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ABSTRACT: We report the implementation and evaluation of a perturbative, density-
based correction scheme for vertical excitation energies calculated in the framework of a
polarizable continuum model (PCM). Because the proposed first-order correction terms
depend solely on the zeroth-order excited-state density, a transfer of the approach to any
configuration interaction-type excited-state method is straightforward. Employing the
algebraic-diagrammatic construction (ADC) scheme of up to third order as well as time-
dependent density-functional theory (TD-DFT), we demonstrate and evaluate the
approach. For this purpose, we assembled a set of experimental benchmark data for
solvatochromism in molecules (xBDSM) containing 44 gas-phase to solvent shifts for 17
molecules. These data are compared to solvent shifts calculated at the ADC(1), ADC(2),
ADC(3/2), and TD-DFT/LRC-ωPBE levels of theory in combination with state-specific
as well as linear-response type PCM-based correction schemes. Some unexpected trends
and differences between TD-DFT, the levels of ADC, and variants of the PCM are
observed and discussed. The most accurate combinations reproduce experimental solvent shifts resulting from the bulk
electrostatic interaction with maximum errors in the order of 50 meV and a mean absolute deviation of 20−30 meV for the
xBDSM set.

I. INTRODUCTION

Apart from atmospheric and interstellar chemistry, most
photochemical problems occur in condensed phases, where
the molecular environment may significantly affect the
photophysical and photochemical processes. Therefore, any
investigation of electronic excitation energies in a condensed-
phase system should include at least an estimate of the
influence of the environment on the transitions of the
chromophore. The direct approach, which is to fully include
the relevant environment explicitly in the quantum chemical
calculation is not feasible due to the huge number of atoms that
would be required to recover the bulk electrostatic interaction
with the environment in combination with the steep
exponential scaling of the computational effort for accurate
quantum chemical methods with respect to system size. Hence,
the approximate modeling of molecular environments in
quantum-chemical problems in the condensed phase is a very
active field of research.1−8

Condensed-phase problems may in general be subdivided
into two groups: on the one hand, chromophores embedded in
an essentially isotropic environment (e.g., solvent, nonpolar
polymer matrix) and, on the other hand, chromophores
surrounded by an anisotropic environment (e.g., protein,

polar polymer matrix). For the latter, polarizable continuum
models (PCMs) are only of limited applicability, because
specific interactions between the chromophore and the
anisotropic environment are usually of key relevance. Hence,
an atomistic modeling of the environment is indispensable.
This can be achieved using, e.g., QM/MM,2,3,6,7 fragment-
based,4,5 or symmetry-adapted perturbation-theoretical (SAPT)
approaches.8 In exchange for the ability to describe an explicit
environment, these models are usually quite demanding with
respect to both time required for setup and evaluation of
numerous parameters (force field, embedding scheme,
partitioning, cut-offs, etc.). Moreover, the computational
demand for such explicit approaches is inherently many times
higher than for a single quantum-chemical calculation in vacuo.
This is due to the need for sampling, which means an averaging
over tens to hundreds of explicit configurations to capture the
thermal equilibration of the environment.
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For chromophores in isotropic liquid solution, polarizable
continuum models1 (PCMs) offer an efficient way to
incorporate bulk electrostatic effects, which are usually the
most important solvation effects for small molecules. Once the
construction of a molecular cavity for the solute is specified,
these are essentially “black box” computational models. In
many cases, the QM/PCM approach can be used to estimate
the influence of the environment in one single calculation as it
circumvents the problem of sampling. The equilibration of the
solvent is already included in the dielectric constant, ϵ. To the
extent that the temperature and frequency dependence of ϵ
have been characterized experimentally, variation of ϵ allows for
a straightforward investigation of these dependencies.
The remainder of this work is organized as follows. In section

II, we introduce the concept of PCMs and the extension to
vertical excitations, discuss the accuracy of the model, and
motivate an evaluation based on a comparison to experimental
data. In section III, we introduce the formalism for quantum-
chemical calculations of vertical excitation energies within a
PCM framework. In section IV, we describe the experimental
results that are used to construct a benchmark data set. Finally,
in section V results of the ADC and TD-DFT calculations are
discussed and compared to our novel xBDSM set.

II. GENERAL CONSIDERATIONS
A. Polarizable Continuum Model. The central idea

underlying PCMs is to include the electrostatic interaction of a
molecule with an isotropic environment (usually a solvent)
using the macroscopic dielectric polarizability of the environ-
ment. For this purpose, one needs to partition the system into
molecule (solute) and environment (solvent), which gives rise
to the molecular cavity. The construction of the cavity is
nontrivial and often critical for the accuracy of the PCM,9 but it
is not an issue that we will explore in this work.
Employing a boundary-element procedure that solves for the

surface charge arising from the discontinuous change in the
dielectric constant for a classical charge distribution within the
cavity, the solution of Poisson’s equation can be circum-
vented.10 Volume polarization, arising from the tail of the
quantum-mechanical density, is included approximately by
modifying the apparent surface charge (ASC). Two procedures
for this were developed independently and are now widely used
in quantum chemistry: the “integral equation formulation”
(IEF-PCM) of Canceś, Mennucci, and Tomasi,11,12 and the
“surface and simulation of volume polarization for electro-
statics” [SS(V)PE] approach developed by Chipman.13,14

Although these methods are formally equivalent,15,16 some
differences arise when the integral equations are discretized for
practical calculations.10,17 We use the “asymmetric” version of
SS(V)PE, which is recommended in ref 17, as implemented in
the Q-Chem program18 via an intrinsically smooth discretiza-
tion procedure.19

For an investigation of vertical excitations in a PCM
framework, the frequency dependence of the dielectric
susceptibility must be considered, at least approximately. The
response of the PCM environment depends on the time scale
of the molecular process under investigation, because the
dielectric polarization includes both slow (orientational and
vibrational) components and fast (electronic) contributions.
Because the atomistic environment is replaced by a continuum,
and because the underlying quantum-chemical model is a time-
independent one, the consequences of time-dependent polar-
ization have to be introduced explicitly. The formalism is

summarized in section IIIB. For a complete and detailed
derivation starting from basic electrostatics, see ref 20.

B. Considerations for Excited States. The accuracy of
the PCM treatment of solvation effects is limited mainly by a
number of factors. First, only bulk electrostatic interactions are
included at this level, and the accuracy will suffer when
“specific” solvent effects are important. A prototypical example
is a chromophore with a phenolate group, for which strong
ionic hydrogen bonding directly affects the aromatic core. This
effect becomes notable already if there are slightly acidic
protons, e.g., in 3- and 4-nitroaniline and a slightly Lewis-basic
solvent such as diethyl ether (Et2O) or acetonitrile (MeCN).
Such cases can usually be handled by the introduction of few
explicit solvent molecules to the quantum system. The impact
of hydrogen bonding as well as the introduction of explicit
solvent molecules on the accuracy of the PCM have been
examined in section VG.
Second, excitonic coupling between multiple choromophores

may alter excitation energies. It has been inferred that this effect
can be described within the PCM formalism by the so-called
linear-response approach,21 which is obtained when time-
dependent perturbation theory is applied to the QM/PCM
system.22 Ultimately, the excitonic coupling of the excited states
is described by the interaction of the induced polarizations of
the respective transition densities. However, this requires a
modification of the secular matrix of the CI problem prior to
diagonalization, which goes beyond an exclusively density-based
a posteriori correction. An implementation of this approach in
combination with the COSMO solvent model23 and the
ADC(2) quantum chemistry approach has recently been
reported.21

A third problem that has attracted much less attention in the
literature is the limitation of PCMs due to the approximate
nature of the underlying quantum chemical model. This
becomes particularly relevant when approximate linear
response methods such as TD-DFT or ADC(1) are used,
especially in the context of highly correlated or charge-transfer
(CT) excited states. Although problems with CT excitation
energies in TD-DFT24,25 have to a large extent been resolved
by the introduction of range-separated functionals,26−29 it is not
clear how well this correction performs for the excited-state
densities that will afford the solvation correction.30

Another issue of post-Hartree−Fock methods within the
PCM framework is the appropriate choice of reference state.
For ADC(n) calculations, one usually employs the correspond-
ing Møller−Plesset (MPn) ground state as a reference, which
leads to several distinct ways how solvation effects might be
included:31−33

(1) Use solvated Hartree−Fock (HF) orbitals for the MP2
calculation, in the so-called PerTurbation-Energy (PTE)
scheme.

(2) Obtain the final solvation energy from an additional
PCM calculation with the gas-phase MP2 density
(PerTurbation-Density or PTD scheme).

(3) Iterate the PTD scheme until the MP2 density and
solvent field are self-consistent (PerTurbation-Energy-
and-Density or PTED scheme).

The schemes described above are sketched in Figure 1. As
pointed out by Àngyaǹ,34 only the PTE scheme yields an
energy that is formally consistent with MP2 theory, whereas the
PTED scheme involves higher-order terms. Furthermore, the
PTED scheme is computationally more involved, in particular

The Journal of Physical Chemistry A Article

DOI: 10.1021/jp511163y
J. Phys. Chem. A 2015, 119, 5446−5464

5447

http://dx.doi.org/10.1021/jp511163y


for ADC(3), for which an MP3 ground-state density would
have to be calculated multiple times. As such, we only examine
results obtained with the PTE as well as a modification of the
PTD scheme. (An implementation of the PTED scheme in
combination with ADC(2) is described in ref 21). To the best
of our knowledge, there exists neither a systematic investigation
of the accuracy of predicted solvent shifts with respect to the
level of electronic structure theory nor with respect to the
choice of the ground-state reference. The present work reports
such tests, for a variety of ADC-based methods, along with TD-
DFT.
A fifth issue, which is beyond the scope of this work is due to

the influence of the solvent onto the vibrational transitions in
the chromophore. Because the influence of solvation will affect
the Franck−Condon factors, which determine the intensity of
the contributions building the optical spectrum, it can shift the
maximum of the experimentally determined absorption peak.
Unfortunately, this effect cannot be accounted for with the
presented methodology. Already in the gas phase, the
calculation of vibrationally resolved spectra is challenging.35,36

To circumvent the explicit calculation of vibronic couplings, we
focus on solvent-induced shifts, which essentially neglects all
solvent-induced differences of the vibronic couplings in the
optical spectra.
C. Evaluation of Solvent Models by Comparison to

Experimental Solvatochromic Shifts. In comparing PCM
solvent shifts to experimental ones, it is important to
understand the various effects that contribute to the shift. In
quantum chemical terms, these include

(1) differences between the ground-state equilibrium geom-
etry in the gas versus solution phase,

(2) “zeroth-order” contributions arising from the polarization
of the ground-state wave function by the solvent,

(3) “first-order” corrections arising from the fast, electronic
component of the solvent’s dielectric susceptibility, and

(4) nonelectrostatic interactions that change upon electronic
excitation.

