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ABSTRACT: Donor−acceptor (D−A) materials can exhibit a wide range of unique
photophysical properties with applications in next-generation optoelectronics. Electronic
structure calculations of D−A dimers are often employed to predict the properties of D−A
materials. One of the most important D−A dimer quantities is the degree of charge transfer
(DCT) in the S1 state, which correlates with properties such as fluorescence lifetimes and
intersystem crossing rates in D−A materials. While predictive metrics of the S1 DCT generally
require an excited-state quantum chemistry calculation, presented here is a novel metric that
predicts S1 DCT solely with ground-state orbital analysis. This metric quantifies the similarity
of the orbitals between a dimer complex and its monomer components. A linear relationship
is found between this similarity metric and the S1 DCT, calculated using a data set of 31 D−A
dimers. Best practices for integrating this novel orbital structure−function relationship into
high-throughput screening methods are discussed.

In the search for next-generation optoelectronic devices, there
has been a growing interest in donor−acceptor (D−A)
materials, including D−A co-crystals, for their application in
organic solar cells and organic light-emitting diodes.1−3 D−A
complexes, by definition, exhibit charge transfer (CT) in their
ground state and select excited states.4 In the search for
structure−function relationships to integrate into high-
throughput screening and machine learning protocols,5−9

several studies have assessed ways to predict the degree of
CT (DCT), or ionicity parameter, in the S0 state of D−A
materials from molecular quantities such as orbital energies,
vibrational frequencies, and geometric parameters.10−14 Early
evidence shows a relationship between DCT in S0 to the
magnitude of effective CT integrals,11 commonly used in
models of charge transport.13−18 The DCT in the first
electronically excited state of D−A dimers, S1, has emerged
as a key quantity for predicting radiative and nonradiative
lifetimes in D−A materials, including intersystem crossing rates
and fluorescence lifetimes.2,19−23 These lifetimes are partic-
ularly difficult to compute directly using D−A dimer models,
as energy levels and transition dipoles often differ substantially
between the molecular cluster and material.24,25

A variety of DCT metrics for excited-state calculations have
been put forward, as reviewed recently.26,27 A widely used
example is the “Λ metric” introduced by Peach et al.28 as a
diagnostic for time-dependent density functional theory
calculations. The definition of Λ is based on spatial overlaps
of occupied and virtual orbitals, evaluated by numerical
quadrature and weighted by excitation amplitudes, but
importantly, this and other standard DCT metrics require an
excited-state calculation. Here, we consider whether ground-

state orbital overlaps are sufficient for indicating CT character
in the S0 → S1 transition.
We construct a similarity metric, η, as follows. First, we

define a molecular orbital (MO)

= |Ci i
(1)

where ϕi is the sum of atomic basis functions χμ with MO
coefficients Cμi. We compute the overlap Oij between the MOs
ϕi and j, where j uses the same atomic basis functions as ϕi at
a displaced geometry. This overlap is

= | =O C S Cij i j i j
(2)

where = |S is the overlap matrix involving displaced
basis functions. We compute Oij twice: once between the
HOMO (highest occupied molecular orbital) of the isolated
donor molecule (HOMOi) and the HOMO of the donor
molecule within the complex (HOMOc), using ghost functions
to ensure that both calculations have the same basis functions;
and second, between the LUMO (lowest unoccupied
molecular orbital) of the isolated acceptor molecule
(LUMOi) and the LUMO of the acceptor molecule within
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the complex (LUMOc). We define η as the average of these
two quantities:

= +O O
1
2

( )HOMO ,HOMO LUMO ,LUMOi c i c
(3)

The two geometries are oriented using the Kabsch algorithm29

in order to maximize the overlap. Each computation of η
requires three ground-state calculations: to obtain the orbitals
of the isolated donor molecule, the orbitals of the isolated
acceptor molecule, and the orbitals of the D−A complex. The
calculation of Oij is performed in a locally modified version of
Q-Chem.30

To assess the correlation between η and the S1 DCT of D−A
dimers, we screened 31 D−A complexes with the donor and
acceptor molecules shown in Figure 1, whose S1 states are

dominated by a HOMO → LUMO transition. The chosen
donor and acceptor molecules are augmented from a data set
recently chosen in a screening of S0 DCT.

