Supporting Information for: "Electrostatics, Charge Transfer, and the Nature of the Halide-Water Hydrogen Bond"

John M. Herbert*and Kevin Carter-Fenk
Department of Chemistry $\S 8$ Biochemistry, The Ohio State University
January 21, 2021
*herbert@chemistry.ohio-state.edu

Figure S1: Relaxed scans along the angle θ_{XOH} for (a) $\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, (b) $\mathrm{Cl}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, and (c) $\mathrm{Br}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$. Interaction energies $\left(E_{\text {int }}\right)$ are obtained from $\mathrm{SAPT} 0+\delta E_{\mathrm{HF}} / \mathrm{jun}-\mathrm{cc}-\mathrm{pVDZ}$ calculations and $\mathrm{H}_{2} \mathrm{O}$ relaxation energies ($E_{\text {rlx }}$) are computed at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ level. These energies are then combined to obtain $E_{\mathrm{bind}}=E_{\mathrm{int}}+E_{\mathrm{rlx}}$. For each system, the minimum of $E_{\mathrm{int}}-E_{\mathrm{CT}}$ lies at the $C_{2 v}$ geometry, providing an unambiguous demonstration that CT drives the preference for hydrogen bonding. The $E_{\mathrm{bind}}-E_{\mathrm{CT}}$ curves exhibit shallow minima away from the $C_{2 v}$ geometry but at angles θ_{XOH} that are quite compressed compared to normal, quasi-linear hydrogen bonds. The E_{int} and $E_{\mathrm{int}}-E_{\mathrm{CT}}$ data here are the same as those plotted in Fig. 6

Figure S2: Relaxed scans of θ_{XOH} for (a) $\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, (b) $\mathrm{Cl}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, and (c) $\mathrm{Br}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, illustrating energy components computed at the SAPT0 $+\delta E_{\mathrm{HF}} / \mathrm{jun}-\mathrm{cc}-\mathrm{pVDZ}$ level. Ball-and-stick models in (a) show the asymmetry of the $\mathrm{O}-\mathrm{H}$ bond lengths that emerges in the hydrogen-bonded minima. The sum of the five components equals the total interaction energy, $E_{\text {int }}$. Panel (a) is the same as Fig. 4 .

Figure S3: Relaxed scans along θ_{XOH} for (a) $\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, (b) $\mathrm{Cl}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, and (c) $\mathrm{Br}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$, illustrating sequential construction of the $\mathrm{SAPT} 0+\delta E_{\mathrm{HF}}$ interaction potential, $E_{\mathrm{int}}\left(\theta_{\mathrm{XOH}}\right)$. In each panel, the full interaction potential (E_{int}) is assembled term-by-term, as indicated by the common legend that is shown in (b). The CT energy is not included here but can be surmised from the difference between $E_{\text {int }}$ and $E_{\text {exch }}+E_{\text {elst }}+E_{\text {disp }}+E_{\text {pol }}$. As compared to the analogous plots in Fig. 5, these plots add together the energy components in a different order.

Figure S4: Contour plots of the chloride-water interaction potential and its sequential construction from SAPT energy components, scanning the position of Cl^{-}in the plane of a fixed-geometry $\mathrm{H}_{2} \mathrm{O}$ molecule. Shown are (a) the full interaction potential, $E_{\text {int }}$; (b) $E_{\text {int }}-E_{\text {ind }}=E_{\text {exch }}+E_{\text {elst }}+E_{\text {disp }}$, where the entirety of the SAPT induction energy ($E_{\text {ind }}=E_{\mathrm{pol}}+E_{\mathrm{CT}}$) has been removed, and which (for a given Cl$\cdots \mathrm{O}$ distance) is rather flat for $\left|\theta_{\mathrm{ClOH}}\right| \lesssim \theta\left(\mathrm{H}_{2} \mathrm{O}\right) / 2$; (c) $E_{\mathrm{int}}-E_{\mathrm{CT}}$; and (d) $E_{\mathrm{int}}-E_{\mathrm{pol}}$. The potentials in (c) and in (d) each include one part of the SAPT induction energy (E_{pol} or E_{CT} but not both). The $\mathrm{H}_{2} \mathrm{O}$ geometry is indicated (with oxygen at the coordinate origin) and corresponds to the isolated-monomer geometry optimized at the MP2/aug-cc-pVTZ level. Energy components were computed at the SAPT0 $+\delta E_{\mathrm{HF}} / \mathrm{jun}-\mathrm{cc}-\mathrm{pVDZ}$ level on a grid of points extending to $\pm 6.0 \AA$ in both x and y, with $\Delta x=0.25 \AA=\Delta y$. Regions more repulsive than $+10 \mathrm{kcal} / \mathrm{mol}$ are shaded in gray.

