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Recently, McKemmish and co-workers1 reported bench-
mark calculations on the performance of density func-

tional theory (DFT) for thermochemistry and barrier heights,
using a variety of double- and triple-ζ basis sets. A main
conclusion of that study is that such calculations should not be
performed without polarization functions. This is very old
advice,2 as is the suggestion that triple-ζ basis sets are needed
for DFT thermochemistry.3 Early benchmark studies suggested
that Pople-type basis sets including 6-311+G(2d,p), 6-
311+G(3df,2p) and 6-311+G(3df,2pd) were appropriate for
thermochemical calculations3−5 and the largest Pople basis set,
6-311++G(3df,3pd), continues to be used as a benchmark-
quality basis.6−48 As such, the titular prohibition on polarized
6-311G-type basis sets came as a surprise, given that none of
the aforementioned examples were considered in ref 1.
Pople-style basis sets have fallen out of favor in modern DFT

benchmarking,49,50 so a fresh and comprehensive look was
perhaps warranted. However, ref 1 suggests that basis-set
benchmarks and clear recommendations are unavailable in the
literature, which is untrue. Unambiguous recommendations are
that thermochemical calculations (including barrier heights)
should employ basis sets of at least triple-ζ quality,51−54

although a composite model wherein triple-ζ single-point
energies are evaluated at double-ζ geometries is often an
acceptable compromise.5,39,55 Triple-ζ basis sets are also
required to obtain converged intermolecular interaction
energies,20,56−59 unless counterpoise correction is em-
ployed.20,58 In all cases, quadruple-ζ basis sets should be
used to establish the basis-set limit with certainty,50,51,60−62

although extrapolation using double- and triple-ζ results also
works well.63 In short, copious basis-set recommendations for
DFT calculations are available in the literature, backed up by
extensive benchmarking, not least for thermochemistry.19,52,53

In particular, the 6-311++G(3df,3pd) basis set has been
endorsed as an alternative to aug-cc-pVQZ for thermochemical
DFT calculations.19

To the extent that ref 1 prompts a move away from 6-
31G(d) for thermochemical calculations, this would be a useful
development, and the suggestion that 6-31G(d) remains too
widely used in 21st-century quantum chemistry has been made
by others.64−66 We also concur with the idea that def2-TZVP
is a good basis set for routine thermochemical calculations,1

which is already standard practice.51−54 However, we reject the
blanket admonition to avoid all polarized 6-311G-type basis
sets, and we do not believe that the data presented in ref 1
justify such a conclusion.
To examine this in detail, we performed extensive bench-

marks using Pople-style basis sets. Calculations in ref 1 employ
a small (“diet”) subset67 of the GMTKN55 database,68

excluding molecules with elements that are not supported by
Pople basis sets. We exclude the same data points in order to
have equivalent tests for all basis sets, but we otherwise use the
full set of GMTKN55 thermochemical and kinetics data. This
amounts to 899 data points for each functional and basis set,
versus 139 data points in ref 1. We consider the same
exchange-correlation functionals as in ref 1, namely,
B3LYP,69,70 M06-2X,71 and ωB97M-V,72 except that we
augment B3LYP with the D3 dispersion correction.73

Dispersion effects on thermochemical stabilities can be
significant,74−76 and they are also important for obtaining
accurate conformational energies.77−79 For the calculations
reported here, the D3 correction reduces errors by 2−4 kcal/
mol relative to uncorrected B3LYP values.
All calculations were performed using Q-Chem v. 6.1.1.80

For the benchmarks, the integral screening threshold (τints)
and the shell-pair drop tolerance (τshlpr) were both set to 10−14

a.u. and the self-consistent field (SCF) convergence criterion
was set to τSCF = 10−8 Eh. The SG-1 quadrature grid

