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ABSTRACT: A primary means to generate hydrated electrons in laboratory experiments is
excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I−(aq), but this
initial step in the genesis of e−(aq) has never been simulated directly using ab initio molecular
dynamics. We report the first such simulations, combining ground- and excited-state simulations
of I−(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the
nascent solvated electron. What emerges is a two-step picture of the evolution of e−(aq) starting
from the CTTS state: I−(aq) + hν → I−*(aq) → I•(aq) + e−(aq). Notably, the equilibrated
ground state of e−(aq) evolves from I−*(aq) without any nonadiabatic transitions, simply as a
result of solvent reorganization. The methodology used here should be applicable to other
photochemical electron transfer processes in solution, an important class of problems directly
relevant to photocatalysis and energy transfer.

The aqueous or hydrated electron, e−(aq),1−4 is a
byproduct of ionizing radiation and thus an important

reducing agent in radiation chemistry.1,2 It is also an archetypal
quantum-mechanical solute4 and thus an important benchmark
for solution-phase electron-transfer protocols that has been a
target of atomistic simulations for more than three
decades.4−15 Theoretical efforts to understand the properties
of e−(aq) actually predate modern molecular dynamics
simulations.16−18

Radiochemical origins of e−(aq) can be probed in the
laboratory via pulse radiolysis,19,20 typically with picosecond
time resolution in modern experiments.20−22 To study the
solvation dynamics of e−(aq) with femtosecond time
resolution, a photochemical means to produce e−(aq) is
required.23,24 A common technique is photodetachment of an
aqueous anion such as I−(aq), CN−(aq), or SCN−(aq),
accessing its charge-transfer-to solvent (CTTS) bands:24−30

h eX (aq) X (aq) (aq)+ +•

While photodetachment from aqueous halides has been
simulated using one-electron pseudopotential models,31−37

and with many-electron quantum chemistry in I−(H2O)n
clusters,38−40 the present work reports the first ab initio
simulations of this process in the liquid phase, for X = I.

Previous simulations have established a mechanism whereby
a locally excited (or “trapped”) state of I−*(aq), having p → s/
d character,31 rapidly gives way to a “wet” (pre-equilibrated)
electron that is not yet fully solvated, culminating in formation
of the equilibrated ground state of e−(aq) after solvent
reorganization in the absence of geminate recombination.31−37

Moving to many-electron ab initio simulations can both

validate and extend these one-electron results, e.g., to address
questions regarding whether the ground state of e−(aq)
genuinely occupies a cavity versus a more delocalized
structure,3 in a manner that is free from concerns regarding
the parametrization of one-electron potentials.41−43Ab initio
molecular dynamics simulations of the wet electron have been
reported starting from a delocalized state in the conduction
band,44,45 but not from the more localized CTTS state.
Therefore, the immediate goal of the present work is to
investigate the dynamics of threshold photodetachment of
I−(aq) via ab initio molecular dynamics. We also present a
novel decomposition of the electronic states involved in the
charge separation process, which provides a theoretical basis
for a mechanism originally put forward by Bradforth and co-
workers.26

Theoretical description of e−(aq) presents challenges at the
intersection of condensed-phase electronic structure and
statistical mechanics. The first challenge in modeling the
genesis of e−(aq) starting from I−(aq) is to establish a robust
simulation protocol. Often in ab initio simulations, e−(aq) is
prepared either by adding an electron to neat liquid water and
then allowing the system to equilibrate naturally from a
delocalized state,11−13,44−47 or else by creating a cavity in
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liquid water by means of a proxy ion such as chloride.48

Although the former approach does afford information
regarding the nature of the wet electron44,45 and pre-existing
trap states in liquid water,49−51 neither of these protocols
directly models the photodetachment mechanism. To develop
a consistent picture of the initial and final states, our approach
is to allow the system to evolve naturally into the radical−ion
pair, I•:e−(aq), starting from the locally excited state, I−*(aq).
By developing a single framework to study both the creation
and the equilibration of e−(aq), we may be able to extract
statistical-mechanical quantities in addition to spectroscopic
properties, eventually encompassing free energies and rates of
electron transfer.

