energy can
be expressed in terms of the many-body expansion (MBE),
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Here, EI
(1) is the energy of the Ith fragment, NC2 = N(N − 1)/2

is the number of unique dimers, and EI∪J
(2) is the energy of the

dimer created from the union of fragments I and J. Equation 1.1
represents a departure from the usual notation for the MBE,2−6

but will be useful in the forthcoming discussion. The meaning
of the superscript “(1)” is discussed later. When the MBE is
truncated at the n-body level, it can be written recursively as
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This provides an explicit formula for the ground-state energy in
terms of the energies of dimers, trimers, etc., up to n-mers. Of
particular interest is the n = 2 case, for which these equations
reduce to the expression5
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In contrast, for fragments that share nuclei in common,
several groups have recognized that the ground-state energy can
be approximated according to the expression1,8−11
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Here, EI∩J
(1) is the energy of the fragment formed from the

intersection of fragments I and J. Equation 1.5 has been called
the cardinality-guided approximation,8−10 owing to its similarity
to the inclusion/exclusion principle (IEP) for the cardinality of
a set, expressed in terms of the cardinalities of a collection of
(possibly nondisjoint) subsets. If the fragments happen to be
disjoint, then eq 1.5 reduces to a one-body approximation,
namely, eq 1.1 truncated after the first summation. This
suggests that it might be possible to generalize eq 1.5, to obtain
something that resembles the MBE but which is valid for
overlapping fragments.
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In fact, two such generalizations have been proposed
recently.1,12 The first of these was the so-called many-
overlapping-body expansion (MOBE) proposed by Mayhall and
Raghavachari.12 This expansion, which is in the spirit of eq 1.1,
takes the form
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The coefficients cI are discussed below, and M denotes the total
number of fragments that are considered. (We denote this as M
rather than N, for reasons that will become clear.) The
remaining terms in eq 1.6 are defined as
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To comprehend the MOBE, eq 1.6, one must understand
how traditional fragmentation ideas are modified in order to
use it. First, as with all fragment-based methods, a large system
is partitioned into N subsystems (fragments), capping severed
valencies if fragmentation cuts across covalent bonds. Then,
according to the MOBE procedure,12 one next adds M − N
additional fragments to this set, constructed from all possible
intersections involving 2,3,...,N fragments out of the original N.
In general, this means that one must consider M = 2N − 1
fragments in eq 1.6. This also explains the origin of the
coefficients in eq 1.6, since more than one intersection might
give rise to the same fragment. The coefficient cI equals the
number of times that fragment I appears in the summation,
with a sign equal to (−1)α+1 where α is the number of unique
fragments whose intersection gave rise to fragment I. (By
convention, or since I ∩ I = I, each of the original N fragments
gets a coefficient cI = 1.)
Independently (and unaware of the work in ref 12), the

present authors proposed a generalized many-body expansion
(GMBE),1 in the spirit of eq 1.5 rather than eq 1.1. The GMBE
can be expressed as
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Again, a description of the fragmentation method helps to
clarify. We first create N fragments, then decide the order (one-
body, two-body, etc.) at which to truncate the GMBE. Suppose
that we truncate at the n-body level. In that case, we construct
all possible unions of n fragments (“n-mers”), then apply eq 1.9
to this set of objects. Because writing out the indices for all
fragments involved in the unions of an n-mer is tedious and
cumbersome, we employ a notation in which a superscript
denotes the cardinality of the n-mer. For example, EI

(1) denotes
the energy of the Ith monomer (I = 1,...,N) and EI

(2) is the
energy of the Ith dimer (I = 1,...,NC2).
Preliminary tests of the MOBE (eq 1.6) and the GMBE (eq

1.9) suggest that both approaches, when truncated at the two-
body level, afford accurate approximations to the supersystem
energy.1,12 From our point of view, each of these methods

constitutes a certain set-theoretical expression for how to
approximate the supersystem energy, given a set of overlapping
fragments that might be generated in a number of ways.1,2 Our
goal is to compare these two energy expressions at both a
formal level and a numerical level.

