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Tests of the analytic gradient implementations for DC-DFT are shown in Tables S1–S4, where we pro-
vide an element-by-element comparison between analytic and finite-difference gradients for several different
systems. The finite-difference values were computed using a five-point stencil, i.e., using displacements
±∆x and ±2∆x. We have found this to be necessary in order to reduce the finite-difference errors to the
point where good agreement with analytic results can be obtained.3 The mean absolute deviation between
the analytic and finite-different gradient components is 1.84× 10−7 a.u., demonstrating the validity of the
implementation.

As a further test, we performed a short ab initio molecular dynamics (MD) simulation of (H2O)+5 (Fig. S1).
Energy conservation in MD simulations is extremely sensitive to consistency between energy and forces,
and small errors in the gradient generally lead to rapid energy drift in simulations.4 In contrast, energy
fluctuations in Fig. S1 are quite stable at the level of < 1.5× 10−4 Ha, even while the cluster is equilibrating.

For the further testing of this methodology we computed the barrier heights for the same set of reactions
that was used for testing DC-DFT barrier heights in Ref. 1; see Table S5. For DC-BLYP, the mean absolute
error (MAE) with respect to CCSD(T) barrier heights is 3.0 kcal/mol, which is a significant improvement
over both self-consistent BLYP (MAE = 9.8 kcal/mol with all barrier heights underestimated) and also HF
theory (MAE = 11.9 kcal/mol). These DC-BLYP results are in good agreement with the analogous data
presented in Ref. 1.

All MP2 calculations reported herein were performed within the resolution-of-identity (RI) approxima-
tion. The auxiliary (density fitting) basis set designed for def2-SVP5 is used in conjunction with the target
basis set, 6-31G*.
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Table S1: Differences (in hartree/bohr) between analytic and finite-difference gradient components computed

at two different levels of theory, for a hemibonded complex (H2O)+2 . Finite difference calculations were

performed using a five-point stencil. The maximum absolute deviation is 3.13× 10−7 a.u..

Atom
BLYP/6-31G* B3LYP/6-31G*

x y z x y z

O −3.135e-07 7.893e-08 −3.517e-08 −2.623e-07 −6.314e-09 −1.259e-08

H 8.310e-08 −1.222e-07 8.276e-08 7.196e-08 −1.077e-07 4.892e-08

H 6.253e-08 −8.962e-08 3.587e-09 7.190e-08 1.687e-08 −6.261e-08

O 2.266e-07 −1.725e-07 −1.723e-08 2.181e-07 −1.994e-07 −1.286e-08

H −6.210e-08 8.154e-08 7.674e-08 −7.718e-08 3.852e-08 2.127e-08

H −7.891e-09 1.285e-07 −1.562e-07 −3.414e-08 6.667e-08 −1.226e-07

.

Table S2: Differences (in hartree/bohr) between analytic and finite-difference gradient components computed

at two different levels of theory, for a hydrogen-bonded isomer of (H2O)+2 . Finite difference calculations were

performed using a five-point stencil. The maximum absolute deviation is 9.77× 10−8 a.u..

Atom
BLYP/6-31G* B3LYP/6-31G*

x y z x y z

O 9.771e-08 1.738e-09 −5.018e-08 4.449e-08 1.660e-08 −4.340e-08

H −6.878e-08 −4.817e-08 −6.990e-08 −6.992e-08 −2.034e-08 2.299e-09

H 8.668e-08 4.343e-08 −1.898e-08 −2.426e-08 1.518e-08 −4.875e-08

O 5.735e-08 −3.157e-09 −2.113e-08 −3.478e-08 1.157e-08 1.992e-10

H 1.117e-08 2.421e-08 −7.824e-08 −2.371e-08 2.788e-08 −7.292e-09

H −2.230e-08 −4.363e-08 −2.608e-08 −2.945e-08 −7.423e-08 3.412e-08

.
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Table S3: Differences (in hartree/bohr) between analytic and finite-difference gradient components computed

at two different levels of theory, for (H2O)+2 . Finite difference calculations were performed using a five-point

stencil. The maximum absolute deviation is 9.57× 10−7 a.u..

