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ABSTRACT: The many-body expansion (MBE) and its extension to overlapping
fragments, the generalized (G)MBE, constitute the theoretical basis for most fragment-
based approaches for large-scale quantum chemistry. We reformulate the GMBE for use
with embedding charges determined self-consistently from the fragment wave
functions, in a manner that preserves the variational nature of the underlying self-
consistent field method. As a result, the analytic gradient retains the simple “sum of
fragment gradients” form that is often assumed in practice, sometimes incorrectly. This
obviates (without approximation) the need to solve coupled-perturbed equations, and
we demonstrate stable, fragment-based ab initio molecular dynamics simulations using
this technique. Energy conservation fails when charge-response contributions to the
Fock matrix are neglected, even while geometry optimizations and vibrational
frequency calculations may yet be accurate. Stable simulations can be recovered by means of straightforward modifications
introduced here, providing a general paradigm for fragment-based ab initio molecular dynamics.

Fragment methods1−3 provide a practical and intuitive
means to reduce the computational scaling of ab initio

quantum chemistry. The common idea amongst these methods
is decomposition of a large (super)system into smaller
subsystems. Numerous subsystem electronic structure calcu-
lations, which are trivially parallelizable, are then used to
approximate the total energy or other properties of the
supersystem. An appealing application of these methods is ab
initio molecular dynamics (AIMD) of liquid water, where
fragment-based approaches have recently been used to perform
simulations at correlated wave function levels of theory.4−7

In an attempt to improve accuracy by capturing many-body
polarization, fragment methods often embed the subsystem
calculations in a classical electrostatic representation of the
entire supersystem, using atomic point charges derived from
the fragment wave functions.8−14 In principle, these embed-
ding charges should be iteratively updated in order to reflect
changes in the fragment wave functions;8−11 however, self-
consistency significantly complicates the formulation of
analytic energy gradients by introducing response terms that
describe how the embedding charges respond to changes in the
wave functions.9,10 In practice these response terms are often
neglected,8,11,13,15−18 meaning that the putative fragment-
based analytic gradient is formally incorrect insofar as it is not
the derivative of the corresponding fragment-based energy
expression. It has been argued that these terms are numerically
small,13 and their neglect has been justified a posteriori by
noting that fragment-based geometry optimizations and

harmonic frequency calculations accurately approximate super-
system results.13,15−17,19−21

There do exist fragment-based methods for which correct
analytic gradients have been reported with self-consistent
electrostatic embedding.9,10,22−25 However, these methods are
formulated in such a way that the embedding compromises the
variational nature of the underlying self-consistent field (SCF)
method, and therefore a correct analytic gradient requires
solution of coupled-perturbed equations, which is ordinarily
not required for SCF first derivatives.26 A notable example is
the fragment molecular orbital (FMO) method,27−31 the most
widely used fragment-based approach. First proposed in
1999,32 with an approximate analytic gradient reported soon
thereafter,33 various pieces of the gradient were developed
subsequently,34−38 until finally in 2011 the exact analytic
gradient was reported.22−24 Notably, inclusion of the response
terms is found to improve energy conservation in AIMD
simulations.39 That said, the long delay in reporting the exact
analytic gradient for FMO is a testament to its complexity and
motivates our attempt to simply the formalism. In the present
work, we introduce an alternative to FMO that satisfies a
variational principle and therefore obviates the need to solve
coupled-perturbed equations, without sacrificing a rigorously
correct energy gradient.

Received: April 29, 2019
Accepted: June 6, 2019
Published: June 6, 2019

Letter

pubs.acs.org/JPCLCite This: J. Phys. Chem. Lett. 2019, 10, 3877−3886

© XXXX American Chemical Society 3877 DOI: 10.1021/acs.jpclett.9b01214
J. Phys. Chem. Lett. 2019, 10, 3877−3886

D
ow

nl
oa

de
d 

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 a
t 1

2:
56

:4
0:

99
0 

on
 J

un
e 

28
, 2

01
9

fr
om

 h
ttp

s:
//p

ub
s.

ac
s.

or
g/

do
i/1

0.
10

21
/a

cs
.jp

cl
et

t.9
b0

12
14

.

pubs.acs.org/JPCL
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.9b01214
http://dx.doi.org/10.1021/acs.jpclett.9b01214


Most fragment-based approaches, including FMO, rely at
some level upon a many-body expansion (MBE) of the
supersystem energy:40,41