The size of these contributions strongly depends on the
particular molecule. For example, in molecules exhibiting
negative solvatochromism (blue-shift upon increasing solvent
polarity), geometrical contributions actually make up the blue
part of the shift, whereas first-order contributions are always
negative (red shift). To keep geometrical contributions small,
and thereby focus on the electrostatic contributions, we have
exclusively selected molecules exhibiting solvatochromic red
shifts for our benchmark set, although the influence of
geometry is taken into account in our calculations. Non-
electrostatic contributions arise primarily from the energetic
cost of cavity formation (“cavitation energy”), which may be
expected to cancel for vertical excitation, and for changes in
dispersion and Pauli repulsion energies upon electronic
excitation, which are usually neglected.
Another problem in the evaluation of calculated solvent shifts

becomes evident when we analyze the various contributions of
nonpolar to polar (e.g., cyclohexane to acetonitrile) solvent
shifts. We find that these arise exclusively due to differences in
the zeroth-order contributions, whereas the first-order con-
tributions cancel quantitatively. This is traceable to the very
small variation in the optical dielectric constant (=n2, where n is
the index of refraction) across common solvents, whereas the
static dielectric constant varies significantly (Table 1).

The small variations in n2 suggest that a meaningful
evaluation of PCM corrections must consider gas-phase to
solution shifts, rather than solvent-to-solvent shifts. However,
gas-phase data of large, i.e., nonvolatile, molecules are scarce in
the literature and place constraints upon the size and polarity of
the molecules. Consequently, our benchmark set consists of
small- to medium-sized organic compounds that can be
evaporated under application of mild heat and/or low pressure.
Moreover, each molecule needs to have a distinct absorption
peak caused by a single transition that has no or little overlap
with other transitions, because otherwise the analysis of the
spectrum is significantly more complicated. These conditions
are largely fulfilled for mono- and disubstituted nitroaromatics,
for which experimental gas-phase and solvent excitation
energies are available.37−40 In addition, we have recorded gas-
phase and solvent spectra for the prototypical aromatic
compounds pyridine (Py), benzofuran (Bf), coumarin (Cm),
and nitrobenzene (NB).

Figure 1. Flowchart of the different approaches to include electron
correlation in a PCM framework. Here, ρ refers to the charge density
and γ to the surface charge. The down-pointing arrows indicate at
which point in the procedure HF, solvation, and correlation energies
are computed. The simplest PTE scheme employs the polarized HF
MOs for the subsequent MP calculation, whereas the PTD and PTED
schemes involve a PCM calculation for the correlated density. For the
original PTD scheme, the solvation energy is computed once for the
gas-phase MP density, thereby neglecting the self-induced polarization
of the solute via the solvent. To include this self-induced polarization,
our implementation of the PTD scheme employs the MP density
computed for the self-consistently polarized HF MOs. Within the
most expensive PTED scheme, the MP density and the solvent field
are iterated to self-consistency.

Table 1. Dielectric Constants Used in the Calculations

solvent static dielectric, ε optical dielectric, n2

hexane 1.89 1.88
cyclohexane (cyHex) 2.03 2.02
dioxane (Diox) 2.21 2.02
diethyl ether (Et2O) 4.32 1.83
acetonitrile (MeCN) 36.7 1.81
dimethyl sulfoxide (DMSO) 46.7 2.07
water (H2O) 80.4 1.78
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III. FORMALISM AND IMPLEMENTATION
This section briefly describes our PCM formalism for vertical
excitation energies; for a detailed derivation, see ref 20. The
basic concept of the state-specific solvent correction was first
introduced by Yomosa in 1974,41 and many subsequent
formulations of the state-specific nonequilibrium formalism
have since appeared.21,42−44 The “ptSS” formalism20 presented
below is closely related to the corrected linear-response (cLR)
approach of Caricato et al.43 For a description of the ADC
method, see ref 45 or 46.
A. Ground-State Equilibrium PCM. The starting point for

the calculation of excitation energies in solution is a converged
HF or Kohn−Sham (KS) self-consistent field (SCF) calculation
for a molecule in a cavity with the surface S subdivided into
surface elements s. (In our implementation these are Lebedev
grid points situated on atomic spheres.19) In this self-consistent
reaction field (SCRF) calculation, the effect of the PCM is
contained in the reaction-field potential operator, R̂(0):

̂ + ̂ | ⟩ = | ⟩H R E[ (0)] 0 0vac
0 (1)

which is

∫ ∫γ
γ̂ ≡ ̂ ≡

| − |
= ̂R i R

s

r s
s V r s s s( )

( )
d ( , ) ( ) di

S

i

S i (2)

For the sake of compactness, we introduced the operator V̂(r,s)
= |r − s|−1, which formally corresponds to a measurement of the
electrostatic potential (ESP) of the wave function on the
surface s. The expression can be simplified even further by
carrying out the implicit integration over r (eq 3), which yields
the function V0(s) for the ESP of the wave function |0⟩ at the
position s. The integration of the product of this function with
the surface charge γi(s) over the cavity surface s yields the
interaction energy of |0⟩ with the polarization induced by |i⟩.

∫

∫

γ

γ

⟨ | ̂ | ⟩ = ⟨ | ̂ | ⟩

≡

≡ −

R V r s s s

V s s s

E

0 0 0 ( , ) 0 ( ) d

( ) ( ) d

i
S i

S i

i

0

0 (3)

If solute and solvent are in equilibrium (e.g., in the case of a
ground or long-lived excited state), the molecule interactions
with its self-induced polarization and |0⟩ and |i⟩ in eq 3 are
identical. In practice, γ(s) in R̂ is represented by a set of
Gaussian-blurred point charges at the positions of the surface
elements s, which are the numerical realization of the so-called
apparent surface charge (ASC) (Figure 2). In contrast to fixed
point charges of, e.g., a QM/MM calculation, the ASC in an
SCRF calculation does itself depend on the molecular charge
distribution and is thus updated in every iteration. To obtain
the ASC γ(s) for a given wave function, one may formulate a
surface-charge operator

∫̂ ≡ ̂ ′ ′ ′ε
−Q V r s A s s s( , ) ( , ) d

S

1
(4)

which contains the so-called PCM kernel Aε
−1. This kernel

depends on the cavity geometry and the dielectric constant of
the medium and is what discriminates between various flavors
of PCM. Formally, it is used to solve the Poisson problem, or in
other words to convert the molecular ESP into an ASC γ(s).
Due to the self-interaction of the ASC, the kernel for the charge
on a fraction s of the surface depends upon the molecular ESP

as well as the ESP of the charge on the remaining surface γ(s′).
Applied to a wave function |i⟩, Q̂ yields the ASC γi(s)
resembling the polarization of the dielectric continuum with the
dielectric constant ϵ.

∫γ = ⟨ | ̂ | ⟩ = ′ ′ ′ε
−s i Q i V s A s s s( ) ( ) ( , ) di S

i
1

(5)

It is important to stress that during the SCRF calculation the
solute wave function and its reaction field are iterated to self-
consistency. As a result, the polarized MOs building the
reference-state wave function contain the interaction with the
ASC in the form of orbital energies. Any post-HF procedure
therefore includes the interaction with the equilibrated ground-
state solvent field, just as the mean-field electron−electron
interaction and/or any interaction with any classical point
charges would be included, in a QM/MM calculation, for
example. This will become relevant for the discussion of
nonequilibrium situations in the next section.

B. Vertical Excitations in the PCM Framework. Vertical
excitation energies can be obtained via a CI-like procedure from
the solvated ground-state reference wave function. To obey the
Franck−Condon principle, only the fast (electronic) compo-
nents of the polarization should be relaxed, whereas the slow
(nuclear) component has to be kept frozen at its ground-state
equilibrium. This is the so-called nonequilibrium limit for a very
fast process in a PCM framework. To take this into account, the
reaction-field is separated into fast (electronic) and slow
(nuclear) components, starting with the operators. In the
definitions of surface-charge and reaction-field operators (eqs 2
and 4) the solvent is is fully relaxed, which corresponds to the
equilibrium case for the ground state. This means that the
reaction field includes both fast (electronic) and slow (nuclear)
contributions, which corresponds to ϵ as the (static) dielectric
constant. In nonequilibrium situations, one needs to treat the
fast component of the polarization separately. This can be
achieved by replacing ϵ in A−1 (eq 4) with the optical dielectric
constant n2 by introducing the effect of the slow component
(eq 19).20 The slow component of ϵ is replaced by ϵ − n2.
Accordingly, one may split the reaction-field and surface charge
operators into fast and slow components:

̂ = ̂ + ̂+
Q Q Q

s f s f
(6a)

̂ = ̂ + ̂+R R Rs f s f
(6b)

A Hamiltonian for an out-of-equilibrium excited state |i⟩ that is
in accordance with the Franck−Condon principle can now be
constructed:

= ⟨ | ̂ + ̂ + ̂ | ⟩E i H R R ii i
NEq vac

0
s f

(7)

