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ABSTRACT: We present an overview of “XSAPT”, a family of
quantum chemistry methods for noncovalent interactions.
These methods combine an efficient, iterative, monomer-
based approach to computing many-body polarization inter-
actions with a two-body version of symmetry-adapted
perturbation theory (SAPT). The result is an efficient method
for computing accurate intermolecular interaction energies in
large noncovalent assemblies such as molecular and ionic
clusters, molecular crystals, clathrates, or protein−ligand
complexes. As in traditional SAPT, the XSAPT energy is
decomposable into physically meaningful components. Dis-
persion interactions are problematic in traditional low-order
SAPT, and two new approaches are introduced here in an
attempt to improve this situation: (1) third-generation empirical atom−atom dispersion potentials, and (2) an empirically scaled
version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide−water
clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as
well as their limitations. The computational cost of XSAPT scales as (N3)− (N5) with respect to monomer size, N, depending
upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar
scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times
scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and
quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.

I. BACKGROUND

A. Quantum Chemistry for Noncovalent Interactions.
Noncovalent or “nonbonded” interactions are responsible for
the properties of a variety of complex systems ranging from the
structures of both single- and double-stranded DNA,1 drug
binding to both proteins and DNA,2,3 and also crystal
engineering and crystal structure prediction.4 Electronic
structure calculations of noncovalent interactions have seen
much progress in recent years, due to improvements in both
algorithms and computer power. In particular, symmetry-
adapted perturbation theory5−10 (SAPT) provides a natural
decomposition of noncovalent interactions into physical
meaningful components (electrostatics, induction, and dis-
persion), along with a corresponding exchange term for each.
The dispersion (van der Waals) interaction is particularly
interesting as it is a purely quantum-mechanical effect arising
solely from intermolecular electron correlation. Dispersion is
therefore absent at the level of Hartree−Fock molecular orbital

(MO) theory and has historically been difficult to describe with
density functional theory (DFT) as well, because popular
semilocal functionals fail to account for long-range electron
correlation.
Various strategies have been devised to incorporate

dispersion into DFT, including highly parametrized meta-
GGA11 functionals where nonbonded interactions are included
in the fitting set. The “Minnesota” family of functionals are
prime examples of this approach.12 Alternatively, explicit r−2k

dependence (k = 3, 4, ...) can be added to DFT a posteriori, via
classical atom−atom potentials, in a “DFT+D” approach
popularized by Grimme.13−15 The ωB97X-D functional16 is
one of the best-performing examples of a DFT+D functional.
Finally, “double hybrid” functionals that mix second-order
Møller−Plesset (MP2) correlation with DFT,17 and other
nonlocal correlation functionals,18,19 also do a better job of
describing noncovalent interactions than traditional semilocal
GGAs. However, the cost of these methods scales no better
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than (N3) with respect to total system size, N, which limits
their routine application to systems with ≲100 atoms.
Prior to the advent of these newer DFT-based approaches,

the (N5) MP2 method was considered the simplest way to
incorporate dispersion in electronic structure calculations. MP2
performs well for hydrogen-bonded systems and thus continues
to play a vital role in the study of water clusters20 (and recently,
bulk liquid water21). However, MP2 significantly overestimates
π-stacking interactions and other dispersion-dominated inter-
actions.22,23 This behavior stems from poor effective C6
coefficients,24,25 which at the MP2 level correspond to an
uncoupled Hartree−Fock (UCHF) description of the fre-
quency-dependent polarizabilities for the monomers. More-
over, slow convergence of the MP2 correlation energy to the
complete basis set (CBS) limit requires costly counterpoise
correction26 to eliminate basis set superposition error (BSSE).
A self-consistent treatment of double excitations, i.e., the (N6)
coupled-cluster singles and doubles (CCSD) method, also
underestimates π···π interactions,27 and on average represents
only a modest improvement upon MP2, with errors of 0.7−1.0
kcal/mol relative to converged CCSD(T) values.28

In short, the (N7) CCSD(T) method remains the “gold
standard” for noncovalent quantum chemistry, though there is
some recent effort to explore quantum Monte Carlo techniques
as an alternative.29,30 CBS extrapolation is required to obtain
converged CCSD(T) results, but higher-order electron
correlation effects are consistently <0.1 kcal/mol.31−33 The
CCSD(T)/CBS limit can more affordably be obtained by
adding a correction

δ = −E ECCSD(T) CCSD(T) MP2 (1)

to the MP2/CBS binding energy, as this correction is generally
converged in triple-ζ basis sets,34 whereas the MP2/CBS
extrapolation requires a basis of at least aug-cc-pVQZ (aQZ)
quality. Nevertheless, this approach remains prohibitively
expensive except for small systems. For example, a recent
CCSD(T)/aTZ calculation on (H2O)17 required 3.3 h on
120 000 processors simply for the “(T)” part of the
calculation.35

The performance of various electronic structure methods
that have been suggested for noncovalent interactions, and
which scale better than (N7), is summarized in Figure 1 for
the S66 data set of noncovalent dimers.36 Among these
methods, the MP2/CBS results are actually the worst, and this
is a direct result of severe overestimation of π-stacking
interactions. The best-performing method is SCS-MI-CCSD
(spin-component scaled CCSD for molecular interactions41),
but its sixth-order scaling is also severely limiting. The MP2C
approach42−45 (MP2 with coupled dispersion) also affords very
small errors, with only fifth-order scaling, but this method is
formulated exclusively for dimers. Finally, Figure 1 shows
selected DFT results using functionals that afford good results
for S66; however, this good performance is not transferred to
anionic systems such as halide−water clusters, X−(H2O)n,

46

except for the ωB97X-V function as discussed below.
In view of these remarks, it is clear that quantum chemistry

calculations with sub-kcal/mol accuracy remain out of reach for
large noncovalent assemblies, such as the HIV protease +
inhibitor system that is shown in Figure 2. With a binding
pocket consisting of 16 nearby amino acids plus two
crystallographic waters, the total system size for a reasonable
quantum chemistry model system amounts to 323 atoms, or

10 626 basis functions using aug-cc-pVTZ. Fragment-based
quantum chemistry methods offer a way to surmount this
predicament.49,50 This article describes a family of fragmenta-
tion methods that we have developed in an attempt to achieve
sub-kcal/mol accuracy for noncovalent interactions yet remain
affordable enough to be applied to systems such as the one in
Figure 2b, where the monomers naturally form fragments but
the protease inhibitor molecule is 92 atoms by itself. As such,
any method that aims to describe this system must be efficient
both for large fragments and for systems composed of a large
number of fragments.
The XSAPT family of methods that is described in this article

has been developed by our group over the past several
years.46,50−54 These methods employ the variational explicit
polarization (XPol) method of Xie et al.55 to generate
monomer wave functions that include many-body polarization

Figure 1.Mean absolute error (MAE) with respect to CCSD(T)/CBS
benchmarks, for binding energies in the S66 database36 of non-
covalently bound dimers. The various methods are color-coded
according to how their cost scales as a function of system size. All
MP2- and CCSD-based results36 are evaluated in the CBS limit. M06-
2X-D3(zero), B3LYP-D3(BJ), and B2PLYP-D3(BJ) calculations
employ the def2-QZVP basis.37 ωB97X-V and LC-VV10 calculations
use aug-cc-pVTZ.38 The ωB97X-D and ωB97X-D3(zero) calculations
use the 6-311++G(3df,3pd) basis.39 [Here, “zero” indicates the “zero-
damping” function of ref 40, which damps empirical dispersion to zero
as R → 0, whereas Becke−Johnson (BJ) damping damps it to a finite
value.] The counterpoise correction is employed for all methods
except M06-2X-D3(zero), B3LYP-D3(BJ), and B2PLYP-D3(BJ).