E E E E
A

A
A B

AB
A B C

ABC∑ ∑ ∑= + Δ + Δ + ···
< < < (1)

The first term is the sum of fragment energies and the
subsequent terms represent n-body corrections, e.g., for n = 2:

E E E EAB AB A BΔ = − − (2)

Truncation of eq 1 at n-body terms forms the basis of the
FMOn method,42,43 but other methods fall within this
framework as well.40 These include Stoll’s “method of
increments”44 as well as electrostatically embedded (EE)-
MBE methods proposed independently by Hirata et al.,45,46 by
Truhlar and co-workers,47,48 and by Beran et al.49−52

Many other fragment-based methods can be understood
within the framework of a generalized (G)MBE developed by
our group.14,40,53,54 The GMBE extends eq 1 to the case where
the supersystem is tessellated into overlapping fragments
A,B,C, ... while also introducing new fragments A ∩ B, A ∩ B ∩
C, ... in order to avoid double counting. At the one-body (n =
1) level, this leads to an energy expression
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∩ ∩
(3)

We call this approach GMBE(1),40,54 but a variety of other
methods can be understood as applications of eq 3. These
include Li’s “generalized energy-based fragmentation” (GEBF)
method;8,15−18,21 Gadre’s “molecular tailoring approach”
(MTA);55−60 Zhang’s “molecular fractionation with conju-
gated caps” (MFCC) approach;61−63 Raghavachari’s “mole-
cules-in-molecules” (MIM) method;64−67 and the “systematic
molecular fragmentation” (SMF) method developed by Collins
and co-workers.13,19,68 The GEBF, MTA, and MFCC methods
use precisely the energy formula in eq 3,40,64 whereas SMF and
MIM include a subset of the intersections.40,53 These
interconnections do not seem to be widely appreciated.
In this work, we compute subsystem energies in the presence

of atomic point charges representing the rest of the
supersystem. If these charges are fixed a priori, then the
gradient dE/dx obtained via term-by-term differentiation of eq
1 or 3 is a simple combination of subsystem gradients, but the
situation is more complicated if the charges are updated on-
the-fly using the fragment wave functions. Often these
embedding charges are simply inserted as “external” charges,
in the spirit of a mixed quantum mechanics/molecular
mechanics (QM/MM) approach, without modifying the
underlying SCF procedure. The result is that the SCF
procedure no longer satisfies a variational property.9,22,40,46

This fact has not always been recognized,8,11,15−18 leading to
incorrect gradients. Note that we can express the exact gradient
(of eq 3, for example) in a sum-over-fragments form,

E
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d
d
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<

∩

(4)

but quantities such as dEA/dx must be interpreted as total
derivatives of EA with respect to perturbation of x. For
embedding charges that depend on the fragment wave
functions, dEA/dx is not equivalent to the result of a
straightforward gradient calculation on subsystem A.

Assume henceforth that all calculations are performed at an
SCF level of theory. The energy of fragment K can be written
in the form

E E EK K K
SCF 0 emb= + (5)

where E0
K[PK] denotes the SCF energy functional and Eemb

K is
the classical embedding energy. Denoting the Fock matrix for
isolated fragment K as fK = δE0

K/δPK, the Fock matrix FK =
δESCF/δP

K for charge-embedded fragment K is69
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where qk is a point charge located at Rk and

g g
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represents the electrostatic potential generated by the basis-
function pair gμ(r) gν(r). The total derivative of ESCF

K with
respect to x is70
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The first term (∂E0
K/∂x) is the Hellmann−Feynman con-

tribution to the SCF gradient, which involves derivatives of
one- and two-electron integrals. The second term can be
rewritten as −WK(∂SK/∂x),26 where WK = PKFKPK is the
energy-weighted density matrix and SK is the overlap matrix.
Together, these two terms constitute the usual SCF energy
gradient.
The final term in eq 8 is

E
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∂

∂
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The second term in this equation involves the response of the
embedding charges to perturbation of x, and it is these terms
that are neglected if the derivatives in eq 4 are naıv̈ely replaced
by a gradient calculation for each subsystem. Collins13 has
argued that the magnitude of the neglected response terms is
small and thus they are negligible. Numerical comparisons
using the FMO analytic gradient suggest that the total
contribution arising from the response terms is ∼10−4 au,71

which is indeed comparable to a typical gradient-based
stopping criterion for geometry optimizations. However,
neglect of the response terms is thought to be the origin of
the failure to conserve energy that is observed in some AIMD
simulations using fragment-based methods.39,72−74

