Supporting Information for: "Charge Separation and Charge Transfer in the Low Lying Excited States of Pentacene"

Bushra Alam, Adrian F. Morrison and John M. Herbert*

August 31, 2020

1 Density Functionals

RSH functionals used in this work follow the general form given in Eq. (9). Specific formulas are provided here, for definiteness:

$$E_{\rm xc}^{\rm RSH-\omega PBE} = E_{\rm x LB}^{\rm HF} + E_{\rm x SB}^{\rm PBE} + E_{\rm c}^{\rm PBE} \tag{S1}$$

$$E_{\rm xc}^{\rm sRSH-\omega PBE} = \epsilon^{-1} E_{\rm x,LR}^{\rm HF} + \epsilon^{-1} E_{\rm x,SR}^{\omega PBE} + (1 - \epsilon^{-1}) E_{\rm x}^{\rm PBE} + E_{\rm c}^{\rm PBE}$$
(S2)

$$E_{\rm xc}^{\rm RSH-\mu BLYP} = E_{\rm x LB}^{\rm HF} + E_{\rm x SB}^{\mu B88} + E_{\rm c}^{\rm LYP} \tag{S3}$$

$$E_{\rm xc}^{\rm sRSH-\mu BLYP} = \epsilon^{-1} E_{\rm x, LR}^{\rm HF} + \epsilon^{-1} E_{\rm x, SR}^{\mu B88} + (1 - \epsilon^{-1}) E_{\rm x}^{\rm B88} + E_{\rm c}^{\rm LYP}$$
(S4)

$$E_{\rm xc}^{\rm RSH-\omega PBEh} = \alpha E_{\rm x,SR}^{\rm HF} + E_{\rm x,LR}^{\rm HF} + (1-\alpha) E_{\rm x,SR}^{\omega PBE} + E_{\rm c}^{\rm PBE}$$
(S5)

$$E_{\rm xc}^{\rm sRSH-\omega PBEh} = \alpha E_{\rm x,SR}^{\rm HF} + \epsilon^{-1} E_{\rm x,LR}^{\rm HF} + (\epsilon^{-1} - \alpha) E_{\rm x,SR}^{\omega PBE} + (1 - \epsilon^{-1}) E_{\rm x}^{\rm PBE} + E_{\rm c}^{\rm PBE}$$
(S6)

By way of notation, $E_{x,SR}^{PBE}$ is called ωPBE , which is the short-range GGA exchange functional developed in Ref. 1 based on the original PBE functional. Similarly, $E_{x,SR}^{\mu B88}$ is called $\mu BLYP$ as developed in Ref. 2. (The $\mu B88$ versus ωPBE nomenclature was introduced in Ref. 3.) In the present work, we use 20% short-range Hartree-Fock exchange ($\alpha = 0.2$) for the functionals in Eqs. (S5) and (S6), in combination with ωPBE exchange, as in the LRC- $\omega PBEh$ functional developed in Ref. 1. The "h" in $\omega PBEh$ indicates that the functional is a hybrid even at short range. The quantity ϵ that appears in the sRSH functionals is the dielectric constant, used to ensure that the asymptotic form of the electron-hole interaction is $\sim (\epsilon r)^{-1}$, and for pentacene we use $\epsilon = 3.6$.

For comparison to previous literature, Table S1 provides optimally-tuned range-separation parameters obtained for pentacene monomer using a variety of functionals and basis sets. However, the calculations reported here use the cluster-tuned values of ω that are provided in Table II.

2 TDDFT Results

The following additional TDDFT results are provided.

- Table S2: Excitation energies and dipole moments for the dimer and the two tetramers, computed using the OT-RSH-μBLYP and OT-sRSH-μBLYP functionals. These are analogous to the OT-(s)RSH-ωPBE results
- Table S3: Excited-state dipole moments for the low-lying states of pentacene hexamer. These data are analogous to those presented for the dimer in Table III and for the tetramer in Tables IV and V.

^{*}herbert@chemistry.ohio-state.edu

- Figure S1: Electron–hole correlation plots (matrices Ω) computed for pentacene dimer with various functionals.
- Figure S2: Electron-hole correlation plots (matrices Ω) computed for the compact pentacene tetramer, with various functionals. These plots complement the ones provided in Fig. 6, providing results for some additional functionals.
- Figure S3: Electron-hole correlation plots (matrices Ω) computed for the compact pentacene tetramer, with various functionals. These plots complement the ones provided in Fig. 7, providing results for some additional functionals.