Atom
BLYP/6-31G* B3LYP/6-31G*

x y z x y z

O −3.244e-07 3.129e-07 6.751e-07 2.641e-07 2.771e-07 5.934e-07

H 3.605e-07 −4.290e-07 −3.741e-07 3.082e-07 −3.977e-07 −2.984e-07

H −2.100e-07 −4.170e-07 −3.512e-07 −1.868e-07 −3.568e-07 −2.913e-07

O 8.716e-08 −1.689e-07 2.646e-08 8.522e-08 −1.525e-07 3.499e-08

H −1.852e-07 3.660e-07 2.948e-07 −1.778e-07 3.430e-07 2.618e-07

H 7.547e-08 1.641e-07 −2.154e-07 1.071e-07 1.187e-07 −1.882e-07

O 4.128e-08 −3.663e-07 9.838e-08 1.123e-07 −2.161e-07 9.244e-08

H 1.423e-07 4.878e-07 −2.589e-07 1.230e-07 3.094e-07 −2.442e-07

H 2.325e-07 −1.620e-08 2.529e-07 2.182e-07 −5.651e-08 1.033e-07

O −5.208e-08 2.038e-07 −1.550e-07 −5.315e-08 2.280e-07 −1.220e-07

H −2.086e-07 −1.651e-07 −1.620e-07 −2.379e-07 −1.355e-07 −1.344e-07

H 4.829e-07 −8.912e-08 −3.987e-07 2.886e-07 −6.868e-09 −3.934e-07

O −1.050e-09 −3.431e-07 7.041e-07 −7.767e-08 −3.371e-07 5.428e-07

H 3.270e-07 5.810e-07 −2.420e-07 2.248e-07 3.850e-07 −2.881e-07

H −9.568e-07 −3.410e-07 −5.931e-08 −8.993e-07 −3.046e-07 −3.160e-08

O −9.057e-08 −3.265e-07 −2.990e-07 −4.757e-08 −2.821e-07 −3.024e-07

H −3.115e-07 −1.014e-07 5.742e-09 −1.740e-07 −8.389e-08 5.420e-09

H 6.784e-08 3.329e-07 1.379e-07 −1.200e-08 3.719e-07 1.291e-07

.
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Table S4: Differences (in hartree/bohr) between analytic and finite-difference gradient components computed

at two different levels of theory, for the Al(OSiH3)4 cluster examined in this work. The maximum absolute

deviation is 1.31× 10−6 a.u..