II. THEORY

A. Generalized Many-Body Expansion (GMBE). In an
effort to elucidate the underlying physics of the GMBE, we
furnish an argument for how one might write down this
expansion a priori. The argument stems from the same line of
reasoning that is used to derive the IEP, a proof of which can be
found in many textbooks on probability theory. The IEP is
simply a counting argument to ensure that no subset of
elements is over- or undercounted, so that the cardinality of a
(super)set can be expressed in terms of the cardinalities of a
collection of nondisjoint subsets. This principle has sometimes
been invoked8 as a justification for eq 1.5, but this is somewhat
misleading as it appears to imply an equivalence between
cardinality and energy. Below, we clarify the connection
between the IEP and the GMBE, expanding upon arguments
in ref 1.
To begin, consider a system of particles partitioned into N

nondisjoint sets, with two stipulations: each particle must
appear in at least one set and each pair of particles must appear
in at least one set. The latter stipulation stems from the fact that
the Hamiltonian involves two-particle operators, and we aim to
use the IEP to recover the exact Hamiltonian after
fragmentation. The condition that each pair of particles appear
in at least one set is trivially satisfied at levels n = 2 and above;
for n = 1, some of the equalities that appear below are actually
approximations.
Should we choose to place the particles into sets based on

spatial proximity (i.e., to preserve the local chemical environ-
ment), then we would term them f ragments and denote the Ith
one as FI

(1), where the superscript has the same meaning as
above. In practice, one is usually interested in the set of n-mers
that arise by taking all n-tuple unions of fragments (of which
there are m = NCn), with the Ith n-tuple denoted FI

(n). We
denote the set of all particles (the universe) as .
To derive a general energy expression that will hold for any

m, and which does not overcount particle−particle interactions,
we use set theory to ensure that fragmentation preserves the
supersystem Hamiltonian operator. As shown in Appendix A,

the Hamiltonian Ĥ( ) that includes all pairwise interactions
among the particles in can be expressed as
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We use the notation Ĥ( ) to indicate the Hamiltonian
corresponding to pairwise interactions of particles in the set

⊆ .
An energy expression follows from the ground-state

expectation value, = ⟨Ψ | ̂ |Ψ ⟩E H( )0 0 0 :
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This can be rewritten as
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where the energies are to be interpreted as the expectation
values of the individual fragment Hamiltonians, with respect to
the ground-state supersystem wave function. In practical
calculations of interest, |Ψ0⟩ is not available so we approximate
each expectation value in eq 2.3 with a fragment electronic
structure calculation. This approximation is essentially an
appeal to Kohn’s principle of the “locality of electronic
matter”.13,14 Note also that the same motivation works if
point charges are included as part of each “subset” Hamiltonian,
Ĥ( ), as part of a charge-embedding scheme designed to better
approximate the electronic structure of each local region of the
system.
It is also useful to define intersection-corrected energies,

∑ ∑= − + − ···

+ −

= +
∩

< = +
∩ ∩

−
< <···< −

E E E

E( 1)

I
n

I
n

J I

m

I J
n

J K I

C

I J K
n

m I
J K m I

n

( ) ( )

1

( )

1

( )

( )
( )

m 2

(2.4)

In terms of these quantities, eq 2.3 assumes a compact form
analogous to the MBE in eq 1.2:
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We have called this the generalized many-body expansion
(GMBE), truncated at order n.
To the best of our knowledge, no one has worked out a

closed form for eq 1.2 to arbitrary order, but closed forms for n
= 2 and n = 3 are available.5,7 Here, we are interested in n = 2
exclusively, and we next show that the two-body GMBE is
equivalent to the traditional two-body expansion, in the case
that the monomers do not intersect. For the n = 2 case of eq
2.5, assuming disjoint monomers, we obtain the following using
eq 2.4:
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We have simplified this expression somewhat by noting that at
most N − 1 dimers may intersect. If the monomers are disjoint,
then we can evaluate the intersections in terms of the
monomers by realizing that the same monomer must appear
in all dimers or else the intersection is an empty set. Taking all
unions of monomers that do not result in empty sets, and
making use of the identity

∑ − =
α

α
α

=
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n
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eq 2.6 reduces to eq 1.4, the traditional two-body energy
formula expressed in closed form.
Finally, let us highlight two important properties of the

GMBE. First, it is easy to verify that when n = N, this expansion
affords the exact ground-state energy, E0. (See eq A1 in
Appendix A and also ref 1.) Second, when using the GMBE, it
is not necessary to include any n-mer that is a subset of another
n-mer. The latter fact was suggested by example in ref 1. More
generally, if A ⊆ B, then one can show that