14 The donor
molecules exhibit a diversity of molecular structures, while the
acceptor molecules are 7,7,8,8-tetracyanoquinodimethane
(TCNQ) and its fluorinated derivatives, FxTCNQ. Geometries
are optimized with Gaussian G16 at the CAM-B3LYP/6-
31+G(d,p) level of theory with Grimme D3 dispersion.28,31−33

Excited-state calculations were also carried out using CAM-
B3LYP-D3/6-31+G(d,p) within the linear response time-
dependent density functional theory (TDDFT) formal-
ism.26,34−36 We calculated the DCT using natural bond orbital
(NBO) population analysis implemented in Gaussian G16 and
transition density matrix (TDM) analysis in TheoDORE.37,38

We investigate the impact of geometries used to compute η
by plotting η versus S1 DCT in two ways. First, we optimize
both the isolated monomers and their dimer complex and
compute η versus S1 DCT (Figure 2, top). Second, we
optimize the dimer complex and take the geometries of the
isolated monomers to be the same as those in their dimer
complex (Figure 2, bottom). In each case, the S1 DCT is
computed by using TDM analysis. Notably, we observed
significant variations in the η values when the monomers were
optimized, as evidenced by the outliers shown in the top plot
of Figure 2. The R2 value from linear regression is 0.66 when

comparing optimized monomers versus optimized dimers,
while the R2 value is 0.96 when monomer geometries are
unrelaxed from those found in the dimer complex. In both
cases, our analysis reveals a positive linear correlation between
the S1 DCT and η, indicating that the S1 DCT is large when
the HOMO (LUMO) orbital of the donor (acceptor) retains
its character from the isolated molecule. To assess the
underlying reasons for the impact of the geometry choice on
the evaluation of η, we plot the change in the average atomic
root mean square deviation (RMSD) between geometries
alongside the absolute difference in η, as shown in the
Supporting Information, Figure S1. We show a correlation
between the average atomic RMSD and absolute difference in
η, indicating that the orbital character is likely to change most
when the relaxed monomer geometries are significantly
different from the geometries they assume in the dimer
complex.
There are certain practical advantages that arise with the

finding that the unrelaxed monomer geometries provide
superior performance, including the elimination of the

Figure 1. Chemical structures of the donor and acceptor molecules.

Figure 2. Plots of η versus S1 DCT. Top: values computed at
optimized monomer geometries and optimized dimer geometries.
Bottom: values computed at the optimized dimer geometries only.
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computational cost associated with optimizing the monomer
geometries. Moreover, computing η at a single geometry
eliminates the necessity of evaluating the atomic overlap
integrals at displaced geometries. This simplifies the calculation
of η, as Sμν becomes the atomic basis self-overlap matrix, which
is commonly printed in the output of electronic structure
programs.31

To assess the sensitivity of η to the dimer geometry, thus
bridging the gap between D−A dimers and D−A co-crystals,
we perform an analysis of the S1 DCT versus η for geometries
from experimental crystallographic data (where available) and
compare these results to those found in Figure 2. S1 DCT is
again computed using TDM analysis. Figure 3 shows the

results obtained using the geometries from the experimental
data in comparison to the dimer geometries, which indicate
that the positive linear correlation still holds when the D−A
geometries are taken from experimental crystal structures. In
fact, when linear regressions are performed separately, the
trend lines are almost indistinguishable. In Table 1, we report
the value of η computed at each geometry (dimer complex
versus experiment) and the percent deviation between the two.
The values of η obtained from these two geometries have very
small percent deviations, from 0.1% to 6% with an average of
1.3%. This shows that η can bridge between different types of
molecular structures (isolated dimer and experimental crystal),
indicating the reliability of the metric for different data sources.
This is challenging for predictive metrics that rely on orbital
energies.
We next assessed two methodologies for calculating the