Table S1: Energies (in kcal/mol) for $\mathrm{X}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)$.

X	Hydrogen-Bonded Minimum				$C_{2 v}$ Saddle Point				ΔE^{a}			
	$\operatorname{CCSD}(\mathrm{T})^{b}$		$E_{\text {int }}(\mathrm{SAPT})$		$\operatorname{CCSD}(\mathrm{T})^{b}$		$E_{\text {int }}($ SAPT $)$		$\operatorname{CCSD}(\mathrm{T})^{b}$		$E_{\text {int }}(\mathrm{SAPT})$	
	$E_{\text {bind }}$	$E_{\text {int }}$	SAPT0 ${ }^{\text {c }}$	$\begin{aligned} & \mathrm{XSAPT} \\ & +\mathrm{MBD}^{d} \end{aligned}$	$E_{\text {bind }}$	$E_{\text {int }}$	SAPT0 ${ }^{\text {c }}$	$\begin{aligned} & \mathrm{XSAPT} \\ & +\mathrm{MBD}^{d} \end{aligned}$	$E_{\text {bind }}$	$E_{\text {int }}$	SAPT0 ${ }^{\text {c }}$	$\begin{aligned} & \text { XSAPT } \\ & +\mathrm{MBD}^{d} \end{aligned}$
F	-27.6	-32.9	-34.2	-31.4	-20.3	-23.8	-24.0	-22.9	7.3	9.1	10.2	8.5
Cl	-15.0	-15.7	-14.8	-17.6	-13.5	-14.8	-14.2	-16.0	1.5	0.9	0.6	1.6
Br	-14.0	-14.6	-12.6	-15.0	-12.8	-13.9	-12.5	-14.1	1.2	0.7	0.1	0.9
I	-11.9	-12.3	-	-	-11.3	-12.2	-	-	0.6	0.1	-	-

${ }^{a} \Delta E=E\left(C_{2 v}\right)-E\left(\mathrm{H}-\right.$ Bond). ${ }^{b}$ aug-cc-pVQZ(-PP) basis with a frozen core for F, Cl, and O , and an effective core potential for Br and I. ${ }^{c}$ All-electron SAPT0 $+\delta E_{\mathrm{HF}} /$ jun-cc-pVDZ. ${ }^{d}$ XSAPT $+\mathrm{MBD}+\delta E_{\mathrm{HF}}{ }^{[1 /} /$ def2-TZVPPD with CM5 charge embedding, ${ }^{(2)}$ using the LRC- ω PBE functional (with $\omega_{\text {GDD }}$ tuning ${ }^{(3)}$) to describe the monomer wave functions.

References

[1] Carter-Fenk, K.; Lao, K. U.; Liu, K.-Y.; Herbert, J. M. Accurate and efficient ab initio calculations for supramolecular complexes: Symmetry-adapted perturbation theory with many-body dispersion. J. Phys. Chem. Lett. 2019, 10, 2706-2714.
[2] Liu, K.-Y.; Carter-Fenk, K.; Herbert, J. M. Self-consistent charge embedding at very low cost, with application to symmetry-adapted perturbation theory. J. Chem. Phys. 2019, 151, 031102:1-7.
[3] Lao, K. U.; Herbert, J. M. Atomic orbital implementation of extended symmetry-adapted perturbation theory (XSAPT) and benchmark calculations for large supramolecular complexes. J. Chem. Theory Comput. 2018, 14, 2955-2978.