This Hamiltonian is, however, not practical, as it is different for
each excited state (i.e., state specific) and therefore sacrifices
orthogonality between states as well as certain sum rules for
oscillator strengths.47 A solution is suggestive if the proportions
of the underlying problem are considered. First, the potential
introduced through the fast polarization component is small
with respect to the potential of the solute nuclei, and second
the change in electron density upon excitation is small with
respect to the whole solute density. Hence, the response of the
solvent to excitation of the solute can be treated in perturbative
fashion:

λ= ⟨ | ̂ + ̂ + ̂ − ̂ | ⟩+E i H R R R i( )i i
NEq vac

0
s f f

0
f

(8)
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Taking into account that the actual zeroth-order Hamiltonian
contains the frozen reaction field of the ground state,

= ⟨ | ̂ + ̂ | ⟩+E i H R ii
(0) (0) vac

0
s f (0)

(9)

one obtains a first-order correction

= ⟨ | ̂ − ̂ | ⟩E i R R ii i
(1) (0) f

0
f (0)

(10)

Eventually, the problematic state-specific (SS) Hamiltonian (eq
7) is converted into a perturbative correction, which can be
computed a posteriori using the zeroth-order wave function
|i(0)⟩. The latter is obtained from a CI-type calculation based on
polarized ground-state MOs. To emphasize the perturbative
nature of the approach, it will be denoted as perturbation-
theoretical state-specific (ptSS)-PCM.
For the evaluation of eq 10 one needs the fast polarization

charges of the ground state. To compute these, the ground-
state reaction field can be separated on the basis of the
respective dielectric constants for slow (ϵ) and fast (n2)
polarization:22

γ ε
ε

γ γ γ= −
−

= −
⎛
⎝⎜

⎞
⎠⎟

n
1

fs
2

total

(11a)

γ
ε

γ= −
−

⎛
⎝⎜

⎞
⎠⎟

n 1
1

f
2

total

(11b)

When the charges are separated in this way, one must mind the
self-interaction between fast and slow ground-state surface
charges according to

∫ γ= γ−E s V s s( ) ( ) d
S

s f 0
f

0
s

(12)

where Vγ0
s(s) is the ESP of the slow, ground-state polarization

charges at the position s. In analogy to the molecular ESP, it can
be obtained by integrating the slow component of ASC
resembling the ground-state polarization

∫ γ
=

′
| ′ − |

′γV s
s

s s
s( )

( )
d

S

0
s

0
s

(13)

If the fast ASC obtained for the ground state is now replaced
by the fast ASC of an excited state γi

f(s), this interaction
changes. To account for this, a charge-separation correction is
introduced:

∫ γ γ= − γE s s V s s( ( ) ( )) ( ) d
S ics

f
0
f

0
s

(14)

C. Free Energy. Because the dielectric constant implicitly
includes solvent averaging, the electrostatic energies in PCM
theory are f ree energies, whereas up to this point we have
introduced expressions for interaction energies only. To obtain
free energies, one must account for the work associated with
polarizing the continuum, which amounts to half of the
electrostatic interaction energy.48,49 Thus, the free energy of the
equilibrated system in its ground state is

= ⟨ | ̂ + ̂ | ⟩G H R0 (0)
1
2

0solv vac
0 (15)

For an excited state in the nonequilibrium limit, the
derivation of the polarization work is more involved. It includes
the charge-separation correction (eq 14) as well as further
terms for the polarization work involving the fast charges in
both ground and excited states. For a detailed derivation and

discussion of these terms, see ref 20. Finally, the first-order ptSS
correction to the |0⟩ → |i⟩ excitation energy is given as

∫ γ γ

= ⟨ | ̂ | ⟩ − ⟨ | ̂ | ⟩

− ⟨ | ̂ | ⟩ − ⟨ | ̂ | ⟩

+ − γ

G i R i i R i

i R i R

s s V s s

1
2

( 0 0 )

1
2

( ( ) ( )) ( ) d

i i

i

S i

ptSS (0) f (0) (0)
0
f (0)

(0) f (0)
0
f

f
0
f

0
s

(16)

Here, the interaction terms are collected in the first line
whereas the remaining terms constitute the polarization work.

D. Electron Correlation Corrections: The PTD Scheme.
For calculations employing the PTE scheme, γtotal in eq 11
refers to the ASC obtained for the ground-state HF or KS
density. In post-HF methods, this introduces a systematic error
in solvent shifts if the ground-state ESP is not well described at
the HF level of theory because the ground-state reaction field
enters the zeroth-order excitation energies via the polarized
MOs. This is indeed the case for nitroaromatics, for which the
total MP2 dipole moment is only 80% of the HF dipole
moment. Account for this effect, we introduce the following
correction to the zeroth-order excitation energy:

= ⟨ | ̂ | ⟩ − ⟨ | ̂ | ⟩
− ⟨ | ̂ | ⟩ − ⟨ | ̂ | ⟩

= ⟨ | ̂ − ̂ | ⟩ − ⟨ | ̂ + ̂ | ⟩

E i R i R
i R i R

i R R i R R

( 0 0 )
( 0 0 )

0 0

PTD
(0) (0)

0
(0) MP

0
MP

(0)
0

(0) MP
0

MP

(0)
0 0

(0) MP
0 0

MP

MP MP

HF HF

MP HF MP HF

(17)

Adding this correction, the zeroth-order interaction of the
difference density of the excited state with the polarization of
the HF ground state (|0HF⟩, lower term) is replaced by the
interaction of the difference density of the excited state with the
polarization of the Møller−Plesset (MP) ground state (|0MP⟩,
upper term). Within our implementation of the PTD scheme,
the employed HF reaction field is obtained self-consistently,
but the MP reaction field is calculated from the MP density
computed with polarized HF orbitals (Figure 1). Because the
latter are overly polarized in the case of nitroaromatics, the MP
reaction will also contain this error and the correction will be
incomplete and is presumably smaller than the error introduced
by the HF reaction field. However, as compared to the iterative
PTED scheme, this PTD correction has the advantage that it
can be calculated a posteriori, which is in accordance with all
other corrections terms introduced above.
The first-order terms also differ between the PTE and PTD

schemes, because the response of the polarization has to be
calculated in the presence of the slow component of the
ground-state reaction field (eq 19). Consequently, γtotal in eq 11
refers to the ASCs obtained for the MP ground-state density.
Accordingly, for the PTD scheme all other terms that explicitly
depend upon the ASC of the ground state (eqs 2, 10, 14, 16,
and 19) use MP densities. To distinguish between the PTE and
PTD approaches for the ADC(2) and ADC(3/2), the
abbreviation ptSS-PCM(PTE) and ptSS-PCM(PTD) will be
used.

E. Perturbative Linear-Response-Type Corrections. In
addition to the state-specific corrections described above, we
have implemented perturbative linear-response (LR) correction
terms. These are obtained by keeping only the diagonal
elements of the original LR ansatz described in ref 50 for TD-
HF and in ref 21 for ADC. As compared to the latter
formulation, however, we use a different partition of the
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Hamiltonian, to obtain the same formalism for the zeroth-order
terms of the LR and SS approaches, which are in fact the
same.51 Consequently, we identify the first two terms in the
diagonal elements of the free energy matrix (eq 17 in ref 21) as
our zeroth-order energy (eq 9 in this work). For our
perturbative LR-type corrections (ptLR-PCM), we add the
energy of the third term in eq 17 of ref 21 to our zeroth-order
result. Because we neglect all off-diagonal elements for our
perturbative corrections, this term corresponds to the
interaction of the transition density with the dielectric medium:

∫ γ= ⟨ | ̂ | ⟩E i V r s s s( , ) 0 ( ) di
S

ptLR (0)
lr (18a)

∫γ = ⟨ | ̂ ′ | ⟩ ′ ′−s i V r s A s s s( ) ( , ) 0 ( , ) d
S nlr

(0) 1
2

(18b)

Although this ptLR correction is itself independent of the PTE
and PTD schemes, one can combine these corrections with the
zeroth-order terms for both, affording what we designate as the
ptLR-PCM(PTE) and ptLR-PCM(PTD) schemes.
In the case of an isolated bright state, the ptLR-PCM

approach yields results that are reasonably close to the full, self-
consistent LR approach, as demonstrated below. The advantage
is that the ptLR corrections can be calculated a posteriori,
without a manipulation of the secular matrix of the CI problem.
However, this approximation can break down if there are
additional bright excited states in close proximity, as, e.g., in the
case of coumarin.
F. Excited-State Densities. Excited-state densities are

required to compute the ESP for |i(0)⟩. Formally, these can be
obtained from the excited-state wave function, which
corresponds to an unrelaxed density, or by computing the
energy-derivative with respect to an electric field, yielding a
relaxed density.52 For linear-response methods, only the relaxed
density corresponds to an observable quantity, because the
response vectors themselves have no physical meaning. This is
reflected in the results of the TD-DFT calculations, where
unrelaxed densities yield first-order corrections that are too
large. Consequently, the solvent shifts are systematically
overestimated in all cases using unrelaxed TD-DFT densities,
as shown in section VF4). A recent study of 4-nitroaniline also
confirms that only relaxed TD-DFT densities are in good
agreement with multireference CI calculations.53 Hence, we use
relaxed densities for the TD-DFT calculations.
For ADC calculations, we obtain the densities via the

intermediate-state-representation (ISR) formalism consistent
with the given order in perturbation theory.46 ADC is not a
linear response method, and these densities are not “relaxed” in
the aforementioned sense (i.e., they do not include explicitly
calculated orbital relaxations). Nevertheless, they do contain
significant orbital relaxation effects, as demonstrated recently at
second order,54,55 and are inexpensive to compute. For this
purpose, the converged ADC excited-state vectors are
combined with the intermediate-state basis of the appropriate
order, yielding an excited-state wave function. Eventually, the
excited-state densities used for the PCM calculations are
consistent to first order for ADC(1) and to second order for
ADC(2). For ADC(3), an efficient implementation of the ISR
of corresponding order is not yet available, so the ISR of second
order is used in combination with the ADC(3)-state vectors.
This is the definition of the mixed ADC(3/2) approach.
G. Technical Details of the Implementation. After

convergence of the SCRF calculation (eq 1), the ground-state

reaction field is split into fast and slow components according
to eq 11. Using the polarized MOs, a CI-type calculation (ADC
or TD-DFT in this work) is carried out, which affords the
correlated ground-state density as well as the zeroth-order
excited-state vectors and excitation energies (eq 9). To obtain
the first-order corrections, the terms in eq 16 have to be
calculated. This requires construction of R̂i

f, which in turn
requires the ASC resembling the fast component of the
polarization for the excited state |i(0)⟩. This is obtained by using
a modified version of the surface-charge operator eq 4, in which
ϵ is replaced by n2 and the ESP of the slow ground-state
polarization charges (eq 13) is added to the molecular ESP,
Vi(0)(s′):22,44

∫γ = ′ + ′ ′ ′γ
−s V s V s A s s s( ) ( ( ) ( )) ( , ) di S

i n
f 1

0
s (0) 2

(19)

With the surface charges, R̂i
f can be constructed and all first-

order interaction and polarization terms can be evaluated. The
numerical procedure is sketched for the example nitrobenzene
in Figure 2.