correlation of S1 DCT with η. Using unrelaxed molecular
geometries taken from the dimer complexes, Figure 4 plots η
versus S1 DCT using TDM analysis (as in Figure 2) as well as
NBO analysis. The TDM-analyzed data (R2 = 0.96) exhibits
stronger correlation than the NBO-analyzed data (R2 = 0.57).
The poor fit in the latter case is due to the method’s inability to
treat delocalized electron transfer.37 Conversely, TDM analysis
provides a spatial mapping of the electron−hole pair associated
with an electronic transition between two states and can
successfully treat such delocalized electron transfer.38,39 While
both methods are commonly used to calculate the charges in
molecules, we recommend TDM analysis over NBO analysis.
In the left panel of Figure 5, the HOMO for DMeO-BTBT,

the LUMO for TCNQ, and the HOMO and LUMO of their

dimer complex are visualized; this D−A dimer has the greatest
S1 DCT in the data set. The visual similarity between the
monomer orbitals and those in the complex is apparent, and
the localization onto the donor and acceptor moieties in the
complex is striking. In the right panel of Figure 5, the HOMO
of DPTTA, the LUMO of F4TCNQ, and the HOMO and
LUMO of their dimer complex are visualized; this D−A dimer
has the smallest S1 DCT in the data set. While there is
significant visual similarity between the monomer MOs and
those in the complex, there is also substantial delocalization of
the HOMO onto the acceptor molecule and similar
delocalization of the LUMO onto the donor. To maximize
S1 DCT, the electron density must be localized on the electron
donor in the HOMO and transferred completely to the
acceptor LUMO. The value of η quantifies the degree to which
the isolated HOMO (LUMO) of the donor (acceptor)
correlates with that in the complex, which predicts S1 DCT.
We have shown that the S1 (HOMO → LUMO) DCT can

be predicted by a novel metric, η, that computes the average
similarity between the donor (acceptor) molecule’s HOMO
(LUMO) and that of the corresponding orbital in the D−A
complex. We found that η exhibits a positive linear correlation
with the S1 DCT for a set of 31 D−A pairs. In choosing
molecular geometries to compute η, we found that by
comparing the orbitals between isolated donor and acceptor
molecules and their corresponding D−A complexes, one
should use the same molecular geometries in the isolated
molecules as in the D−A complex. Alternatively, experimental
crystal structure data for the D−A complex can be used instead
of optimized D−A dimer geometries. This allows flexibility in
input data for inclusion in high-throughput screening and
machine learning protocols. Lastly, we compared two methods
for determining DCT, NBO analysis and TDM analysis, and
found that TDM analysis is more reliable due to its ability to
treat electron delocalization. Future work will aim to generalize
the η metric to characterize the DCT of other electronic states

Figure 3. Plot of η versus S1 DCT at the experimental crystal
structures (orange) and optimized D−A dimer geometries (blue).

Table 1. η Values Using the Experimental Crystal (exp) and
Dimer Geometries and the Percent Deviation (%D) of ηdimer
from ηexp

system ηexp ηdimer %D

4T:F2TCNQ 0.932 0.945 1.4
4T:F4TCNQ 0.917 0.931 1.5
4T:TCNQ 0.946 0.957 1.2
anthracene:F4TCNQ 0.983 0.981 0.2
DMeO-BTBT:F2TCNQ 0.975 0.980 0.5
DMeO-BTBT:F4TCNQ 0.971 0.974 0.3
DMeO-BTBT:TCNQa 0.957 0.948 1.0
DPTTA:25F2TCNQ

a 0.929 0.915 1.5
DPTTA:26F2TCNQ 0.935 0.879 6.1
DPTTA:F4TCNQ 0.853 0.828 3.0
DTBDT:F2TCNQ 0.978 0.980 0.1
DTBDT:F4TCNQ 0.972 0.975 0.3
DTBDT:TCNQ 0.980 0.981 0.1
naphthalene:TCNQ 0.997 0.975 2.1
Npe:TCNQ 0.993 0.985 0.9
STB:F4TCNQ 0.978 0.964 1.4
STB:TCNQ 0.984 0.974 1.0
tetracene:F4TCNQ 0.985 0.973 1.2
average %D 1.3

aAcceptor and donor molecules are perpendicular and do not interact
via π−π stacking.
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with the goal of uncovering further orbital structure−function
relationships.
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