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1. INTRODUCTION

The aqueous electron, e�(aq), has attracted significant atten-
tion from both theory and experiment1�3 ever since it was first
observed in 1962.4,5 At a practical level, this species is an
important intermediate in the radiation chemistry of aqueous
systems,1,6 but it is also an intriguing problem in fundamental
chemical physics. As a charged species, the electron experiences
strong interactions with water molecules and, according to
certain theoretical models, is capable of forming ion�water
hydrogen bonds. At the same time, e�(aq) is fundamentally a
solvent-supported ion insofar as H2O

� does not exist,7 and
numerous water molecules are required in order to reproduce the
properties of bulk e�(aq).2,8,9 Furthermore, the lack of a nuclear
center binding the unpaired electron means that the e�(aq) wave
function is quite polarizable, and electron�water dispersion
interactions are thought to contribute significantly to the stabi-
lization of this species.2,10,11

Alternatives to a strictly one-electron “charge defect” (or “color
center”) explanation for the structure of e�(aq), or whatever
species is responsible for absorption at 720 nm following
water radiolysis, have been proposed over the years. These in-
clude molecular models involving an OH�

3 3 3H3O complex,12,13

a hydrated H3O radical,14�18 or a solvent/anion complex.19,20

Although these alternative models have been criticized for being
inconsistent with experimental spectroscopy,3,21 certain aspects of
themmay warrant further theoretical consideration. However, the
purpose of the present work is to examine various one-electron
models of e�(aq) in which this species is assumed to be a negative
charge defect in liquid water.

The dominant theoretical paradigm for understanding the
structure of e�(aq), dating back to the earliest theoretical models
of this species,22�24 is one in which a quasi-spherical, s-type

ground-state wave function occupies a void within the solvent, as
depicted in Figure 1a. This viewpoint is supported by numerous
atomistic simulations that have been performed over the past
25 years,25�45 including all-electron density functional theory
calculations.45

Ab initio studies of e�(aq) are expensive because at least two
solvation shells are required to support a cavity-bound electron,2

and the binding motifs that are obtained in finite cluster studies
are quite sensitive to the temperature and the manner in which
the clusters are prepared.48�51 As such, the primary simulation
tools for describing e�(aq) have been one-electron models in
which the water molecules are described using a force field, and
only the unpaired electron is described by a wave function. The
key ingredient in such models is an electron�water pseudo-
potential. Unfortunately, e�(aq) properties are sometimes sensi-
tive to subtle features of this pseudopotential.2,44,46

The newest of these electron�water pseudopotentials was
developed recently by Larsen, Glover, and Schwartz (LGS).46

Unlike previous one-electron models,32�34,41,44 the LGS model
exhibits the unusual feature that the ground-state wave function
does not carve out a well-defined solvent cavity (see Figure 1b),
and on the basis of simulations using this model, LGS have
questioned the veracity of the cavity model of e�(aq).46,52 The
LGS model reproduces several observed features of e�(aq),
including its diffusion constant, radius of gyration, electronic
absorption maximum, and lack of observable polarization aniso-
tropy in transient hole-burning experiments.46 At the same
time, most of these features are reproduced equally well by the
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ABSTRACT: The prevailing structural paradigm for the aqueous electron is that of
an s-like ground-state wave function that inhabits a quasi-spherical solvent cavity, a
viewpoint that is supported by numerous atomistic simulations using various one-
electron pseudopotential models. This conceptual picture has recently been
challenged, however, on the basis of results obtained from a new electron�water
pseudopotential model that predicts a more delocalized wave function and no well-
defined solvent cavity. Here, we examine this new model in comparison to two
alternative, cavity-forming pseudopotential models. We find that the cavity-forming models are far more consistent with the
experimental data for the electron’s radius of gyration, optical absorption spectrum, and vertical electron binding energy.
Calculations of the absorption spectrum using time-dependent density functional theory are in quantitative or semiquantitative
agreement with experiment when the solvent geometries are obtained from the cavity-forming pseudopotential models, but differ
markedly from experiment when geometries that do not form a cavity are used.
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cavity-forming models,41,43,44,53,54 and various technical aspects
of the LGS model have been criticized.47,64

Here, we report new simulations using the LGS pseudo-
potential model and compare the results to two alternative,
cavity-forming, one-electron models.41,44 The latter are found to
afford much better agreement with experimental data for the
vertical electron binding energy (VEBE), the electronic absorp-
tion spectrum, and the electron’s radius of gyration. In addition,
we find that the agreement between experiment and LGS
predictions deteriorates, for certain observables, when Ewald
summation is used to evaluate the long-range Coulomb interac-
tions, rather than the minimum-image convention that has been
used in all previous LGS simulations.

We also report time-dependent density functional theory
(TD-DFT) calculations of the e�(aq) absorption spectrum, using
a carefully calibrated quantum mechanics/molecular mechanics
(QM/MM) methodology based on solvent configurations ex-
tracted from the one-electron pseudopotential simulations. Quan-
titative or semiquantitative agreement with the experimental
spectrum is observed when the cavity-forming geometries are
used, whereas the spectrum simulated using LGS geometries lies
far to the red of the experimental spectrum. In our view, these TD-
DFT calculations provide themost compelling evidence to date in
favor of the cavity-forming pseudopotential models.

The remainder of this work is organized as follows. Section 2
provides a brief overview of the three different one-electron
pseudopotential models that are examined here. The predic-
tions of thesemodels (for the electron’s radius of gyration, VEBE,
and optical spectrum) are examined in section 3. TD-DFT

calculations are discussed in section 4. Finally, section 5 sum-
marizes the current state of affairs with regard to benchmark data
for one-electron pseudopotential models of e�(aq).

2. SIMULATIONS

Several different one-electron pseudopotential models are
examined herein, including the LGSmodel46 (alreadymentioned
above); the Turi�Borgis (TB)model,41 which is formally similar
in some respects but employs a different electron�water pseudo-
potential; and also a polarizable model that we have recently
developed.44 The mathematical structure of these models is
briefly reviewed in section 2.1, and then in section 2.2 we provide
details regarding how the condensed-phase e�(aq) simulations
were performed.
2.1. One-Electron Pseudopotential Models. The LGS and

TB models of the hydrated electron bear some formal similarity
with one another, even though their physical predictions differ
markedly. In particular, both models employ the nonpolarizable
“simple point charge” (SPC) force field for water,65 and both use
a one-electron Hamiltonian of the form

Ĥð rBÞ ¼ � p2

2me
∇̂2
r

þ ∑
Nwater

J
Ve�waterð rB, RBJÞ þ ∑

Nwater

K > J
VSPCð RBJ , RBKÞ

" #
ð1Þ

The symbol RBJ denotes a collective set of coordinates for the Jth
water molecule. These coordinates serve as parameters in the
one-electron Schr€odinger equation, Ĥ|ψæ = E|ψæ, and we
propagate classical molecular dynamics for the water molecules
along the ground-state eigenvalue, E = E({RBJ}), using Hellmann�
Feynman forces.66

The electron�water interaction potential, Ve�water, consists of
several components,

Ve�water ¼ Vpseudo þ VCoulomb þ Vpol ð2Þ
Here, VCoulomb denotes the Coulomb interaction between the
electron and the SPC atomic point charges, while