∑ ∑

∑

∑

= − + ···

+ − + ···

+ −

γ

γ

γ

γ

=
≠

−

< =

≠

≠

∩

+

< < < =

≠

··· ≠

∩ ∩···∩

< <···< − =

≠

··· − ≠

∩ ∩···∩ −

γ

−

−

− −

E E E

E

E

( 1)

( 1)

I
I A

m

I
n

I J

I A B

J A

C

I J
n

I J

I A B

J A

C

I J
n

m

I J m

I A B

J m A

C

I J m
n

0
1

( )

1
( )

1

( , )

( )

( )

1

... 1

( , )

( , , )

( )

( 1) 1

( , )

( , , 1 )

( 1)
( )

m

m

m m

1 2

1

1 1

(2.8)

This equation says that one obtains the same energy if A is not
considered at all.

B. Many-Overlapping-Body Expansion (MOBE). Owing
to the difficulty in treating intersections as fragments and
keeping them distinct, it is difficult to analyze the MOBE in an
analogous manner to the GMBE. However, some properties of
the MOBE can be deduced from a simple example that
demonstrates the utility of this approach. Consider a system
composed of three fragments labeled 1, 2, and 3. According to
the prescription of Mayhall and Raghavachari,12 the one-body
energy for this system is given by
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Intersections appearing in this expression become fragments
when evaluating dimers and higher order n-mers.12 Referring to
these fragments (including intersections) collectively as
“monomers”, the total number of monomers is 2N − 1 and
the number of dimers is 2

N−1C2, although not all of these need
be unique.
For our three-body example, the seven terms in eq 2.9 lead to

7C2 = 21 corrections of the form ΔEIJ
(1) (eq 1.7). Naıv̈ely, then,

the MOBE in eq 1.6, when truncated at the two-body level,
consists of 7 + 4 × 21 = 91 separate electronic structure
calculations but, in fact, many of these are redundant. First,
note that if A ⊃ B then ΔEAB

(1) = 0 according to eq 1.7. The
identities

∩ ∪ = ∩ ∪ ∩A B C A B A C( ) ( ) ( ) (2.10a)

∪ ∩ = ∪ ∩ ∪A B C A B A C( ) ( ) ( ) (2.10b)
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can then be used to reduce these 91 separate terms down to
just 13. A completely general two-body MOBE energy
expression for a three-fragment system is
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Equation 2.11 demonstrates that, when using the MOBE, one
does need to consider n-mers that are subsets of other n-mers.
To see this, consider the seventh, eighth, and ninth terms in eq
2.11, which represent the dimers formed as unions of monomer
intersections. Each of the resulting dimers is a proper subset of
the sets represented by the first three terms in eq 2.11. These
terms do not cancel out as they would in the GMBE.
This lack of cancellation has an important consequence,

namely, that given a set of N monomers, an N-body
approximation to the MOBE does not afford the exact
ground-state energy, as it would in the case of the traditional
MBE or the GMBE. One can understand this because the
MOBE potentially generates 2N − 1 monomers, so that the
exact energy is recovered only at order 2N − 1. If the monomers
are disjoint, this issue goes away and the MOBE reduces to the
traditional many-body expansion, eq 1.1.
C. Comparison of the GMBE and the MOBE. A two-

body truncation of the GMBE, for the system of three
monomers considered in Section IIB, affords an energy
expression
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Note that the final “triple intersection” term does not appear in
EMOBE
(2) , eq 2.11, but the latter does include some terms that are

absent from EGMBE
(2) . This demonstrates conclusively that the

MOBE and the GMBE are not equivalent; nevertheless, for
many of the systems considered in Section III, we find that
EGMBE
(2) ≈ EMOBE

(2) . This suggests that
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This suggests that perhaps higher-order intersections such as (1
∪ 2) ∩ (1 ∪ 3) ∩ (2 ∪ 3) can be approximated in terms of
lower-order intersections, which might be exploited in order to
reduce the number of intersections that appear in the GMBE.
Results in section III, however, reveal that this would have to be
done with care, as we are able to find fragmentation schemes
for which EGMBE

(2) is a significantly better approximation to the
supersystem energy than is EMOBE

(2) .
By way of comparison, it is also worth noting that, for N

monomers, the maximum number of n-mers generated by the
GBME is m = NCn (though some may not be unique), and thus,
the final energy expression consists of at most 2m − 1 terms. (In
practical applications, many of these may be redundant; the
redundant terms are not generated by our fragmentation code.)