Whatever the magnitude of the response terms, we argue
that neglecting them is philosophically apart from neglect of
terms in the (G)MBE and should not be considered as just
another aspect of the fragment-based approximation. Whatever
approximations or assumptions may have gone into the design
and formulation of a fragment-based energy expression (based
on eq 1 or 3, for example), our view is that once this ansatz for
the total energy has been established, one should insist that the
analytic energy gradient be the exact derivative of this energy
expression.
That said, calculation of the response terms in the FMO

method does complicate its gradient, requiring solution of
fragment-based coupled-perturbed equations.9,10,22−25 We
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avoid this complexity, without sacrificing correctness of the
gradient, by formulating a variational version of EE-(G)MBE,
whose exact analytic gradient is formally simple and computa-
tionally facile yet where embedding charges are nevertheless
computed self-consistently from the fragment wave functions.
The key to doing so is to use the explicit polarization (“XPol”)
method75,76 to derive Fock matrices for the fragments based on
application of the variational theorem to an embedded SCF
energy expression. In fact, this is precisely the mathematics that
leads from the fragment SCF energy expression in eq 5 to the
Fock matrix defined in eq 6.69

Our new approach can be cast in a general form, applicable
to any EE-(G)MBE method, by recognizing that all such
methods express the total energy as a sum of subsystem energy
calculations,

E p E
K

K KSCF∑ ρ= [ ]
(10)

with certain coefficients pK. For example, the conventional n-
body expansion based on disjoint fragments, which we call
MBE(n), corresponds to an energy expression41
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In this case, pK is a combinatorial factor that multiplies
EK
MBE(n−m) and accounts for the fact that this particular (n −

m)-body subsystem appears numerous times through order n
in eq 1.
To extend this to the GMBE, we need to consider the set-

theoretical inclusion/exclusion principle, which states that the
cardinality of a union

S S

n
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= (12)

of sets {Sn}, which may or may not be disjoint, can be
expressed in terms of cardinalities of their mutual intersections:
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This principle has been used as heuristic motivation for the
MTA method,55,56 but in fact it underlies the GEBF, SMF, and
MIM approaches as well,40,64 and can be used to derive eq 3
based on a partition of the supersystem’s Hamiltonian.40,53,54

The total density of the supersystem can be expressed as a
linear combination of subsystem densities, since the latter form
something analogous to a “cover”, in the topological sense:14
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This is simply a more general version of the approximation
used for the FMO density,29
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>

(15)

Similarly, we take eq 14 to define the GMBE approximation to
the supersystem’s density, and for convenience we replace the
subsystem index i1 ∩ i2 ∩ ··· ∩in with a single index K, a ̀ la eq
10:

pr r( ) ( )
K

K KGMBE ∑ρ ρ=
(16)

Coefficients pK = ±1 depend on the number of primitive
fragment intersections needed to generate subsystem K. The
total embedding charge on atom k, as deduced from eq 14, is14
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Here, qk is the charge on atom k in a particular subsystem, and
the δ-functions are equal to 1 or 0 depending on whether k
belongs to the indicated subsystem or not.
In principle we could use the fragment densities to generate

a Coulomb embedding potential, as is sometimes done in
FMO calculations,29 but in the present work we pursue a
point-charge embedding instead. This is done also in GEBF,8

MFCC,11 SMF,13 and MTA12 calculations. (In practice, FMO
calculations often use a hierarchical embedding consisting of
density embedding at short range and point-charge embedding
at longer range. Inclusion of exchange is not recommended.29)
For point charges, the embedding contribution to fragment K’s
energy is

E
q Z q

R R
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(18)

The original XPol method used Mulliken charges for the
{qj},

75 although other definitions are possible including
Löwdin charges,77 Hirshfeld charges,78 and charges derived
from the electrostatic potential.69,70,79

Individual subsystem energies in eq 10 are evaluated
according to eq 5. By requiring that the embedded SCF
energy ESCF

K be stationary with respect to variation of ρK, one
obtains an SCF equation for fragment K:69,75,77

F C S CK K K K Kε= (19)

The fragment Fock matrices are given by eq 6, the form of
which guarantees that the SCF procedure is variational.69,75,77