Figure 2. (a) Structure of the protease inhibitor indinavir bound to
HIV protease, as obtained from PDB crystal structure 1HSG.47 (b) An
enlarged view of the binding pocket, consisting of indinavir (opaque
ball-and-stick model) along with 16 amino acids and 2 crystallographic
waters (translucent tubular models). [Panel b is reproduced with
permission from ref 48. Copyright 2011 American Institute of
Physics.]
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effects and then exploit these XPol wave functions as zeroth-
order states for various forms of SAPT. Whereas SAPT has
traditionally been limited to dimers, XSAPT extends this
methodology (including its energy decomposition analysis) to
many-body systems, in an affordable way.
B. Symmetry-Adapted Perturbation Theory (SAPT). It

is useful to review the original SAPT methodology.5−9 SAPT is
a direct, perturbative expansion of the intermolecular (dimer)
interaction energy based on noninteracting monomer wave
functions, and BSSE is avoided because subtraction of
monomer energies is not required. A double perturbation
expansion is employed, in which intramolecular electron
correlation (Møller−Plesset fluctuation potentials5,56 or a
cluster ansatz57−59) is one perturbation, and the intermolecular
Coulomb operators comprise the other. Methods that include
intramolecular correlation, such as SAPT2+, SAPT2+(3),
SAPT2 + 3, and SAPT(CCSD), are generally quite accurate9,60

but scale no better than (N7), the same as CCSD(T).
However, an accurate SAPT calculation may be able to use a
smaller basis set than CCSD(T), owing to SAPT’s intrinsic lack
of BSSE, and furthermore SAPT comes with an informative
energy decomposition.
A comparatively low-cost means to introduce intramolecular

electron correlation is to swap Kohn−Sham (KS) MOs into the
SAPT formalism, an approach that has been called
SAPT(KS).61 This approach was considered and rejected
more than a decade ago, however, because it fails to yield
accurate intermolecular interaction energies due to inaccurate
asymptotic behavior of the exchange−correlation (XC)
potentials, vxc(r), that are obtained from standard func-
tionals.61−63 The asymptotic (large r) behavior should be64

∼ − + Δ∞v r
r

( )
1

xc (2)

where the limiting (r → ∞) value is64,65

εΔ = +∞ IP HOMO (3)

In eq 3, IP denotes the lowest ionization potential and εHOMO is
the KS eigenvalue for the highest occupied molecular orbital
(HOMO). The failure of standard density-functional approx-
imations to satisfy eq 2 leads to large errors in SAPT(KS)
dispersion energies,53 even though the energetics of strongly
hydrogen-bonded systems are somewhat improved as com-
pared to calculations that use HF wave functions for the
monomers.53

This failure of SAPT(KS) is partially ameliorated by using an
asymptotically correct vxc to compute KS orbitals for the
monomers,54,63,66,67 though dispersion energies remain
poor54,62,68,69 for the same reason that MP2 dispersion energies
are poor. It is possible to solve coupled KS equations to obtain
frequency-dependent density susceptibilities for the monomers,
and this improved approach was developed independently by
Heßelmann and Jansen,66,67,69−71 who named the method
DFT-SAPT, and by Misquitta et al.,63,68,72−75 who called it
SAPT(DFT). This approach, which is closely related to MP2C,
scales as (N6) but can be reduced to (N5) using resolution-
of-identity techniques.71,73−75

C. “Extended” SAPT (XSAPT). Most electronic structure
methods for intermolecular interactions either function as
supersystem calculations or (like SAPT) are designed to
compute pairwise interactions only. Benchmark noncovalent
data sets have also largely focused on dimers. However, many-
body contributions to the interaction energy are often quite

significant, especially in polar systems where nonadditive
interactions are dominated by induction (i.e., polarization).76,77

For example, the many-body contribution to polarization in
isomers of (H2O)6 is about 10 kcal/mol, whereas electrostatic,
exchange−repulsion, and dispersion interactions are nearly
pairwise additive.46,77 Likewise, electron correlation effects have
often been found to be largely pairwise-additive in small
clusters of small molecules, provided that many-body induction
effects are incorporated self-consistently,78 but many-body
dispersion is more important in systems with a large number of
monomers.79

Although the equations for three-body SAPT have been
written down,80−82 their cost scales as (N7) with respect to
the size of the largest trimer, whereas the present work will
focus on methods that scale as (N3)− (N5) with respect to
the size of the largest dimer. In recognition of the qualitative
observations above, our group has recently developed an
“extended” version of SAPT in which many-body induction and
polarization effects are incorporated into the zeroth-order wave
functions by means of the XPol method.55 Other components
of the intermolecular interaction are included via pairwise
SAPT. The result is a monomer-based method that we call
XSAPT,46,50−53 which is aimed at doing fast calculations for
noncovalent assemblies, including molecular and ionic clusters
but also protein−ligand binding systems such as the one
depicted in Figure 2. The XPol procedure starts with a charged-
embedded self-consistent field (SCF) calculation on each
monomer, whose cost is therefore (n) with respect the
number of monomers, n. This is followed by an embarrassingly
parallelizable (n2) pairwise SAPT calculation. SAPT-style
energy decomposition analysis is available, including a term that
directly measures the many-body contribution to the
interaction energy.46

II. OVERVIEW OF XSAPT

We briefly review the theory behind XSAPT; see ref 53 for a
detailed derivation. We assume that covalent bonds remain
intact in the fragmentation of the system, as appropriate for
noncovalent assemblies.

A. Many-Body Polarization: XPol. XPol is a fragment-
based MO method that has been put forward as a means to
obtain the polarization term in a “next-generation” force
field.55,83−86 Upon partitioning the system into fragments, the
XPol wave function is written as a direct product of fragment
wave functions, |Ψ⟩ = |ΨA⟩|ΨB⟩|ΨC⟩···. The XPol energy is51

∑ ∑= + +
= ∈

†E E Ec f c(2 )
A

n

a A
a

A
a

A
XPol

1
nuc embed

(4)

where the term in parentheses is the ordinary HF energy
expression for monomer A, whose Fock matrix is f A = hA + JA

− (1/2)KA. Crucially, the MOs ca for fragment A are
represented using only those atomic orbitals (AOs) that are
centered on atoms in fragment A. This partitioning of the basis
leads to (n) scaling and furthermore excludes BSSE, by
construction. (Charge transfer between fragments is also
excluded, at least in small basis sets.) The quantity Eembed in
eq 4 is an electrostatic embedding potential that could in
principle be obtained from the monomer electron densities, ρA
= |ΨA|

2, but more often consists of the charge−density
interactions that arise once each ρA is collapsed onto some
set of atom-centered point charges.51,53
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Upon variational minimization of eq 4 with respect to the ca,
one obtains a set of monomer SCF equations that involve a
modified Fock matrix FA for monomer A:51,53

∑ ∑ Λ= − +μν μν μν μν
∉ ∈

F f q MI
1
2

( ) ( )A A

J A
J J

J A
J J

(5)

The second term on the right is the interaction of fragment A
with the embedding charge qJ, where (IJ)μν is a charge−density
Coulomb integral involving shell pair μν ∈ A. In the final term,
MJ = ∂Eembed/∂qJ is easy to compute (see ref 53), and

Λ =
∂

∂μν
μν

q

P
( )J

J

(6)

Calculation of the Λ tensor does require some nontrivial
overhead when the embedding charges qJ are “CHELPG”
charges87 that are fit to reproduce the monomer electrostatic
potentials.53,88 This is our preferred choice, as it seems
physically sound and moreover the use of Mulliken or Löwdin
charges often leads to convergence failure in the XPol
procedure, when nonminimal basis sets are employed.51,88 In
any case, the monomer XPol SCF equations (FACA = SACAεA)
are iterated to self-consistency using a “dual SCF” procedure
consisting of an outer loop over monomers and an inner loop
over SCF cycles for a particular monomer, updating the
embedding charges as each |ΨA⟩ is converged.
The final term in eq 5 is equal to ∂Eembed/∂Pμν and ensures

that the converged XPol energy is fully variational.50,51,55 In
contrast, the fragment Fock matrix that is traditionally used in
the fragment molecular orbital (FMO) method,89,90 and also in
the electrostatically embedded many-body expansion,91,92 is

∑= −μν μν μν
∉

F f q I( )A A

J A
J J

(7)

This Fock matrix does not afford a variational method, because
it omits the response of the embedding charges to changes in
the fragment wave functions. As a result, analytic gradients for
FMO and other methods that use eq 7 with self-consistent
embedding charges should, in principle, require solution of
coupled-perturbed equations,93,94 although these response
terms have often been neglected.95−97 In addition, eq 7 omits
the polarization work that diminishes the middle term in eq 5
by a factor of 2.98,99