Vpolð rB, RBJÞ ¼ �α

2ðj rB� RBJ j2 þ CÞ2
" #

f ðj rB� RBJ jÞ ð3Þ

is an ad hoc electron�water polarization potential of the sort
used in many previous studies.67,68 We use the notation |rB� RBJ|
in eq 3 to denote the distance between the electron and whatever
water site is chosen as the origin for Vpol. The quantity α is
the spherically averaged polarizability of H2O, f is a damping
function,67 and C is a constant whose role in approximating
more sophisticated polarization potentials has been discussed
previously.66 [Note that C = 0 for the LGS model, and ft 1 for
the TB model; eq 3 is used for generality.]
The final component of Ve�water, and the one that proves to be

crucial in determining the qualitative nature of the model, is an
electron�water pseudopotential, Vpseudo, and this is where the
TB and LGSmodels differ substantively. Of the various electron�
water pseudopotentials in the literature,2 we have chosen the
TB model41 as a representative example of a nonpolarizable,
cavity-forming pseudopotential model because it has been used
in many recent simulations of both e�(aq) and finite water
cluster anions.41,42,69�75 Both the LGS and the TB forms of
Vpseudo are based on a frozen-core Hartree�Fock description of
H2O

�, and are attempts to develop a pseudopotential, Vpseudo(rB),

Figure 1. Representative images of the ground-state and first excited-
state wave functions for e�(aq), obtained from the cavity-forming
“PEWP-2” pseudopotential model44 and from the non-cavity-forming
Larsen�Glover�Schwartz (LGS) pseudopotential model.46 (Wave
functions obtained from the cavity-forming Turi�Borgis model41 and
the non-cavity-forming LGS-mPol model47 are not shown, as they are
qualitatively similar to the PEWP-2 and LGS wave functions, re-
spectively.) Isosurfaces depicted here encapsulate 70% of |ψ|2. In panels
(a) and (b), all water molecules within 4.5 Å of the centroid of ψ are
shown, whereas panels (c) and (d) depict the entire simulation cell,
which contains 600 water molecules in (c) and 499 molecules in (d).
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that reproduces the asymptotic behavior of the Hartree�Fock
singly occupied molecular orbital (SOMO). However, the TB
and LGS fitting procedures (and, thus, the pseudopotentials
themselves) differ in important details, as described in ref 52.
Evidently, these details are enough to afford qualitative differ-
ences in the structure of e�(aq); the TB model localizes the
ground-state wave function into a well-defined solvent cavity in a
manner similar to what is depicted for the PEWP-2 ground-state
wave function in Figure 1a, whereas no solvent cavity is obtained
with the LGS model.
In previous work,47 we showed that the LGS model over-

estimates VEBEs of (H2O)n
� clusters, as compared to ab initio

benchmarks, and that much more accurate VEBEs could be
obtained by modifying the parameter C appearing in the ad hoc
polarization potential of eq 3. We obtained a modified value of
C by fitting to an extensive database of VEBEs without other-
wise modifying the LGS model of e�(aq), and we called this
variant the “LGS-mPol” (for “modified polarization”) model.47

Although LGS-mPol was never intended as a serious model of
the hydrated electron, it does provide an interesting comparison
insofar as it uses the same pseudopotential as the LGS model but
a different polarization potential.
In addition to these three SPC-based models, we also consider

a polarizable model that we have recently developed.44 Instead of
SPC, our hydrated-electron model uses the AMOEBA force field
for water,76,77 in which polarization is described by inducible
point dipoles, μBi

ind. These dipoles are electronic degrees of
freedom, and our model treats them as variables (rather than
parameters) in the Hamiltonian. As such, both water�water and
electron�water polarization are treated self-consistently in our
model. The Hamiltonian has a similar structure to that given in
eq 1, with VAMOEBA replacing VSPC, and with electron�water
Coulomb interactions, VCoulomb, that now include interactions
with both the permanent H2O multipoles (charges, dipoles, and
quadrupoles in the AMOEBA model), as well as the inducible
dipoles. Interactions between the QM electron and the classical
induced dipoles naturally furnishes a many-body electron�water
polarization potential, so there is no need for the ad hoc two-
body polarization potential of eq 3.
The induced dipoles are determined by the equation

μ~ind
i ¼ αið FB

QM

i þ FB
MM

i Þ ð4Þ
where αi is the polarizability of the ith atomic site.78,76 The
quantities FBi

QM and FBi
MM are the electric fields at the ith site that

originate from the wave function and from the water molecules,
respectively. Because FBi

QM depends on the e� wave function and
Ĥ depends on the induced dipoles, eq 4 is coupled to the
Schr€odinger equation, and these two equations must be iterated
to self-consistency. Details of this procedure can be found in our
previous papers.44,66

As with the nonpolarizable models, a key aspect of our
polarizable electron�water potential (PEWP) is the electron�
water pseudopotential,Vpseudo. Here, we utilize “version 2” of our
pseudopotential (PEWP-2),44 which was parametrized in a
manner similar to how the TB pseudopotential was developed.
(Indeed, the TB and PEWP-2 pseudopotentials are rather similar
when plotted in real space.44) We have shown previously2,43,44

that the PEWP-2 model reproduces and rationalizes a wide
variety of experimental data for e�(aq), including the vertical
electron binding energy and optical absorption spectrum.43,44

This model also provides a tentative explanation for other

features of e�(aq) that have been inferred indirectly, includ-
ing large-amplitude librational dynamics in the first solvation
shell (which has been inferred based on resonance Raman
spectroscopy21), as well as the absence of any detectable polar-
ized transient hole-burning dynamics.79

2.2. Simulation Protocols.We simulate e�(aq) in bulk water
by propagating classical molecular dynamics for the water
molecules on the lowest adiabatic potential surface of the one-
electron Schr€odinger equation. This equation is solved on a real-
space grid, as described in ref 44, and in the case of the PEWP-2
model it must be solved iteratively along with eq 4 for the
induced dipoles. A key aspect of the present simulations, as
compared to previous e�(aq) simulations using the LGS
model,46,47,52 is the use of Ewald summation for the long-range
electrostatic interactions, whereas previous studies employed the
minimum-image convention. This primarily affects the VEBE but
has some impact on the radius of gyration and the optical
spectrum as well. Both the minimum-image and Ewald summa-
tion results are compared below in the case of the LGS model.
Simulations using the LGS model were carried out in a cubic

simulation cell containing 499 water molecules (box length L =
24.64 Å), corresponding to a water density of 0.997 g/cm3. TB
and PEWP-2 simulations were performed at the same water
density but with L = 26.2015 Å and 600 water molecules in the
unit cell. (These simulations were taken from ref 44, to which the
reader is referred for details.) The TB and PEWP-2 simulations
used a grid spacing of Δx = 0.93 Å, consistent with our previous
work,44 but the LGS results are somewhat more sensitive to the
grid spacing, and for these simulations we use Δx = 0.59 Å, as in
ref 46. Following Larsen et al.,46 we use a 32 � 32 � 32 grid
(18.17 Å on a side) to simulate the ground-state dynamics. To
compute excited states, however, we use a 42 � 42 � 42 grid
(24.05 Å on a side), which essentially fills the simulation cell.
All simulations are carried out in the canonical (NVT)

ensemble, using Nos�e-Hoover thermostat chains at T = 298 K.
Larsen et al.46 employ a time step of 0.5 fs, and for LGS
simulations using the minimum-image convention, we follow
this practice. However, due to the additional expense of summing
the long-range interactions via regular Ewald summation, we
explored the use of a 1.0 fs time step for simulations that employ
Ewald summation. We find that the extended-system energy
(Nos�e-Hoover conserved quantity) is well conserved, even for
the larger time step. An LGS/Ewald simulation of 35 ps in length,
using a 1.0 fs time step, and another simulation of 30 ps in length
with a 0.5 fs time step, were combined for the purpose of analysis.
LGS/minimum-image simulations were run for 30 ps.
Each optical absorption spectrum is computed using at least