In contrast, the MOBE generates 2N − 1 monomers and thus
the maximum number of n-mers is m = 2

N−1Cn. The final MOBE
energy expression is a linear combination of all of these n-mers,
along with all (n − 1)-mers, (n − 2)-mers, etc., on down to
monomers. For n > 1 and N > 1, the GMBE will have fewer
terms to evaluate, as compared to the MOBE. For example, in
the case considered above (N = 3 and n = 2), EGMBE

(2) contains 7
terms as compared to 13 terms for EMOBE

(2) .
As a final point of comparison, we consider a system

composed of seven groups (indestructible units).1 Let us assign
N = 3 fragments as follows:

=F {1, 2, 3, 4}1
(1)

(2.14a)

=F {1, 3, 5, 7}2
(1)

(2.14b)

=F {1, 4, 6, 7}3
(1)

(2.14c)

These particular assignments were chosen so that, at the n = 1
level, no intersection is empty and at the n = 2 level, no dimer
constitutes the entire system. Given these fragments, the two-
body MOBE is
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where the subscript indices refer to groups.
Relative to the GMBE, the MOBE omits the final term in eq

2.12, involving the intersection of three dimers, or at best
approximates this term as in eq 2.13. Since we know that the
GMBE precisely accounts for each term in the supersystem
Hamiltonian (see Appendix A), let us examine this triple
intersection term to determine whether the corresponding
terms in the Hamiltonian appear in the MOBE. For the
fragments selected in eq 2.14, the triple intersection (F1

(1) ∪
F2
(1)) ∩ (F1

(1) ∪ F3
(1)) ∩ (F2

(1) ∪ F3
(1)) evaluates to {1,3,4,7}. The

simplest type of interaction that could appear in the
Hamiltonian is the appearance of a single group, and it is
easily verified that each of the seven groups appears only once
in the MOBE. A similar exercise shows that all interactions
between pairs of groups also appear only once. However, when
we repeat this check for interactions among three groups, we
see that any interaction that is a net result of the mutual
interaction between groups 3, 4, and 7 is counted zero times.
Similarly, the interaction among all four groups is not counted
either. Since these interactions were present in the initial
dimers (F1

(1) ∪ F2
(1), etc.), they ought to show up in the final

energy expression.

III. NUMERICAL RESULTS
A. Computational Details. We next make a numerical

comparison of the GMBE and the MOBE, based on the
fragmentation scheme suggested in eq 2.14. That is, each
system considered here is first divided into seven groups, from
which we construct three overlapping fragments as suggested in
eq 2.14.
We have written a program, called FRAGME∩T, that can

fragment a given system according to any one of several
possible fragmentation methods. Various embedding and
capping methods are also available, as described in ref 1. The
FRAGME∩T program generates all required electronic structure
input files, calls an electronic structure package, and finally
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computes the energy according to the GMBE. Electronic
structure calculations were performed using Q-Chem, v. 4.0.15

The MOBE has not been implemented in our code, so a Linux
script was written to generate the appropriate Q-Chem input
files in this case.
Previously, we introduced a nomenclature for classifying

fragmentation schemes.1 According to this nomenclature, the
calculations presented here employ a user-defined fragmenta-
tion method at the n = 2 level, a capping method equivalent to
that used in the systematic molecular fragmentation method,16

no embedding method, and a single layer of theory. All energies
are computed at the MP2/6-311++G(d,p) level.
Four systems are investigated here, and these are depicted in

Figure 1 along with group assignments for each. (Cartesian

coordinates for these systems are available in the Supporting
Information.) These systems include one polyatomic example,
C11H18, where fragmentation across covalent bonds is
necessary, plus three different noncovalent clusters: (CH2O)7,
(H2O)6F

−, and Gly·(H2O)10. The (H2O)6F
− cluster, in

particular, was selected because previous work by our group
suggests that fluoride−water clusters are challenging test cases
for monomer-based methods.1,17−19 Since (H2O)6F

− repre-
sents the first test of the MOBE for ionic systems, we have also
included for comparison the charge-neutral Gly·(H2O)10
system, where glycine (Gly) exists in its zwitterionic tautomer,
+NH3CH2CO2