B. Symmetry-Adapted Perturbation Theory. In the
original XPol method of Xie et al.,55,85 intermolecular
dispersion (van der Waals) and exchange (Pauli repulsion)
interactions are incorporated using empirical Lennard-Jones or
Buckingham potentials. We find, however, that this does not
afford benchmark-quality results for noncovalent interactions,46

so we instead choose to use the XPol fragment wave functions
as zeroth-order states for application of second-order SAPT.
In SAPT, the Hamiltonian for the dimer A···B is partitioned

according to5,6

ξ η ζ̂ = ̂ + ̂ + ̂ + ̂ + ̂H F F W W VA B A B
(8)

where ŴA and ŴB are the Møller−Plesset fluctuation potentials
for monomers A and B, and V̂ consists of all Coulomb
operators that couple particles on A to particles on B.
Application of (anti)symmetrized Rayleigh−Schrödinger per-
turbation theory affords an energy expansion

∑ ∑= +
ζ κ

ζκ ζκ

=

∞

=

∞

E E E( )int
SAPT

1 0
pol
( )

exch
( )

(9)

where κ = ξ + η. The terms Epol
(ζκ) constitute the polarization

expansion,100,101 which neglects exchange of electrons between
monomers. (The term “polarization expansion” is historical and
should not be confused with the way in which we use the term
“polarization” below, namely, to mean induction.) To correct
this, each term in eq 9 has a corresponding exchange term Eexch

(ζκ)

arising from the antisymmetrizer that is used to project out the
Pauli-forbidden components of the interaction energy. Of these
exchange terms, it has historically only been possible to evaluate
Eexch
(10) exactly,102 whereas other exchange terms are evaluated

within the single-exchange approximation, in which permutations
involving more than one pair of electrons are neglected. (The
resulting formulas involve the square of the overlap matrix, S2,
and for this reason the single-exchange approximation is often
called the “S2 approximation”.5,6,82) Recently, an analytic form
for Eexch

(20) has been reported,103,104 but its implementation is not
yet widely available. The single-exchange approximation is
expected to be accurate at or beyond the van der Waals contact
distance,6 although problems for anionic systems necessitate
some rescaling of the higher-order exchange interactions.105,106

Neglecting intramolecular electron correlation but treating V̂
to second order (the so-called SAPT0 approximation9), we
have

= + + + +

+

−

−

E E E E E E

E

int
SAPT0

elst
(1)

exch
(1)

ind
(2)

exch ind
(2)

disp
(2)

exch disp
(2)

(10)

(We have dropped the index κ, because κ = 0.) Explicit
expressions for these terms can be found in ref 5 (MO basis) or
ref 71 (AO basis). The dispersion and exchange−dispersion
terms are MP2-like in both cost and accuracy.
Finally, it is common to incorporate polarization effects

beyond second order by adding a correction term

δ = − + + + −E E E E E E( )int
HF

int
HF

elst
(1)

exch
(1)

ind,resp
(2)

exch ind,resp
(2)

(11)

to the SAPT interaction energy.9 Here, Eint
HF is the counterpoise-

corrected HF binding energy for the dimer.
C. Combining XPol with SAPT. The partition of the dimer

Hamiltonian in eq 8 can be generalized to an arbitrary number
of monomers,53

∑ ∑ ∑ξ ζ̂ = ̂ + ̂ + ̂
>

H F W V( )
A

A
A

A

A B A
AB AB

(12)

with zeroth-order wave functions taken to be direct products of
XPol monomer wave functions. Modification of the SAPT
perturbation is required to avoid double-counting, because
some part of electrostatics and polarization is already included
at the XPol level, but this modification is straightforward.51,53

The resulting XSAPT energy expression, including all terms
through second order in the intermolecular interactions, is50,53

∑ ∑

∑ ∑

ε= − +

+ + +

+ +

= ∈

†

>

E E

E E E

E E

c f c[ (2 ) ]

(

)

A

n

a A
a
A

a
A

a
A

A B A

XSAPT
1

nuc

RSPT
[0;1 ]

exch
[0;1 ]

RSPT
[0;2 ]

exch
[0;2 ]

3B

AB AB AB

AB (13)
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The superscript [0; nAB] indicates a term that is zeroth-order in
the monomer fluctuation potentials but nth order in the
intermolecular perturbation, V̂AB.

50,53 The connection to
traditional two-body SAPT is that

= +E E EA BRSPT
[0;1 ]

elst,
(1)

elst,
(1)AB

(14a)

= +E E EA Bexch
[0;1 ]

exch,
(1)

exch,
(1)AB

(14b)

and

= + +E E E EA B ABRSPT
[0;2 ]

ind,
(2)

ind,
(2)

disp,
(2)AB

(15a)

= + +− − −E E E EA B ABexch
[0;2 ]

exch ind,
(2)

exch ind,
(2)

exch disp,
(2)AB

(15b)

Two perturbations can couple three monomers, and second-
order XSAPT thus contains three-body induction couplings
that have no analogues in dimer SAPT.53 This is the meaning of
the E3B term in eq 13:

∑ ∑ ∑= ′ ′ +
> >

E E E( )
A C B A D C

3B
,

RSPT
[0;1 ,1 ]

exch
[0;1 ,1 ]AB CD AB CD

(16)

The primed summations indicate that these terms vanish unless
no more than three of the indices A, B, C, and D are distinct.
Except for some exploratory calculations in ref 53, these terms
have been neglected in our previous work on XSAPT, and we
will neglect them here unless stated otherwise. Results for water
clusters and halide−water clusters, however, will demonstrate
that these terms are important in large clusters of polar
monomers. To compute the E3B term, one must calculate all n
− 2 fragments for each unique dimer pair, which increases the
computational cost from (n2) to (n3). Alternatively, (n2)
scaling can be recovered (with a large prefactor) by storing
induction amplitudes on disk.53

One of the attractive features of traditional SAPT is its
energy decomposition analysis, and XSAPT extends this to
many-body systems in a largely analogous way. We include a
δEint

HF correction of the form given in eq 11, whose goal is to
incorporate higher-order induction effects, and for many-body
systems we assume that this correction is pairwise additive:

∑ ∑δ δ=
>

E E
A B A

ABint
HF HF

(17)

This assumption appears to be robust.46 The SAPT interaction
energy can be decomposed as in eq 10, and the resulting
XSAPT energy decomposition is46

∑ ∑
δ= + +

+ −
>

E E E E

E E( )
A B A

AB AB

int
XSAPT

int
SAPT

int
HF

int
MB

XSAPT SAPT

(18)

where the total SAPT interaction energy for a collection of
monomers is

∑ ∑=
>

E E
A B A

ABint
SAPT SAPT

(19)

The XSAPT interaction energy can be rewritten as

∑ ∑

∑ ∑

δ

= + + +

+ + +

+ − +

−

−
>

>

E E E E E

E E E

E E E

[

( ) ]

A B A
AB

A B A
AB AB

int
XSAPT

elst
(1)

exch
(1)

disp
(2)

exch disp
(2)

ind
(2)

exch ind
(2) HF

XSAPT SAPT
int
MB

(20)

Here, the terms Eelst
(1), Eexch

(1) , etc., represent the sum of these
energy components over all pairs of dimers, and the many-body
contribution to the interaction energy is46

∑ ∑= −
>

E E E
A B A

ABint
MB

int
XSAPT XSAPT

(21)

The term in square brackets in eq 20 is regarded as the total
induction energy, which includes a many-body contribution.
In dimer SAPT calculations, an infinite-order polarization

correction (in the presence of a frozen partner density) can be
included by solving coupled-perturbed equations.5 However,
XSAPT treats polarization self-consistently and the infinite-
order response correction for induction should be included
exactly, via the XPol procedure, if density embedding is used.107

We prefer CHELPG embedding for reasons of cost, however.
The pairwise difference between XSAPT and SAPT in eq 20
partly includes the infinite-order response correction for
induction. An infinite-order polarization correction is still
included in δEint

HF by solving coupled-perturbed equations,108,109

which is the meaning of the “resp” (response) subscripts in eq
11.
In the language of traditional dimer SAPT, our XPol

monomer wave functions are computed in a monomer-
centered basis set, which largely excludes the description of
charge transfer between monomers and is typically less accurate
than if the zeroth-order wave functions are computed using the
dimer-centered basis set.110 The correct choice of a dimer basis
is ambiguous in a many-body system, however, so we choose
instead to converge the XPol wave functions in the monomer-
centered basis and then compute the pairwise SAPT
corrections in a “projected”51 (pseudocanonicalized111,112

monomer-centered) basis set.
D. XSAPT(KS)+D. Especially for strongly hydrogen-bonded

systems, inclusion of intramolecular electron correlation effects
may be important53,113 but involves methods whose cost scales
as (N7) within the wave function-based SAPT formalism.9

