Supporting Information for: "Electrostatics, Charge Transfer, and the Nature of the Halide–Water Hydrogen Bond"

John M. Herbert*and Kevin Carter-Fenk Department of Chemistry & Biochemistry, The Ohio State University

January 21, 2021

^{*}herbert@chemistry.ohio-state.edu

Figure S1: Relaxed scans along the angle θ_{XOH} for (a) $F^{-}(\text{H}_2\text{O})$, (b) $\text{Cl}^{-}(\text{H}_2\text{O})$, and (c) $\text{Br}^{-}(\text{H}_2\text{O})$. Interaction energies (E_{int}) are obtained from SAPT0 + δE_{HF} /jun-cc-pVDZ calculations and H₂O relaxation energies (E_{rlx}) are computed at the CCSD(T)/aug-cc-pVQZ level. These energies are then combined to obtain $E_{\text{bind}} = E_{\text{int}} + E_{\text{rlx}}$. For each system, the minimum of $E_{\text{int}} - E_{\text{CT}}$ lies at the C_{2v} geometry, providing an unambiguous demonstration that CT drives the preference for hydrogen bonding. The $E_{\text{bind}} - E_{\text{CT}}$ curves exhibit shallow minima away from the C_{2v} geometry but at angles θ_{XOH} that are quite compressed compared to normal, quasi-linear hydrogen bonds. The E_{int} and $E_{\text{int}} - E_{\text{CT}}$ data here are the same as those plotted in Fig. 6.

Figure S2: Relaxed scans of $\theta_{\rm XOH}$ for (a) F⁻(H₂O), (b) Cl⁻(H₂O), and (c) Br⁻(H₂O), illustrating energy components computed at the SAPT0 + $\delta E_{\rm HF}$ /jun-cc-pVDZ level. Ball-and-stick models in (a) show the asymmetry of the O–H bond lengths that emerges in the hydrogen-bonded minima. The sum of the five components equals the total interaction energy, $E_{\rm int}$. Panel (a) is the same as Fig. 4.

Figure S3: Relaxed scans along θ_{XOH} for (a) $F^{-}(\text{H}_2\text{O})$, (b) $\text{Cl}^{-}(\text{H}_2\text{O})$, and (c) $\text{Br}^{-}(\text{H}_2\text{O})$, illustrating sequential construction of the SAPT0 + δE_{HF} interaction potential, $E_{\text{int}}(\theta_{\text{XOH}})$. In each panel, the full interaction potential (E_{int}) is assembled term-by-term, as indicated by the common legend that is shown in (b). The CT energy is not included here but can be surmised from the difference between E_{int} and $E_{\text{exch}} + E_{\text{elst}} + E_{\text{disp}} + E_{\text{pol}}$. As compared to the analogous plots in Fig. 5, these plots add together the energy components in a different order.

Figure S4: Contour plots of the chloride–water interaction potential and its sequential construction from SAPT energy components, scanning the position of Cl⁻ in the plane of a fixed-geometry H₂O molecule. Shown are (a) the full interaction potential, E_{int} ; (b) $E_{int} - E_{ind} = E_{exch} + E_{elst} + E_{disp}$, where the entirety of the SAPT induction energy ($E_{ind} = E_{pol} + E_{CT}$) has been removed, and which (for a given Cl···O distance) is rather flat for $|\theta_{ClOH}| \leq \theta(H_2O)/2$; (c) $E_{int} - E_{CT}$; and (d) $E_{int} - E_{pol}$. The potentials in (c) and in (d) each include one part of the SAPT induction energy (E_{pol} or E_{CT} but not both). The H₂O geometry is indicated (with oxygen at the coordinate origin) and corresponds to the isolated-monomer geometry optimized at the MP2/aug-cc-pVTZ level. Energy components were computed at the SAPT0 + δE_{HF} /jun-cc-pVDZ level on a grid of points extending to ± 6.0 Å in both x and y, with $\Delta x = 0.25$ Å = Δy . Regions more repulsive than +10 kcal/mol are shaded in gray.

v	Hydrogen-Bonded Minimum				C_{2v} Saddle Point					ΔE^a			
Λ	CCS	$SD(T)^b$	$E_{\rm int}(S)$	$E_{\rm int}({\rm SAPT})$		$CCSD(T)^b$		$E_{\rm int}({\rm SAPT})$		$CCSD(T)^b$		$E_{\rm int}({\rm SAPT})$	
	$E_{\rm bind}$	E_{int}	SADTOC	XSAPT	$E_{\rm bind}$	E_{int}		$SAPT0^{c}$	XSAPT	$E_{\rm bind}$	$E_{\rm int}$	$SAPT0^{c}$	XSAPT
			SAI 10	$+\mathrm{MBD}^d$					$+\mathrm{MBD}^d$				$+\mathrm{MBD}^d$
F	-27.6	-32.9	-34.2	-31.4	-20.3	-23.8		-24.0	-22.9	7.3	9.1	10.2	8.5
Cl	-15.0	-15.7	-14.8	-17.6	-13.5	-14.8		-14.2	-16.0	1.5	0.9	0.6	1.6
Br	-14.0	-14.6	-12.6	-15.0	-12.8	-13.9		-12.5	-14.1	1.2	0.7	0.1	0.9
Ι	-11.9	-12.3			-11.3	-12.2				0.6	0.1		

Table S1: Energies (in kcal/mol) for $X^{-}(H_2O)$.

 $a\Delta E = E(C_{2v}) - E(\text{H-Bond})$. ^baug-cc-pVQZ(-PP) basis with a frozen core for F, Cl, and O, and an effective core potential for Br and I. ^cAll-electron SAPT0 + $\delta E_{\text{HF}}/$ jun-cc-pVDZ. ^dXSAPT+MBD+ $\delta E_{\text{HF}}^{1}/\text{def2-TZVPPD}$ with CM5 charge embedding,² using the LRC- ω PBE functional (with ω_{GDD} tuning³) to describe the monomer wave functions.

References

- Carter-Fenk, K.; Lao, K. U.; Liu, K.-Y.; Herbert, J. M. Accurate and efficient *ab initio* calculations for supramolecular complexes: Symmetry-adapted perturbation theory with many-body dispersion. J. Phys. Chem. Lett. 2019, 10, 2706–2714.
- [2] Liu, K.-Y.; Carter-Fenk, K.; Herbert, J. M. Self-consistent charge embedding at very low cost, with application to symmetry-adapted perturbation theory. J. Chem. Phys. 2019, 151, 031102:1–7.
- [3] Lao, K. U.; Herbert, J. M. Atomic orbital implementation of extended symmetry-adapted perturbation theory (XSAPT) and benchmark calculations for large supramolecular complexes. J. Chem. Theory Comput. 2018, 14, 2955–2978.