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S1 Fragment Definition

In our code (PyFragme∩t), fragments are generally defined using residue number. To avoid severing an polar
C–N peptide bond, which is not recommended,1,2 we instead sever the C–C bond at Cα–C(=O) as shown
in Fig. S1. A capping hydrogen atom cap is added at position

rcap = r1 +

(
R1 + RH

R1 + R2

)
(r2 − r1) , (S1)

where r1 and r2 are the positions of the two carbon atoms in the original C–C bond, and R1, R2, and RH

are the van der Waals radii of the atoms in question. This construction was also used in our previous work
on protein fragmentation.1

S2 Supersystem Calculations

Tables S1 and S2 list the errors in Ea and ∆rxnE, respectively, for COMT using several combinations of
functional and basis set. Methods tested include MBE(n) with n ≤ 3, using both vacuum and PCM (ε = 4)
boundary conditions. Error is defined with respect to the supersystem calculation at the same level of theory.
No screening or supersystem corrections are applied in these calculations.

Table S3 contains the ONIOM-style supersystem corrections to Ea and ∆rxnE, using each of the four
low-level models that were tested. These corrections were applied to the MBE(2) and MBE(3) data in Fig. 3.

S3 Convergence Tests

Figures S2 and S3 illustrate convergence of the COMT calculations (ωB97X-D/def2-SVP + PCM) as a
function of the solvent dielectric constant, ε. (The data for ε = 4 were presented as Fig. 1a and 1b.) These
plots demonstrate that vacuum boundary conditions (ε = 1) are an outlier. For both Ea and ∆rxnE, results
with ε = 2 are distinguishable from those using larger values of ε, but only barely, and results with ε = 4
are practically indistinguishable from those obtained using ε = 32, especially for MBE(3). Quantitatively,
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for the three-body expansion that can provide converged results without a supersystem correction, errors in
both Ea and ∆rxnE are smaller than 1 kcal/mol for all values ε ≥ 2. This rapid convergence as a function
of ε is consistent with results for quantum-chemical cluster models of other enzymes.3,4

Figure S4 presents fragmentation errors, defined as fidelity with respect to a supersystem calculation
at the same level of theory, for MBE(n) calculations on COMT. Several affordable functional and basis-set
combinations are tested. Whereas the levels of theory used in the main body of this work (e.g., in Fig. 3
and Table 1) represent model chemistries that one might routinely use in practice for large systems, here
our goal is to test convergence of MBE(n), including up to four-body terms. Because MBE(4) calculations
are quite expensive in the absence of any cutoffs, more affordable levels of theory are used in these tests.
Table S4 provides the MBE(3) errors at a production level of theory (ωB97X-D/def2-SVP), corresponding
to the plots in Fig. 1.

The use of a cutoff threshold (Rcut) is tested in Fig. S5, which illustrates how errors in Ea (for COMT)
change as a function of Rcut. This is tested for several different functionals (Fig. S5a) and for various basis
sets (Fig. S5b), although the results are not strongly dependent on either choice. Figure S6 illustrates how
the number of subsystems required for a MBE(3) calculation is reduced as a function of Rcut.

S4 Timing Data

Table S5 contains the aggregate CPU time required for a single-point energy calculation in COMT at the
ωB97X-D/def2-SVP level of theory. Data are provided for both a supersystem calculation (in vacuo and
also using PCM boundary conditions), and for MBE(n) approximations. These calculations were run on
28-core nodes (Dell Intel Xeon E5-2680 v4), as described in the caption to Fig. 4 where the same data are
presented as a bar graph. Supersystem calculations were performed on a single node.
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Figure S1: Fragment definition for the amino acid with side chain R2.
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Figure S2: Errors in MBE(n) calculations of COMT at the ωB97X-D/def2-SVP level, as a function of
the dielectric constant ε used for the PCM boundary conditions. The value ε = 1 corresponds to vacuum
boundary conditions, and the ε = 4 data are the same as those plotted in Fig. 1a and 1b.
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Figure S3: Absolute errors in MBE(2) and MBE(3) calculations of (a) Ea and (b) ∆rxnE for COMT at the
ωB97X-D/def2-SVP level, as a function of the dielectric constant ε used for the PCM boundary conditions.
These are the same data as in Fig. S2, plotted in a different way.
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Figure S4: Errors in MBE(n) calculations for COMT, as compared to a supersystem benchmark at the same
level of theory: (a) Ea with vacuum boundary conditions, (b) ∆rxnE with vacuum boundary conditions, (c)
Ea with PCM (ε = 4) boundary conditions, and (d) ∆rxnE with ε = 4 boundary conditions.
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Figure S5: Error introduced in a MBE(3) calculation of Ea for COMT, as a function of the distance
screening threshold Rcut. (a) Errors using different functionals in conjunction with the def2-SVP basis set.
(b) Errors using ωB97X-D with various basis sets. In both cases, error is defined with respect to a MBE(3)
calculation that does not employ cutoffs.
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Figure S6: Number of fragments in a MBE(3) calculation of COMT, as a function of the distance cutoff
threshold Rcut. Results are shown when the cutoff is applied to both dimers and trimers, and when only the
trimers are subjected to a cutoff. In the absence of a cutoff, MBE(3) requires 7,175 subsystem calculations.
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Table S1: Errors in Ea for COMT (in kcal/mol) using various MBE(n) methods.