SAPT(KS) represents a low-cost way to include such effects,
though asymptotic correction of the XC potential is
required.61−63 Various “splicing” schemes have been used in
this context114−116 but result in “stray” XC potentials117 that do
not correspond to any well-defined energy functional, νxc

AC ≠
δExc/δρ. This is potentially problematic in the context of
geometry optimizations,117 and fatal to any attempt to derive
analytic energy gradients.
We sidestep this problem using long-range corrected (LRC)

density functionals,118−121 which correctly reproduce the
asymptotic ∼r−1 behavior of vxc. To achieve the proper limiting
value, Δ∞ = 0 in eq 2, we apply a monomer-specific “tuning”
procedure, as suggested by Baer and co-workers,122,123 in which
the range-separation parameter, ω, is adjusted to satisfy the
condition

ε ω ω= −( ) IP( )HOMO (22)

In the context of SAPT(KS), this significantly improves the
quality of the various interaction energy components as
compared to benchmark results54 and represents a promising
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alternative to other AC schemes. Dispersion energies are still
not of benchmark quality, however, owing to problems with the
uncoupled KS description of dispersion.54

To correct the latter problem, we replace the second-order
dispersion and exchange−dispersion terms in SAPT with
empirical atom−atom dispersion potentials,46,52 following
along the lines of the “SAPT(KS)+D” method introduced by
Heßelmann.124 This has the added benefit of reducing the
scaling from (N5) to (N3).124 At first glance, this approach
seems similar in spirit to dispersion-corrected DFT,15 but the
separation of dispersion from other parts of the energy is much
cleaner in SAPT, whereas in DFT+D there is a potential
double-counting problem for midrange intermolecular dis-
tances, where the short-range DFT correlation may not have
decayed completely to zero as the (damped) long-range
dispersion potentials are turning on. Indeed, Grimme125

suggests that dispersion in DFT+D is a model-dependent
quantity with no real physical meaning.
Our original version52 of XSAPT(KS)+D used Heßelmann’s

SAPT(KS)+D dispersion potential,124 which was fit to
reproduce S22 benchmark binding energies, and that “first
generation” (+D1) approach affords an impressive MAE of only
0.3 kcal/mol for the S66 data set.52 However, XSAPT(KS)+D1
benefits from favorable error cancellation and does not
accurately reproduce individual energy components.46 In
subsequent work, we avoided fitting directly to binding energies
and instead pursued a second-generation (+D2) method using
alternative dispersion potentials developed by Podeszwa et
al.,126 which were fit to reproduce distance-dependent
dispersion potentials, Edisp = Edisp

(2) + Eexch−disp
(2) , obtained from

SAPT(DFT) calculations. XSAPT(KS)+D2 accurately repro-
duces not only total binding energies but also individual energy
components.46

Tests on the S22 and S66 data sets reveal that the primary
source of errors in XSAPT(KS)+D2 calculations comes from π-
stacked complexes, where in some cases the dispersion energy
is overestimated by ∼2 kcal/mol as compared to SAPT2+(3)/
aTZ results.46 Such systems are underrepresented in the
training set used to parametrize the D2 potentials,126 and here
we report for the first time a third-generation dispersion
potential for XSAPT. (It should be stressed that our “D3”
dispersion potential is unrelated to Grimme’s “D3” correction14

for DFT.)
The new D3 dispersion potential uses the same functional

form as the D2 potential,126
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is the Tang−Toennies damping function127 and i and j
represent nuclei located on different monomers. We take Cij,6 =
(Ci,6Cj,6)

1/2, Cij,8 = (Ci,8Cj,8)
1/2, and βij = (βiβj)

1/2, where Ci,6,
Ci,8, and βi are parameters fit to reproduce SAPT2+(3)/aTZ
dispersion energies,
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For hydrogen, these parameters depend upon the identity of
the nearest-neighbor atom. This is the similar procedure used
in ref 126 to obtain the D2 potential, but we have expanded the
training set to include additional π-stacked systems as well as
the ionic systems F−(H2O) and Cl

−(H2O). (The list of systems
can be found in the Supporting Information.) For the latter two
systems, the halide−water distance is short and dispersion is
especially important. In these two cases, we use benchmarks
from the highest level SAPT theory, SAPT2 + 3(CCD)/
aTZ:128,129
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For each dimer, we used five different geometries correspond-
ing to intermolecular separations ranging from 0.9 to 2.0 times
the equilibrium separation, for a total of 370 training
geometries. Values obtained for the parameters Ci,6, Ci,8, and
βi are provided in the Supporting Information.
The LRC-ωPBE functional130 with monomer-specific, tuned

values of ω is used in all of our XSAPT+D3 calculations, as we
have previously observed that errors in the exchange energy
components increase as short-range HF exchange is added to
LRC functionals.46 Tuned values of ω are listed in the
Supporting Information and differ, in some cases, from values
reported previously.46 In the case of thymine, for example, the
optimally-tuned value changes from ω = 0.625 a0

−1 to 0.275
a0

−1. The large discrepancy comes from the fact that the
condition in eq 22 cannot be satisfied for some monomers and
basis sets. In such cases, we selected the closest point of
approach between the εHOMO(ω) and −IP(ω) curves. The
binding energy errors for the π-stacked uracil dimer and the
adenine−thymine dimer were 3 and 4 kcal/mol, respectively, at
the XSAPT(KS)+D2 level,46 and these were the outliers among
the S22 dimers. Simply using these newly-tuned values of ω
determined in this study, the XSAPT(KS)+D2 errors for these
two systems are reduced to 2.0 and 2.5 kcal/mol, respectively.
We therefore recommend these new ω values.

E. sd-XSAPT(KS). Introduction of empirical dispersion into
XSAPT calculations reduces the scaling from fifth-order to
third-order with respect to dimer size and is further motivated
by the fact that second-order, uncoupled dispersion energies are
not nearly of benchmark quality. An alternative approach,
which scales as (N4), is to omit the fifth-order exchange−
dispersion term in SAPT0 and then scale the fourth-order
dispersion term by an empirical factor. This method was
introduced recently by Ochsenfeld and co-workers,131 who
called it sd-SAPT0. We have implemented the corresponding
sd-XSAPT(KS) method, and following ref 131, we neglect the
δEint

HF correction in this approach.
Using the S22B binding energies34 to fit the dispersion

scaling parameter, the best-performing combination was found
to be the LRC-ωPBEh functional121 (20% short-range HF
exchange), 6-31G(d,2p) basis set, and a scaling parameter cdisp
= 0.657, in which case the root-mean-square deviation (RMSD)
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for S22 binding energies is 0.366 kcal/mol. That cdisp < 1 can be
understood in terms of the neglect of the repulsive exchange−
dispersion interaction and the fact that second-order
perturbation theory tends to overestimate dispersion in the
first place. (The double-ζ basis set also helps in this regard, as
dispersion interactions converge slowly to the basis-set limit,
and scaling back the basis set is a well-established way to reduce
errors in second-order dispersion energies,9 albeit by error
cancellation.) Because the sd-XSAPT(KS) method is based on
fitting to obtain accurate total binding energies, it is not
recommended as a means to do energy decomposition analysis.

III. PERFORMANCE BENCHMARKS
In this section, we document timing data, the validity of the
new D3 dispersion potential, and basis-set convergence.
A. Timings. So as not to obfuscate the fact that the primary

purpose of XSAPT is ef f icient calculation of intermolecular
interactions, we lead off with data illustrating the efficiency of
the method. Figure 3 plots timings for XSAPT(KS)+D

calculations on π-stacked (adenine)n. Serial timings represent
the total CPU time required, which scales as (n2), whereas
parallel timings represent the wall time required when the
calculation is run in “embarrassingly parallel” mode [n(n − 1)/
2 processors for n monomers, so that all pairwise SAPT
calculations can be performed simultaneously]. In the latter
mode, wall time scales as (n) with a small prefactor. Even in
serial, XSAPT(KS) is just as efficient as supersystem DFT for n
= 2 monomers and is substantially more efficient for larger
systems. In parallel, the wall time required for an XSAPT(KS)
calculation on (adenine)10 is only about twice as large as that
required for (adenine)2.
B. Validation of the D3 Dispersion Potential. To test

the performance of the new D3 dispersion potential, we have
used the D2 and D3 potentials to compute the stacking
interaction between DNA base pairs in 10 different nucleobase
tetramers,132 as compared to the dispersion interaction (=Edisp

(2)

+ Eexch−disp
(2) ) obtained from DFT-SAPT calculations. DFT-

SAPT dispersion energies from ref 132 were multiplied by a
factor of 1.1 as an approximate correction for basis-set
incompleteness at the aTZ level, as suggested by Heßel-
mann.124 The results, shown in Figure 4, indicate good
agreement between Edisp(D3) and Edisp(DFT-SAPT), and the
D3 dispersion potential is much closer to the benchmark as
compared to D2 results.