As an aside, we note that the fragment Fock matrices used in
FMO have the form29

F f q I( )K K

j K
j j

QM/MM, ∑= −μν μν μν
∉ (20)

We call this a “QM/MM-style” Fock matrix because it is
identical to that used when external point charges are
introduced into an SCF calculation. As compared to the
XPol Fock matrix in eq 6, the QM/MM-style Fock matrix
omits charge-response terms of the form

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b01214
J. Phys. Chem. Lett. 2019, 10, 3877−3886

3879

http://dx.doi.org/10.1021/acs.jpclett.9b01214


q

P
( )k

k
KΛ =

∂

∂μν
μν (21)

along with a factor of 1/2 in the charge−density interaction.
The FMO energy expression is not variational and therefore its
analytic gradient requires solution of coupled-perturbed
equations.22−24

Returning to the variational Fock matrix FK, note that the
derivatives ∂Eemb/∂qk in eq 6 are easy to evaluate using eq 18.
The remaining term in Fμν

K involves the charge-response
derivatives defined in eq 21. These can only be evaluated once
we have specified how the embedding charges will be obtained
from the fragment densities. In the case of Mulliken charges,

q Z S Pk K
K

∑ ∑= −
μ ν

μν μν
∈ (22)

the result is77

S( )k KδΛ = −μν μν μ∈ (23)

where δμ∈K = 1 or 0 depending on whether the basis function
gμ is located on fragment K or not. Formulas for Löwdin and
for Hirshfeld embedding charges are also simple,77,78 whereas
those for “CHELPG” charges80 (obtained from the molecular
electrostatic potential, evaluated on a grid) are significantly
more complicated.69,70,79

Operationally, our variational formulation of EE-(G)MBE
requires a self-consistent XPol calculation for each subsystem
K, in order to determine the embedding charges. The flowchart
in Figure 1 outlines the method. A similar idea was used by
Gao and Wang in the context of energy decomposition analysis
using the MBE,81 though no simulations were performed; it
has not previously been suggested for GMBE-based methods
that exploit overlapping fragments. The self-consistent XPol

iterations can be performed very efficiently because an
excellent initial guess is always available based on a
superposition of one-body wave functions, therefore once the
gas-phase fragment wave functions have been computed, the
subsequent fragment SCF procedures usually converge in 2 or
3 cycles.
The derivative of the EE-(G)MBE energy expression (eq

10) can be evaluated term-by-term, i.e., subsystem-by-
subsystem. For each subsystem, the two contributions to the
total derivative dE/dx are

E
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The partial derivatives ∂E0/∂x and ∂Eemb/∂x indicate
derivatives of any explicit dependence on x. These are the
Hellmann−Feynman contributions to the gradient, containing
derivatives of the one- and two-electron integrals. The gradient
of the total energy for fragment K is then given by eq 8, whose
first two terms are equivalent to a traditional SCF gradient for
subsystem K except that the Fock matrix is the modified one in
eq 6. To this must be added the gradient of the embedding
potential (eq 9), the key aspect of which is an explicit
expression ∂qk/∂x for how the embedding charges change as
the nuclei are perturbed. The same derivatives are needed to
perform Ewald summation in QM/MM simulations,70,79 and
appropriate expressions can be found in ref 70.
The variational EE-(G)MBE method and its analytic

gradient have been implemented in a modified version of Q-
Chem.82 Tests versus finite-difference calculations confirm the
validity of the gradient; see Tables S1 and S2. The method is
applicable to any approach that combines a linear combination
of subsystem SCF calculations to obtain the total energy (eq
10). This includes methods based on the traditional MBE but
also those based on the inclusion/exclusion principle such as
MTA, MFCC, SMF, and “level 1” of the MIM approach, each
of which uses a variant of the energy formula in eq 3.40 We
have previously called this approach “GMBE(1)” to emphasize
this generality along with the fact that this approach can be
extended to GMBE(n).14,40,54 In fact, GMBE(2) proves to be
essentially exact for many noncovalent clusters,54,83 and a
pared-down approximation to GMBE(2) affords good results
for proteins.14 Only GMBE(1) is considered here, in
conjunction with Mulliken embedding charges.
Our general philosophical approach to fragment-based