Functional	Basis Set	$\omega \; (\mathrm{bohr}^{-1})$	Reference
RSH- ω PBE	$6-31+G^{*}$	0.195	this work
RSH- ω PBEh	$6-31+G^{*}$	0.160	this work
$RSH-\mu BLYP$	$6-31+G^{*}$	0.200	this work
RSH- ω PBE	cc-PVTZ	0.195	4
RSH- ω PBEh	cc-PVTZ	0.157	4
RSH- ω PBEh	cc-PVTZ	0.160	5
RSH- ω PBE	$6-31G^{**}$	0.20	6
$RSH-\mu BLYP$	$6-31G^{**}$	0.21	6
RSH- ω B97X	$6-31G^{**}$	0.18	6
RSH- ω B97X-D	$6-31G^{**}$	0.17	6
RSH- ω B97X-D	$6-31G^{**}$	0.165	7
RSH- ω PBEh	$6-311+G^{**}$	0.155	8

Table S1: Range separation parameters (ω) tuned for pentacene monomer.

Table S2: Excitation energies and dipole moments obtained with the OT-RSH- $\mu\rm BLYP$ and OT-sRSH- $\mu\rm BLYP$ functionals.

State	OT-RSH-	μBLYP	OT-sRSH-	OT-sRSH-µBLYP		
State	$\Delta E \ (eV)$	μ (D)	$\Delta E \ (eV)$	μ (D)		
Dimer						
0		1.16		1.11		
1	2.08	14.27	2.12	14.65		
2	2.47	1.42	2.49	1.31		
3	2.49	1.53	2.51	1.45		
4	2.87	15.81	2.88	16.23		
5	3.29	5.35	3.31	1.24		
Compact Tetramer						
0		0.05		0.05		
1	1.83	0.58	1.86	0.95		
2	1.85	0.43	1.88	0.78		
3	1.89	0.34	1.92	0.59		
4	1.92	0.20	1.94	0.42		
5	1.95	0.08	1.97	0.11		
Linear Tetramer						
0		3.67		3.50		
1	1.96	10.27	1.99	11.05		
2	2.00	13.10	2.03	12.78		
3	2.05	10.77	2.07	11.07		
4	2.21	11.72	2.23	12.04		
5	2.28	11.28	2.30	11.41		

Table S3: Excitation energies (ΔE , in eV) and dipole moments (μ , in D) of pentacene hexamer.

State	$\omega B97X-V$		CAM-B3LYP		OT-RS	$OT-RSH-\omega PBE$		$OT-sRSH-\omega PBE$	
	ΔE	μ	ΔE	μ	ΔE	μ	ΔE	μ	
0		2.73		2.69		2.70		2.66	
1	2.60	2.04	2.26	7.90	1.70	16.11	1.70	16.15	
2	2.62	2.79	2.26	4.43	1.70	15.70	1.71	15.74	
3	2.67	2.35	2.35	3.22	1.80	17.26	1.80	17.45	
4	2.71	3.13	2.38	8.42	1.81	16.71	1.81	16.71	
5	2.74	2.14	2.43	3.69	1.89	15.07	1.89	15.12	

Figure S1: Electron-hole correlation plots for the first four excited states of pentacene dimer, obtained using four different functionals and presented in the form of matrices Ω , where Ω_{AB} is defined in eq. 14.

Figure S2: Electron–hole correlation plots for the first four excited states of the compact pentacene tetramer, obtained using four different functionals and presented in the form of matrices Ω , where Ω_{AB} is defined in eq. 14.

Figure S3: Electron-hole correlation plots for the first four excited states of the compact pentacene tetramer, obtained using four different functionals and presented in the form of matrices Ω , where Ω_{AB} is defined in eq. 14.

References

- Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J. Chem. Phys. 2009, 130, 054112:1–8.
- [2] Rohrdanz, M. A.; Herbert, J. M. Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J. Chem. Phys. 2008, 129, 034107:1–9.
- [3] Richard, R. M.; Herbert, J. M. Time-dependent density-functional description of the ¹L_a state in polycyclic aromatic hydrocarbons: Charge-transfer character in disguise? J. Chem. Theory Comput. 2011, 7, 1296–1306.
- [4] Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.; Neaton, J. B.; Baer, R.; Kronik, L. Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. *Phys. Rev. Lett.* **2012**, 109, 226405:1–6.
- [5] Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L. Gap renormalization of molecular crystals from density-functional theory. *Phys. Rev. B* 2013, 88, 081204(R):1–5.
- [6] Zhang, C.-R.; Sears, J. S.; Yang, B.; Aziz, S. G.; Coropceanu, V.; Brédas, J.-L. Theoretical study of the local and charge-transfer excitations in model complexes of pentacene-C₆₀ using tuned range-separated hybrid functionals. J. Chem. Theory Comput. 2014, 10, 2379–2388.
- [7] Zheng, Z.; Brédas, J.-L.; v. Coropceanu, Description of the charge transfer states at the pentacene/C₆₀ interface: Combining range-separated hybrid functionals with the polarizable continuum model. J. Phys. Chem. Lett. 2016, 7, 2616–2621.
- [8] Bhandari, S.; Cheung, M.; Geva, E.; Kronik, L.; Duneitz, B. D. Fundamental gaps of condensed-phase organic semiconductors from single-molecule calculations using polarization-consistent optimally tuned screened range-separated hybrid functionals. J. Chem. Theory Comput. 2018, 14, 6287–6294.