To obtain corrected vertical excitation energies for the PTE
scheme, the first-order corrections are just added to the zeroth-
order excitation energies. However, for calculation of the fast
polarization and first-order terms within the PTD scheme, the
ground-state polarization of the correlated ground state is
required. To obtain it, eq 4 is solved for correlated MP density,
which in contrast to the original PTD scheme is calculated
using the polarized HF MOs. The zeroth-order PTD
corrections (eq 17) contain additional terms. These are the

Figure 2. Flowchart of the numerical procedure of a nonequilibrium
state-specific PCM calculation for a vertical excitation from the ground
state |0⟩ to the excited state |i⟩. The integration over s is replaced by a
finite sum over the surface elements. The ground-state polarization of
the surface charges is depicted in blue, the response of the fast
component to the increased dipole moment of the excited state in red.
The notation is very similar to that in the article, except for the electro-
static potential for which we use the notation ESP(state,s) instead of
V0(s).
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interaction of the excited-state densities with the ground-state
polarization of both the MP and HF ground states, as well as
the interaction of the MP density with the HF reaction field. All
these terms are calculated after the CI calculation-type using
the respective reaction fields.

IV. METHODOLOGY
A. Technical Details. Gas-phase as well as solvent-relaxed

geometries were obtained at the B2-PLYP/def2-TZVP level of
theory,56,57 in combination with Grimme’s D3 dispersion
correction58 and the COSMO solvation model59 as imple-
mented in Orca 3.0.1.60 This level of theory has previously been
found to provide good agreement with experiment for a
prototypical nitrobenzene, whereas MP2-, CC2-, and CCSD-
optimized geometries deviated significantly.61 In the case of the
amino-methoxy disubstituted nitroaromatics, we find that the
dispersion correction systematically improves the predicted
solvent shifts, for all QM/PCM combinations considered here.
Optimized geometries are available in the Supporting
Information.
A comparison to shifts computed with ADC(2)/ptSS-

PCM(PTE) and ptLR-PCM(PTE) for gas-phase and solvent-
relaxed geometries obtained at the SCS-MP2/cc-pVTZ level of
theory using the COSMO solvation model and the PTE
approach can be found in the Supporting Information. The
results for the two sets of geometries are very similar (MAD
0.022 eV).
All CI-type calculations (ADC and TD-DFT) were carried

out using a locally modified version of Q-Chem 4.2,18 and
employ the cc-pVDZ basis set.62 For the TD-DFT calculations,
the LRC-ωPBE functional has been employed, which has been
found to be very accurate for calculation of vertical excitation
energies if the range-separation parameter is tuned systemati-
cally.63,64 For this purpose, ω is chosen such that HOMO and
LUMO energy equal the ionization potential and electron
affinity, respectively.65 This procedure leads to ω values of
0.27−0.32 a.u. for the molecules in the xBDSM set, which is
close to the standard value of 0.3 a.u. The cavity for the PCM
calculations in Q-Chem is obtained using a smooth Lebedev-
grid based construction algorithm,19 with Bondi’s atomic van
der Waals radii66,67 scaled by a factor of 1.2.
B. Experimental Data. Experimental data for the meta- and

para-substituted nitroaromatic compounds were obtained from
ref 38. Data for the methoxy-nitroanilines was taken from ref
39. Data for 4-nitrophenolate and 4-(4-nitrophenyl)-phenolate
were obtained from ref 68.
For nitrobenzene, benzofuran, coumarin, pyridine, and 4-

nitroaniline UV/vis spectra were recorded in the gas phase and
in Hex and MeCN, and for 4-nitroaniline also in dioxane. The
UV/vis-transmission spectra were recorded using a PerkinElm-
er-Lambda 750 spectrometer operated at a resolution of 0.5
nm. A 10 mm quartz glass (Suprasil-Hellma) was used. The
average concentration of the compounds (purities grade >99%)
in solution has been adjusted between 0.1 and 0.01 mM. To
obtain transmission spectra in the gas phase, a small quantity of
the compound was filled into the sealable cuvette or, in the case
of pyridine, a gaseous injection was taken from the original
bottle. In the case of coumarin, mild heat was applied to achieve
a sufficient concentration in the gas phase. The peak-finding
algorithm implemented in the PerkinElmer Spectra Suite
software was used to determine maxima and solvent shifts. In
the case of coumarin and benzofuran, whose absorption spectra
exhibit vibrational structure, the differences were determined

between the most distinct features of the respective peaks. This
is sufficient because we are not interested in absolute but in
relative energies (solvent shifts) between the electronic
transitions. Experimental reference data are available in the
Supporting Information.

V. RESULTS AND DISCUSSION
A. Characterization of the Excited States. The

experimental data for the monosubstituted nitroaromatics
always refer to the first peak in the absorption spectrum. For
all but two of the nitroaromatic molecules, our calculations
reveal that the first bright state is closely related to the 2A1 ππ*
excited state of nitrobenzene (NB), which is almost exclusively
characterized by the HOMO−1 to LUMO transition. This
excited state has significant CT character in NB, with a dipole
moment that increases from 4.3 D in the ground state to 10.0
(8.9) D in the excited state at the MP2/ADC(2) (ADC(3,2))
level of theory. Only in the meta-substituted isomers of the
push−pull systems 3-nitroanisole (3-methoxy-NB) and 3-
nitroaniline (3-amino-NB) is a different state responsible for
the first peak. In these two cases, it is related to the 1B1 ππ*
state of NB, which is symmetry forbidden in the parent NB. In
molecules with an electron-pushing substituent in the meta
position, however, it has enough oscillator strength to appear in
the spectrum. This state is characterized by the HOMO →
LUMO transition, whereas the dipole moment is increased to
5.8 (6.3) D at the ADC(2) (ADC(3,2)) level of theory for NB.
These states have been extensively characterized for NB.61

In pyridine, benzofuran, and coumarin we investigate the
shifts of the lowest ππ* excitation(s). In pyridine, the ground-
state dipole moment of 2.0 D is slightly decreased in the first
bright state (S3, 1.8 D, HOMO → LUMO and HOMO−1 →
LUMO+1 transition). In benzofuran, the ground-state dipole
moment of 0.6 D is hardly affected in the first bright state (S1,
0.7 D, HOMO−1 → LUMO and HOMO → LUMO+1
transition) and slightly increased in the second bright state (S2,
3.3 D, HOMO → LUMO and HOMO−1 → LUMO+1). In
coumarin, the ground-state dipole moment of 4.2 D is hardly
affected in the first bright state (S1, 4.7 D, HOMO → LUMO,
HOMO−1 → LUMO) and slightly increased in second bright
state (S3, 5.9 D, HOMO−1 → LUMO, HOMO → LUMO+1).
All values correspond to gas-phase ADC(2)/cc-pVDZ//B2-
PLYP+D3/def2-TZVP calculations.

B. Composition of the xBDSM Set. From the data
available in the literature for monosubsituted nitroaromatics, we
have chosen cyclohexane (cyHex), diethyl ether (Et2O), and
acetonitrile (MeCN) as representative solvents. According to
eq 11, only the fast electronic polarization is relevant for the
ground-state polarization cyHex (γf = 99% of γtotal), whereas for
Et2O both fast and slow components contribute significantly (γf

= 25% of γtotal), whereas for MeCN the slow nuclear
component dominates (γs = 98% of γtotal).
For the analysis of the results, the experimental data points

are divided into three subgroups depending on molecule/
solvent interactions and character of the excited states.

1. Exclusively Electrostatic Cases. This largest subgroup
consists of the data points for nitrobenzene (NB) and the meta-
and para-isomers of nitrotoluene (methyl-NB), nitroanisole
(methoxy-NB), and nitrochlorobenzene (chloro-NB) in cyHex,
Et2O, and MeCN, as well as for meta- and para-nitroaniline
(amino-NB) and the methoxynitroanilines (NH2-MeO-NB) in
cyHex. For this selection, the gas-phase to solvent shifts are for
isolated bright transitions. Hence, the solvatochromic shift is
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almost exclusively due to the bulk electrostatic interaction,
which should be accurately described by a proper PCM
formalism.
On the basis of these examples, the accuracy of the first-order

treatment of the fast response of the polarization is evaluated
and the composition of the solvent shifts with respect to
geometric, zeroth-order, and first-order contributions is
analyzed. Moreover, the performance of the ptSS and ptLR
approaches with respect to the level of electronic structure
theory is examined and studied to determine how the treatment
of correlation effects in the solvent model (PTE vs PTD)
affects the results.
2. Cases Involving Hydrogen Bonding. These cases are also

examples dominated by electrostatic effects, but they also
involve hydrogen bonding with solvent molecules. The data
points in this set comprise 4-nitroaniline in Et2O, MeCN,
dioxane (Diox), and dimethyl sulfoxide (DMSO), as well as 4-
nitrophenolate (4-NP) and 4-(4′-nitrophenyl)phenolate (44-
NPP) in water. On the basis of these examples, the impact of
hydrogen bonding on the accuracy and is quantified and,
furthermore, it is demonstrated how well this can be corrected-
for by introduction of few explicit solvent molecules.
3. Nonelectrostatic Cases. This set includes molecules that