quantum chemistry is to understand the mechanics of these
methods first, before making pragmatic approximations. This
systematic approach has led us to question the efficacy of low-
order MBE(n) methods,41,83−85 at least in the absence of some
kind of supersystem calculation to capture high-order
induction. (The latter approach has been used with success
by Beran et al.50,52 and by Raghavachari and co-workers.65−67)
GMBE(n) represents a possible alternative. This approach
generates far more subsystem calculations as compared to the
traditional MBE, and we choose to begin conservatively with
an exhaustive fragmentation scheme, before introducing
screening approximations85,86 that promise to make the
calculations more practical.Figure 1. Flowchart for the variational EE-GMBE approach.
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Test systems include the clusters (H2O)32 and F−(H2O)31.
As in previous work,40,53,54 these are first divided into “groups”
corresponding to a single H2O or F−. We then loop through all
groups, constructing fragments out of any groups that lie
within a specified distance cutoff (ξ) from one another.
Redundant fragments are eliminated, and then intersections of
nonredundant fragments are added as additional fragments, per
eq 3. This manner of constructing fragments has been used in
the GEBF approach as well,8,87−89 and for (H2O)32 a cutoff of
ξ = 3.0 Å results in 169 fragments (including intersections)
that contain 15−22 water molecules each. A single subsystem
calculation thus constitutes a sizable portion of the full cluster,
but this fact alone does not guarantee energy conservation in
AIMD simulations when charge-response contributions to the
gradient are neglected.
Before examining AIMD simulations, we first validate the

EE-GMBE(1) approximation to the supersystem density, eq
14. Figure 2 shows an isocontour plot of the difference

between the supersystem density for (H2O)10 and the GMBE
approximation to it (ρ − ρGMBE), using an isocontour value
that is typically used for evaluating molecular size.90 Differ-
ences between the two densities are extremely small, as
confirmed (and more easily quantified) by comparing Mulliken
charges obtained from either density. The mean absolute
difference (MAD) between the supersystem and GMBE-based
Mulliken charges is 0.004 electrons, and the maximum
difference is 0.0105 electrons; see Table S3. Results are just
as good for a F−(H2O)10 cluster (Table S4), with a MAD of
just 0.002 electrons and a maximum deviation of 0.077
electrons. While various studies using the GEBF, MTA,
MFCC, SMF, and MIM1 methods have evaluated the accuracy
of what is effectively the EE-GMBE(1) approximation for the
energy, this example suggests that the overlapping-fragment
approach also affords an accurate approximation to the total
supersystem density. This in turn suggests that EE-GMBE(1)
might be useful for properties other than energy, such as
polarizabilities,8,17 vibrational intensities,15 NMR chemical
shifts,65,91,92 and other response properties.66,93−95

The focus of this work is the GMBE analytic gradient. To
evaluate the importance of possessing a proper gradient, we
face the peculiar task of deciding what is the right way to
implement the wrong gradient. The only reasonable answer, in
our view, is to test variants that resemble other methods that
have been reported in the literature. This suggests several
options. For example, we could omit the charge-response
contributions to the Fock matrix in eq 6, using instead a Fock
matrix

F f q I
1
2

( )K K

j K
j j∑̃ = −μν μν μν

∉ (26)

This resembles the QM/MM-style Fock matrix in eq 20 but
retains the factor of 1/2 in the charge−density interaction that
arises naturally (from the variational principle) in the XPol
Fock matrix. We will refer to the modification where F̃K

replaces FK as the “modified Fock matrix” version of EE-
GMBE(1). In addition, we might also omit the response terms
from the gradient of the embedding potential in eq 25, taking
dEemb/dx ≈ ∂Eemb/∂x. We call this second degradation of the
formalism the “modified Fock, modified gradient” version of
EE-GMBE(1). Both modifications invalidate the variational
nature of the method.
To facilitate rapid comparison of variational and nonvaria-

tional strategies, the remaining calculations in this work use the
semiempirical “HF-3c” method,96 which we have implemented
in Q-Chem for this purpose. HF-3c combines a minimal-basis
Hartree−Fock calculation with simple, parametrized correc-
tions for dispersion, basis-set superposition error, and basis-set
incompleteness. Despite its simplicity and low cost, this
method nevertheless affords reasonable molecular geometries96

and noncovalent interaction energies78,96,97 for large molecules
and supramolecular complexes.
Water clusters are challenging test cases for fragment-based

