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ABSTRACT: We report third-order symmetry-adapted perturbation theory
(SAPT) calculations for several dimers whose intermolecular interactions are
dominated by induction. We demonstrate that the single-exchange approxi-
mation (SEA) employed to derive the third-order exchange−induction correc-
tion (Eexch−ind

(30) ) fails to quench the attractive nature of the third-order induction
(Eind

(30)), leading to one-dimensional potential curves that become attractive
rather than repulsive at short intermolecular separations. A scaling equation for
Eexch−ind
(30) , based on an exact formula for the first-order exchange correction, is

introduced to approximate exchange effects beyond the SEA, and qualitatively
correct potential energy curves that include third-order induction are thereby
obtained. For induction-dominated systems, our results indicate that a “hybrid”
SAPT approach, in which a dimer Hartree−Fock calculation is performed in
order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to
obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange−
induction formulas that go beyond the SEA.

1. INTRODUCTION
Symmetry-adapted perturbation theory (SAPT) is a systemati-
cally improvable hierarchy of methods for direct calculation of
intermolecular interaction energies,1−4 in which the interaction
energy decomposes naturally into a sum of physically meaningful
components: electrostatics, induction, dispersion, and exchange−
repulsion. This is appealing because one can construct physically
motivated potential energy surfaces or force fields by separately
fitting the individual components of a SAPT calculation.
Applications to clusters,5−7 molecular crystals,8−11 bulk liquids,12

and biomolecules13 have been reported recently.
Starting from a zeroth-order Hamiltonian equal to the sum of

two monomer Fock operators, the SAPT approach is based on
a symmetrized Rayleigh−Schrödinger (SRS) perturbation ex-
pansion1,2 with respect to three perturbations: the intermolec-
ular interaction potential, V̂, and the two monomer fluctua-
tion potentials, ŴA and ŴB. The interaction energy can be
expressed as
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where i indicates the order in perturbation theory with respect
to V̂ and j indicates the order with respect to both ŴA and ŴB.
The correction terms Epol

(ij) are known collectively as the polari-
zation expansion, and these are precisely the same terms that
would appear in ordinary Rayleigh−Schrödinger perturbation
theory. The polarization expansion contains electrostatic, in-
duction, and dispersion interactions, but in the SRS expan-
sion, each term Epol

(ij) has a corresponding exchange term, Eexch
(ij) , that

arises from the antisymmetrizer ̂
AB that is introduced in order

to project away the Pauli-forbidden components of the inter-
action energy.2

The operator ̂
AB generates all possible permutations

(exchanges) of electrons on monomers A and B, which makes it
difficult to derive closed-form, programmable expressions for the
exchange corrections. To the best of our knowledge, this has
been accomplished14 only for the first-order exchange correction,
Eexch
(10), and all higher-order exchange terms are evaluated within

the single-exchange approximation (SEA).1 (Because the resulting
formulas depend on the square of the dimer overlap matrix,
typically denoted by S, the SEA is sometimes known as the “S2

approximation”.)
The SEA is thought to be quite robust at equilibrium ge-

ometries.15 As an example, we cite a recent SAPT study of
dimers consisting of nonpolar monomers.16 There, the ratio
Eexch
(10)/Eexch

(10)(S2), where the numerator is exact and the denom-
inator invokes the SEA, was used as a scaling factor for the
higher-order exchange terms. It was found that this scaling adds
no more than 0.03 kcal/mol to binding energies at equilibrium
geometries, and even at much shorter distances, where the
intermolecular interaction becomes repulsive, the scaling adds
no more than 1 kcal/mol. The largest contribution to this
additional 1 kcal/mol comes from scaling the third-order
exchange−induction term, Eexch−ind

(30) (S2).16
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A formula for the third-order exchange interaction Eexch
(30)(S2)

was reported only a few years ago17 and has not yet been
explored as thoroughly as have the lower-order SAPT correc-
tions. Because Eexch−ind

(30) ought to be more significant for polar
molecules, as opposed to the nonpolar ones considered in ref 16,
we have undertaken a careful analysis of the role of the Eexch−ind

(30)

term in SAPT calculations on polar dimers. The results, reported
here, demonstrate that the SEA results in significant errors lead-
ing to qualitatively incorrect potential energy surfaces at distances
shorter than the equilibrium intermolecular distance.