81 was used
for B3LYP, the SG-2 grid82 for ωB97M-V, and the SG-3 grid82
for M06-2X. The SG-1 grid is used for the nonlocal VV10
correlation functional83 in ωB97M-V. These grid choices are
the default settings in Q-Chem v. 6.1.1 and were selected in a
functional-specific way, following careful testing.50,82

Figure 1 combines the error statistics for thermochemistry
and barrier heights. (See Figure S1 for a larger collection of
basis sets and Figures S2−S4 for a breakdown of reaction
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energies versus barrier heights.) Our assessment includes def2-
QZVPD,84,85 which should lie near the basis-set limit and
establishes the inherent accuracy of each functional. We
consider a wide range of basis sets in the 6-311G family,
including both polarization and diffuse functions, in order to
test angular and radial convergence, respectively. Table 1
summarizes the error statistics for selected basis sets; see Table
S1 for the full set.
The def2-TZVP basis set is one of those recommended in

ref 1, and its performance is within 0.5 kcal/mol of def2-
QZVPD. At the same time, error statistics for 6-311G(2df,p)
are not much different and actually have smaller standard
deviations with respect to the benchmarks. Statistics for 6-
311+G(3df,2pd)86 and G3Large87 are a bit better still. The
latter two basis sets are more expensive than def2-TZVP but
less expensive than def2-QZVP, as detailed below. In terms of
accuracy, these two Pople basis sets afford comparable or
slightly better performance than def2-QZVPD, indicating some
error cancellation in the various DFT model chemistries.
The whiskers in Figure 1 provide indicators for the outliers,

but we find that standard deviations provide a more useful
means to discriminate between basis sets; see Table 1. In
particular, 6-311+G(2df,p) reduces the standard deviation of
the errors by 2 kcal/mol relative to def2-TZVP, for the meta-
generalized gradient approximations (meta-GGAs). This is a
significant improvement that is not adequately reflected in the
median absolute errors. In view of the full compendium of

error statistics, we see little reason to recommend def2-TZVP
over 6-311G(2df,p).
These results warrant softening the main conclusion in ref 1,

as not every member of the polarized 6-311G family needs to
be avoided. Importantly, the sizable body of literature that
employs 6-311+G(3df,3pd) as a benchmark-quality basis set
for DFT need not be reconsidered. For DFT thermochemistry,
6-311G(2df,p) is a reasonably good basis set, comparable to
def2-TZVP, and 6-311+G(3df,2pd) is also a high-quality basis
set, comparable to def2-QZVPD. Elsewhere, 6-311+G(2df,2p)
has been shown to provide good induction energies in
symmetry-adapted perturbation theory,59 a property that is
sensitive to the presence of adequate polarization functions.
The G3Large basis set is superior to def2-QZVPD, statistically
speaking, especially with regard to reducing the outliers.
The def2-TZVP basis set is convenient, not least because it

is defined for the entire periodic table,84 although G3Large has
been extended to 3d transition metals.88 In any case, for main-
group thermochemistry, there are comparable and even
superior Pople-style alternatives to def2-TZVP. To choose
between these options, computational cost may be part of the
consideration. Figure 2 presents timing data for a selection of

basis sets using a diazacrown ether naphthalimide molecule
(C41H50O6N4) as a test case.

89 (Timing data for additional

Figure 1. Statistical summary of signed errors for reaction energies
and barrier heights in the GMTKN55 data set. Each colored box
contains the middle 50% of the data points, and the median error
(with respect to the benchmark value) is indicated by a horizontal
line. Whiskers represent 1.5× times the interquartile range,
representing a 99% confidence interval in the case of a normal
distribution.

Table 1. GMTKN55 Error Statistics (Relative to Benchmark Values) for Selected Basis Sets, in kcal/mol

B3LYP+D3 M06-2X ωB97M-V

median mean std. median mean std. median mean std.

Basis abs. abs. dev. abs. abs. dev. abs. abs. dev.