exhibit hardly any experimental shift at all and have multiple
bright excited states close in energy. These are pyridine,
benzofuran, and coumarin in hexane and MeCN. This subset
demonstrates how the ptLR correction behaves in difficult
situations.
C. Composition of Calculated Shifts. In this section, the

composition of the solvent shifts is examined using ADC(2)/
ptSS-PCM(PTD) as a representative level of theory. An
inspection of Figure 3 reveals that geometrical contributions to
the shifts are small compared to the sum of zeroth- and first-
order contributions. Although for clarity only a limited number
of examples is shown in Figure 3, this applies to all molecules in
the benchmark set. Only for 4-nitroaniline (termed 4-Amino-
NB, far right in Figure 3) is the geometric contribution larger
than 0.1 eV, which can be traced back to a solvent-dependent
variation of the NH2 out-of-plane bending.
Another result that stands out is that differences between

nonpolar cyHex, intermediate-polarity Et2O, and highly polar
MeCN are exclusively due to a variation in the zeroth-order
contributions, whereas the first-order contributions are virtually

identical for all three solvents. This finding holds for all of the
molecules investigated in this work and is independent of the
level of QM theory employed. The mean absolute deviation
between the first-order terms for the same molecule in different
solvents is smaller than 4 meV for the complete data set at the
ADC(2)/ptSS-PCM level of theory.
Considering the large variation of the single terms

contributing to the first-order correction shown in Figure 4,

the similarity of the first-order contributions is even more
remarkable. Obviously, a meaningful evaluation of the latter
should involve gas-phase to solvent shifts. However, the small
variation in the optical dielectric constant among typical
solvents (n2 = 1.75−2.25) causes the differences in calculated
first-order terms to be too small for a meaningful evaluation. If
an evaluation of zeroth-order terms is desired, e.g., for the
comparison of PTE and PTD schemes in the next section, a
comparison involving solvents of different polarity is advisible.

D. Basis Set Dependence. We recalculated solvent shifts
for nitrobenzene in cyHex, Et2O and MeCN at the ADC(2)/
ptSS-PCM and ADC(2)/ptLR-PCM levels of theory using the

Figure 3. Breakdown of the calculated solvent shifts into geometrical, zeroth-order, and first-order contributions for selected examples at the
ADC(2)/ptSS-PCM level of theory. In each case, the identity of the chromophore (coumarin S1, coumarin S2, nitrobenzene, etc.) is followed by a
series of bar graphs representing different solvents.

Figure 4. Breakdown of the first-order contributions into the single
terms (eq 16) and the sums of all interaction and polarization term for
nitrobenzene in hexane, diethyl ether, and acetonitrile. Despite large
differences in the separate terms, the final first-order corrections are
virtually identical for all three solvents.
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(aug-)cc-pVDZ and (aug-)cc-pVTZ basis sets. Examining the
results shown in Figure 5, one finds that the ptLR terms

increase by more than 65% (0.3 eV vs 0.2 eV) for the
augmented basis sets. The ptSS-corrections, on the contrary,
are less affected by the augmentation (+20%, 0.11 eV vs 0.09
eV) but show a larger increase for the cc-pVTZ basis (15%
increase for ptSS vs 4% increase for ptLR).
Also the zeroth-order contributions of the shifts exhibit a

basis set dependence. The augmentation of the cc-pVDZ basis
causes an increase of about 13% (0.18 eV vs 0.16 eV for cyHex,
0.40 eV vs 0.45 eV for MeCN), whereas the triple-ζ basis yield
zeroth-order shifts are about 8% bigger than those obtained
with the double-ζ basis. For the ptSS approach, the differences

between the medium (cc-pVTZ, aug-cc-pVDZ) and largest
(aug-cc-pVDZ) basis sets are smaller, which indicates a
convergence of the results.
Ultimately, the complete shifts obtained with the largest aug-

cc-pVTZ for the ptSS approach are increased by 18% (0.43 eV
vs 0.37 eV for Et2O) compared to the smallest cc-pVDZ. Very
similar changes are obtained for cyHex (20%) and MeCN
(18%). For the ptLR approach, the differences between cc-
pVDZ and aug-cc-pVTZ are even larger and there is more
variation among the solvents. For cyHex, the shifts increase by
50% (0.55 eV vs 0.37 eV), for Et2O the increase is 37% (0.64
eV vs 0.47 eV) and for MeCN it is 32% (0.78 eV vs 0.59 eV).
The reason for this pronounced basis-set dependence of the

results is presumably the charge-transfer character of the
excited states under investigation. Due to a surplus of negative
charge located at the nitro group in the excited states, the
description of the excited states profits tremendously from the
introduction of diffuse functions and the additional flexibility of
a triple-ζ basis. This is corroborated by the calculated gas-phase
excitation energies and their agreement with the experimental
values. At the ADC(2) level of theory, the difference between
calculated and experimental excitation-energies decreases from
+0.66 eV (cc-pVDZ) to +0.23 eV (aug-cc-pVTZ), whereas
ADC(3) is off by +0.37 eV with cc-pVDZ and quantitative with
aug-cc-pVTZ (+0.05 eV). Hence, for a reasonable description
of the states and their solvatochromism, the use of larger basis
sets is advisible. This would, however, lead to prohibitively
expensive calculations at the ADC(3) level of theory. Hence, to
retain comparability between the methods, the cc-pVDZ basis
was used throughout this work and the results from this basis-
set study will be considered in the discussion.

E. PTE vs PTD. To evaluate the PTD correction, calculated
solvent shifts for a selection of molecules from the first
(exclusively electrostatic) subgroup of the xBDSM set in cyHex,

Figure 5. Components of the calculated solvent shifts with ADC(2)/
ptSS- and ptLR-PCM for the cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and
aug-cc-pVTZ basis sets.

Figure 6. Top: experimental and calculated solvent shifts for a selection of molecules in the exclusively electrostatic subgroup of xBDSM. Solvent
shifts are computed at the ADC(2)/ptSS-PCM level of theory with the PTE, PTD, and scaled PTD* approaches. Bottom: differences between
experimental and calculated solvent shifts for the PTE, PTD, and scaled PTD* approaches including also the zeroth-order terms.
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Et2O, and MeCN are compared to the respective experimental
values. The calculations were carried out at the ADC(2) and
ADC(3/2) levels of theory using the ptSS-PCM approach, and
results are shown in Figure 6 for ADC(2) and Figure 9 for
ADC(3/2). We find that solvent shifts computed using the
PTE scheme are overestimated by an amount proportional to
the solvent polarity. On a molecular level, this systematic error
can be traced back to the poor description of the ground state
at the Hartree−Fock level of theory, which is the level at which
the ESP of the solute is computed in the PTE approach. In
particular, the dipole moment of the nitrobenzylic moiety is
overestimated by about 20% at the HF level as compared to the
unrelaxed MP2 dipole moment. For polar solvents that exhibit
a large nuclear component of the polarization, this error gives
rise to a systematic overestimation of the solvent shifts as the
slow component of the ground-state polarization enters the
calculation of the excitation energies in zeroth order. For
unpolar solvents there is a similar overpolarization, but it only
affects the fast component of the ground-state polarization,
whose interaction with the excited state is, however, subtracted
in the first-order terms (eq 16, second term in the first line).
As supposed in section IIID, the PTD corrections system-

atically reduce the error but do not eliminate it quantitatively.
To compensate for this empirically, we have scaled the zeroth-
order PTD correction by an empirical factor of 1.6, such that
the systematic error is minimized as shown in Figure 6. We
denote this scaled-PTD approach as PTD*.
For ADC(3/2) already the unscaled PTD correction

overcompensates the error introduced by the HF-reaction
field (Figure 5). Apparently, the optimal scaling factor is
different for ADC(3/2). Using the same procedure as for
ADC(2), one finds that a scaling factor of 0.5 largely eliminates
the systematic error. Hence, in the following, a scaling factor of

0.5 will be used for the ADC(3/2)/ptSS-PCM(PTD*)
approach.
The reason for the differences between the PTD approach

for ADC(2) and ADC(3/2) are presumably the formal
inconsistencies of the ADC(3/2)/ptSS-PCM(PTD) scheme,
which combines a PTD correction calculated for the MP(2)
ground state with correction terms evaluated with ADC(3/2)
excited-state densities.

F. ptSS and ptLR with ADC and TDDFT. To compare the
accuracy and investigate the relation of the perturbative, state-
specific corrections and linear-response-type corrections,
solvent shifts for the exclusively electrostatic subgroup at the
ADC(1), ADC(2), ADC(3/2, and TD-DFT/LRC-ωPBE levels
of theory have been calculated. For the isolated bright excited
states of the monosubstituted nitroaromatics, the results of the
ptLR corrections are quite close to the original, self-consistent
LR formalism.69 In the case of nitrotoluene, for example, the
self-consistent LR solvent shifts are 0.185, 0.251, and 0.325 eV
in cyHex, Et2O, and MeCN, respectively, whereas the same
shifts computed with our ptLR approach are 0.186, 0.259, and
0.325 eV.

1. Results for ADC(2). ADC(2) results using either the ptLR
or ptSS scheme are shown in Figure 7. In general, the accuracy
of the solvent shifts calculated at the ADC(2)/ptSS-PCM-
(PTD*) level of theory is remarkable. Most errors are well
below 0.05 eV, with a mean error of 2 meV, and the largest
deviation is 0.08 eV. The root-mean-square deviation (RMSD)
is 32 meV, which is most likely comparable to the experimental
uncertainty. This agreement demonstrates that our first-order
treatment of the fast solvent response is sufficient. The
improved accuracy of the PTD approach falls into place from
a theoretical point of view, because all corrections are based on
densities computed at a consistent order of perturbation theory,

Figure 7. Differences between calculated and experimental solvent shifts at the ADC(2) level of theory using either the ptSS or ptLR scheme, in
conjunction with the empirically scaled PTD* zeroth-order contribution.