400 snapshots extracted from the ground-state molecular
dynamics simulation at intervals of 75�150 fs. For each of these
snapshots, we compute the lowest 30 electronic states, then
construct a spectrum from a histogram of excitation energies
weighted by oscillator strengths, f0fn, where

80

f0fn ¼ 2me

3p2
ðEn � E0Þ ∑

k ∈ fx, y, zg
jÆψ0jk̂ jψnæj2 ð5Þ

For the PEWP-2 model, the treatment of the solvent’s polariza-
tion response (i.e., changes in the induced dipoles follow-
ing excitation of the wave function) is not straightforward.
We have addressed this issue elsewhere,81 where we have
shown that similar spectra are obtained using perturbative versus
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self-consistent relaxation techniques. As such, the perturbative
technique described in ref 44 is used exclusively here.

3. RESULTS FROM PSEUDOPOTENTIAL SIMULATIONS

3.1. Structure. The most salient difference between the LGS
model and most other one-electron pseudopotential models
is that the former fails to localize the ground-state electron in a
well-defined solvent cavity, as illustrated in the snapshot of the
ground-state wave function that is depicted in Figure 1b, which
shows water molecules permeating throughout the e� wave
function. One should bear in mind that, even for cavity-forming
models, the tail of the wave function penetrates into the second
solvation shell;11,43,44 hence, a better illustration of the noncavity
nature of the LGS electron is obtained by examining radial
distribution functions (RDFs), g(r), which are shown in Figure 2.
(To compute a classical RDF for this system, we take the
electron’s position to be the centroid of its wave function.)
The TB and PEWP-2 models exhibit an unmistakable shell
structure, and furthermore, g(r) = 0 for any electron�hydrogen
distance smaller than about 1 Å, which provides an indication of
the size of the solvent cavity predicted by these two models.
In contrast, the LGS model affords electron�hydrogen and
electron�oxygen RDFs that are both finite at r = 0, and no
well-defined shell structure is evident in either RDF. The same is
true of the LGS-mPol model, which differs from LGS only in the
form of the long-range polarization potential.
Despite the obvious differences in their wave functions and

RDFs, the TB and LGS models are reported to afford similar
values for the radius of gyration, rg, defined as

rg ¼ Æψjð rB� rBavgÞ 3 ð rB� rBavgÞjψæ1=2 ð6Þ

where rBavg = Æψ|rB|ψæ. Ensemble-averaged values of rg, which
we denote as Ærgæ, are reported in Table 1. The TB model affords
Ærgæ = 2.42 Å, in excellent agreement with the value extracted
from a moment analysis of the experimental optical absorption
line shape (Ærgæ= 2.44 Å).9 The LGSmodel affords similarly good

agreement (Ærgæ = 2.46 Å) when the minimum-image convention
is used to sum the Coulomb interactions. This agreement was put
forth in ref 46, as evidence that the noncavity LGS model is at
least plausible. However, we find that the LGS value for Ærgæ
increases to 2.69 Å when Ewald summation is used to sum the
long-range interactions. The PEWP-2 model errs in the other
direction and predicts a rg that is about 0.2 Å too small.
3.2. Vertical Electron Binding Energy. Experimental esti-

mates for the VEBE of e�(aq) in bulk water range from 3.3�
4.0 eV.3 This range includes a value of 3.4 eV extrapolated from
the photoelectron spectra of warm (H2O)n

� clusters,9 a value of
≈4.0 eV extrapolated from cold cluster data,86 and four different
liquid microjet measurements,82�85 all of which lie within the
range 3.4 ( 0.2 eV. (See ref 3 for a review of the microjet
experiments.) Ensemble-averaged VEBEs for the bulk species, as
computed from the pseudopotential simulations, are reported
in Table 1.
For the TB and PEWP-2 models, we report three different

values of the bulk VEBE in Table 1: relaxed, unrelaxed, and
extrapolated. The “unrelaxed” VEBE is computed using our
600-molecule simulation cell with proper account of periodic
boundary conditions but without modifying the solvent dipoles
upon electron detachment in the case of the PEWP-2model. The
“relaxed” VEBE corrects this unrelaxed value by considering
electronic reorganization of the solvent upon electron detach-
ment. For the PEWP-2 model, this correction is computed
explicitly by relaxing the induced dipoles following electron
detachment, whereas for the TB model, we estimate this correc-
tion using a continuum model87 that employs the solvent’s
optical dielectric constant, ε∞, along with parameters Ærgæ and
ÆT̂æ that are extracted from the simulations, to estimate electronic
relaxation. (Details can be found in ref 44, where we demonstrate
that both the continuum model and the explicit many-body
treatment of polarization afford similar electronic relaxation
energies.) Finally, the “extrapolated” VEBE reported in Table 1
represents the relaxed VEBE extrapolated to the infinite-dilution
(L f ∞) limit.
Comparison of the aforementioned values demonstrates that

both the correction for electronic relaxation as well as the
correction for finite simulation cell size are greater than 1 eV in
magnitude, even for the large simulation cells that are used here.
However, the two corrections differ in sign. If both effects are

Figure 2. Radial distribution functions (RDFs) for (a) the TBmodel,
(b) the PEWP-2 model, (c) the LGS model, and (d) the LGS-mPol
model, using Ewald summation in each case. The TB and PEWP-2
models are cavity-forming and their RDFs exhibit shell structure,
whereas such structure is largely absent in the two LGS-based
models.

Table 1. Ensemble-Averaged Radius of Gyration and VEBE
for e�(aq) at T = 298 K and Normal Water Density

ÆVEBEæ/eV

model protocol Ærgæ/Å unrelaxed relaxeda extrapolatedb

TB Ewald 2.42 3.85 2.55 3.50
PEWP-2 Ewald 2.25 4.37 3.35 3.70

LGS min. image 2.46 5.19

LGS Ewald 2.69 6.29

LGS-mPol min. image 2.74 3.82

experiment 2.44c 3.4 ( 0.2d

3.4, 4.0e

a Includes electronic relaxation of the solvent, estimated in various ways
(see section 3.2). bRelaxed VEBE, extrapolated to the infinite-dilution limit.
cFrom moment analysis of the absorption spectrum at T = 298 K.9 dFrom
liquid microjet measurements.3,82�85 eFrom extrapolations of cluster
photoelectron data.9,86
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ignored, then the TB value for the bulk VEBE (3.85 eV) is
deceptively reasonable. However, extrapolation to the infinite-
dilution limit without correcting for electronic relaxation yields
an unreasonably large VEBE (4.8 eV), while the relaxation
correction, when applied without extrapolation, affords an un-
reasonably small VEBE (2.55 eV). When both corrections are
applied, the TB and the PEWP-2 models both afford VEBEs
within the range of experimental estimates.
For the LGS model, we report only the unrelaxed and

nonextrapolated VEBE. Even so, the overbinding character that
we previously documented47 in (H2O)n