We note in passing that our D3 dispersion potential could be
used to incorporate intramolecular correlation into the
dispersion interaction at no additional cost. Specifically, the
D3 dispersion potential could be combined with MP2
according to

= − − ++
−E E E E E (D3)int

MP2 D3
int
MP2

disp
(2)

exch disp
(2)

disp (27)

in which we use MP2 to incorporate intramolecular correlation
and then subtract out the second-order dispersion and replace
it with the D3 empirical potential. This method is similar in
spirit to the MP2(CCD) method.106,148 We plan to investigate
this “MP2+D3” approach in the future.

C. Basis Set Convergence. The Eelst
(1) and Eexch

(1) energy
components are common to both SAPT(KS) and XSAPT(KS),
and in the former case we can perform benchmark
SAPT2+(3)/aTZ calculations for dimers, which we have
done for the representative systems F−(H2O), (H2O)2, and
both the T-shaped and parallel-displaced isomers of (C6H6)2.
SAPT(KS) results for the same systems, using either the dimer-
centered or the “projected” (pseudocanonicalized monomer-
centered) approach, were used to select an AO basis set. [The
SAPT2+(3)/aTZ benchmarks employ the dimer-centered
basis.] Mean errors in Eelst

(1) and Eexch
(1) , with respect to the

SAPT2+(3)/aTZ benchmarks, are provided in the Supporting
Information for 21 different basis sets ranging from double-ζ to
quadruple-ζ quality. A brief summary is presented here.
Using the dimer-centered approach, we find that the errors

are quite small for both Dunning (aug-cc-pVXZ) and Ahlrichs
(def2) basis sets, provided that diffuse functions are included.
In that case, calculations of triple-ζ quality, or possibly even
double-ζ quality, appear to be converged to the basis-set limit.
Unfortunately, however, the dimer-centered construction is ill-
defined for a many-body system, which is why we turn to the
pseudocanonicalization approach.51 The data in the Supporting
Information show that diffuse functions are also essential in this
approach, although in this case there remains significant
discrepancy between augmented triple- and quadruple-ζ results.
These differences are smaller when Ahlrichs basis sets are
employed, in which case it matters little whether the diffuse
functions are drawn from the Ahlrichs, Pople, or Dunning basis
sets.

Figure 3. Timings for XSAPT(KS) and supersystem DFT calculations
for π-stacked (adenine)n systems. All calculations use the LRC-ωPBE
functional and the hpTZVPP basis set.

Figure 4. Comparison of Edisp(D2), Edisp(D3), and Edisp(DFT-SAPT)
for the stacking interaction in nucleobase tetramers. The DFT-SAPT
benchmarks come from ref 132, corrected by a factor of 1.1, as
suggested in ref 124.
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In consideration of both accuracy and computational
efficiency, the Ahlrichs def2-TZVPP basis set will be the
primary one used in this work, augmented with diffuse
functions either from Pople’s 6-311++G basis or from
Dunning’s aug-cc-pVTZ (aTZ) basis. We refer to these two
choices as pTZVPP and aTZVPP, respectively. In some cases,
we will omit the diffuse functions on hydrogen, to obtain
“heavy-augmented” basis sets haTZVPP and hpTZVPP. The 6-
31+G(3d,3pd) basis set will be used to compute the δEint

HF

corrections and the aTZ basis set to compute the δEMP2
corrections.

IV. ILLUSTRATIVE APPLICATIONS
The remainder of this paper is dedicated to illustrating the
power and utility of XSAPT-based methods. Details regarding
the benchmark calculations can be found in the Supporting
Information.
A. Biologically-Relevant Dimers. Because the S22 data

set22 was used to fit both the D3 dispersion potential and the
scaling factor for sd-XSAPT(KS), the S66 data set36 will be
used to evaluate the accuracy of these methods. S66 consists of
CCSD(T)/CBS binding energies for 66 weakly bound dimers
related to biomolecular structures, and we use the recently
revised S66 binding energies.133 Augmented triple-ζ basis sets
are essential to obtain accurate results for individual energy
components, and error statistics for XSAPT(KS)+D3 in a
variety of triple-ζ basis sets are shown in Table 1. The best-
performing basis sets are pTZVPP and hpTZVPP.

Figure 5 shows S66 error statistics for a variety of methods
that exhibit reasonably small MAEs. The new XSAPT(KS)+D3
method slightly outperforms the previous two generations (D1
and D2), and in particular reduces the errors in the π-stacked
outliers. It is worth mentioning that the MP2C42−44 and
SAPT2+(3) methods,9 which exhibit excellent performance for
S66, are only formulated for dimers, and that the Coulomb-
attenuated MP2 method134−136 (att-MP2) contains a param-
eter that was optimized using this very data set. It also bears
mention that all of the methods that outperform XSAPT(KS)
+D3 exhibit at least fifth-order scaling with respect to the size of
the supersystem, whereas XSAPT(KS)+D scales as (N3) with
respect to dimer size and (n2) with respect to the number of
monomers. XSAPT(KS)+D also affords an energy decom-
position analysis that is discussed in section IV H.
B. Potential Energy Curves. Comparison of the

“sandwich” and “T-shaped” isomers of (C6H6)2 represents a
stringent test for theoretical models,137 because the two are
stabilized by very different types of interactions (dispersion
competes with quadrupolar electrostatics). In Figure 6, the

XSAPT(KS)+D3 method and the ωB97X-V density func-
tional19 reproduce CCSD(T)/CBS potential curves for both
isomers nearly quantitatively. In contrast, the att-MP2 method
shifts the minimum to shorter distances for both isomers. The
sd-XSAPT(KS) method significantly shortens the van der
Waals contact distance for the π-stacked isomer, while

Table 1. Errorsa in S66 Binding Energies for
XSAPT(KS)+D3

error/kcal mol−1

basis setb MAE max

hpTZVPP 0.27 1.11
pTZVPP 0.26 1.20
haTZVPP 0.30 1.23
aTZVPP 0.34 1.50
haTZ 0.44 1.81
aTZ 0.51 2.19

aWith respect to CCSD(T)/CBS benchmarks.

Figure 5. MAEs (colored bars) and maximum errors (in black)
computed for S66 binding energies with respect to CCSD(T)/CBS
benchmarks. These methods are color-coded according to how their
cost scales with system size. The jun-cc-pVDZ basis set is used for
XSAPT(KS)+D1 calculations and the hpTZVPP basis set for
XSAPT(KS)+D2 and +D3 calculations. The 6-31G(d,2p) basis set is
used for sd-XSAPT(KS) and aug-cc-pVTZ basis sets for SAPT2+(3)
and SAPT2+(3)(CCD). The att-MP2 data were obtained from ref
134, and data for the other supermolecular methods were obtained
from ref 36.

Figure 6. Potential energy curves for the (a) sandwich and (b) T-
shaped isomers of (C6H6)2. The distance coordinate is the center-to-
center distance between the benzene rings. Benchmark CCSD(T)/
CBS results are taken from ref 137. The aug-cc-pVTZ basis set is used
for the att-MP2 and ωB97X-V calculations. The hpTZVPP basis set is
used for the XSAPT(KS)+D3 calculations.
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significantly underestimating the binding energy for the T-
shaped isomer.
In Figure 7, we plot the potential energy curves for F−(H2O)

and Cl−(H2O), which are known to be challenging cases for
SAPT.52,105 CCSD(T)/CBS correlation energies were eval-
uated using a two-point (aTZ, aQZ) extrapolation138 and then
added to the HF/aQZ energy to obtain the CCSD(T)/CBS
results. The XSAPT(KS)+D3, att-MP2, and ωB97X-V methods
reproduce the CCSD(T)/CBS potential curves for F−(H2O)
nearly quantitatively, whereas sd-XSAPT(KS) significantly
overestimates the binding energy. These methods perform
even better for Cl−(H2O), with only a slight underestimation of
the binding energy on the part of sd-SAPT(KS).
The geometry of H2O is held fixed in the calculation shown

in Figure 7. Upon relaxation of the geometry, the F−(H2O)
binding energy increases from 25 to 32 kcal/mol at the
minimum-energy structure, and the XSAPT(KS)+D3 method
somewhat overestimates the binding energy. The relaxed
geometry is somewhat problematic for fragment-based
methods, as the proton affinity of F− leads to an unusually
long O−H bond length of 1.06 Å versus 0.96 Å when the H2O
geometry is optimized separately. [For Cl−(H2O), the O−H
bond length increases only to 0.98 Å upon relaxation.] We note
that other fragment based methods, such as the effective
fragment potential (EFP) method,139 must also use rigid, EFP-
optimized geometries; otherwise, large errors in noncovalent
binding energies are obtained.46