Figure 8. Experimental and calculated solvent shifts for the exclusively electrostatic subgroup of xBDSM calculated at the ADC(1)/ptSS-PCM and
ADC(1)/ptLR-PCM levels of theory.
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whereas for the PTE approach, excitation energies and
correction terms obtained at second-order are combined with
a solvent field obtained for a first-order (HF) ground-state wave
function.
Considering the increase of the solvent shifts observed for

larger basis sets (section VD), the very good agreement
observed here benefits from some error compensation. For the
aug-cc-pVTZ basis set, one would presumably observe a slight
but systematic overestimation of the solvent shifts.
The combination of ADC(2)/PCM(PTD*) zeroth-order

energies with the ptLR correction is not nearly as accurate as
the ptSS approach. The shifts are systematically overestimated
(mean error = 58 meV, MAD = 73 meV, RMSD = 81 meV),
and in three of the examples the zeroth-order correction
actually lies closer to (or as close to) the experimental result
than the full ptLR result. Moreover, the accuracy of the ptLR
results seems to depend on the character of the excited state:
shifts obtained for states that are related to the 2 A1 (HOMO−
1 → LUMO) state of NB are generally too large, whereas shifts
are accurate or slightly underestimated for states related to the

1 B1 (HOMO → LUMO) transition, as in 3-methoxy-NB and
3-amino-NB.

2. Results for ADC(1). ADC(1) results (Figure 8) are in
sharp contrast to those obtained using ADC(2). For ADC(1),
the ptSS correction terms are systematically too small (mean
error = −127 meV, MAD = 127 meV, RMSD = 148 meV),
whereas the ptLR-PCM is balanced and much more accurate
than for ADC(2) (mean error = 10 meV, MAD = 50 meV,
RMSD = 63 meV). In general, the average deviation in the
solvent shifts at the ADC(1)/ptLR-PCM level of theory is
much smaller than for ADC(2)/ptLR-PCM(PTD*) and rather
compares to that of ADC(2)/ptSS-PCM(PTD*). Surprisingly,
the deviations in the shifts calculated at the ADC(1)/ptLR-
PCM level of theory are systematic with respect to solvent
polarity but follow an inverse pattern (smaller shifts for polar
solvents) as compared to those observed for ADC(2) in
combination with the PTE approach.

3. Results for ADC(3/2). Surprisingly, the accuracy of the
shifts calculated with ADC(3/2) and the ptSS-PCM(PTD*)
scheme does not improve compared to ADC(2). On the
contrary, the shifts calculated with ADC(3/2)/ptSS-PCM-

Figure 9. Differences between experimental and calculated solvent shifts for the exclusively electrostatic subgroup of xBDSM computed at the
ADC(3/2)/ptSS-PCM and ADC(3/2)/ptLR-PCM levels of theory in combination with the PTE, PTD and PTD* schemes.

Figure 10. Top: differences between calculated and experimental solvent shifts for ptSS and ptLR approaches as well as the zeroth-order
contribution at the LRC-ωPBE/ptSS-PCM and/ptLR-PCM levels of theory. Bottom: differences between calculated and experimental solvent shifts
for the empirically scaled ptSS*2 and ptLR*2 approaches as well as the combined pt(LR+SS) approach.
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(PTD*) are systematically too low (mean error = −49 eV,
MAD = 49 meV, RMSD = 54 meV) (Figure 9). A detailed
analysis and comparison of zeroth- and first-order contributions
to those obtained for ADC(2) reveals that this is mainly due to
smaller ptSS correction terms (77 meV, on average, versus 123
meV), whereas the zeroth-order contributions (PTD*) are very
similar (mean deviation = −126 meV versus −120 meV).
Probably due to fortuitous error compensation, the ptSS
corrections yield a better agreement with the experiment in
combination with ADC(3/2) zeroth-order energies obtained
with the PTE scheme (mean error = −47 meV, MAD = 47
meV, RMSD = 52 meV). The differences to ADC(3/2)/ptSS-
PCM(PTD*) are, however, negligibly small.
Regarding the very systematic underestimation of the solvent

shifts observed for ADC(3/2)/ptSS-PCM, one should bear in
mind the basis-set dependence of the shifts. Obtained with
augmented and/or triple-ζ basis sets, the solvent shifts might be
about 20% larger, which would yield something much closer to
quantitative agreement with experiment.
The ptLR corrections in combination with ADC(3/2)/

PCM(PTD*) zeroth-order energies yield consistently too large
solvent shifts (mean error = 63 meV, MAD = 71 meV, RMSD
= 81 meV). As in the case of ADC(2)/ptLR-PCM, the results
of the ptLR approach seem to depend on the character of the
excited state. Whereas the shifts are overestimated for those
states related to the 2 A1 state of nitrobenzene, the shifts for the
1 B1 cases (3-methoxy-NB and 3-amino-NB) are slightly too
low.
4. Results for TD-DFT. The TD-DFT/LRC-ωPBE results are

different from any of the ADC/PCM combinations, in
particular regarding the ptLR approach. The shifts predicted
by the latter are systematically too small (mean error = −69
meV, MAD = 69 meV, RMSD = 77 meV). The same applies to
the TD-DFT/ptSS-PCM corrections (mean error = −64 meV,
MAD= 76 meV, RMSD = 86 meV). Regarding the very similar
underestimation of the sovlent shifts with the ptSS approach for
ADC(1), one may suggest that first-order excited-state densities
are not accurate enough for ptSS calculations, and that at least
second-order excited-state densities are needed to obtain
accurate first-order corrections to the solvent shifts with the
ptSS approach.
For TD-DFT, the first-order terms of ptLR and ptSS

approaches are virtually identical for most of the molecules in
the xBDSM set. The cases where they differ include 3-methoxy-
NB and 3-amino-NB (excitations related to the 1 B1 state of
nitrobenzene), along with the para-substituted isomers of 3-
amino-NB (Figure 10). The connection between these cases
are the strong electron-pushing substituents (−NH2 and
−OMe), and as such one would expect the largest degree of
CT character in these cases; this offers a hint that CT character
may explain differences between the ptSS and ptLR approaches.
Considering the much better agreement with experiment for
the ptLR approach (see below), one may conclude that even
with range-separated functionals like LRC-ωPBE, and a
systematic adaptation of the range-separation parameter, the
excited-state density is not properly described when there is
significant CT character. A recent investigation of this issue can
be found in ref 30.
Because the deviations from the experiment are systematic

underestimation, the first-order terms can be scaled up
pragmatically. Surprisingly, with a scaling factor of exactly 2.0,
the ptLR*2-PCM approach yields the most accurate
description of the solvatochromic shifts in this work (mean

error = 1 meV, MAD = 21 meV, RMSD = 28 meV), with
virtually no mean deviation and a maximum error of only 60
meV (Figure 10). Although scaling with the same factor also
improves the ptSS results dramatically, the resulting ptSS*2-
PCM approach is not nearly as accurate as the scaled ptLR
approach. In particular, one finds a large overestimation of the
shifts for the CT examples, for which the ptSS and ptLR first-
order terms differ (mean error = 10 meV, MAD = 45 meV,
RMSD = 68 meV, with several large errors of about 0.15 eV).
Motivated by previous work,21 and the idea that the state-
specific and linear-response approaches describe different
physical effects, the combination of first-order terms of the
ptSS and ptLR approaches has also been studied. Indeed, also
this pt(SS+LR) approach improves the results significantly but
is not as accurate as the scaled ptLR approach (mean error =
−4 meV, MAD = 32 meV, RMSD = 47 meV).

5. Discussion of the Results. A statistical analysis of the error
for the investigated QM/PCM methods, as applied to the
electrostatically dominated subset of xBDSM, is given in Table
2 and plotted in Figure 11. The most accurate methods are

clearly TDDFT/ptLR*2-PCM, TDDFT/pt(SS+LR)-PCM,
and ADC(2)/ptSS-PCM(PTD*), and if the basis-set depend-
ency is considered, also ADC(3/2)/ptSS-PCM.
First, it bears pointing out that our perturbative ptLR

corrections are formally not identical to the self-consistent LR-
PCM formalism described in the literature.22,21 Nevertheless,
for nitrotoluene our ptLR scheme affords results that are
essentially identical to those obtained using the self-consistent
LR-PCM procedure as implemented in Q-Chem.69

Table 2. Statistical Errors for the Electrostatically-
Dominated Subset of the xBDSM Data Set

error/meV

method mean MAD RMSD

Zeroth Order
LRC-ωPBE −141 141 149
ADC(1) −185 185 198
ADC(2) (PTE) −67.3 67.7 77.5
ADC(2) (PTD) −101 101 105
ADC(2) (PTD*1.6) −120 120 124
ADC(3/2) (PTE) −111 111 114
ADC(3/2) (PTD) −140 140 142
ADC(3/2) (PTD*0.5) −126 126 128

ptLR-PCM
LRC-ωPBE −70.0 70.0 77.3
LRC-ωPBE (ptLR*2) 0.9 20.7 27.5
ADC(1) 9.5 50.1 63.1
ADC(2) (PTD*1.6) 66.4 73.4 83.0
ADC(3/2) (PTD*0.5) 55.8 71.1 75.8

ptSS-PCM
LRC-ωPBE −65.6 76.4 86.0
LRC-ωPBE (ptSS*2) 10.0 45.2 67.6
ADC(1) −126.5 −126.7 148.1
ADC(2) (PTE) 38.9 41.7 52.9
ADC(2) (PTD) 22.0 27.9 37.8
ADC(2) (PTD*1.6) 2.1 23.2 31.9
ADC(3/2) (PTE) −48.7 48.7 55.3
ADC(3/2) (PTD) −63.1 63.1 67.1
ADC(3/2) (PTD*0.5) −48.5 48.5 54.1

pt(SS+LR)-PCM
LRC-ωPBE −3.5 30.2 40.4
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Let us begin the discussion with an interpretation of our
results regarding the relation of the ptLR and ptSS formalisms.
The zeroth-order (static polarization) energies are identical in
both cases, but the first-order terms are generally regarded as
describing different physical phenomena. Specifically, the first-
order ptSS contribution is associated with the dynamical
response of the fast component of the polarization, whereas the
first-order LR correction has been suggested to relate to
excitonic coupling21 or dispersion effects.51,70 We find that for
the case of TD-DFT, the ptLR and ptSS corrections (as
formulated here) afford similar values in cases where the
solvatochromic shift is dominated by electrostatic effects.
However, the relation between the ptLR and ptSS corrections
also depends on the underlying QM level of theory. For
ADC(2) and ADC(3/2), the ptLR corrections are about twice
as large as the ptSS corrections (mean 0.19 eV vs 0.11 eV for
ADC(2), 0.18 eV vs 0.08 eV for ADC(3/2)).
With respect to the accuracy of the ptSS and ptLR

approaches for the first xBDSM subset, there are only negligible
differences if one compares the best-performing QM/PCM
combinations (Figure 12). The results indicate that the ptSS
correction is more sensitive with respect to the level of theory,
which is to say, more sensitive to the quality of the excited-state
densities. Taking into account the basis-set dependence of the
shifts, the accuracies of the ptSS-PCM combinations with
ADC(2) and ADC(3/2) are presumably very similar. In
combination with the CIS-related ADC(1) and TD-DFT,
however, one finds a systematic underestimation of the solvent
shifts.