−.
In the interest of fairness, it should be noted that the MOBE

has previously been applied only to macromolecular systems,
not clusters, using a chemically-motivated fragmentation
scheme based on the covalent-bond topology of the macro-
molecule.12 Nevertheless, the MOBE does lend itself to a set-
theoretical presentation, and a direct comparison of this
approach to the deeply set-theoretical GMBE proves to be
informative.
B. Comparison of GMBE and MOBE. Unsigned errors for

the two-body GMBE and MOBE methods, relative to the
corresponding supersystem calculation, are listed in Table 1 for
each of the systems examined here. Before analyzing these
results, it bears pointing out that these are somewhat contrived
fragmentation calculations, not least because each of the three
dimers common to both the GMBE and the MOBE are one
group shy of being the entire system. Nevertheless, some
significant differences between these two approaches will be
noted below.

Of the three systems considered here, one might expect
(H2O)6F

− clusters to exhibit a relatively large contribution from
the “triple intersection” term in eq 2.12, owing to three-body
polarization effects. Our analysis will therefore focus on
(H2O)6F

−. Using the group assignment for (H2O)6F
− that is

depicted in Figure 1, both the two-body GMBE and the two-
body MOBE exhibit similar errors of 0.1−0.2 kcal/mol,
seemingly suggesting that the three-fragment intersection is
not important or is adequately approximated by eq 2.13.
Careful examination of Figure 1, however, reveals that the term
in questionthe intersection of groups 3, 4, and 7involves
three water molecules but not the fluoride ion. For this reason,
we also consider several alternative partitions in which we
simply relabel which group is defined as group 7. In particular,
we swap group label 7 with that of group 1, 2, 5, or 6.
(Swapping 3 ↔ 7 or 4 ↔ 7 does not change the original
calculation.) Results for these alternative numbering schemes
are also listed in Table 1, and we find one case (1 ↔ 7) for
which the two-body MOBE exhibits an error of almost 2 kcal/
mol while the GMBE is accurate to ≈0.1 kcal/mol. Further
swapping of group labels identified two other cases (1 ↔ 3 and
1 ↔ 4) for which the two-body MOBE exhibits errors ≳2.5
kcal/mol. These are huge errors for a system where one expects
these methods to be nearly exact, in view of the fact that dimers
encompass nearly the entire system. In contrast, none of the
group labeling schemes results in a two-body GMBE error
larger than 0.5 kcal/mol.
Focusing on the case where the group labels differ by 1 ↔ 7

interchange relative to Figure 1, we can understand the large
difference between EMOBE

(2) and EGMBE
(2) based on the fact that, for

this particular case, the 3−4−7 triple intersection includes the
F− ion, so polarization effects are expected to be quite
important for this term. Table 2 decomposes the 3−4−7
intersection in the GMBE in terms of all of the interactions that
go into it. As discussed in Section IIC, the two-body MOBE
properly accounts for both single groups and pairwise group
interactions appearing in the Hamiltonian. Subtracting these
contributions from the interaction energy for the 3−4−7
intersection, we conclude that the three-group interaction

Figure 1. Group assignments for the four systems considered here.

Table 1. Unsigned Errors in Two-Body Expansions, Relative
to Supersystem MP2/6-311++G(d,p) Calculations

group error/kcal mol−1

system labels GMBE MOBE

(CH2O)7 Figure 1a 0.03 <0.01
C11H18 Figure 1a <0.01 0.23
Gly·(H2O)10 Figure 1a 0.11 0.13
Gly·(H2O)10 1 ↔ 3b 0.11 0.18
Gly·(H2O)10 1 ↔ 4b 0.11 0.85
Gly·(H2O)10 1 ↔ 7b 0.11 0.54
Gly·(H2O)10 2 ↔ 7b 0.14 0.52
Gly·(H2O)10 5 ↔ 7b 0.15 0.14
Gly·(H2O)10 6 ↔ 7b 0.02 0.48
(H2O)6F