� cluster VEBEs is
reflected in the bulk value as well. Although we have noted this
before,47 based on e�(aq) simulations performed within the
minimum-image convention, here we discover that Ewald sum-
mation increases the bulk VEBE by a further 1.1 eV, to 6.3 eV.
(This observation is not unique to the LGS model; Ewald
summation increases the VEBE for the TB model by 0.8 eV
relative to the minimum-image result.73) The LGS model is not
polarizable, but it is not obvious that the Born-type continuum
model that we used to estimate electronic relaxation in the TB
case is appropriate when the electron is not localized in a cavity.
That said, even the largest, bulk-extrapolated estimate of the
electronic relaxation that we saw in our previous work,44 1.4 eV,
would reduce the LGS value of the VEBE only to 4.9 eV, and
subsequent extrapolation to the infinite-dilution limit would
most likely afford a VEBE . 4.9 eV, far beyond the range of
experimental estimates.
Interestingly, the LGS-mPol model affords an unrelaxed and

nonextrapolated VEBE that is quite close to the corresponding
TB value. This is consistent with the fact that statistical errors for
(H2O)n

� cluster VEBEs are quite similar for the TB and LGS-
mPol models88 and suggests that a more sophisticated form of
the long-range polarization potential might correct the serious
overbinding that is exhibited by LGS-type models.91We have not
pursued such a strategy here.
3.3. Optical Absorption Spectrum. Perhaps the most im-

portant experimental observable for e�(aq), from a utilitarian
point of view, is its optical absorption spectrum, because this is
the principle means by which this species is detected and
monitored. Because e�(aq) absorbs in a relatively uncongested
region of the spectrum, its optical absorption (which peaks at
1.7 eV or 720 nm, under ambient conditions9) is often used to
monitor the kinetics of water radiolysis experiments. Further-
more, the optical spectrum of e�(aq) has long been used to
validate one-electron models of this species, even though most of
these models do a poor job of reproducing the overall experi-
mental line shape.92 We have recently shown43,44,81 that repolar-
ization of the solvent in response to excitation of the wave
function, which is missing from most one-electron models, is the
key to obtaining a “blue tail” in the absorption line shape, as is
observed experimentally.9

The absorption spectra of finite (H2O)n
� clusters, as well as

that of e�(aq) under various thermodynamic conditions, are fit
very well by a line shape function, I(E), that is a Gaussian on the
red side of the spectrum and a Lorentzian on the blue side:9,93

IðEÞ ¼ A exp½ � ðE� EmaxÞ2=2σ2
G� if E e Emax

A½1 þ ðE� EmaxÞ2=σ2
L��1 if E > Emax

(
ð7Þ

We eliminate the parameter A by normalizing the peak absor-
bance to unity, leading to a three-parameter fit. Temperature-
dependent fits of the line shape parameters Emax, σG, and σL for

the bulk species have been reported by Coe et al.,9 and these line
shape parameters (at T = 298 K) are used to plot the experi-
mental absorption spectrum in the comparisons that follow.
From the earliest atomistic simulations of e�(aq), the Gaussian

feature in the absorption spectrum has been explained in terms
of three s f p excitations of an electron in a quasi-spherical
solvent cavity.33,36,37 The Lorentzian tail on the blue side of the
spectrum, however, is absent in the spectra computed using
nearly all one-electron pseudopotential models.92 Given that the
photoelectron spectrum, as well as a measurable photoconductivity
signal, extends all the way down to ≈2 eV9 and, therefore,
overlaps the entire blue side (E > Emax) of the absorption
spectrum, it is not unreasonable to suspect that continuum states
might play a role in the tail of the absorption spectrum. Although

Figure 3. Optical spectra of e�(aq) simulated using a variety of one-
electron models. In panel (a), two different methods are compared for
computing electronic relaxation in the PEWP-2 model, namely, second-
order perturbation theory43,44 (where we show results including either
30 or 50 excited states) and also a self-consistent procedure.81 Panel (b)
shows the optical spectrum computed using LGS-basedmodels. In panel
(c), shifted versions of theLGS spectra are compared to the unshiftedPEWP-
2 result. Except where indicated, all calculations employ 30 electronic states.
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this would explain the absence of a tail in previous one-electron
simulations, this cannot be the whole story because the PEWP-2
model does recover a substantial blue tail.43,44

Figure 3a compares the TB and PEWP-2 results to the
experimental absorption spectrum. We have discussed these data
at length in previous work,2,43,44,81 so we only briefly recapitulate
here. The TB model does a reasonable job of reproducing the
main Gaussian feature in the spectrum, although the peak
absorption intensity is blue-shifted (relative to experiment) by
about 0.3 eV. However, the Lorentzian tail is completely absent
in the TB simulation. (A very modest blue tail does appear when
nuclear quantum effects are included,92 but even so the agree-
ment with experiment in the high-energy region of the spectrum
remains quite poor.)
A PEWP-2 spectrum that does not account for electronic

reorganization of the solvent (i.e., for changes in the induced
dipoles upon excitation of the wave function) is quite similar to
the TB result; see refs 43 and 44. However, when electronic
relaxation is taken into account, either perturbatively43,44 or
self-consistently,81 we obtain spectra that are in much better
agreement with experiment, as seen in Figure 3a. Electronic
relaxation reduces the excited-state energies and thereby shifts
the entire spectrum to the red and into better agreement with the
experimental intensity maximum. At the same time, electronic
relaxation modifies the transition dipoles, shifting oscillator
strength from the lowest s f p transitions (which are the only
bright states, within a “spherical box” model2) and into higher-
lying bound states and quasi-continuum states, leading to the
appearance of a blue tail.43,44 Above 3.2 eV, however, the
agreement with experiment remains rather poor and does not
improve when more excited states are calculated (see Figure 3a).
To some extent, this discrepancy may result from lifetime
broadening effects that are not incorporated here (as discussed
in section 4.3), but in any case the high-energy portion of the
e�(aq) spectrum deserves further study in future work.
Figure 3b plots the LGS and LGS-mPol spectra, including

both Ewald and minimum-image versions of the former. The
minimum-image LGS spectrum, which has been discussed
previously,46,47 is somewhat red-shifted, relative to experiment,
but does exhibit a substantial blue tail. Larsen et al.46 have noted
that reasonable agreement with experiment is obtained by
shifting this spectrum by ≈0.15 eV. However, the LGS/Ewald
spectrum, which is reported here for the first time, requires a
larger shift (≈ 0.4 eV) to bring the absorption maximum into
agreement with experiment, and even the shifted spectrum is by
no means clearly superior to the unshifted spectrum obtained
from the PEWP-2 model following electronic relaxation (see
Figure 3c). On the other hand, the shifted LGS/Ewald spectrum
is in much better agreement with experiment than is the TB
spectrum.

In an effort to resolve some of these ambiguities, we next turn
to TD-DFT calculations.