Atom
BLYP/6-31G* B3LYP/6-31G*

x y z x y z

Si 4.936e-08 −7.837e-09 −8.067e-08 1.571e-08 3.548e-08 −1.155e-07

H −2.627e-07 −3.505e-07 −1.034e-07 −2.227e-07 −2.818e-07 −1.045e-08

H −2.614e-08 −1.935e-07 4.838e-07 4.020e-08 −1.090e-07 4.970e-07

H 2.068e-07 −4.529e-07 −2.699e-07 2.239e-07 −4.223e-07 −2.900e-07

H 2.159e-08 −1.969e-07 −1.055e-07 2.497e-08 −1.840e-07 −1.201e-07

Si 2.360e-08 7.413e-07 1.311e-06 6.014e-08 6.843e-07 1.238e-06

O 1.200e-06 −2.786e-07 −1.182e-06 1.156e-06 −2.017e-07 −1.173e-06

Al −9.434e-07 −5.565e-07 1.532e-07 −9.688e-07 −5.065e-07 1.517e-07

H 1.779e-07 −3.961e-07 −1.527e-07 2.035e-07 −3.956e-07 −2.098e-07

H −1.853e-07 1.656e-07 −2.369e-09 −1.631e-07 1.122e-07 −5.434e-08

O 1.984e-07 6.578e-07 −4.272e-07 1.841e-07 7.034e-07 −3.721e-07

Si −1.067e-06 −6.141e-07 −4.590e-07 −1.190e-06 −6.639e-07 −4.794e-07

H −3.594e-07 3.533e-07 8.758e-08 −3.238e-07 3.792e-07 1.012e-07

O 3.680e-07 1.262e-07 4.692e-07 4.822e-07 1.341e-07 4.403e-07

O −1.955e-07 2.562e-07 −3.844e-07 −1.246e-07 1.517e-07 −3.583e-07

H −7.658e-08 2.761e-07 1.242e-07 −1.335e-07 3.157e-07 8.427e-08

Si 8.973e-07 −8.443e-07 −5.329e-07 9.322e-07 −7.670e-07 −5.215e-07

H 2.476e-07 4.322e-08 2.164e-07 1.921e-07 −2.925e-08 2.056e-07

H −4.249e-07 1.191e-07 −6.588e-08 −4.745e-07 1.310e-07 −1.208e-07

H −3.334e-09 −9.330e-08 1.357e-07 4.714e-08 −9.196e-08 1.472e-07

H 4.422e-07 −6.737e-09 −1.853e-07 4.288e-07 −2.478e-08 −1.092e-07

.
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Table S5: Barrier heights for the data set of reactions in Ref. 1. Reactants and product structures were

optimized with the 6-31+G** basis set for all of the methods but transition state (TS) structures are taken

from Ref. 2, where they were optimized at the QCISD/6-31+G** level. Error is significantly reduced by

DC-BLYP as compared to the self-consistent BLYP or HF methods.

Reaction Direction CCSD(T) BLYP DC-BLYP HF

Cl + H2 → HCl + H forward 9.8 4.8 8.3 22.6

backward 5.7 −3.3 0.2 13.6

OH + H2 → H + H2O forward 6.4 −2.9 5.2 22.9

backward 21.7 8.5 16.4 26.0

CH3 + H2 → H + CH4 forward 12.5 7.4 10.8 22.2

backward 15.7 7.4 10.7 23.7

H + H2 → H2 + H forward 10.5 2.7 5.2 17.9

backward 10.5 2.7 5.2 17.9

OH + NH3 → H2O + NH2 forward 4.9 −9.9 2.6 28.9

backward 14.6 −0.2 11.7 32.2

F + H2 → H + HF forward 2.6 −11.7 1.9 14..0

backward 33.1 17.6 30.1 26.3

H + PH3 → PH2 + H2 forward 3.5 −3.1 0.6 10.3

backward 26.1 22.8 26.8 13.9

H + H2S → H2 + HS forward 4.5 −2.9 0.6 11.7

backward 19.2 15.9 19.6 28.3

OH + H → H2 + O forward 10.8 −0.0 5.6 17.3

backward 14.9 1.9 8.9 33.0

O + HCl → OH + Cl forward 11.6 −9.1 9.5 33.4

backward 11.6 −3.1 14.3 25.8

H + t-N2H2 → H2 + N2H forward 3.9 −7.1 9.5 12.2

backward 41.1 35.2 44.8 49.3

CH4 + NH → NH2 + CH3 forward 23.5 14.1 19.9 40.1

backward 8.9 2.4 7.9 20.0

CH4 + NH2 → NH3 + CH3 forward 14.9 8.0 13.4 31.9

backward 17.2 9.8 15.5 30.1

Average Error −9.8 −2.0 10.3

Average Absolute Error 9.8 3.0 11.9

.
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Table S6: Density sensitivities S [Eq. (3)] for Al-doped silica clusters, computed using the BLYP and PBE

functionals. The localized and delocalized structures correspond to geometries optimized using MP2 and

BLYP, respectively.

Complex Hole
S (kcal/mol) S/Natoms (kcal/mol)

BLYP PBE BLYP PBE

Al(OH)4 Localized 37.0 33.7 4.1 3.7

Delocalized 67.5 64.0 7.5 7.1

Al(OSiH3)4 Localized 63.5 66.2 3.0 3.2

Delocalized 53.7 56.4 2.6 2.7

Al[OSi(OH)3]4 Localized 129.4 121.9 3.9 3.7

Delocalized 156.7 148.0 4.7 4.5

Table S7: Mulliken spin chargesa (in a.u.) around the Al dopant in silica clusters. This is a more complete

version of Table 2.