For the ptLR-PCM approach, the exact opposite is the case.
It affords the most accurate solvatochromic shifts when
combined with TD-DFT (upon empirical scaling by a factor
of 2.0), and also with ADC(1) the predicted shifts are balanced
and accurate (without a scaling). For ADC(2) and ADC(3/2),
however, the ptLR correction terms are too large to suite the
zeroth-order excitation energies, which are closer to the
experimental shifts for ADC(2) and ADC(3/2) (mean
deviation about −0.125 eV) than for ADC(1) (mean deviation
−0.155 eV). The ptLR corrections are, however, very similar
for ADC(1) (mean 0.19 eV), ADC(2) (mean 0.19 eV), and
ADC(3/2) (0.18 eV).
Despite these differences between the ptSS and ptLR

corrections, we conclude that the electrostatic information
relevant to the fast solvent response seems to be encoded in the
transition density, not just in the excited-state density. As such,
the ptLR and the ptSS formalisms constitute different ways to
extract this information and translate it into an energy
correction. If the ptLR formalism would indeed describe an
entirely different physical effect, it should not give rise to any
sizable contribution for the nitroaromatic compounds, whose
solvatochromism is apparently well-described with the purely
electrostatic ptSS-PCM approach.
A recent series of articles of Plasser et al.,54,55 in which they

presented a detailed analysis of the density matrices occurring
within the ADC computational framework might help to guide
this discussion. They demonstrated that the transition density
matrix simply represents the orbital transitions contained in the
ADC response vector whereas the excited-state densities are

Figure 11. Statistical errors in various QM/PCM schemes as applied to the electrostatically dominated subset of xBDSM. For the sake of
completeness, the results for the scaled ptSS*2 and combined pt(SS+LR) approaches in combination with TD-DFT are given.

Figure 12. Direct comparison of the errors of the most accurate QM/PCM combinations for the first xBDSM subset.
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characterized by additional contributions deriving from
secondary orbital relaxation effects, which are present whenever
significant charge shifts occur.55 With these results in mind, one
may suggest that the essential difference between ptLR and
ptSS correction is that the ptSS correction terms do include
orbital relaxation via the respective densities, whereas the
former, transition-density based ptLR corrections do not. This
is in line with the better agreement and much more systematic
errors of the ptSS-approach in combination with ADC(2) and
ADC(3/2). Because for the latter, the relaxation effects are also
included in the zeroth-order energies, the ptLR correction
terms are just too large. Hence, for correlated higher-order
methods, the ptSS approach should be preferred over the ptLR
approach.
For first-order methods like TD-DFT or ADC(1), which

hardly include any orbital relaxation in the zeroth-order
excitation energies, the ptLR-approach constitutes a shortcut
to obtain the response of the solvent polarization that
circumvents the explicit calculation of the excited-state
wavefuntion. From this perspective, also the agreement of
ptLR and ptSS-terms for the linear-reponse method TD-DFT
falls into place. A drawback of the ptLR-PCM approach is due
to the mathematical structure of the transition density as a
product of electron and hole orbitals. For CT excitations
associated with large electron−hole separation the transition
density becomes zero and so do the ptLR correction terms. As
a concrete example, we choose the lowest CT excitation of the
C2H4/C2F4 complex24 (Figure 13). Obviously, the transfer of

an electron should give rise to a pronounced response of the
fast component of the polarization because two full charges are
created in the process, but due to negligible overlap between
initial and final orbitals, the transition density for this excitation
vanishes and so does the ptLR correction. In this and
comparable situations, only the ptSS approach affords a
physically correct description.
G. Examples Involving Hydrogen Bonds. The PCM

describes only the (long-range) electrostatic interaction with

the bulk solvent, not specific interactions such as hydrogen
bonds. In the previous section, the accuracy of the ADC(2)/
ptSS-PCM(PTD*) and LRC-ωPBE/ptLR*2-PCM approaches
has been established to be ∼50 meV for cases in which the
solvatochromic shift is dominated by electrostatic effects. Here,
we examine how these approaches behave for cases in which
hydrogen bonding affects the excitation energy and how this
can be included in the model by adding few explicit solvent
molecules. It should be mentioned that this approach is a
pragmatic attempt to include explicit interactions into the PCM
description, and the results should be taken with a grain of salt.
In particular, the solvent-relaxed geometries of this complexes
are essentially meaningless.
Consider the moderately strong H-bonding case of para-

nitroaniline (pNA). Already for the weakly Lewis-acidic
solvents Et2O and MeCN, inclusion of explicit solvent
molecules has a notable influence onto the excitation energy
(Figure 14), as coordination to the solvent stabilizes the

positive charge at the amine that is created in the excited state,
and thus lowers the excitation energy. This effect is even more
pronounced for the nonpolar, but more Lewis-basic solvent
dioxane (ϵ = 2.25). The excitation energy in dioxane (3.50 eV)
is actually closer to that observed in the polar solvent MeCN (ϵ
= 36.7, 3.39 eV) than it is to the excitation energy in
cyclohexane (ϵ = 2.03, 3.88 eV). Thus, the influence of
hydrogen bonding to pNA in dioxane is actually larger than the
effect of the bulk electrostatic interactions. Inclusion of one
explicit solvent molecule within the QM region does generally
move the calculated solvent shifts in the right direction, as
shown in Figure 14. In particular with ADC(2)/ptSS-
PCM(PTD*), the inclusion of a single solvent molecule
restores the accuracy quantitatively for all cases but dioxane.
For cases such as charged chromophores in water that exhibit

very strong, ionic hydrogen bonds, calculation of reliable
solvent shifts is more involved. Especially in cases where the
chromophore has more than one H-bonding site, one may need
to sample over conformations of the explicit solvent
molecules.71 In our experience, a practical approach is to (1)
successively include water molecules at one H-bond donor or
acceptor site after another, (2) optimize the structure with a
method appropriate for the description of intermolecular

Figure 13. Zeroth- and first-order energy of the electron-transfer
excitation of the C2H4/C2F4 complex in MeCN, computed at the
ADC(2)/ptSS-PCM(PTD) and ADC(2)/ptLR-PCM levels of theory.
The magnitude of the first-order ptLR and ptSS terms can be read
from the vertical axis on the right. As the intermolecular separation
increases, only the ptSS approach affords a physically correct
description, whereas the fast solvent response vanishes at the ptLR
level.

Figure 14. Experimental and calculated solvent shifts for para-
nitroaniline (4-amino-NB) at the ADC(2)/ptSS-PCM(PTD*) and
LRC-ωPBE/ptLR*2-PCM levels of theory. Results are shown both
with and without a single explicit solvent molecule in the QM region.
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interactions (e.g., B2-PLYP+D3) using a PCM, and (3)
calculate the excitation energies and see if and how the results
converge with the number of explicit solvent molecules.
Following this protocol, we investigated the vacuum-to-water

solvatochromic shifts in 4-nitrophenolate (4-NP) and 4,4′-
nitrophenylphenolate (44-NPP), which differ (−0.08 eV vs
+0.87 eV, respectively)68 despite the similar structures of the
two molecules. We successively added up to four water
molecules, two each at the phenolate and nitro groups,
optimized the structures, and then calculated the excited states
at the ADC(2)/ptSS-PCM(PTD) and LRC-ωPBE/ptLR*2-
PCM levels of theory (Figure 15).

Despite the apparent presence of strong ionic hydrogen
bonding, both methods yield a reasonable, qualitatively correct
estimate of the observed solvent shifts even without explicit
solvent molecules. Whereas the introduction of explicit water
molecules to the phenolate improves the agreement with the
experiment, additional water molecules at the nitro group
decrease the accuracy of the model. One may conclude that the
explicit interactions of the solvent with the ionic phenolate are
much stronger and thus more important compared to those
with the nitro group. This is corroborated by the fact that
nitrobenzene itself is, despite its large dipole, virtually insoluble
in water. Due to an apparently imbalanced explicit solvation

scheme, none of the methods yields a quantitative answer for
both molecules.
All together, one may conclude that ADC(2)/ptSS-PCM is

more robust with respect to the introduction of explicit solvent
molecules. In particular, for the examples involving 4-
nitroaniline, the results for the explicitly solvated systems are
as accurate as for the cases without explicit interactions.