4. RESULTS FROM TD-DFT

4.1. Motivation. In previous work, we have demonstrated
that many-electron QM/MM calculations, where long-range-
corrected TD-DFT is used to describe the QM region and where
solvent configurations are sampled from the TB pseudopotential
model, afford an optical spectrum that is in good agreement
with experiment.43 The agreement is quantitative for the main,
Gaussian portion of the spectrum, and a long tail on the blue side

of the spectrum is obtained as well. (The intensity of this tail is
not in quantitative agreement with experiment, for reasons
that are discussed in section 4.3.) Here, we report and analyze
analogous TD-DFT/MM calculations, using geometries ex-
tracted from each of the simulations described above.
DFT and Hartree�Fock calculations suggest that, to rationalize

certain properties of e�(aq), one must accept that 10�20% of the
aqueous electron’s spin density is supported by frontier molecular
orbitals centered onwater molecules in the first solvation shell.94�96

(Long ago, Kevan97 estimated that 4% of the spin density must
reside on first-shell water molecules to explain electron spin reso-
nance data.) Furthermore, Bartels and co-workers98 have recently
reported a new measurement of the integrated oscillator strength
(or “f-value”) of the e�(aq) absorption spectrum, for which they
obtain a value of ≈1.1. According to the Thomas�Reiche�Kuhn
(TRK) sum rule,80,99 the sum of all oscillator strengths out of the
ground state equals the number of electrons:

∑
states

n > 0
f0fn ¼ Ne ð8Þ

In view of eq 8, Bartels and co-workers98 argue that their measure-
ment implies that the spectrum cannot result from a strictly one-
electron transition.
On the other hand, each of these results suggests a deviation

from one-electron character of no more than 20%, and perhaps
less, and it is not clear whether such an effect is qualitatively
important. In this regard, we note that one-electron pseudo-
potential models neglect (at least) two effects: first, penetration
of the unpaired electron into regions of space occupied by the
valence MOs of the water molecules; and second, any possible
many-electron character to the electronic excitations.
These two effects are not precisely equivalent, and TD-DFT in

its standard form (i.e., linear-response theory within the adiabatic
approximation) provides a framework in which they can be
separated to some extent. Within a TD-DFT calculation, basis
functions centered on the water molecules are available to the
ground-state wave function of the electron (i.e., the SOMO), and
virtual MOs on the water molecules are also available for the
description of excited states. As such, both the ground and
excited states of the excess electrons are free to delocalize into
the MOs of the water molecules. In addition, TD-DFT calcula-
tions preserve the TRK sum rule in the complete-basis limit,100,101

so the total oscillator strength within a TD-DFT calculation can
certainly exceed unity.103 However, true multiple excitations are
absent in adiabatic, linear-response TD-DFT.100,102

4.2. Computational Methods and Convergence Tests.The
description of e�(aq) and (H2O)n

� using DFT and TD-DFT is
often problematic for at least two reasons. First, self-interaction
error tends to overstabilize the anion relative to the underly-
ing neutral solvent structure, which results in VEBEs that are
J0.5 eV too large.89 In addition, incorrect asymptotic behavior of
the exchange�correlation potential results in severe underesti-
mation of charge-transfer excitation energies in TD-DFT, with
disastrous consequences in liquids and clusters.104�106 However,
recently developed long-range-corrected (LRC) density func-
tionals, which asymptotically incorporated full Hartree�Fock
(HF) exchange via a partitioned Coulomb operator, have been
shown to mitigate both of these problems.107�112

All calculations reported here employ the LRC-μBOP func-
tional,113 which combines the so-called one-parameter progres-
sive correlation functional116 (OP) with a short-range version117
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of Becke’s generalized gradient exchange functional118 (“μB88”),
along with a long-range correction (LRC) consisting of 100%
Hartree�Fock exchange. Altogether, the LRC-μBOP exchange-
correlation energy expression is

ELRC-μBOPxc ¼ EOPc þ EμB88, SRx þ EHF, LRx ð9Þ
The notation “SR” and “LR” indicates that only the short-range
or long-range parts of the Coulomb operator are used to evaluate
certain energy components. As in our previous work,43 the
Coulomb attenuation parameter is set to μ = 0.37 a0

�1 in these
calculations. For values of μ that are not too much different from
this, the LRC-μBOP functional affords highly accurate VEBEs for
(H2O)n

� isomers.66,90,119

Here, we simulate the TD-DFT optical spectrum of e�(aq)
using solvent configurations extracted from various one-electron
pseudopotential models. Starting from equilibrated trajectories
for e�(aq), obtained from the one-electron pseudopotential
models as described in section 2.2, solvent configurations were
extracted every 0.5 ps. The QM/MM partition was taken to
be a sphere of radius RQM whose origin is the centroid of the
one-electron wave function, and any H2O molecule with a

nucleus inside of this sphere was placed into the QM region.
TheMM region (represented by point charges qO =�0.82 e and
qH = +0.41 e) extends out to 50 Å, for a total of ∼18000 water
molecules. Such a large MM radius was chosen to ensure that the

Figure 4. Convergence of TD-LRC-μBOP/6-31+G* excitation ener-
gies, as a function of the radius of the QM region, for (a) 4 different
snapshots extracted from a bulk e�(aq) simulation using the TB
pseudopotential model, and (b) 11 different snapshots extracted from
a simulation using the LGS model. The upper horizontal axis in either
panel indicates the average number of water molecules in the QM
region, ÆNQMæ.

Figure 5. Convergence of the TD-LRC-μBOP/6-31+G* oscillator
strengths as a function of the radius of the QM region for (a) snapshots
extracted from the TBmodel of e�(aq) and (b) snapshots extracted from
the LGS model. The snapshots are the same as those used in Figure 4.

Figure 6. Convergence of the TD-LRC-μBOP excitation energies in
the 6-31+G* [� 6-31(1+)G*] basis set, as compared to the convergence
behavior, using the 6-31(1+,2+)G* basis set. Snapshots were extracted
from the TB model of e�(aq).
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diffuse MOs from the QM region do not penetrate beyond the
MM region and into vacuum.
Figure 4 illustrates the convergence of the TD-DFT excitation

energies, as a function of RQM, for several different solvent
configurations extracted from the TB and LGS pseudopotential
models. In the TB case, we are able to extend these calculations
out to RQM = 6.5 Å, at which point more than two full solvation
shells around the cavity-bound electron are included in the QM
region, and based on these tests we find that RQM = 5.5 Å is
sufficient to converge the excitation energies to within 0.2�

0.3 eV, at least for the lowest 15 excited states, and this value is
used for all of the calculations reported in section 4.3. The LGS
geometries include more water molecules at any particular value
of RQM, so we have extended these calculations only up to RQM =
6.0 Å; nevertheless, the convergence behavior is quite similar to
that observed for the TB geometries. Convergence of the
excitation energies is essentially monotonic from above as RQM
is increased, which implies that a largerQM region (RQM> 5.5 Å)
should red-shift the spectrum, but any such shift is likely to be
quite small because the lowest three states, which carry the
majority of the oscillator strength, are converged at RQM = 5.5 Å.
Convergence of the oscillator strengths is examined in

Figure 5. Despite some early indications that oscillator strengths
might be quite sensitive to the size of the QM region,2,43 a more
careful analysis shows that the convergence is in fact quite rapid
as a function of RQM if one considers the total oscillator strength
for a group of states (e.g., the lowest three excited states,
representing the 1s f 1p excitations). The distribution of
oscillator strengths obtained using LGS geometries is slightly
different in that, on occasion, we observe that the fourth excited
state sometimes exhibits significant oscillator strength; this is
seen in 2 out of 11 snapshots depicted in Figure 5b. Despite this
feature, the oscillator strengths do appear to be reasonably well
converged for RQM = 5.5 Å, even in this case.
In every case, we note that the total oscillator strength

supported by the lowest 15�20 excited states is less than unity.
Furthermore, all of these states lie below 6.4 eV, which is much
too low for H2O excitations; these do not appear until∼8.0 eV at
the TD-LRC-μBOP/6-31+G* level of theory. To the extent that

Figure 7. Comparison of TD-LRC-μBOP absorption spectra for
e�(aq) in bulk water, computed using two different basis sets. Geome-
tries were extracted from a bulk simulation using the TB model, as
described in the text.