Complex Geometry
HF density BLYP density

O1 O2 O3 O4 O1 O2 O3 O4

Al(OH)4 HF 1.07 0.00 0.00 0.00 0.65 0.13 0.11 0.13

BLYP 1.06 0.01 0.00 0.01 0.35 0.24 0.23 0.26

PBE 1.06 0.01 0.00 0.01 0.35 0.23 0.23 0.26

B3LYP 0.63 0.00 0.00 0.46 0.50 0.01 0.02 0.52

PBE0 0.64 −0.00 −0.00 0.45 0.51 0.01 0.01 0.52

DC-BLYP 1.07 0.00 0.00 0.00 0.70 0.12 0.12 0.12

DC-PBE 1.07 0.00 0.00 0.00 0.70 0.12 0.12 0.12

DC-B3LYP 1.07 0.00 0.00 0.00 0.69 0.12 0.12 0.13

DC-PBE0 0.01 0.01 −0.01 1.02 0.70 0.12 0.12 0.12

Al(OSiH3)4 HF 0.01 0.01 −0.01 1.02 0.11 0.11 0.05 0.57

BLYP 0.25 0.24 0.25 0.25 0.19 0.19 0.19 0.19

PBE 0.24 0.24 0.25 0.25 0.19 0.19 0.19 0.19

B3LYP 0.47 −0.00 −0.00 0.50 0.40 0.03 0.03 0.40

PBE0 0.49 −0.00 −0.00 0.49 0.43 0.01 0.01 0.43

DC-BLYP 0.01 0.00 −0.01 1.02 0.13 0.09 0.05 0.57

DC-PBE 0.01 0.01 −0.01 1.02 0.12 0.11 0.04 0.57

DC-B3LYP 0.00 0.01 −0.01 1.02 0.10 0.13 0.04 0.57

DC-PBE0 0.01 0.01 −0.01 1.02 0.12 0.11 0.04 0.57

Al[OSi(OH)3]4
b HF 0.99 −0.01 0.01 0.00 0.69 0.00 0.05 0.05

DC-BLYP 1.02 −0.01 −0.01 0.01 0.64 0.01 0.03 0.11

DC-PBE 0.99 0.00 0.00 0.00 0.67 −0.00 0.02 0.06

DC-B3LYP 1.01 −0.01 −0.00 0.01 0.64 0.01 0.03 0.11

DC-PBE0 0.98 −0.01 0.00 0.00 0.67 0.00 0.02 0.05

a6-31++G* basis set. bData for PBE, BLYP, PBE0, and B3LYP are not shown due to significant delocalization (see
Fig. S3).
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Table S8: Mulliken spin charges (in a.u.) around the Al dopant in the Al(OSiH3)4 complex computed with

def2-TZVPD basis set.

Complex Geometry
HF density BLYP density

O1 O2 O3 O4 O1 O2 O3 O4

Al(OSiH3)4 HF −0.00 0.00 0.01 1.06 0.11 0.11 0.05 0.58

BLYP 0.28 0.29 0.29 0.29 0.19 0.19 0.19 0.19

PBE 0.27 0.28 0.28 0.31 0.18 0.19 0.19 0.19

B3LYP 0.55 −0.01 −0.01 0.58 0.41 0.02 0.02 0.41

PBE0 0.57 −0.01 −0.01 0.57 0.44 0.01 0.01 0.44

DC-BLYP −0.00 0.00 0.01 1.06 0.13 0.10 0.05 0.58

DC-PBE −0.00 0.00 0.01 1.06 0.12 0.11 0.04 0.59

DC-B3LYP −0.00 0.00 0.01 1.06 0.10 0.13 0.05 0.58

DC-PBE0 −0.00 0.00 0.01 1.05 0.12 0.11 0.04 0.58

Table S9: Density sensitivities S [Eq. (3)] for HF-optimized geometries of [Ti21O70H56] and [Ti21O70H56]−

using the BLYP and PBE functionals.