C. Many-Body System: (H2O)6. We next consider a cluster
of polar monomers that exhibits significant many-body
polarization effects.76,77 Eight low-lying structures of (H2O)6
are considered,77 and their CCSD(T)/CBS binding energies
are evaluated using a two-point extrapolation138 of CCSD(T)-
F12 correlation energies (cc-pVDZ-F12 and cc-pVTZ-F12 basis
sets, using the corresponding near-complete auxiliary basis sets
cc-pVDZ-F12-CABS and cc-pVTZ-F12-CABS).140,141 The HF
energy is evaluated using the cc-pVTZ-F12 basis set. For
comparison, the MP2 correlation energy in the CBS limit was
evaluated using a two-point (aTZ, aQZ) extrapolation138 and
then added to the HF/aQZ energy to obtain the MP2/CBS
result.

Figure 8 compares the binding energies for isomers of
(H2O)6 computed using various methods, but sd-XSAPT(KS)
results are not shown in Figure 8 because this method
overestimates the binding energies by an average of 5.46 kcal/
mol. This is consistent with the fact that sd-XSAPT(KS)
overestimates the binding energy of water dimer already by
0.56 kcal/mol; hence, sd-XSAPT(KS) cannot be recommended
for water clusters. The att-MP2,134,135 ωB97X-V,19 and MP2/
CBS methods all afford accurate relative energies, as does
XSAPT(KS)+D3 except for a slight overstabilization of the
cyclic chair isomer, but the most accurate absolute binding
energies are obtained using XSAPT(KS)+D3. Total binding
energies predicted using XSAPT(KS)+D3 are more accurate
than those obtained using ωB97X-V, which is one of the best
DFT approaches for noncovalent interactions,19 although it
should be noted that relative energies are slightly better with
ωB97X-V, which does not overstabilize the cyclic chair.
One factor that influences the accuracy of XSAPT(KS)

results is the tuning of ω. Tuned values listed in the Supporting
Information were obtained using a step size Δω = 0.025 a0

−1 to
scan εHOMO(ω) and −IP(ω), and ω = 0.500 a0

−1 is thus
determined to be the optimal value for H2O. However, if the
step size is decreased to 0.005 a0

−1, then the optimal value
changes to 0.485 a0

−1. For water dimer, the binding energy
changes by only 0.07 kcal/mol between these two values, but
errors accumulate as the number of fragments increases. For
isomers of (H2O)6, the difference in binding energies between
ω = 0.485 and 0.500 a0

−1 is 0.68 kcal/mol on average but is

Figure 7. Potential energy curves for (a) F−(H2O) and (b) Cl−(H2O)
at a fixed H2O geometry. The distance coordinate is the halide−
oxygen distance and the benchmark is CCSD(T)/CBS. The aug-cc-
pVTZ basis set is used for the att-MP2 and ωB97X-V calculations. The
hpTZVPP basis set is used for the XSAPT(KS)+D3 calculations.

Figure 8. Binding energies for eight isomers of (H2O)6. The aTZ basis
set is used for the att-MP2 and ωB97X-V calculations, whereas the
hpTZVPP basis set is used for the XSAPT(KS)+D3 calculations.
(MAEs for the whole data set, with respect to the CCSD(T)/CBS
benchmarks, are also listed for each method.)
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3.13 kcal/mol for the isomers of (H2O)20 that are discussed
below. As such, we use the more finely tuned value (ω = 0.485
a0

−1) for water clusters.
D. Larger Clusters: (H2O)20. Medium-sized water clusters

have long attracted interest from the quantum chemistry
community; for example, (H2O)16,17 are considered to be
transition structures from “all-surface” to “internally solvated”
arrangements of the hydrogen-bonding network,142,143 and
(H2O)20,24 are the building blocks of ice clathrates.

144 Here, we
use ten low-energy isomers of (H2O)20, obtained using the
TIP4P force field,145 to benchmark the methods introduced
above and, by comparison to (H2O)6 results, to understand
whether errors increase with system size. MP2/CBS results for
these ten isomers were estimated as described in section IV C.
To estimate the CCSD(T)/CBS binding energies, we use

explicitly correlated CCSD(T) calculations reported recently
using the generalized energy-based fragmentation (GEBF)
method.146 We take

δ≈ + ‐
‐E ECBS

CCSD(T)
CBS
MP2

MP2 F12
CCSD(T) F12a

(28)

where the correction to the MP2/CBS result is equal to the
difference between the CCSD(T)-F12a/aDZ and MP2-F12/
aDZ binding energies that were reported in ref 146 using the
GEBF approximation. Unlike the calculations reported in ref
146, which used the GEBF approximation at both the MP2 and
CCSD(T) levels of theory, we evaluate the full MP2/CBS
energy. This changes the binding energies by an average of 1.75
kcal/mol relative to the benchmarks reported in ref 146, and we
believe that our CCSD(T)/CBS results for (H2O)20 are one of
the most accurate binding benchmarks for large water clusters
in the literature.

Results for total binding energies are shown in Figure 9, with
error statistics listed in Table 2. The correction to MP2/CBS in
eq 28 is negative for these clusters, and CCSD(T)/CBS total
binding energies are 2.7 kcal/mol larger, on average, than MP2/
CBS binding energies. Unfortunately, XSAPT(KS)+D3 results
for total binding energies are not significantly better than MP2/
CBS results in this case and can be worse, depending on the
basis set that is used.
In an attempt to understand this loss of accuracy relative to

the (H2O)6 results, we investigated the neglected three-body
induction couplings, E3B in eq 16. For isomers of (H2O)6, E3B =
0.13 kcal/mol (on average) at the XSAPT(KS)+D3/hpTZVPP
level. However, E3B = 4.95 kcal/mol (on average) for the
(H2O)20 isomers considered here, and the XSAPT(KS)+D3
total binding energies are significantly improved by the addition
of this three-body correction term.

It is evident both from the plot in Figure 9 and from the
error statistics in Table 2 that the ωB97X-V and MP2/CBS
methods afford very good relative energies, as does att-MP2.
XSAPT(KS)+D3+E3B relative energies are somewhat worse,
even if the absolute binding energies are slightly more accurate,
at least when the hpTZVPP basis set is employed. The reasons
for this are unclear, although in fitting the D3 potential we
considered a variety of intermolecular distances but only one
intermolecular orientation per monomer. Also unclear is why
isomer 6 (Figure 9) poses such a problem for XSAPT, although
this same isomer has been noted to pose problems for DFT
methods as well.146 It is the most highly coordinated of all
(H2O)20 isomers considered here, so the problem may again be
orientational dependence, although Wang et al.146 suggest that
both basis set and electron correlation effects must be
considered to obtain an accurate relative energy for this
isomer. Extension of XSAPT to larger basis sets, by means of an
AO rather than an MO implementation, is currently underway
in our group and may help in this capacity.

E. Halide−Water Clusters. Halide−water clusters are
difficult cases for popular DFT methods.19,46 Table 3 shows
binding-energy errors, with respect to CCSD(T)/CBS bench-
marks, for various methods applied to the minimum-energy
structures of X−(H2O)n=1−6, for X = F, Cl. (Benchmarks were
obtained as described for water hexamer in section IV C.)

Table 2. MAEsa for Ten Low-Energy Isomers of (H2O)20

MAE/kcal mol−1

method binding energy relative energy

MP2/CBS 2.69 0.18
att-MP2/aTZ 3.96 0.37
ωB97X-V/aTZ 0.92 0.07
XSAPT+D3b 5.42 0.97
XSAPT+D3+E3B

b 0.57 0.69
XSAPT+D3c 3.35 0.70
XSAPT+D3+E3B

c 2.12 0.34
aWith respect to CCSD(T)/CBS benchmarks. bUsing the hpTZVPP
basis set. cUsing the haTZVPP basis set.