− Figure 1a 0.12 0.17
(H2O)6F

− 1 ↔ 3b 0.13 2.64
(H2O)6F

− 1 ↔ 4b 0.13 2.47
(H2O)6F

− 1 ↔ 7b 0.12 1.93
(H2O)6F

− 2 ↔ 7b 0.47 0.71
(H2O)6F

− 5 ↔ 7b 0.22 0.26
(H2O)6F

− 6 ↔ 7b 0.17 0.42
aPartitioned as shown in Figure 1. bSwapping two group labels,
relative to Figure 1.
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energy is −0.0030632 hartree or 1.92 kcal/mol, which is
essentially identical to the error in the two-body MOBE for this
particular partition of (H2O)6F

−.
Of the four “n ↔ 7” cases in Table 1, the 1 ↔ 7 interchange

is unique in that it results in the fluoride ion appearing in two
fragments rather than three. The 1 ↔ 3 and 1 ↔ 4
interchanges, which also lead to large errors in the two-body
MOBE, have the fluoride ion appearing in the 3−4−7
intersection but not in all three of these monomers. That the
GMBE is largely insensitive to this imbalance in the
fragmentation patterns bodes well for its use with automated,
“black box” fragmentation schemes based on distance thresh-
olds rather than covalent bond connectivity. Such approaches
are presently being pursued in our group.
The MOBE’s sensitivity with respect to the choice of

fragments can be seen in the Gly·(H2O)10 results as well, where
we performed the same swaps among fragment labels as in the
case of (H2O)6F

−. For Gly·(H2O)10, errors in the two-body
MOBE range from 0.13−0.85 kcal/mol (see Table 1), which is
not as large as the variations seen in the case of (H2O)6F

−,
perhaps because the water−glycine interaction energy is smaller
than that of water−fluoride. Nevertheless, errors for the two-
body GMBE are ≤0.15 kcal/mol for each Gly·(H2O)10
fragmentation scheme.
C. Timings and Accuracy for a Larger System. In the

calculations reported above, we considered only small systems
in order to make an incisive, term-by-term comparison of the
MOBE and the GMBE. Ultimately, fragment-based methods
are intended for larger systems, so here, we present some
results for (H2O)57 clusters. The accuracy of various GMBE-
based methods, relative to supersystem calculations performed
at the Hartree−Fock (HF)/6-31G(d) and B3LYP/6-31+G(d)
level are shown in Table 3. As in our previous work,1 we use the
notation “XYZ(n)” to denote an n-body truncation of the
GMBE (where n = 1 or 2 here), in combination with
fragmentation method XYZ. The notation “EE-XYZ(n)”
denotes the use of a point-charge electrostatic embedding.
The two fragmentation methods examined in Table 3 are the
systematic molecular f ragmentation (SMF) method of Deev and
Collins,16 which is based on bond connectivity and for these
calculations amounts to one H2O monomer per fragment, and
the generalized energy-based fragmentation (GEBF) method of Li
et al.,20 which is based on a 3 Å distance threshold, which in
(H2O)57 amounts to 3−4 monomers per fragment. Five
isomers of (H2O)57 were considered in ref 1; structures and
additional details can be found there.
In previous calculations on (H2O)57, we were forced to resort

to highly restrictive cutoffs for forming dimers of fragments,
due to limitations in our fragmentation algorithm at that time.1

The GEBF(2) calculations for this system that were reported in
ref 1 were restricted to dimers formed from intersecting
(essentially, nearest-neighbor) fragments, but in Table 3, we
report calculations in which this restriction has been lifted,
owing to improvements in our algorithm for computing
intersections. Comparison of these “full” GEBF(2) results to
previous ones reveals that the restriction to “overlapping
dimers” was a serious one, at least in the absence of electrostatic
embedding. The discrepancies are less pronounced when
electrostatic embedding is employed, presumably because the
point charges mimic the polarization effects of distant water
molecules, which are the sorts of dimers that were neglected in
previous GEBF(2) calculations on (H2O)57. This observation
may ultimately prove useful to reduce the number of
independent electronic structure calculations that are required
at the GEBF(2) level, based on some kind of distance- or
intersection-based thresholding criteria. In any case, we observe
that GEBF(2) calculationseither with or without electrostatic
embeddingreproduce supersystem energies to an accuracy of
≤0.04 kcal/mol per H2O monomer.
The next reasonable question is, “at what cost?”. To answer

this, timings for the three most accurate methods, averaged
over five isomers of (H2O)57, are presented in Table 4.