H. Nonelectrostatic Examples. The lowest electronic
transitions in pyridine as well as the lowest two in benzofuran
and coumarin exhibit only a very small (or zero)
solvatochromic shift among the gas phase, hexane, and
acetonitrile. This makes these cases very different from the
electrostatically dominated examples discussed thus far. To
investigate how the best-performing QM/PCM combinations
work for these cases, we calculated solvent shifts at the ADC(2)
and LRC-ωPBE levels of theory in combination with the ptSS-
PCM and ptLR-PCM approaches. For ADC(2), we used PTD
zeroth-order energies and for TD-DFT we used the empirically
scaled ptSS*2 and ptLR*2 schemes.
Inspecting the results in Figure 16, we find a dramatic failure

of the ptLR approach in the case of coumarin. Surprisingly,
ADC(2) and TD-DFT deviate in opposite directions. An
examination of the shifts reveals that in the case of TD-DFT,
the large blue shift is due to the zeroth-order term (+0.23 eV in
the case of MeCN), whereas the ptLR term only −0.003 eV. In
contrast, ADC(2) yields a much smaller contribution in the
zeroth-order terms in MeCN (0.04 eV for PTD, −0.09 eV for
PTE), whereas the ptLR correction is very large (−0.61 eV).
For the case of ADC(2), this failure of the ptLR approach is
most certainly due to the perturbative charater of our ptLR
approach, which neglects coupling elements between excited
states. A preliminary investigation of this particular example
using the self-consistent implementation of the LR formalism
for ADC(2)/COSMO in Turbomole21 revealed that, indeed,
the predicted solvent shift is much smaller (<0.1 eV) than the
one obtained here. At the TD-DFT level of theory, however,
the problem is present already at the stage of the TD-DFT
calculation. The ptSS formalism in combination with ADC(2)
yields the most accurate predictions for these nonelectrostatic
cases.

VI. CONCLUSIONS

We have presented the first systematic evaluation of two new,
PCM-based corrections for vertical excitation energies by
comparison to experimental gas-phase to solvent shifts. For this
purpose, we composed the experimental benchmark data for
solvatochromism in molecules (xBDSM) set including 44 gas-

Figure 15. Experimental and calculated solvent shifts for 4-
nitrophenolate (on the left) and 4-(4-nitrophenyl)phenolate (on the
right) at the ADC(2)/ptSS-PCM(PTD) and LRC-ωPBE/ptLR*2-
PCM levels of theory with up to two explicit water molecules at the
phenolate group and up to two more at the nitro group.

Figure 16. Experimental and calculated solvent shifts for the subset of nonelectrostatic examples, for ADC(2) and LRC-ωPBE calculations in
combination with the ptSS and ptLR schemes.
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phase to solvent shifts for 17 molecules in three subgroups as
well as the respective gas-phase and solvent-relaxed geometries.
The first subgroup consists of examples whose solvatochrom-
ism is dominated by the bulk electrostatic interaction. The data
points of this group can thus be accurately reproduced by the
QM/PCM approach. In the second group, there are cases
involving weak to strong hydrogen bonding. Its purpose is to
study how hydrogen bonding affects the accuracy and how
explicit solvent molecules in the QM subsystem can be used to
overcome the shortcomings of pure PCMs. The third group
consists of examples that exhibit very weak solvatochromism
but have multiple bright excited states in close proximity. In this
sense the third set is orthogonal to the former two and was
used to demonstrate the limitations of our perturbative ptLR
correction terms.
The presented PCM-based approaches are derived from the

state-specific and linear-response formalisms. Termed perturba-
tion-theoretical state-specific (ptSS)-PCM and perturbation-
theoretical linear-response type (ptLR)-PCM, the correction
terms depend solely on the zeroth-order excited-state or
transition densities, respectively. Hence, the correction terms
can just be added to the zeroth-order excitation energy, which
is the same for both approaches. It can be obtained via an
configuration-interaction (CI)-type calculation employing the
polarized ground-state Hartree−Fock molecular orbitals as a
reference. Consequently, the transfer of the approaches to
other CI-type excited-state methods is straightforward.
By comparison to the xBDSM set, the performance of the

ptSS-PCM and ptLR-PCM approaches was examined in
combination with ADC of first to third order as well as TD-
DFT/LRC-ωPBE. In doing so, we find that the ptLR-PCM
method affords good accuracy in particular in combination with
first-order methods. The ptSS-PCM approach, on the contrary,
apparently requires accurate excited-state densities and in turn
yields the most accurate results only in combination with
correlated methods such as ADC(2) and ADC(3/2).
The statistically most accurate prediction of solvatochromism

for the first xBDSM subset is obtained with the ptLR approach
in combination with TDDFT/LRC-ωPBE (see Table 2 and
Figure 11 for summaries of the error statistics for various
methods). To achieve this accuracy, however, the ptLR
corrections (first-order terms) have to be scaled by an
empirically determined factor of 2.0 to eliminate a systematic
underestimation (Figure 10). Although this scaling improves
the results for all but one example in the xBDSM set, the
generality of this scaling has to be questioned and should be
investigated more thoroughly in the future. An almost as
accurate model can be obtained for TD-DFT if the ptSS and
ptLR correction terms are both added to the zeroth-order
excitation energy. In contrast to the up-scaling of the ptLR
terms, the combination of the ptSS and ptLR corrections can be
physically motivated, if it is assumed that the two approaches
describe different physical effects. However, this assumption is
questionable regarding the almost identical first-order terms of
the two methods for many of the examples.
For some of the examples in the third xBDSM subset, the

TDDFT/ptLR*2 approach fails to yield even a qualitatively
correct description. These are on the one hand coumarin, for
which the zeroth-order excitation energies are by far too large,
and on the other hand charge-transfer excitations with large
electron−hole separation, for which the ptLR corrections
become zero due to a vanishing transition-density.

The ptSS-PCM approach yields a very accurate description
of solvatochromism in combination with the correlated
ADC(2) and ADC(3/2) methods. This is true in particular
for the PTD variants of the methods, in which the zeroth-order
excitation energies are corrected for deficiencies in the HF
solvation field (see sections IIID and VE). Although the
agreement with ADC(2) is quantitative with the rather small
cc-pVDZ basis set, the combination with ADC(3/2)/cc-pVDZ
yields a systematic underestimation of the shifts. If, however,
diffuse functions and/or larger triple-ζ basis sets are employed,
the calculated shifts are increased by about 20% (see section
VD), which would largely eliminate the systematic error for
ADC(3/2) and in turn yield a systematic overestimation for
ADC(2). Concerning the total excitation energies instead of
just the solvent shifts, ADC(3/2)/ptSS-PCM(PTD*) is
certainly the most accurate for the prediction of vertical
excitation energies in solution in this work, in particular if larger
basis-set (e.g., aug-cc-pVTZ) are employed.
For the H-bonded examples including explicit solvent

molecules, ADC(2)/ptSS-PCM(PTD*) is more accurate than
the scaled LRC-ωPBE/ptLR*2-PCM. Moreover, the ptSS-
approach yields a physically sound description of solvatochrom-
ism in cases with large electron−hole separation and does not
fail qualitatively for any of the examples studied in this work.
For molecules in which the solvent shift is not dominated by
electrostatic interactions, the PTE variant of ADC(2)/ptSS-
PCM was more accurate. This is probably due the fact that the
solvent reaction field is iterated to self-consistency alongside
the ground-state density, and furthermore the differences
between the HF and MP2 ground state are much smaller than
for the nitroaromatics. In combination with TD-DFT and
ADC(1) the ptSS correction terms are systematically too small,
which was traced back to poor excited-state densities.
Concerning the relation of the linear-response and state-

specific approaches, we conclude that both approaches describe
essentially describe the same electrostatic effect (response of
the fast component of the polarization to an electronic
excitation) within the perturbative formulation presented
here. The main difference being that the ptSS approach allows
us to include orbital-relaxation effects via the respective excited-
state densities, whereas the ptLR approach, on the contrary,
does not. This was traced back to the fact that the transition
density itself does, in contrast to the excited-state density, not
contain any orbital relaxation effects, even if computed with
correlated methods such as ADC(2) and ADC(3/2).55

Along this line of thought, the good agreement obtained with
the ptLR approach in combination with first-order methods
such as TD-DFT and ADC(1) falls into place. Neither ADC(1)
nor TD-DFT include orbital relaxation effects in the excitation
energies. Hence, the latter are consistent with the “unrelaxed”
ptLR correction terms. For ADC(2) and ADC(3/2), whose
excitation energies do contain orbital relaxation effects, the
ptLR correction terms are too large. For these correlated
methods, also the first-order corrections need to include
orbital-relaxation effects, which can only be achieved via the
ptSS approach in combination with proper excited-state
densities. Hence, for correlated methods the ptSS-approach is
required to obtain a balanced description of solvent effects.
Because our implementation of ADC in combination with the
ISR formalism offers a very efficient way to obtain accurate
excited-state densities directly from the excited-state vectors,
i.e., without the need to calculate the orbital response explicitly
(section IIIF), the ptSS- corrections can be calculated at
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essentially no extra computational cost compared to the
respective excitation energies.
For TD-DFT, on the contrary, the ptLR*2-PCM approach

seems to be the most accurate, in particular for bright excited
states with large charge-transfer character. For the latter, the
ptLR and ptSS correction terms differ significantly, whereas the
scaled ptLR*2-PCM approach consistently yields a slightly
better agreement with the experimental values than the
combination of both approaches pt(SS+LR) (section VF4).
Hence, we suggest to use the scaled ptLR*2-PCM approach in
combination with TD-DFT.
After all, one may question whether the xBDSM data set,

which mainly consists of nitroaromatic compounds is as diverse
as it should be to provide representative error estimates for
various PCM approaches. Unfortunately, this lack of diversity is
mainly due to the combined limitations of the experiments and
the calculations, which place tight constraints on the size of
molecules that can be computed (with ADC methods) and the
types of chromophores that yield unambiguous experimental
solvent shifts. It would be useful to expand the size of this data
set in the future, in particular the third subset of non-
electrostatic examples. Despite the limitation, this first system-
atic evaluation of PCM-based solvent models by comparison to
the xBDSM set provided valuable insights in the relation
between SS and LR formalisms, and uncovered unexpected
differences between density-based and wave-function-based
methods within a PCM framework. Additional insight can be
obtained from a derivation that starts from basic electrostatics,
as will be presented in a forthcoming paper.20
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