Figure 9. Binding energies for ten low-energy isomers of (H2O)20.
The aTZ basis set is used for the att-MP2 and ωB97X-V calculations,
and the hpTZVPP basis set is used for XSAPT methods. The isomers
are numbered as in ref 146.

Table 3. MAEsa for Binding Energies of X−(H2O)n=1−6

MAE/kcal mol−1

method X = F X = Cl

MP2/CBS 1.01 0.23
att-MP2/aTZ 0.22 1.02
ωB97X-V/aTZ 0.20 0.43
XSAPT(KS)+D3b 3.32 1.72
XSAPT(KS)+D3+E3B

b 1.64 0.98
XSAPT(KS)+D3+E3B-δMP2b,c 0.70 0.59
XSAPT(KS)+D3d 3.67 1.85
XSAPT(KS)+D3+E3B

d 1.73 0.94
XSAPT(KS)+D3+E3B-δMP2c,d 0.98 0.55

aWith respect to CCSD(T)/CBS benchmarks. bUsing the hpTZVPP
basis set for XSAPT. cUsing the aug-cc-pVTZ basis for δMP2. dUsing
the haTZVPP basis set for XSAPT.
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The MP2/CBS method cannot be considered a benchmark,
sub-kcal/mol level of theory for F−(H2O)n, with a MAE of 1.0
kcal/mol and a maximum error of 1.6 kcal/mol. Errors are
smaller for Cl−(H2O)n (MAE = 0.2 kcal/mol, maximum = 0.3
kcal/mol). Interestingly, the att-MP2 method performs in the
opposite way: highly accurate results for F−(H2O)n, but a MAE
of 1.0 kcal/mol for Cl−(H2O)n. The ωB97X-V functional
performs well for both, as shown previously.19

For XSAPT calculations of X−(H2O)n, we find that the three-
body induction couplings are important, reducing the errors by
approximately a factor of 2, although the MAE for F−(H2O)n
remains >1 kcal/mol. Parker et al.148 have proposed a “δMP2”
correction,

δ = −E E EMP2 int
MP2

int
SAPT2

(29)

to account for missing terms such as high-order coupling
between induction and dispersion. This correction, which we
find is especially important in ionic systems,106 is equal to the
difference between the counterpoise-corrected MP2 binding
energy for the dimer and the SAPT2 binding energy. In XSAPT
calculations, we apply the δEMP2 correction in a pairwise way,
for dimers that include X−. This further reduces the errors,
especially for X = F. [The SAPT2 part of δEMP2 also makes this
correction (N6) with respect to dimer size, although this can
be reduced to (N5) using density-fitting techniques.113] The
hpTZVPP basis set works better than the haTZVPP basis set,
which may be an overpolarization problem147 in the latter case,
due to the larger number of diffuse functions in haTZVPP. In
any case, MAEs of <1 kcal/mol in total binding energies are
achievable for the difficult case of X−(H2O)n clusters, if both
E3B and δEMP2 are included.
We next examine relative energies for ten isomers of

F−(H2O)10 that were considered in ref 46. The following
scheme is used to obtain CCSD(T)/CBS benchmarks:

δ≈ + ‐
‐E ECBS

CCSD(T)
CBS
MP2

MP2 F12
CCSD(T) F12

(30)

Here, the correction to the MP2/CBS result is equal to the
difference between CCSD(T)-F12/aDZ and MP2-F12/aDZ
energies. Binding energies for a variety of XSAPT and DFT
approaches are shown in Figure 10, and error statistics are listed
in Table 4. Among supersystem methods, ωB97X-V and att-
MP2 perform the best.
In the case of XSAPT calculations, we find that the E3B

contribution is 5−6 kcal/mol, much larger than its contribution
in neutral systems, which makes sense given that E3B is an
induction correction. The δMP2 term contributes 1.6 kcal/mol
on average, but in contrast to its effect in the smaller halide−
water clusters, here the δMP2 term has a deleterious effect on
the accuracy of total binding energies. This discrepancy may
arise from the manner in which we obtain the CCSD(T)/CBS
benchmarks. Specifically, we used the CCSD(T)-F12 results to
extrapolate directly to CBS limit in small halide−water clusters
but the additive scheme in eq 30 is used for F−(H2O)10.
Although this additive scheme seems to work well in neutral
systems, it is not well tested for anionic systems and may not be
appropriate in such cases. We note that the deviation between
XSAPT results and these putative CCSD(T)/CBS benchmarks
is typically comparable to, or smaller than, the ∼2 kcal/mol
magnitude of the δMP2‑F12

CCSD(T)‑F12 correction in eq 30 although
XSAPT(KS)+D3+E3B/hpTZVPP offers the best binding
energies among all methods considered in Table 4.

Even if the deviation persists and is indeed a problem with
XSAPT, we note that the ωB97X-D, LC-VV10, M06-2X, M06-
2X-D3(zero), B2PLYP, and B2PLYP-D3(zero) supersystem
methods all afford errors that are unacceptably large, and
cannot be recommended for binding energies of halide−water
clusters. (Although accurate relative energies are sufficient for
structure determination, accurate total binding energies are
needed to compute, e.g., the binding affinity of a drug molecule
to a protein.) XSAPT works better with the hpTZVPP basis set
than with haTZVPP, which may again be an overpolarization
effect. Such effects are well-known in QM/MM calculations,
where a simple solution is a Gaussian “blurring” of point
charges nearby to the QM region.147 In future work, we plan to
test a Gaussian-blurred version of the XPol procedure.

F. CH4 in a Dodecahedral (H2O)20 Cage. The isolated
CH4@(H2O)20 gas-phase cluster has been used as a model
system to study the interaction between methane and clathrate
hydrates.150−152 A recent quantum Monte Carlo (QMC)
benchmark affords a binding energy of −5.3 ± 0.5 kcal/mol,149

for CH4@(H2O)20 → CH4 + (H2O)20, whereas various other

Figure 10. Binding energies for ten isomers of F−(H2O)10. The att-
MP2 and ωB97X-V calculations use the aTZ basis set, and XSAPT
calculations use the hpTZVPP basis set, except that the aTZ basis set
was used to evaluate the δMP2 correction.

Table 4. MAEsa in Binding Energies and Relative Energies
for Ten Isomers of F−(H2O)10

MAE/kcal mol−1

method binding energy relative energy

MP2/CBS 2.02 0.16
att-MP2/aTZ 0.96 0.17
ωB97X-V/aTZ 0.99 0.13
ωB97X-D/aTZ 4.81 0.55
LC-VV10/aTZ 7.02 0.27
M06-2X/aTZ 10.18 0.45
M06-2X-D3(zero)b/aTZ 11.53 0.47
B2PLYP/aTZ 4.32 0.32
B2PLYP-D3(zero)b/aTZ 6.90 0.17
XSAPT(KS)+D3+E3B

c 0.38 0.41
XSAPT(KS)+D3+E3B-δMP2c,d 1.28 0.41
XSAPT(KS)+D3+E3B

e 0.72 0.33
XSAPT(KS)+D3+E3B-δMP2d,e 2.31 0.32

aWith respect to CCSD(T)/CBS benchmarks. bUsing the “zero-
damping” function of ref 40. cUsing the hpTZVPP basis set for
XSAPT. dUsing the aTZ basis set for δMP2. eUsing the haTZVPP
basis set for XSAPT.
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electronic structure methods predict binding energies ranging
from −4 to −7 kcal/mol (Table 5). DFT methods generally
overestimate the binding energy by about 1 kcal/mol whereas
MP2 and MP2C afford accurate binding energies. It is therefore
curious that the double-hybrid B2PLYP functional requires an
empirical dispersion correction to get anywhere close to the
benchmark binding energy. The nonlocal LC-VV10 functional
also severely underestimates the binding energy despite its very
good performance for S66. The att-MP2, DFT-SAPT, and
XSAPT(KS)+D3 methods each underestimate the binding
energy somewhat. It should be noted that the DFT-SAPT
calculation requires the use of (H2O)20 as one monomer unit,
whereas in XSAPT the monomers are CH4 and H2O.
G. Anti-Cancer Drug Intercalated into DNA. Predicting

accurate noncovalent interaction between biomolecules and
drug candidates (i.e., protein−ligand interactions) is a crucial
component in drug discovery and design, where docking153,154

(with force fields or empirical scoring functions) and ab initio
screening155,156 (with low-level quantum-chemical methods)
are theoretical mainstays. Here, we consider intercalation of the
anticancer agent ellipticine157 into DNA, which involves
insertion between two Watson−Crick CG base pairs, linked
by their respective phosphate sugar puckers as depicted in
Figure 11. The structure depicted in the figure consists of 157
atoms, and a benchmark binding energy is available from QMC
calculations.158