Figure 8. Histograms of TD-DFT excitation energies (weighted by oscillator strengths) averaged over solvent configurations obtained from various
one-electron pseudopotential models. The shaded histograms represent the results of TD-DFT calculations in which only three excited states are
included, whereas the open histograms result from the lowest 15 excited states. Ewald summation was employed in the TB and PEWP-2 simulations,
whereas the LGS simulations used the minimum-image convention. Histogram bin widths are 0.15 eV, and fits of the histogram data to the line shape
function in eq 7 are also shown.
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this is a reliable level of electronic structure theory, we can
account for essentially all of the e�(aq) oscillator strength via
one-electron excitations of the unpaired electron.
We should point out that the 6-31+G* basis set used in

these calculations would be wholly inadequate for studies of
(H2O)n

� clusters, where far more diffuse basis sets are required
to describe weakly-bound cluster isomers in which the
unpaired electron may penetrate significantly beyond the
water network.11,89 In the condensed phase, however, we
anticipate that the SOMO is much more compact. In fact,
the experimental value9 rg = 2.44 Å for e�(aq) at T = 298 K is
comparable to the full width at half-maximum (FWHM) of the
diffuse functions in the 6-31+G* basis set (FWHM = 2.3 Å).
This is larger than the typical distance between nearest-
neighbor water molecules in the bulk liquid, so it would seem
that the 6-31+G* basis functions cover the interstices in liquid
water fairly well. Plots of the TD-DFT natural transition
orbitals in ref 43 also demonstrate that the 6-31+G* basis
set is capable of representing a cavity-centered SOMO.
On the other hand, excitation energies will become increasingly

sensitive to the diffuseness of the basis set as one moves up the
manifold of excited states. Figure 6 shows that, for RQM = 5.5 Å,
the TD-LRC-μBOP/6-31+G* excitation energies for the first
three excited states are essentially converged with respect to those
computed using the more diffuse 6-31(1+,2+)G* basis set.
However, for the higher-lying states that comprise the “blue tail”
in the e�(aq) absorption spectrum, the more diffuse basis set
lowers the excitation energies by 1 eV or more.
To understand how this impacts the computed absorption

spectrum, Figure 7 compares absorption spectra computed using
these two basis sets. The resulting spectra are found to be quite
similar. In particular, the peak absorption intensity and the width
of the Gaussian feature are essentially the same in either
spectrum, and in either case, a nontrivial tail is observed at higher
excitation energies. This tail is somewhat attenuated in the more
diffuse basis set because this basis lowers the energies of the
higher-lying states (with respect to the more compact 6-31+G*)
to a much greater extent for the higher-lying states than for the
first few excited states. To obtain significant intensity above∼3.5
eV in the larger basis, we would need to compute a much larger
number of excited states, which would make the calculations
prohibitively expensive. Moreover, the quantitative differences
between the blue tails obtained with either basis set are not large.
For these reasons, and because we are somewhat wary of having
basis functions that extend well into the MM region, as these

might support artificial Rydberg excitations, all subsequent
calculations employ the 6-31+G* basis set.
All TD-DFT calculations were performed using Q-Chem, v.

3.2.115 The Tamm-Dancoff approximation (TDA),120 which is
invoked by default in Q-Chem 3.2, is not used here, because the
TRK sum rule for oscillator strengths, eq 8, is no longer strictly
valid within the TDA. (However, a limited analysis of calcula-
tions performed within the TDA suggests that this approxima-
tion increases the 1sf 1p excitation energies by∼0.1 eV relative
to full linear response but has little other effect on the overall
spectrum.) The SG-0 quadrature grid is used in all calculations, as
we have shown this grid to be adequate for the sort of system and
functional that is examined here.89,121 Our choice of RQM = 5.5 Å
leads to an average of 29 QM water molecules for snapshots ex-
tracted from the cavity-forming pseudopotential models and 37
QMwatermolecules for snapshots extracted from the LGSmodels.
4.3. TD-DFT Spectra. Figure 8 plots histograms of TD-DFT

excitation energies for each pseudopotential model, in compar-
ison to the experimental absorption spectrum. For the TB and
PEWP-2 models, the histograms include 138 and 124 snapshots,
respectively, but owing to the increased cost of the LGS calcula-
tions, as a result of the larger number of QM water molecules,
only 60 snapshots are used in this case. (In addition, only LGS
minimum-image geometries, and not LGS Ewald geometries, are
used in the TD-DFT calculations.) For the PEWP-2 and TB data,
we obtain essentially the same spectrum using only half of the
data set, with an intensity maximum that shifts by less than the

Table 2. Line Shape Parameters for the e�(aq) Absorption Spectrum at T = 298 K and NormalWater Density, Obtained from Fits
to the TD-DFT Data

TD-DFT line shape parameters (eq 7)a

model protocol Emax/eV σG/eV σL/eV FWHM/eVb Ærgæ/Åc

TB Ewald 1.836 ( 0.026 0.419 ( 0.024 0.378 ( 0.028 1.121 2.50

PEWP-2 Ewald 2.147 ( 0.022 0.395 ( 0.020 0.329 ( 0.024 1.030 2.30

LGS min. image 1.211 ( 0.019 0.308 ( 0.018 0.361 ( 0.021 0.907 3.01

LGS-mPol min. image 1.144 ( 0.034 0.227 ( 0.030 0.469 ( 0.040 0.872 2.85

experimentd 1.721 0.304 0.495 1.034 2.40

experimente 1.735 0.304 0.483 1.022 2.40
aUncertainties represent the asymptotic standard error in the nonlinear fit to the TD-DFT data. b Full width at half-maximum (FWHM) computed
from the line shape function. cRadius of gyration computed from the line shape function. d Fit (from ref 9) to experimental data from ref 124. e Fit
(from ref 9.) to experimental data from refs 125 and 126.