2. COMPUTATIONAL METHODS

We study potential energy curves (PECs) for five different
dimers. Four of these are polar systems: (H2O)2, F

−(H2O),
Cl−(H2O), and HO

−(H2O). In addition, we consider the helium
dimer as a “control experiment” because induction plays almost
no role in the binding of He2. Third-order SAPT calculations for
He2 and (H2O)2 near their equilibrium geometries have been
reported previously by Patkowski et al.,17,18 but here, we extend
these calculations to full PECs.
Rigid monomer geometries were adopted for all computa-

tions because the frozen-monomer approximation works rea-
sonably well for PECs.7,8 Monomer geometries were obtained
from MP2/aug-cc-pVTZ optimizations, and then, PECs were
constructed along the distance coordinate, R, between the two
heavy atoms. As benchmarks, we estimated the complete basis
set (CBS) interaction energy at the CCSD(T) level based on a
two-point (“T,Q”) extrapolation of the MP2 energy and an
estimate of the triples correction in a smaller basis set. (Details
can be found in the Supporting Information.) All SAPT calcu-
lations were performed in the aug-cc-pVTZ basis set using the
SAPT 2008.2 program,19 with integrals generated by the ATMOL
program.20

The different levels of SAPT applied in this work are defined
as follows4
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The subscripts denote electrostatic (elst), exchange (exch), in-
duction (ind), and dispersion (disp) components, and “resp”
indicates that the components have been calculated includ-
ing the Hartree−Fock response of each monomer to the static
electric field of its interacting partner. This response, which
amounts to orbital relaxation, is obtained by solving coupled-
perturbed Hartree−Fock equations. The superscript “t” in tEind

(22)

indicates that this is the “true” correlation part of Eind
(22), not

included in Eind,resp
(20) , and the corresponding true correlation part

of Eexch−ind
(22) is estimated as
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With the exception of He2, the dimers that we investigate are
dominated by induction effects; therefore, it will be convenient
to define

Δ = + −E E Ek k k
ind
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for k > 1. The quantity ΔEind
(k) represents the contribution to the

total induction energy that arises at kth order in V̂, in the
absence of monomer correlation,4 and ΔEind,resp

(k) is the
analogous orbital-relaxed quantity.
The Hartree−Fock interaction energy, Eint

HF, can be approxi-
mated within SAPT, and through second- and third-order in V̂,
these approximations are17

= + + Δ−E E E ESAPT HF
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Because induction interactions converge slowly for polar molecules
and because one may argue that a dimer Hartree−Fock calculation
contains induction and exchange−induction effects through
infinite order,21−23 a “hybrid” SAPT approach is recommended
for polar molecules.17,18 In this approach, a dimer Hartree−
Fock calculation is used to evaluate the energy difference

δ = − −E E Eint
(2)

int
HF

SAPT HF
[2]

(6)

which is then taken as an estimate of induction effects beyond
second order.17 This term can then be added as a correction to
any of the SAPT methods that are second-order in V̂, that is,
SAPT0, SAPT2, or SAPT. [Note also that what we call δEint

(2)

has alternatively been called the δEint
HF correction4 and the

δ(HF) correction.24] While this correction brings in higher-
order induction and exchange−induction effects, it also con-
tains spurious unphysical terms,14,17,23 most notably, exchange
deformation of the orbitals.23

3. RESULTS AND DISCUSSION
Qualitatively similar results are obtained for each of the four
X···H2O systems considered here (X = F−, Cl−, HO−, and
H2O), and we will focus largely on F−(H2O) as an example.
However, all of the quantities that we plot for F−(H2O) are
plotted for each X···H2O system and also for He2 in the
Supporting Information.
PECs computed for F−(H2O), using all four versions of

SAPT defined in eq 2, are plotted in Figure 1. Each of these
methods underbinds this dimer at near-equilibrium distances,
as compared to the benchmark CCSD(T)/CBS result, but the
SAPT0, SAPT, and SAPT2 curves at least exhibit reasonable
shapes. However, in the case of SAPT2+3, which, in principle,
is the highest-level SAPT method that is employed here, the
PEC is reasonable only for R > Req, where Req denotes
the minimum-energy intermolecular distance computed at the
CCSD(T)/CBS level. [For F−(H2O), Req = 2.5 Å.] At shorter
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distances, the SAPT2+3 curve turns over, becoming attractive
rather than repulsive.
The reason for this failure can be discerned by decomposing

the interaction energy into different components, some of which
are plotted in Figure 2. Attractive interactions in F−(H2O) are

dominated by induction, and we observe that for R < 1.8 Å, the
third-order induction correction, ΔEind(3), is even larger than ΔEind(2).
Although a variety of third-order terms are present in a
SAPT2+3 calculation (see eq 2d), if we add ΔEind(3) to an
otherwise qualitatively correct SAPT0 calculation, the result is a
PEC that is completely wrong at short R. This result is shown in
Figure 3 for all four ion−water complexes considered here.
These calculations identify ΔEind(3) as the origin of the problem.
In Figure 4, we address the convergence of the SAPT ap-

proximations to the supermolecular Hartree−Fock interaction
energy for F−(H2O) and also for (H2O)2. For either system,
both ESAPT−HF