The work presented herein adds to the consensus view that
the solvated electron resides in the center of an excluded
volume or cavity in liquid water.3 This picture is supported by
essentially all recent ab initio simulations,44−48,52−59 as well as
numerous earlier simulations based on one-electron pseudo-
potential models.4−6,10−15 The present work extends these
results via direct simulation of the initial steps in cavity
formation starting from I−*(aq) and connecting three different
protocols within the framework of density functional theory
(DFT). Specifically, we employ (i) DFT within the generalized
gradient approximation (GGA), in order to generate
ensembles of ground-state I−(aq); (ii) hybrid functionals
within the restricted open shell Kohn−Sham (ROKS)
formalism,60,61 in order to generate the S1 state I−*(aq); and
(iii) ground-state, unrestricted DFT using hybrid functionals,
as a means to describe the solvated electron in the presence of
I•(aq). A hallmark of this study is a demonstration that the S1
state is accessible by vertical excitation of equilibrated I−(aq),
initially forming a “frustrated Rydberg state”,62 I−*(aq), which
initiates cavity formation as it spontaneously evolves into
I•(aq) + e−(aq). Connecting these distinct events within an ab
initio simulation framework affords a Marcus-like picture of the
solution-phase electron transfer process, directly from the
simulation data.

We began by simulating the ground state of I−(H2O)96
under periodic boundary conditions with the BLYP+D2
functional.63−65 Structures generated in these simulations
were used to initialize subsequent ROKS simulations of the
S1 state. ROKS is good approach for modeling CT excited
states, which are typically well-described by a single pair of
orbitals. Despite the CT nature of the initial excited state and
the favorable accuracy of the ROKS method (∼0.2 eV for
valence excited states, with only a mild dependence on the
choice of functional),66 we found that the details of the band
structure of water were critically important to the subsequent
CTTS dynamics. This places some constraints on the choice of
functional, as an accurate band gap is a prerequisite for
modeling the appropriate CTTS state. We found that ROKS
simulations based on BLYP+D2 resulted in S1 dynamics that
sampled a plethora of continuum states in which the electron is
delocalized throughout the simulation cell.

The CTTS state of interest ought to lie between the valence
and conduction bands,24 but GGA functionals such as BLYP
+D2 dramatically underestimate the band gap.67−69 This
causes continuum states from the conduction band to dip
below the CTTS state of I−(aq). Since we are targeting only
the lowest-energy singlet with our ROKS simulations, and the
energies of the continuum orbitals of liquid water are artificially
low when using BLYP+D2, the S1 state generated in this way
does not afford a hydrated electron. We suggest that this

problem originates in underestimation of the band gap by
GGAs rather than self-interaction error per se, because GGA
functionals do predict a bound singly occupied molecular
orbital (SOMO) for e−(aq), for a variety of different water
structures.56 (Self-interaction error does mean that Kohn−
Sham eigenvalues should not be taken seriously as ionization
energies unless steps are taken to address this error.70) Instead,
it would appear that the appropriate CTTS state is simply not
found, because states in the conduction band are artificially low
in energy.

We ameliorate this band gap problem by augmenting the
PBE functional71 with 40% exact exchange along with rVV10
nonlocal correlation.72 (The latter is a revised version of the
original VV10 functional.73) This composite functional, which
we call PBEh(40)-rVV10, predicts an accurate band gap for
neat liquid water.74−76 In the present context, it affords an S1
state with proper CTTS character, namely, a midgap excited
state featuring significant charge separation, which rapidly
localizes to form e−(aq) as discussed below.

Now that the CTTS state of I−(aq) can be generated
reliably, we next consider its dynamics. We initiate the excited-
state dynamics using ROKS/PBEh(40)-rVV10 at a randomly
selected nuclear configuration from the ground-state BLYP
+D2 trajectory of I−(aq). Although the electronic band
structure obtained from BLYP+D2 is clearly incorrect, our
hypothesis is that this functional nevertheless affords a good
ground-state hydration structure, which is supported by
previous comparisons to experiment.77−79 To verify that the
CTTS excitation generated with ROKS is reproducible, we
used several different frames from the ground-state I−(aq)
trajectory to initialize the subsequent ROKS simulation. This
revealed that the position of the initially excited electron is
highly variable, and different starting configurations along the
ground-state trajectory eject the electron to very different
positions within the simulation cell. These microstate-depend-
ent fluctuations are illustrated using transition dipole moments
obtained from time-dependent (TD-)DFT calculations of the
initial CTTS state, as shown in Figure S2. This is consistent
with an electron that is initially “trap-seeking”,3 meaning that
inherent (and fluxional) voids in the structure of liquid
water80,81 manifest as variability in the location of the lowest-
energy CTTS excitation.