Figure 9. Line shape functions (eq 7) obtained as fits to the TD-DFT
excitation energies and oscillator strengths.
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width of one histogram bin (<0.15 eV). Therefore, while we
expect that more snapshots for the LGSmodel would smooth out
some of the fluctuations in the histograms (e.g., around 1.1 eV in
Figure 8c and around 1.5 eV in Figure 8d), we also suspect that
fits of these histograms to the line shape function are probably
nearly converged with respect to sampling. Furthermore, the
rapid convergence of the 1s f 1p excitation energies suggests
that the absorption maximum is well converged in all cases.
Fits of the TD-DFT histogram data to the line shape function

in eq 7 are also shown in Figure 8, and best-fit parameters are
reported in Table 2. These analytic line shape functions can be
used to determine the radius of gyration corresponding to each
TD-DFT line shape. Expressed in atomic units, the relation
between Ærgæ and I(E) is9,122,123

Ærgæ ¼
3
Z ∞

0
E�1IðEÞdE

2
Z ∞

0
IðEÞdE

2
6664

3
7775
1=2

ð10Þ

Values of Ærgæ determined from the TD-DFT spectra are reported
in Table 2 and should be compared to the values determined
directly from the one-electron pseudopotential simulations,
using the definition in eq 6. The latter are reported in Table 1.
As we have reported previously,43 the spectrum computed

from TB geometries (Figure 8a) is in essentially quantitative
agreement with the experimental spectrum once the TD-DFT
data are fit to the line shape function in eq 7. In addition, the
radius of gyration determined from the TD-DFT line shape (Ærgæ =
2.50 Å) agrees well with the value that is determined directly
from the TB model’s ground-state wave function (Ærgæ = 2.45 Å).
Looking carefully at the histogram of excitation energies in

Figure 8a, rather than the fitted line shape, one could reasonably
argue that, although the low-energy, Gaussian portion of the
histogram is in quantitative agreement with experiment, the
blue tail is not. Two sources of error likely contribute to this
diminished intensity in the simulated blue tail. One is the rather

compact basis set that is employed in the TD-DFT calcu-
lations, whereas the states that comprise the blue tail are quite
diffuse.2,43,44 As noted above, additional diffuse functions sig-
nificantly lower the higher-lying excitation energies, which
suggests that, for a more quantitative representation of the blue
tail, we should use a more diffuse basis set and also calculate far
more excited states. A second source of error is intrinsic to the
use of the heterogeneous broadening formula in eq 5 to calculate
the spectral intensity, which neglects the effects of lifetime broad-
ening. We have previously suggested2,44 that lifetime broadening
may be important, given the relatively high density of states in
the blue tail. This suggestion is supported by the observation9

that the optical spectra of e�(aq) in both H2O and D2O can be
fit using the same σG parameter, whereas σL

D2O ≈ 0.906 σL
H2O.

As pointed out by Coe et al.,9 this observation suggests that
dynamics play some role in determining σL.
Despite these shortcomings, the agreement between the

experimental spectrum and the TD-DFT spectrum computed
from TB geometries is striking. In comparison, TD-DFT spectra
based on geometries extracted from the other pseudopotential
models are in less good agreement with experiment. Geometries
from our model, PEWP-2, lead to a spectrum that is blue-shifted
by about 0.4 eV relative to experiment and by 0.3 eV relative to
the spectrum based onTB geometries. This can be rationalized in
terms of a radius of gyration that is ≈0.2 Å too small (whether
computed using the PEWP-2 wave function or the TD-DFT
line shape obtained from PEWP-2 geometries). A reduction in
the cavity size, and hence, rg, should result in a blue shift of the
1s f 1p excitation energies. The magnitude of this shift can be
understood in terms of a “spherical box”model using parameters
(cavity size and binding energy) that roughly reproduce the
experimental radius of gyration, the 1s f 1p excitation energy,
and the VEBE.2 Within such a model, a reduction in the radius of
the box that is sufficient to reduce rg by 0.2 Å also affords a 0.3 eV
blue shift in the 1s f 1p excitation energy.
The LGS and LGS-mPol geometries, in contrast, produce

TD-DFT spectra that are red-shifted by 0.5�0.6 eV relative to
experiment. Moreover, the radii of gyration that are extracted
from the TD-DFT line shapes are inconsistent with the values

Figure 10. Dependence of the mean 1s f 1p excitation energy,
computed at the TD-LRC-μBOP/6-31+G* level, on the Coulomb
attenuation parameter, μ. Results are shown for four different QM/
MM snapshots taken from the TB model. (These are the same four
snapshots used in Figures 4a and 5a.) In each case, what is plotted is the
weighted average (according to oscillator strength) of the three lowest
TD-DFT excitation energies. Results are shown for both the Tamm�
Dancoff approximation (TDA) as well as full linear response theory,
although only the latter approach is used to compute spectra. The solid
vertical line denotes the value of μ used to compute spectra in this work.

Figure 11. VEBE of the “OP1-AA” isomer130 of (H2O)6
�, computed at

the LRC-μBOP level and plotted as a function of the Coulomb
attenuation parameter, μ. The calculation was performed in two ways:
first, by means of the usual ΔSCF procedure [VEBE = E(neutral) �
E(anion)]; and second, using the SCF eigenvalue for the SOMO(VEBE=
�εSOMO). The solid horizontal line represents the VEBE obtained from
a large-basis CCSD(T) calculation.131 DFT calculations used the “aug-cc-
pVDZ+diff” basis recommended by Yagi et al.90.
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computed directly from the ground-state one-electron wave
functions. In the case of the LGS/Ewald simulations, for example,
these two methods afford rg = 2.69 Å (from the one-electron
wave function) and rg = 3.01 Å (from the TD-DFT line shape).
The line shape functions obtained by fitting the TD-DFT

histogram data are plotted together in Figure 9. It is interesting
to note that the TD-DFT spectra obtained using LGS and
LGS-mPol geometries are extremely similar to one another,
despite the fact that LGS-mPol significantly reduces the magni-
tude of the polarization potential.91 This indicates that solvent
geometries do not differ greatly between these two models,
which implies that it is the LGS pseudopotential itself, and not
the details of the ad hoc polarization potential, that is responsible
for the non-cavity-forming nature of the model and for the
substantially red-shifted spectra computed from TD-DFT.
In evaluating these TD-DFT spectra, it is worth recalling the

essentially monotonic convergence of TD-DFT excitation en-
ergies as a function of RQM (Figure 4), which implies that a larger
QM region would only shift the spectra further to the red.
(However, we do not expect this shift to be large because the first
three excitation energies, which carry most of the oscillator
strength, are essentially converged for the value RQM = 5.5 Å
that is used here.) Moreover, judging from the FWHM data
reported in Table 2, the TD-DFT line shape functions obtained
from LGS and LGS-mPol geometries are too narrow, by a bit
more than 0.1 eV, whereas the TD-DFT spectrum obtained from
TB geometries is too wide, by about the same amount. As with
the red-shifts in the LGS spectra, a larger QM region will not
alleviate this problem because the convergence tests in section
4.2 indicate that the width of the Gaussian feature is probably
converged already and, therefore, the effect of lowering the
higher-lying excitation energies (by increasing the size of the
QM region or the diffuseness of the basis set) will be to reduce
the FWHMof the simulated spectrum. This correction is likely to
be small because the first few excited states appear to be well
converged.
4.4. Assessment of LRC-μBOP. The quality of our TD-DFT

calculations is potentially subject to criticism, which we address
here. Although the LRC-μBOP functional with μ = 0.33 a0

�1

has been shown to afford very accurate VEBEs for (H2O)n
�

clusters,66,90 the Coulomb attenuation parameter, μ, is probably
the most ambiguous and least theoretically justified parameter in
this particular density functional. Benchmark tests on a wide
range of systems indicate that both ground-state properties as
well as TD-DFT excitation energies can be quite sensitive to the
value of μ.111,121