The sd-XSAPT(KS) method overestimates the binding
energy by about 10 kcal/mol with respect to this benchmark.
The sd-XSAPT(KS) method ignores the exchange−dispersion
component and scales the dispersion component by a factor
optimized against CCSD(T)/CBS benchmarks for small
dimers; this method may therefore overestimate binding
energies in systems with very large monomers. Dispersion-
corrected DFT is also known to overestimate binding energies
in such systems159 and can be improved in such cases by a
three-body interatomic dispersion energy (Edisp

(3) ) based on the
Axilrod−Teller−Muto three-body dispersion formula.159 For
ellipticine intercalated into DNA, we obtain Edisp

(3) = 8.90 kcal/
mol, and the corrected sd-XSAPT(KS)+Edisp

(3) binding energy is
−34.4 kcal/mol, which lies within the statistical error bars of
the QMC benchmark. The PBE+MBD* method,30 where
“MBD*” is a many-body dispersion correction, yields a binding
energy of −35.4 kcal/mol,158 which is also within the QMC
error bars. PBE+MBD* and sd-XSAPT(KS)+Edisp

(3) are the
methods that come closest to the QMC result so far.

H. Energy Decomposition. Table 6 shows a statistical
summary of the energy components for the dimers in the S22
and S66 data sets, as computed by XSAPT methods and also by
EFP.139 The benchmark is SAPT2+(3)/aTZ, results of which
were reported for S22 in ref 54 and are reported here for S66,
for the first time.
For S22, MAEs for the individual energy components

calculated using XSAPT(KS)+D1 are large. As suggested above,
this method shows good results for total binding energies but
only due to favorable error cancellation. In contrast, the
XSAPT(KS)+D2 and+D3 methods afford very good results for
individual energy components.
In contrast to the X−(H2O)n systems, for which the

hpTZVPP basis set works slightly better than haTZVPP
(possibly owing to overpolarization), here the haTZVPP basis
set affords slightly better results for induction energies. We note
that charge-transfer interactions show up in the induction
energy within the SAPT formalism, but only if the basis set is
diffuse enough so that basis functions centered on monomer A
extend significantly over monomer B. This may be why the
more diffuse haTZVPP performs better here for induction
energies. In neutral systems, the overpolarization caused by the
diffuse basis functions is not large, and it is better to use a large
basis set to capture charge transfer, whereas overpolarization is
more significant in anionic systems, and the more diffuse basis
leads to larger errors in binding energies.106

For the S66 data set, XSAPT(KS)+D3 affords errors of <5%
for the electrostatic, exchange, and dispersion components, and
<10% for the induction component. In short, XSAPT(KS)+D3
is reliable for energy decomposition analysis. EFP, another
fragment-based method, affords errors of 1−2 kcal/mol in each
of the energy components.
For the eight (H2O)6 isomers discussed in section IV C,

energy components have been quantified by Chen and Li77 at
the MP2/a5Z-h level, using a localized molecular orbital energy
decomposition analysis. Many-body effects in (H2O)6 are
dominated by polarization interactions, whereas the other
energy components are strictly or nearly pairwise additive.77

Figure 12 compares the many-body polarization and total
many-body energies for these (H2O)6 isomers, as reported by
Chen and Li, to XSAPT(KS)+D3 results. The latter method
inherently assumes that the many-body part of the interaction
arises exclusively from polarization. The many-body polar-

Table 5. Binding Energy of CH4 to (H2O)20

method binding energy/kcal mol−1

QMCa −5.3 ± 0.5
MP2/CBS −5.04
MP2C-F12/aTZa −4.60
att-MP2/aTZ −4.01
ωB97X-V/aTZ −6.29
ωB97X-D/aTZ −6.39
LC-VV10/aTZ −1.17
M06-2X/aTZ −6.11
M06-2X-D3(zero)/aTZ −7.32
B2PLYP/aTZ −1.09
B2PLYP-D3(zero)/aTZ −6.04
DFT-SAPT/aTZa −3.88
XSAPT(KS)+D3b −3.48

aFrom ref 149. bUsing the hpTZVPP basis set.

Figure 11. Ellipticine molecule intercalated into a GC:GC segment of
DNA. Binding energies computed with various methods are shown.
XSAPT calculations used three fragments: neutral ellipticine and two
single-stranded GC complexes, each with a −1 charge.
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ization energies using XSAPT(KS)+D3 are consistently
overestimated as compared to the many-body polarization
energies evaluated at the MP2/a5Z-h level but are much closer
to the total many-body interaction energies computed at the
MP2/a5Z-h level.

V. SUMMARY
Two new XSAPT-based methods based on a modified
dispersion interaction, XSAPT(KS)+D3 and sd-XSAPT(KS),
are reported in this article. It has been demonstrated that
XSAPT(KS)+D3 is very successful in predicting binding
energies for a wide range of challenging systems ranging from
benzene dimer to large water− and halide−water clusters. The
sd-XSAPT(KS) method performs well for large, dispersion-
bound systems, such as a ligand−DNA intercalation complex
considered here and (based on preliminary calculations) the L7
database160 of large organic dimers. However, this method
performs less well for water clusters, where the double-ζ basis
set that is used in fitting the dispersion scaling parameter
cannot adequately describe electrostatic and induction
interactions.
Based on this survey of applications, it appears that the
(n)when run in “embarrassingly parallel” modeXSAPT

family of methods, and especially XSAPT(KS)+D3, should
routinely be used to explore noncovalent interactions in large
assemblies of molecules. The many-body XSAPT energy
decomposition can be used to understand the meaning of
such interactions.

There is still room for progress with XSAPT, including the
formulation and implementation of analytic energy gradients
for geometry optimizations and simulations, and the combina-
tion of XSAPT and TDDFT response theory for dispersion
energy along the lines of SAPT(DFT). Extension of XSAPT to
include intramolecular correlation based on either a Møller−
Plesset5,56 or coupled-cluster formalism57−59 is possible, as are
improvements to the empirical dispersion potential and the
charge embedding scheme. Several of these lines of develop-
ment are currently underway in our group.
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Table 6. MAEs (kcal/mol) and Percent Errors (in Parentheses) for Individual Energy Components of the S22 and S66 Data
Sets

energy componentsa

method electrostatic exchange induction dispersion binding energyb

S22
XSAPT(KS)+D1c 0.55 (11.21) 3.00 (22.90) 1.96 (60.98) 1.55 (20.72) 0.52 (9.34)
XSAPT(KS)+D2d 0.19 (2.80) 0.45 (4.10) 0.14 (9.46) 0.39 (5.70) 0.74 (9.92)
XSAPT(KS)+D3e 0.20 (3.04) 0.44 (4.04) 0.22 (10.80) 0.12 (3.19) 0.45 (7.47)
EFP 1.77 (32.66) 2.07 (14.87) 1.81 (51.53) 0.95 (14.20) 1.79 (27.19)

S66
XSAPT(KS)+D3e 0.20 (3.92) 0.31 (4.42) 0.18 (9.60) 0.23 (4.50) 0.27 (7.14)

aErrors with respect to SAPT2+(3)/aTZ energy components. bError with respect to CCSD(T)/CBS binding energy. cUsing LRC-ωPBEh/jun-cc-
pVDZ with 60% short-range HF exchange. dUsing LRC-ωPBE/haTZVPP. eUsing LRC-ωPBE/hpTZVPP.

Figure 12. Many-body interactions for isomers of (H2O)6. MP2/a5Z-
h results are taken from ref 77, and the hpTZVPP basis is used for
XSAPT(KS)+D3 calculations.
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Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2014, 10, 1359−1360.
(37) Goerigk, L.; Kruse, H.; Grimme, S. Benchmarking density
functional methods against the S66 and S66 × 8 datasets for non-
covalent interactions. ChemPhysChem 2011, 12, 3421−3433.
(38) Vydrov, O. A.; Van Voorhis, T. Benchmark assessment of the
accuracy of several van der Waals density functionals. J. Chem. Theory
Comput. 2012, 8, 1929−1934.
(39) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-range
corrected hybrid density functionals with improved dispersion
corrections. J. Chem. Theory Comput. 2013, 9, 263−272.
(40) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping
function in dispersion corrected density functional theory. J. Comput.
Chem. 2011, 32, 1456−1465.
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