Complex
S (kcal/mol) S/Natoms (kcal/mol)

BLYP PBE BLYP PBE

[Ti21O70H56] 1229.12 1199.83 8.36 8.16

[Ti21O70H56]− 1236.69 1205.83 8.41 8.20

Table S10: Average value of 〈Ŝ2〉/~2 (with standard deviations in parenthesis) for structures along the PBE

or PBE0 optimization pathway of the TiO2 polaron, computed at different levels of theory. These results

demonstrate that spin contamination is not significant in this system.

Single-Point PBE pathway PBE0 pathway

HF 0.752 (0.0010) 0.753 (0.0000)

PBE 0.753 (0.0005) 0.754 (0.0001)

PBE0 0.763 (0.0035) 0.753 (0.0001)
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Figure S1: Energy fluctuations in a ab initio MD simulation of (H2O)+5 at the DC-B3LYP/6-31G* level of

theory in the microcanonical ensemble.

B3LYP   PBE0

HF BLYP PBE

Figure S2: Spin densities for the Al(OH)4 cluster at different levels of theory. (Each structure corresponds

to the optimized geometry at the indicated level of theory and the 6-31++G* basis set is used for all

calculations.) The MP2 and DC-DFT results are not shown because they are each quite similar to the HF

result.
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Figure S3: Spin densities for the Al[OSi(OH)3]4 cluster at different levels of theory. (Each structure corre-

sponds to the optimized geometry at the indicated level of theory and the 6-31++G* basis set is used for

all calculations.) The MP2 and DC-DFT results are not shown because they are each quite similar to the

HF result.
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Figure S4: Behavior of the localized electron-polaron in TiO2 along the HF/LANL2DZ optimization pathway,

including variations in (a) the relative energy computed at different level of theory, (b) the Mulliken spin

charge s(Ti∗) on the central Ti atom, and (c) the Ti∗–O bond lengths around the central Ti atom.
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Figure S5: Variation in Ti∗–O distances around the central Ti atom, for optimizations of an initially-localized

electron-polaron in TiO2. Optimizations were performed at (a) the PBE0/LANL2DZ level and (b) the PBE/

LANL2DZ level, starting from a HF-optimized structure.
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Figure S6: Spin densities for the initial and final geometries along the HF optimization pathway for

[Ti21O70H56]−, computed at different levels of theory. All calculations employed the LANL2DZ basis set for

Ti and the 6-31G* basis set for O and H.
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Figure S7: Spin densities for the initial and final geometries along the PBE0 optimization pathway for

[Ti21O70H56]−, computed at different levels of theory. All calculations employed the LANL2DZ basis set for

Ti and the 6-31G* basis set for O and H. The starting structure is the HF-optimized geometry.
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Figure S8: Spin densities for the initial and final geometries along the PBE optimization pathway for

[Ti21O70H56]−, computed at different levels of theory. All calculations employed the LANL2DZ basis set for

Ti and the 6-31G* basis set for O and H. The starting structure is the HF-optimized geometry.
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Figure S9: HOMO/LUMO gap for [Ti21O70H56]− computed at various levels of theory, along (a) the PBE

optimization pathway, versus (b) the PBE0 optimization pathway. All calculations employed the LANL2DZ

basis set for Ti and the 6-31G* basis set for O and H. The starting structure is the HF-optimized geometry.

In (a), the sudden jumps in the gap that are obtained at the HF level should be compared to the jumps in

the energy that are observed in Fig. 6 when HF, MP2, or hybrid functionals are used.
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Figure S10: Behavior of the localized electron-polaron in TiO2 along the HSE06/LANL2DZ optimization

pathway, including variations in (a) the relative energy computed at different level of theory, (b) the Mulliken

spin charge s(Ti∗) on the central Ti atom, and (c) the Ti∗–O bond lengths around the central Ti atom.
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Figure S11: Differences ∆EDC between energies computed using DFT and DC-DFT (for DFT = PBE or

DFT = PBE0), along the (a) the PBE optimization pathway versus (b) the PBE0 optimization pathway.

All calculations used the def2-SVP basis set.
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Figure S12: Relative energies computed with DFT and DC-DFT along optimization pathways computed

using the (a) PBE, (b) PBE0, and (c) HSE06 functionals. All calculations use the def2-SVP basis set.
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