6-311G(2df,p) 2.8 5.5 9.4 1.8 4.0 7.3 1.7 3.6 6.6
6-311+G(2df,p) 2.4 4.9 9.5 1.5 3.0 5.6 1.2 2.6 5.4
6-311G(2df,2p) 2.4 5.3 9.0 1.8 3.9 7.2 1.8 3.5 6.4
6-311+G(2df,2p) 2.3 4.8 9.2 1.5 2.9 5.5 1.1 2.4 5.1
6-311+G(3df,2pd) 2.2 4.5 8.7 1.3 3.3 8.2 1.2 2.8 6.6
G3Large 2.2 4.6 8.8 1.3 2.8 5.5 1.1 2.4 4.9
def2-TZVP 2.7 5.3 10.0 1.6 3.4 7.6 1.3 3.4 7.2
def2-TZVPD 2.4 5.0 9.9 1.4 3.2 7.5 1.1 3.0 7.0
def2-QZVPD 2.2 4.9 9.6 1.4 3.2 8.1 1.0 2.8 7.3

Figure 2. Wall times (on a single 48-core node) for single-point
energy calculations on C41H50O6N4. All calculations use τSCF = 10−8

Eh and τints = τshlpr = 10−12 a.u., and each calculation converged in
either 14 or 15 SCF iterations.
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basis sets can be found in Figure S5.) For all three functionals
considered here, the 6-311G(2df,p) basis set is 1.7× faster than
def2-TZVP. This economy is partly the result of the
compound sp shells that are used in Pople basis sets; see
Figure S6 for an indication of the speedups associated with the
use of compound shells.
As noted long ago,90 the use of compound shells in Pople

basis sets reduces their variational flexibility. This is discussed
at length in ref 1; nevertheless, the accuracy documented
herein speaks for itself. Whereas ref 1 suggests that
optimization of the contracted s functions is the primary
problem with Pople basis sets, our results indicate that the
absence of sufficient polarization functions is the primary
limitation of a basis set such as 6-311G(d,p).
For a molecule as large as C41H50O6N4, the cost of hybrid

DFT is dominated by Hartree−Fock exchange and only minor
timing variations are observed among different functionals,
despite the higher-quality grids that are necessary for meta-
GGAs. For a medium-size molecule such as this, there is hardly
any computational advantage to using B3LYP as compared to
modern meta-GGAs, although that assessment can be skewed
by timing data in low-quality basis sets. For example, a
ωB97M-V/6-31G(d) calculation for C41H50O6N4 is 3.3× more
expensive (per SCF iteration) than a B3LYP/6-31G(d)
calculation, but ωB97M-V/def2-TZVP is only 1.2× more
expensive than B3LYP/def2-TZVP.
As a realistic exemplary application, we computed the

reaction energy (ΔErxn) and forward barrier height (ΔE‡) for a
632-atom active-site model of methyl-group transfer catalyzed
by the enzyme catechol O-methyltransferase,91 whose
thermochemistry and kinetics have recently been examined
using large-scale quantum chemistry calculations.91−93 As in
previous work,93 we used the ωB97X-D functional94 in
conjunction with an iterative implementation95 of the
conductor-like dielectric continuum model.96−98 We obtained
ΔErxn = −18.4 kcal/mol using def2-TZVP versus ΔErxn =
−18.0 kcal/mol with 6-311G(2df,p), and ΔE‡ = 14.6 kcal/mol
with def2-TZVP as compared to 13.8 kcal/mol with 6-
311G(2df,p). Differences between the two basis sets are well
within the intrinsic accuracy of the functional itself,50 but the
def2-TZVP calculations are 1.9× more expensive. This is a
significant reduction, given that the ωB97X-D/def2-TZVP
calculations required 2,841 h of aggregate computing time on a
single 48-processor node.
Finally, let us comment on the proper use of diffuse