Although the individual electronic structure calculations
required for GEBF(2) are small (≤8 H2O molecules in this
example), the number of such calculations is quite large in the
case of a full GEBF(2) calculation, and the total wall time
required for GEBF(2) actually significantly exceeds that
required for a supersystem calculation. Several points are
worth noting, however. First, had we chosen a correlated wave

Table 2. Energy Decomposition Analysis of EGMBE
(2) for

(H2O)6F
−, with Groups 1 ↔ 7 Exchanged Relative to Figure

1

interaction energy/hartree

E347
(1) −252.356265

E3
(1) −76.2938278

E4
(1) −76.2937145

E7
(1) −99.6975948

ΔE34(1) 0.001223
ΔE37(1) −0.036402
ΔE47(1) −0.039012
ΔE347(1) −0.0030632

Table 3. Mean Absolute Errors per H2O Monomer in the
Energies of Five Different Isomers of (H2O)57, Relative to
Supersystem Calculations Performed at the HF/6-31G(d) or
B3LYP/6-31+G(d) Level

MAE/kcal mol−1

method HF B3LYP

SMF(2) 4.87 3.74
EE-SMF(2) 0.45 0.36
GEBF(1) 3.80 2.95
EE-GEBF(1) 0.22 0.40
GEBF(2)a 2.69 2.07
EE-GEBF(2)a 0.13 0.31
GEBF(2)b 0.02 0.02
EE-GEBF(2)b 0.04 <0.01

aLimited to dimers formed from intersecting fragments, from ref 1.
bFull GEBF(2) results.

Table 4. CPU Time Requireda for a Single-Point Energy
Calculation on (H2O)57 at the HF/6-31G(d) or B3LYP/6-
31+G(d) Level

CPU time/sec

method HF B3LYP

supersystem 397 6414
EE-GEBF(2)b 326 1566
GEBF(2)c 10 241 89 197
EE-GEBF(2)c 10 250 87 969

aCalculations performed using Q-Chem15 running on a single 2.5 GHz
Opteron processor. bLimited to dimers formed from intersecting
fragments. cFull GEBF(2) results.
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function method scaling as (N5) or worse, or had we
employed a significantly larger basis set that might be beset by
numerical linear dependencies in a large system, then the
supersystem calculation might not even be feasible. Second, the
real advantage of GMBE-based methods lies in their
“embarrassingly parallel” nature. Assuming, as a rough estimate,
that the use of p processors would reduce the total wall time for
GEBF calculations by a factor of p, then we can guess that only
p ≈ 26 processors [HF/6-31G(d) level] or p ≈ 14 processors
[B3LYP/6-31+G(d) level] are required in order to render the
fragment-based calculation faster (in terms of wall time) than
the supersystem calculation, at least when the latter is run in
serial mode. This is a fairly modest level of parallelism.
Finally, the timings in Table 4 highlight the importance of

dimer cutoffs, based on overlap criteria, which can avoid the
factorial growth in the number of independent electronic
structure calculations required for GMBE(2) calculations.1 EE-
GEBF(2) calculations in which all nonintersecting dimers are
discarded reproduce supersystem energies to within ≈0.3 kcal/
mol (Table 3), yet are faster than the corresponding
supersystem calculations even when no parallelism is exploited
at all. For the MP2/6-311++G(d,p) calculations on
Gly·(H2O)10 that were reported in Section IIIB, the total
CPU time for the MOBE calculations is only about 5% more
than that required for the corresponding GMBE calculation,
hence, these comments regarding timings should carry over to
MOBE calculations as well.

IV. CONCLUSIONS
Two generalizations of the many-body expansion to the case of
intersecting (overlapping) fragments have been examined here.
Of the two, only the method that we call the GMBE counts all
interactions appearing in the supersystem Hamiltonian exactly
once. This result, which is proved herein, lends theoretical
justification to existing fragment-based methods8,16,20 that are
based on either an exact or an approximate one-body energy
formula with overlapping fragments, as detailed in our previous
work.1 In contrast, the GMBE is extended here to include two-
body terms, yielding very high accuracy. As an alternative to the
GMBE, the MOBE energy expression,12 when truncated at the
n-body level, does not directly evaluate the energy of
subsystems constructed from the intersection of n fragments,
whereas such terms are included explicitly in the GMBE.
Numerical calculations on (H2O)6F