geometry optimizations due to the existence of numerous local
minima that may differ only in the orientation of one or more
hydrogen-bonded O−H moieties, so that small differences in
the gradient between two different approaches might be
enough to lead the optimization down a rather different path.
This is not the case, however, when our rather conservative
fragmentation strategy is applied to (H2O)32. Figure 3 plots
total energy versus optimization cycle for both supersystem
and fragment-based geometry optimizations of this cluster.
Three independent geometry optimizations are reported in
Figure 3 but in no case do the total energies stray further than
∼0.3 mEh from one another. In this particular case, charge-
response terms in EE-GMBE(1) are apparently unimportant.
We explore this further in Table 1, which presents the results

of geometry optimizations and vibrational frequency calcu-
lations on both (H2O)32 and F−(H2O)31, comparing super-
system and EE-GMBE(1) results, including both variational
and nonvariational versions of the latter. The final, optimized
geometries differ by ≲2 mEh in energy despite having been
optimized by different methods with (slightly) different
gradients. Vibrational frequencies for the optimized structures
are almost identical across methods, with mean deviations of
only 1−4 cm−1 and maximum deviations of ∼50 cm−1 in the
case of F−(H2O)31. Frequencies were obtained by finite
difference of analytic gradients because we have not
implemented analytic Hessians for the XPol method. Previous
work suggests that the finite-difference error is likely <1
cm−1.98

Figure 2. Difference density (ρ − ρGMBE) for (H2O)10 computed at
the B3LYP/6-31G* level of theory and plotted with a contour value
of 0.001 au. Also shown are the differences in Mulliken charges on the
oxygen atoms, comparing those computed from ρ to those computed
using ρGMBE (eq 16). The cluster was fragmented using ξ = 3.0 Å,
resulting in 12 fragments with 6 water molecules per fragment.
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The importance of correct analytic gradients is unclear from
these examples, but the situation is dramatically different for
AIMD simulations. We examine simulations for the same
systems considered above, noting that (H2O)32 was also used
to evaluate energy conservation in FMO-based simulations,
both with and without response terms in the gradient.39 Figure
4 depicts energy fluctuations obtained from microcanonical
AIMD simulations whose initial velocities are consistent with T
= 150 K. (All trajectories were propagated using the velocity
Verlet algorithm with a time step of 1.0 fs and an SCF
convergence criterion of 10−7 Eh, which has been shown to
provide good energy conservation.99) The variational EE-
GMBE(1) method exhibits root-mean-square (RMS) energy
fluctuations of ≈1 mEh for (H2O)32, with no sign of energy
drift. The two nonvariational approaches, on the other hand,
exhibit slightly larger fluctuations and, more importantly, a
clear energy drift over just a few picoseconds of simulation
time. The problem is especially severe for the “modified Fock”

variant that uses F̃K in eq 26 but leaves intact the gradient
dEemb/dx in eq 9. For this method, the energy drift for
F−(H2O)31 amounts to almost 30 mEh in just the first
picosecond of dynamics! The version of EE-GMBE(1) that
neglects charge-response contributions to both the Fock matrix
and the gradient exhibits smaller (albeit still noticeable) energy
drift, suggesting that the “modified Fock” scheme may
represent something of an unbalanced approximation.
Of the methods considered in Figure 4, the “modified Fock,

modified gradient” version of EE-GMBE(1) is arguably closest
to what has most often been used in fragment-based methods
other than FMO, including GEBF, SMF, and MFCC.
However, the factor of 1/2 that appears in the charge−density
term in FK (eq 6), and which we have retained in the modified
Fock matrix F̃K of eq 26, is difficult to infer in the absence of a
variational principle. Most electrostatic embedding schemes
use the full electrostatic potential instead, which in the absence
of charge-response terms corresponds to the QM/MM-style
Fock matrix of eq 20. We have therefore tested additional
modifications to the EE-GMBE(1) approach in which
FQM/MM,K is used for the Fock matrix. In these “QM/MM-
style” variants, we also adjust the electrostatic embedding term
in the gradient, multiplying it by a factor of 2 as compared to
what is used in the variational EE-GMBE(1) method. Note
that this is not simply a fragment-based QM/MM calculation
because the embedding charges change in each SCF cycle.
The performance of these QM/MM-style variants is

examined for (H2O)32 in Figure 5. Modification of the Fock
matrix alone leads to even larger energy drift as compared to
the previous simulations, but energy conservation is greatly
improved upon modifying the gradient as well. In order to
obtain this level of energy conservation, however, it is
necessary to incorporate an ad hoc factor of 2 into the
charge-embedding gradient. This is not ordinarily done in
fragment-based approaches as there is no apparent reason to
do so, in the absence of an understanding of the formalism
derived herein.
We have proposed a variational formulation of the

generalized MBE that uses electrostatic embedding charges
that are iterated to self-consistency using the “XPol” SCF
procedure.75 This ensures that the fragment-based total energy
expression satisfies a variational principle, which in turn greatly
simplifies the formulation of analytic energy gradients. The