[2] and ESAPT−HF
[3] are excellent approximations to

Eint
HF for R ≥ Req. For intermolecular distances a bit shorter than

Req, the addition of ΔEind(3) to ESAPT−HF
[2] (which defines the third-

order approximation, ESAPT−HF
[3] ) successfully accounts for the

difference between Eint
HF and ESAPT−HF

[2] . Thus, the third-order
approximation to Eint

HF is basically converged for distances
ranging from a bit shorter than Req out to R = ∞. For (H2O)2
near its equilibrium geometry, this convergence was noted pre-
viously by Patkowski et al.,17,18 but even for the anion−water
systems considered here, where the induction effects are larger,
we find that ESAPT−HF

[3] is an excellent approximation to Eint
HF near

the equilibrium geometry and also at larger values of R.
In contrast, for R ≪ Req, the second-order approximation

ESAPT−HF
[2] is clearly not converged for F−(H2O), although the

PEC defined by the ESAPT−HF
[2] method is at least qualitatively

correct. For (H2O)2, where the binding energy and the
induction effects are much smaller, ESAPT−HF

[2] is a much better
approximation to the Hartree−Fock interaction energy. For
both systems, addition of ΔEind

(3) to ESAPT−HF
[2] , which defines the

third-order approximation ESAPT−HF
[3] , improves upon ESAPT−HF

[2]

at distances somewhat shorter than Req, but eventually, the
ESAPT−HF
[3] curves turn over, even in the charge-neutral water

dimer. This behavior is clearly a manifestation of the divergence
of ΔEind

(3) at short intermolecular separation, which again points
to this quantity as the culprit responsible for the qualitatively
wrong PECs obtained at the SAPT2+3 level of theory.
One might object that in our calculations, the third-order

induction terms do not include orbital relaxation (response)
effects. At near-equilibrium geometries, Patkowski et al.18 have
shown that orbital relaxation increases the third-order induc-
tion interaction by up to 50% for dimers such as (H2O)2 that are
composed of polar monomers. Anion−water complexes were not
considered by Patkowski et al., but for F−(H2O), the second-order
induction corrections are compared, with and without orbital
relaxation, in Figure 2. The effect of orbital relaxation is to make
the potential energy curve more attractive at short distances, albeit
by a relatively small amount. As such, we find it unlikely that the
inclusion of orbital response at third order would correct the
qualitatively wrong PECs caused by ΔEind(3)
Thus, the question remains, what is the problem with the

ΔEind
(3) term? According to Figure 2, the interaction energy

contributed by ΔEind
(3) increases as the intermolecular distance

decreases; therefore, it must be that Eind
(30) is not sufficiently

quenched by its exchange counterpart, Eexch−ind
(30) , at short distance.

The ΔEind(2) (or ΔEind,resp(2) ) curve has roughly the same basic shape
as that for ΔEind(3), although the latter diverges slightly more
rapidly than the former as R decreases; it is difficult to ascribe
any qualitative problems to this subtle difference.
Perhaps more telling are certain calculations reported in

Figure 3, in which we have replaced the exact Eexch
(10) term in a

SAPT0 calculation with its SEA, Eexch
(10)(S2). For each of the four

X···H2O systems that we consider (including the water dimer),
this has the effect of greatly weakening the short-range repulsive
interactions, and for F−(H2O) and HO

−(H2O), where induction
effects are largest, this modified SAPT0 potential curve even
becomes attractive at sufficiently short distance. Therefore, even
at first order, the SEA can produce attractive PECs at short
distances, although the influence of the SEA on the third-order
corrections is much larger. One might expect that the SEA might
also have qualitatively important effects on the second-order ex-
change at short intermolecular distances, but in fact, qualitatively
correct PECs are obtained using SAPT methods that are only
second-order in V̂.
For the X···H2O systems, the value of the turnover point

where the SAPT0 + ΔEind
(30) potential curve (Figure 3) changes

Figure 1. Comparison of different levels of SAPT (as defined in eq 2)
for the F−(H2O) system. The H2O geometry is frozen in these
potential energy scans.