Functional Basis Set
Gas Phase PCM (ε = 4)

MBE(1) MBE(2) MBE(3) MBE(1) MBE(2) MBE(3)

CAM-
B3LYP

6-31+G* −1.03 5.26 15.72 −0.95 1.04 −0.09
def2-SVP −1.15 11.78 −21.50 −1.12 1.17 −0.10
def2-SVPD −1.07 3.99 30.46 −0.92 1.07 0.18
jun-cc-pVDZ −1.16 3.83 51.19 −0.86 1.09 −0.04

M06-2X
+D3

6-31+G* −3.20 4.53 20.59 −3.12 0.59 −0.10
def2-SVP −3.20 8.63 −5.00 −3.13 0.70 −0.03
def2-SVPD −3.19 4.01 14.44 −3.00 0.70 −0.04
jun-cc-pVDZ −3.29 4.24 20.45 −3.23 0.41 −0.26

ωB97X-D

6-31+G* −1.54 3.75 15.97 −1.47 0.79 −0.13
def2-SVP −1.45 5.45 −16.74 −1.40 0.87 −0.03
def2-SVPD −1.48 3.58 10.59 −1.35 0.81 0.00
jun-cc-pVDZ −1.59 3.47 15.83 −2.02 0.11 −0.74

Table S2: Errors in Ea for COMT (in kcal/mol) using various MBE(n) methods.

Functional Basis Set
Gas Phase PCM (ε = 4)

MBE(1) MBE(2) MBE(3) MBE(1) MBE(2) MBE(3)

CAM-
B3LYP

6-31+G* −128.1 33.48 −3.01 −46.68 2.84 0.99
def2-SVP −127.0 30.07 1.00 −43.85 2.64 0.34
def2-SVPD −127.3 34.56 −8.73 −47.03 2.71 −0.72
jun-cc-pVDZ −127.5 32.92 −5.01 −46.69 2.33 0.45

M06-
2X+D3

6-31+G* −133.5 34.31 −3.18 −51.40 3.81 0.93
def2-SVP −131.5 30.72 −1.87 −48.05 3.33 0.18
def2-SVPD −132.1 34.89 −8.62 −51.28 3.39 −0.90
jun-cc-pVDZ −132.9 33.60 −3.52 −51.27 3.18 0.50

ωB97X-D

6-31+G* −131.7 33.57 −8.36 −50.05 3.15 0.72
def2-SVP −130.8 30.08 −6.94 −47.82 2.87 0.19
def2-SVPD −130.8 34.59 −11.68 −50.62 2.97 −0.98
jun-cc-pVDZ −131.3 33.01 −8.71 −50.72 2.26 −0.03
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Table S3: ONIOM-style supersystem corrections for Ea and ∆rxnE, for COMT. All calculations use PCM
(ε = 4) boundary conditions.

Quantity Method
Correction (kcal/mol)

MBE(1) MBE(2) MBE(3)
Ea HF/6-31G −0.62 0.61 −0.05
Ea HF-3c −1.84 0.82 −0.02
Ea PBEh-3c −1.30 1.10 0.02
Ea LRC-ωPBEh/6-31G −1.20 1.07 −0.03
∆rxnE HF/6-31G −52.73 1.99 0.13
∆rxnE HF-3c −56.29 −0.17 0.06
∆rxnE PBEh-3c −40.23 3.65 0.08
∆rxnE LRC-ωPBEh/6-31G −42.98 3.41 0.19

Table S4: MBE(3) errors for ωB97X-D/def2-SVP calculations.

System Method
Error (kcal/mol)

Ea ∆rxnE

COMT
vacuum −16.7 −6.9
PCM (ε = 4) −0.0 0.2
charge-coordinated −0.1 1.5

AspDC
vacuum −0.6 −0.2
PCM (ε = 4) −0.3 −0.5

Table S5: Total CPU time for a single-point energy calculation on COMT at the ωB97X-D/def2-SVP level
of theory.

Method
CPU Time (hours)

Supersys. MBE(1) MBE(2) MBE(3)
Vacuum 92 1 68 1,503
PCM 143 2 90 2,025
Charge Coordinated 3 109 1,804

S10


	Fragment Definition
	Supersystem Calculations
	Convergence Tests
	Timing Data