In Figure 10, we illustrate the μ-dependence of the mean 1sf
1p excitation energy, that is, the weighted average (according to
oscillator strength) of the three lowest excitation energies, which
is a proxy for the absorption maximum. We observe that this
mean value shifts to higher energy as μ increases, which is
consistent with an overall trend toward higher excitation energies
in TD-LRC-DFT, as a function of μ, for excited states that do not
exhibit significant charge-transfer character.111 In this context, we
recall that TD-DFT spectra based on LGS and LGS-mPol
geometries are red-shifted by at least 0.5 eV, and the μ-depen-
dence documented in Figure 10 demonstrates that it would be
essentially impossible to induce anything approaching a 0.5 eV
blue shift simply by changing the value of μ. (Note also that LRC
functionals engender significant errors for μJ 0.9 a0

�1,111,121 and
benchmark studies have consistently recommended values
of μ < 0.5 a0

�1,108,109,111,117,121,127 so any push toward larger

μ to increase the excitation energies is inadvisible on general
theoretical grounds.)
We have also computed TD-DFT excitation energies using the

BLYP and B3LYP functionals118,128,129 for the four snapshots
used in Figure 10. We find that the 1s f 1p excitation energies
obtained from TD-BLYP and TD-B3LYP calculations are quite
close to the values obtained fromTD-LRC-μBOP, withμ = 0 and
μ = 0.1 a0

�1, respectively. This makes sense, given that the μf 0
limit of LRC-μBOP affords the BOP functional, which is a
reparameterized version of BLYP,116 and given that TD-
B3LYP excitation energies are generally somewhat higher than
TD-BLYP results owing to the 20% Hartree�Fock exchange
present in B3LYP. In any case, these results demonstrate that
appealing to more widely-used functionals such as BLYP and
B3LYP would only move the spectrum computed from LGS
geometries further away from the experimental result.
Baer and co-workers112 recommend tuning μ in a system-

specific fashion, and one suggested criterion for doing so is to
insist that the negative eigenvalue, �εHOMO, of the highest
occupied Kohn�Sham MO (HOMO) should equal the ioniza-
tion potential of the molecule. This condition is satisfied by the
exact Hohenberg�Kohn density functional but is poorly ap-
proximated by most contemporary density-functional approxi-
mations, with the exception of certain LRC functionals. To
evaluate this ionization potential criterion here, we choose a
certain isomer of (H2O)6

� whose ionization potential (i.e.,
VEBE) has been calculated at numerous levels of theory by
Jordan and co-workers.130,131 As a benchmark VEBE for this
cluster isomer, we take the large-basis CCSD(T) value reported
in ref 131, which lies within the statistical error bars of quantum
Monte Carlo results for the same isomer.131

Figure 11 compares the CCSD(T) benchmark to a LRC-
μBOP calculation of the VEBE, as a function of μ. As expected,90

the LRC-μBOP result lies very close to the benchmark for μ ≈
0.33 a0

�1. Also shown in Figure 11 is the μ-dependent value of
�εSOMO. Exact agreement between�εSOMO and the benchmark
VEBE is achieved for a rather small value of the Coulomb
attenuation parameter, μ = 0.15 a0

�1, however, the “ΔSCF” result
[i.e., the VEBE calculated based on separate DFT calculations of
(H2O)n and (H2O)n

�] is in reasonable agreement with �εSOMO

for the value μ = 0.37 a0
�1 that is used in this study. In any case,

these data fail to justify any large increase in μ that might shift
the LGS spectra substantially to the blue and thus into better
agreement with experiment.

5. SUMMARY AND CONCLUSIONS

The recently proposed Larsen�Glover�Schwartz (LGS)
one-electron pseudopotential model for the hydrated electron,46

in which the unpaired electron does not localize into a well-
defined solvent cavity, has been evaluated here in comparison to
two other one-electron models that do predict such a cavity.41,44

While comparisons of the LGS model against experimental data
for e�(aq) have been reported previously,46,47,52 the present
work represents the first time that Ewald summation (rather than
the minimum-image convention) has been used in the context of
the LGS model. We find that certain observables such as the
electron’s radius of gyration (rg) and optical absorption spectrum,
which the LGS model had been thought to reproduce reasonably
well,46 are in less favorable agreement with experiment when Ewald
summation is employed. A substantial error in the LGS value of the
vertical electron binding energy (VEBE) for e�(aq), which had been
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reported previously,47 is further exacerbated by the use of Ewald
summation, so that the bulk VEBE predicted by the LGS model is
1�2 eV higher than any experimental estimate of this quantity. In
contrast, reasonable values of rg are obtained from the cavity-
forming models, and the bulk VEBE and optical absorption
maximum are in good agreement with experiment, when corrected
for the effects of electronic reorganization of the solvent.

In addition to these experimental comparisons, we have used
TD-DFT calculations, in conjunction with a carefully calibrated
QM/MMprotocol, in an effort to assess various structural motifs
for e�(aq). TD-DFT calculations using solvent configurations
extracted from the cavity-forming TB model are in nearly
quantitative agreement with the experimental absorption line
shape, save for a slightly diminished intensity in the high-energy
tail that likely results from inadequacies in the present TD-DFT
treatment. When solvent configurations are taken instead from
the cavity-forming PEWP-2 model, the resulting TD-DFT
spectrum is somewhat blue-shifted relative to experiment, con-
sistent with a PEWP-2 radius of gyration that is slightly smaller
than the value derived from the experimental absorption line
shape. On the other hand, the TD-DFT spectrum based on
noncavity LGS geometries is severely red-shifted relative to
experiment. We have explored a variety of modifications to both
the QM/MMprotocol and the DFT functional, but each of these
changes appears to exacerbate the discrepancy between the LGS
spectrum and experiment.

Given that the LGS model predicts a radius of gyration,
electronic absorption spectrum, and VEBE that are markedly
different from the corresponding experimental data, it is reason-
able to ask what data are left that might lend credence to this
model of e�(aq). For one, the calculated value of the e�(aq)
diffusion constant at T = 300 K, using the LGS model, has been
found to be within a factor of 2 of the experimental value,46

although it is noteworthy that the LGS value is too small by a
factor of 2, whereas H2O self-diffusion is too fast, again by about a
factor of 2, for the underlying SPCwater model.132 The LGSmodel
also rationalizes the absence of any polarization-dependent bleach-
ing dynamics in transient hole-burning experiments,46 whereas
older cavity-forming models predicted that such dynamics
should be observable.133,134 However, recent theoretical work
suggests that ultrafast depolarization of the 1s f 1p transition
dipoles may explain the absence of an experimental signal, even
in the context of a cavity-bound electron.44,53 Finally, previous
claims52,56 that the LGS model might explain the negative partial
molar volume of e�(aq) have been shown to result from a
misinterpretation of the experimental literature.54 These obser-
vations leave precious little to support the noncavity interpreta-
tion of e�(aq).

This work is unlikely to be the final word regarding the
structure of e�(aq). At present, however, it appears that the
cavity-forming models of e�(aq) offer the most consistent
description of this species and the most accurate comparison
to experimental data, at least within the framework of models
based upon a one-electron, charge-defect description of e�(aq).
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