Figure 2. SAPT0 decomposition of the interaction energy for
F−(H2O) into different orders of electrostatic (elst), induction (ind),
and dispersion (disp) components, each with a corresponding
exchange (exch) contribution. For the second-order induction and
exchange−induction components, results are shown both with and
without orbital relaxation (resp) corrections.
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from repulsive to attractive decreases in the order Cl− > HO− >
H2O > F−. (The turnover points for SAPT2+3 calculations
occur in the same order; see Table 1.) For the anions, this is the

same as the order of the ionic radii (Cl− > O2− > F−), which we
rationalize in terms of the fact that ions with larger radii would
be expected to have larger exchange−repulsion interactions, at
least for intermolecular distances not significantly smaller than
the sum of the van der Waals radii. Considering the water
dimer, the aforementioned turning point occurs at a smaller
value of R than it does in HO−(H2O), which we attribute to the
much larger induction effects in the ionic complex. Together,
these observations suggest that the large negative values of
ΔEind

(3) at small R are probably attributable to the failure of
Eexch−ind
(30) (S2) to quench Eind

(30).
Following ref 16, we use the ratio Eexch

(10)/Eexch
(10)(S2) to estimate

third-order exchange effects beyond the SEA. Thus, we intro-
duce an ad hoc scaling formula

=− −
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⎝
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⎠
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E S( )
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Figure 3. SAPT0 potential curves for (a) F−···H2O, (b) HO
−···H2O, (c) Cl

−···H2O, and (d) H2O···H2O as a function of the distance R between the
two heavy atoms. (Both the vertical and horizontal scales are the same in all four panels.) Also shown are the potential curves that result when
ΔEind(3) is added to a SAPT0 calculation and when the exact Eexch

(10) term in SAPT0 is replaced by its single-exchange approximation, Eexch
(10)(S2). Results

for the helium dimer are not shown because all three curves are indistinguishable on the energy scale used in this figure.

Figure 4. Distance dependence of the supermolecular Hartree−
Fock interaction energy (Eint

HF ) and its second-order (ESAPT−HF
[2] ) and

third-order (ESAPT−HF
[3] ) SAPT approximations for (a) F−(H2O) and

(b) (H2O)2. In each case, the coordinate R is the distance between
the heavy atoms, and the arrow indicates the CCSD(T)/CBS
minimum-energy geometry. Note that the two panels use different
energy scales.

Table 1. CCSD(T)/CBS Equilibrium Distances and
SAPT2+3 “Turnover Points” Where the Potential Becomes
Attractive at Short Distance

system Req/Å turnover point/Å

F−(H2O) 2.5 1.9
HO−(H2O) 2.6 2.1
Cl−(H2O) 3.1 2.4
(H2O)2 2.9 2.0
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where the exponent α is an empirical parameter. (In ref 16,
only α = 1 was considered.) Figure 5 shows the result when

Eexch−ind
(30) is replaced in a SAPT2+3 calculation by the scaled

version in eq 7. This replacement has little effect for R ≥ Req,
which is an indication of the robustness of the SEA at
equilibrium geometries and beyond. At short intermolecular
distances, however, scaling using α = 3 corrects the qualitatively
incorrect SAPT2+3 potential curves. The choice α = 2 also
prevents the PEC from turning over at short distance, although the
shape of the repulsive wall is not correct, and with α = 1, the PEC
still turns over at short distance. There is no sound theoretical
justification for any choice of α, but the fact that α > 1 is required
to obtain a qualitatively correct PEC indicates that exchange inter-
actions beyond the SEA are more important at third order than
they are at first order when the intermolecular distance is small.
On the other hand, a SAPT2+3 calculation where ΔEind

(3) is
replaced by δEint

(2) is in quantitative agreement with CCSD(T)/
CBS results for R ≥ Req (see Figure 5). While this SAPT2+3 +
δEHF

(2) result is not quantitative for R < Req (which is to be
expected, owing to the spurious exchange contributions present
in δEint

(2)), at the very least, this curve does not turn over at small
R and remains qualitatively correct even at very short inter-
molecular separations. In the strongly repulsive region of the
PEC, the SAPT2+3 + δEHF