Figure 3. Geometry optimizations for (H2O)32 at the HF-3c level
using the variational EE-GMBE(1) method and a nonvariational
analogue thereof, in comparison to a traditional supersystem
optimization. The axis on the left shows the total energy for each
of the three methods, with a supersystem calculation at the initial
geometry taken to define zero. Blue symbols, which should be read
from the scale on the right, indicate the difference between the
supersystem energy and the variational EE-GMBE(1) energy at
geometries obtained from the supersystem optimization.

Table 1. Comparison of Harmonic Frequencies Computed at Optimized Geometries by EE-GMBE(1) Methodsa

minimized energy frequency errors (cm−1)

method absoluteb (Eh) relativec (mEh) MAD std. dev. max

(H2O)32
variational GMBE −2417.00571859 0.463 1.9 2.5 21.1
GMBE (using F̃) −2417.00567628 0.505 2.1 2.3 16.3
GMBE (F̃ and modified gradient) −2417.00568608 0.496 1.8 2.2 19.8
GMBE (using FQM/MM) −2417.00553605 0.646 1.8 2.4 20.8
GMBE (FQM/MM and modified gradient) −2417.00556923 0.612 1.0 1.2 11.0
supersystem −2417.00618173 0.000 − − −

F−(H2O)32
variational GMBE −2440.27297135 2.290 3.3 5.9 53.4
GMBE (using F̃) −2440.27292684 2.246 4.1 6.1 48.1
supersystem −2440.27068107 0.000 − − −

aHF-3c level, using ξ = 3.0 Å for (H2O)32 and ξ = 4.0 Å for F−(H2O)31.
bComputed using the method indicated in the left-most column, at

geometries obtained from the same method. cFinal energy obtained from each method, with the supersystem result taken to define zero.
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gradient reported here is rigorously correct despite the absence
of any coupled-perturbed equations to compute orbital-
response terms. By means of this procedure, a fragment
approximation to the total density is variationally optimized in
order to obtain the fragment-based approximation to the total
energy. Notably, the GMBE(1) energy expression is similar (or
in some cases equivalent) to energy expressions used in many
contemporary fragment-based quantum chemistry procedures,
including those based on overlapping fragments. These include
the GEBF,18 SMF,68 MIM1,64 MFCC,61,63 and MTA59

methods. In almost all cases where self-consistent embedding
charges have been used in these methods, the requisite charge-
response terms have been omitted from the gradient. Putative
analytic gradients are therefore not equal to derivatives of the
fragment-based energy expression.
Comparing results of our variational EE-GMBE(1) approach

to several nonvariational alternatives, we find that charge-
response terms make little difference when it comes to
geometry optimizations and vibrational frequency calculations.
This is consistent with the fact that the omitted terms are
comparable in magnitude to the gradient-based stopping

criteria used for geometry optimizations in quantum chemistry
programs. It also explains how previous nonvariational
approaches are able to obtain good agreement with super-
system calculations for forces88 and vibrational frequen-
cies,13,15,17,19−21 despite the use of incorrect gradients. This
favorable performance, however, is insufficient to guarantee
that these methods are appropriate for use in AIMD
simulations, as has sometimes been assumed.88,100 Indeed,
failure of energy conservation in EE-GEBF simulations has
been documented previously,74 and the present work provides
compelling evidence that this failure is a direct result of using a
gradient that is not the derivative of the energy. Small errors
that may be negligible in the search for a local minimum
evidently accumulate in a simulation.
Energy conservation is restored by means of the

straightforward modifications described herein, which add
only a small amount of additional overhead in order to achieve
mutual self-consistency of the fragment wave functions and
embedding charges. In return, one obtains a variational
principle (assuming that the underlying electronic structure
method is variational) and a rigorously correct energy gradient,
without the need to solve fragment-based coupled-perturbed
equations. These modifications can be used in conjunction
with a variety of fragmentation schemes, encompassing all of
the fragment-based methods mentioned above, so that the
present formalism can be considered a general paradigm for
fragment-based AIMD simulations.
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