functions. Ref 1 suggests these should be used only when
warranted, leaving open the question of when that might be.
The importance of diffuse functions goes well beyond
calculations on anions, the only example given in ref 1. Diffuse
functions are often needed to converge noncovalent inter-
action energies,20,58,59 polarizabilties,99 and excitation energies
computed using time-dependent DFT.23,100−103 For the latter,
the 6-311+G(2df,p) basis set is found to afford converged
results.102 Diffuse functions can also be important for
thermochemistry, barrier heights, and isomerization ener-
gies.104,105 For ground-state thermochemistry, we find that
the minimally augmented def2-ma-TZVP basis set,59 which is a
proper subset of def2-TZVPD, performs just as well as 6-
311+G(2df,p) but is less expensive.
Ref 1 reports convergence problems in the presence of

diffuse functions, but these are artifacts of thresholds that are
inappropriate for large molecules. The most important
threshold is τshlpr, but for consistency, we always set τints =

τshlpr; let us denote this mutual threshold as τthresh. The setting
τthresh = 10−8 a.u. that is used in ref 1, reflecting the default for
single-point energy calculations in Q-Chem v. 5.4.2, is
inappropriate even for medium-size molecules. This value of
τthresh can afford an ostensibly paradoxical situation in which
tightening τthresh actually reduces the calculation time, because
a modest increase in the cost of a Fock build (as τthresh is
reduced) is compensated by rapid and robust convergence due
to superior handling of numerical linear dependencies. Using a
convergence criterion τSCF = 10−8 Eh, we are unable to
converge SCF calculations for C41H50O6N4 within 100 cycles,
using any threshold τthresh > 10−11 a.u. for 6-311+G(2df,p) and
def2-ma-TZVP, or any value τthresh > 10−12 a.u. for def2-
TZVPD. Loose thresholds are also the reason for convergence
problems reported elsewhere for ωB97M-V/def2-SVPD
calculations on large van der Waals complexes.106

It is suggested in ref 1 that the requisite number of SCF
cycles is likely to increase with molecular size. This may be true
in principle, given that the energy gradient with respect to
orbital rotations (FP − PF) is size-extensive,107 but in practice
this seems not to be an issue in molecules with up to ∼100
atoms, provided that appropriate thresholds are used. We
routinely use τthresh = 10−12 a.u. in our own work. For that
value, DFT/def2-TZVPD calculations on C41H50O6N4 con-
verge in 14−15 SCF iterations for τSCF = 10−8 Eh, or 7−8
iterations for τSCF = 10−5 Eh. These are typical values even for
small molecules, and similar behavior as a function of τthresh is
observed for the coronene dimer, (C24H12)2. For a 157-atom
DNA intercalation complex that has become a standard
benchmark for noncovalent interactions,108−112 and which has
an overall charge of −2, we find that τthresh must be tightened
to 10−12 a.u. for 6-311+G(2df,p) and def2-ma-TZVP, and
τthresh = 10−13 a.u. is needed for def2-TZVPD. Using these
thresholds, convergence is obtained in 16 SCF iterations for
τSCF = 10−8 Eh or 7−9 iterations for τSCF = 10−5 Eh. We
recommend τthresh = 10−12 a.u. for most applications, switching
to τthresh = 10−14 a.u. if convergence difficulties arise. For small
molecules, these tighter thresholds add little to the overall
computational time, and for larger molecules they may actually
reduce it.
In summary, we find no support for a universal prohibition

on 6-311G-type basis sets for thermochemical DFT calcu-
lations, provided that appropriate polarization functions are
included. Basis sets such as 6-311G(d,p) certainly exhibit larger
errors, as documented in ref 1, but 6-311G(2df,p) affords
statistical performance on par with def2-TZVP at roughly half
the cost. Basis sets such as 6-311+(3df,2pd) and G3Large
afford accuracy rivaling that of def2-QZVPD at 5−10% of the
cost. Where diffuse basis functions are involved, we have
clarified that numerical thresholds that are satisfactory for small
molecules are often inappropriate for larger ones, yet robust
SCF convergence is recovered using tight thresholds.
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