(2) result is superior to the PEC
obtained simply by scaling Eexch−ind

(30) using α = 1 or 2.
Actually, SAPT methods that are only second order in V̂ also

suffer from the effects of SEA. Although these methods are free
of the disastrous turnover of the PEC that SAPT2+3 exhibits,
the PECs are less accurate at short distances. We use the
SAPT0 method as an example to illustrate the effects of SEA on
the second-order exchange (SAPT and SAPT2 afford similar
results) and thus define another scaling formula

=− −
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The exponent α is once again an empirical parameter. Figure 6
shows the result when Eexch−ind,resp

(20) is replaced in a SAPT0
calculation by the scaled version in eq 8. All of the PECs are

reasonable, although the unscaled SAPT0 PEC starts to flatten
out at very short distance (R < 1.8 Å). Scaling with α = 1 or 2
corrects this defect and affords fairly accurate PECs, whereas
the choice α = 3 (which was required in order to correct the
flattening out or turning over of the SAPT2+3 PECs) over-
corrects the SAPT0 results. At the SAPT0 level, α = 3 is less
accurate as compared to smaller values of α, which affirms our
conclusion that the effect of the SEA on the third-order
exchange is much more significant than it is at second order.
Addition of the δEint

(2) correction improves both the SAPT0
and SAPT2+3 results at short intermolecular distances (see
Figures 5 and 6, respectively). This is consistent with previous
recommendations to use the δEint

(2) correction term when the
monomers are polar.17,18 (For nonpolar monomers, the
unphysical artifacts inherent to this correction are more
significant, relative to the very small induction corrections, and
better results are sometimes obtained without using this
correction.17) However, the recommendation to use δEint

(2) is
based on benchmark calculations for systems such as (H2O)2
at its equilibrium geometry.17 For F−(H2O), it is not clear that
addition of δEint

(2) to a SAPT0 calculation actually improves the
results. This is difficult to see on the scale plotted in Figure 6;
therefore, an enlarged view is shown in Figure 7.

Figure 5. Comparison of several variants of SAPT2+3 for F−(H2O). In
three of these variants, the second- or third-order exchange−induction
term has been scaled using eq 7 with different values of the parameter
α. In another variant, we have replaced the ΔEind(3) term in SAPT2+3
with the δEint

(2) correction defined in eq 6 in order to capture higher-
order induction effects.

Figure 6. Comparison of several variants of SAPT0 for F−(H2O). In
three of these, the Eexch‑ind,resp

(20) term has been scaled using eq 8, with differ-
ent values of the parameter α, in order to approximate exchange inter-
actions beyond the SEA. In another, we have added the δEint

(2) correction
defined in eq 6 to SAPT0 in order to capture higher-order induction effects.

Figure 7. Comparison of SAPT0 for F−(H2O) with and without the
δEint

(2) correction defined in eq 6.
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4. CONCLUSIONS
We have found that the Eexch−ind

(30) term in SAPT, which at pres-
ent can be computed only within the single-exchange
approximation, fails to quench Eind

(30) at short intermolecular
distances. This leads to the anomalous result that potential
energy curves for polar systems become attractive at sufficiently
small intermolecular distances. For the three anion−water com-
plexes considered here, “sufficiently small” means about 0.5 Å
shorter than the equilibrium monomer separation, while for
(H2O)2, the turnover occurs at R = 2.0 Å as compared to Req =
2.9 Å. Scaling Eexch−ind

(30) based on the ratio Eexch
(10)/Eexch

(10)(S2)
approximates some higher-order exchange effects sufficiently
well to avoid catastrophic divergence of the potential energy
curve, but for highly polar systems, this result serves mostly to
identify the nature of the problem rather than to correct it.
Further amplification of this ratio, that is, using [Eexch

(10)/
Eexch
(10)(S2)]α for α ≈ 3, is required in order to obtain potential

energy curves that are qualitatively correct at short distances.
Alternatively, calculation of the δEint

(2) correction cannot be
avoided, even at third order, if full potential energy curves are
required.
Interestingly, even in cases where the third-order method

fails catastrophically, second-order SAPT potential curves
remain qualitatively correct even at rather small intermolecular
distances. This suggests that the single-exchange approximation
is more severe in the case of Eexch−ind

(30) than it is for lower-order
exchange interactions, at least for highly polar monomers. This
points to the importance of developing post-SEA correction
formulas at higher orders in SAPT. Furthermore, our results
show that it is inadvisible to include Eind

(30) and Eexch−ind
(30) when

constructing analytic potential energy surfaces based on SAPT.
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