− and Gly·(H2O)10
clusters demonstrate that both the two-body GMBE and the
two-body MOBE exhibit good accuracy for certain fragmenta-
tion schemes, but the omission of “triple intersection” terms
(F1

(1) ∩ F2
(1) ∩ F3

(1)) in the MOBE sometimes leads to large
errors for certain fragmentation patterns, e.g., errors of 1.9−2.6
kcal/mol for (H2O)6F

− and 0.48−0.85 kcal/mol for
Gly·(H2O)10. This suggests that greater care is needed when
selecting fragments for ionic systems. GMBE results, on the
other hand, are much more robust with respect to the choice of
fragments. This feature makes the GMBE a promising approach
for use with “black box” fragmentation schemes that do not
require user oversight and are not based on covalent bond
topology, as well as for application to macromolecular systems
with ionic functional groups. Applications to (H2O)57
demonstrate that excellent accuracy (<0.1 kcal/mol) is
maintained in this larger system. Significant speed-up, without
significant loss of accuracy, is possible by placing thresholds on
dimer formation, which is an aspect that we plan to explore
systematically in future work.

■ APPENDIX A: SET-THEORETICAL EXPRESSION FOR
THE SUPERSYSTEM HAMILTONIAN

In this appendix, we derive eq 2.1. Recall that m = NCn denotes
the number of n-mers of fragments. If m = 1, then the entire
system (universe, ) is contained in a single n-mer, so

̂ = ̂H H F( ) ( )n
1
( )

(A1)

where Ĥ( ) denotes the Hamiltonian for the set of particles.
For the m = 2 case the universe is divided into two sets, F1

(n)

and F2
(n):

= ∪F Fn n
1
( )

2
( )

(A2)

However, the system can also be partitioned according to

= ∪ ∪ ∩F F F F F F( \ ) ( \ ) ( )n n n n n n
1
( )

2
( )

2
( )

1
( )

1
( )

2
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(A3)

These three sets are, respectively, the part of F1
(n) that is not in

F2
(n), the part of F2

(n) that is not in F1
(n), and the part that they

share in common. Note that these three sets are disjoint, and
since Ĥ is additively separable, we can therefore write Ĥ( ) as
a sum of three Hamiltonians, partitioned according to eq A3.
We then obtain
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From here, we proceed by induction. Let us assume that the
following is true for all m ≤ x:

∑ ∑̂ = ̂ − ̂ ∩ + ···
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We have already verified this explicitly for the m = 1 and m = 2
cases. To show that eq A5 actually provides a general
expression for Ĥ( ), it suffices to show that this expression
is valid for the case of m = x + 1 n-mers. In other words, we
need to show that
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We will show that the left side of the eq A6 can be rearranged
to yield the right side. First, note that
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which is similar to the manipulations that we performed in the
m = 2 case. The final term in this equation can be rewritten as

∑ ∑
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using the inductive hypothesis, eq A5. Substituting this into eq
A7 gives
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In deriving this expression, we have once again used the
inductive hypothesis for x, this time to expand the first term on
the right in eq A7. Combining terms,
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At this point, we need to generalize this procedure for
combining terms and collapsing intersections, in order to deal
with the terms represented by ellipses in eq A10. Let us denote
by T1,y a term represented by the first ellipses with an index y <
x:
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Within the second set of ellipses there will be a term (call it
T2,z), indexed by z = y − 1, of the form
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The sum of these two terms is
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The first term on the right generates all Hamiltonians involving
y fragments, in which none of the y fragments are Fx+1

(n) . The
second term will produce all Hamiltonians involving the
intersection of y fragments, and Fx+1

(n) is included. Together,
these two terms are the sum over all Hamiltonians resulting
from the intersection of y fragments, if there are x + 1
fragments to choose from. Thus, the two terms can be
combined to afford
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This result demonstrates that the yth term in the first set of
ellipses (eq A10) will combine with the zth term in the second
set of ellipses, to afford a term of the form appearing in eq A14.
In deriving eq A10, we have already combined the y = 1 term
with the z = 0 term and the y = 2 term with the z = 1 term, as
these appeared explicitly in eq A9. The remaining terms can be
combined, as outlined above, to afford
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This is the desired result for the case m = x + 1 case. By
induction, the form of Ĥ( ) given in eqs A5 and A15 must be
valid for all m, that is, for an arbitrary number of n-mers of
fragments.
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