In what follows, we consider the relaxation of a ROKS
trajectory in the CTTS state, starting from one particular frame
(Figure 1). Once the frustrated Rydberg state I−*(aq) is
formed, the time scale for localization of e−(aq) is only ∼250
fs, corresponding to the steep drop in the energy of the S1 state
that is depicted in Figure 1, and culminating in the solvent-
separated ion−radical complex that is depicted in Figure 2.
This suggests a picture in which an initially trap-seeking
electron localizes into a pre-existing solvent void,50 then
rapidly stabilizes via anionic solvation. (Electron−water
hydrogen bonds2,12,56 are evident in Figure 2.) The electron
thus transitions from trap-seeking to trap-digging, on what has
independently been estimated to be a ∼250 fs time scale,3,45

during which time the water molecules reorient to accom-
modate e−(aq). Following this rapid initial stabilization, the
potential energy continues to decrease (albeit more slowly),
until the energy of the CTTS state lies about 0.7 eV above the
energy of the I•:e−(aq) ground state. These time scales are
roughly consistent with early-time relaxation dynamics
predicted in ab initio simulations of electron injection into
neat liquid water.44,45
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We now return to the ground state by removing the
constraints of ROKS and reoptimizing the wave function using
spin-polarized (unrestricted) orbitals and a solvent config-
uration that was generated from 250 fs of ROKS dynamics. In
the absence of geminate recombination (a pathway that is not
considered in this work), the ground state of e−(aq) remains
localized in the SOMO and separated from I•(aq), from which
it gradually diffuses apart as evident from the center-to-center
distance that is plotted as a function of time in Figure S3. At
this point, the structural properties of e−(aq) resemble those of
a strongly hydrated anion, whose electron−oxygen radial
distribution function (RDF) is plotted in Figure 3a based on
14 ps of simulation data. We confirm the localization of the
SOMO by inspecting centroids of maximally localized Wannier
functions.82 The second moment of the SOMO’s Wannier
function is centered around 1.75 Å (Figure 3b), which is
consistent with an excluded volume extending to r ≈ 2 Å in
g(r). An excluded volume of the same size is observed in other
simulations performed using the same functional,45 and in
cavity-forming pseudopotential models.10,12

Note that the cavity radius suggested by the RDF (≈ 2 Å) is
smaller than the radius of gyration (rg = 2.45 Å) that is inferred
from the experimental absorption spectrum of e−(aq).3,83 Since
the Wannier functions are obtained from a localization
procedure, we also computed rg as the second moment of
the canonical SOMO computed using an atom-centered
Gaussian basis set. These calculations use clusters extracted
from the periodic trajectory, containing an average of 157
water molecules plus a larger number of point charges as
described in the Computational Methods. The result, ⟨rg⟩ = 2.3
± 0.6 Å, implies that rg is indeed larger than the radius of the
cavity, consistent with a particle-in-a-box model having a finite
well depth.14 (This observation is also consistent with the fact
that the unpaired spin density penetrates into the second
solvation shell.12,14,52) To make contact with the maximally
localized Wannier functions, which are periodic analogues of
Boys-localized MOs,82 we applied a Boys localization
algorithm84 to the cluster calculations. This reduces the radius
of gyration of the orbital that best represents the unpaired
electron, from ⟨rg⟩ = 2.3 Å (canonical) to ⟨rg⟩ = 1.5 Å (Boys-
localized), thus explaining the smaller width that is suggested
in Figure 3b based on Wannier functions.

Figure 1. Relaxation of e−(aq) from the initially excited CTTS state,
illustrating fluctuations in the ROKS energy. The frustrated Rydberg
state is illustrated at t = 0.1 ps following excitation at t = 0. The water
molecules that eventually coordinate to e−(aq) are shown using a
larger tubular representation.

Figure 2. Spin density of I•(aq) and e−(aq) after electron detachment
and localization. At the bottom, the water molecules directly
coordinated to e−(aq) are shown using a larger tubular representation.

Figure 3. Structural properties of e−(aq) in equilibrated simulations of I•:e−(aq), based on 14 ps of simulation data. (a) Electron−oxygen radial
distribution function, g(r). The inset plots g(r) (in black) along with the integrated coordination number ⟨n⟩ that is obtained from it (in red). (b)
Probability distribution for the width (second moment) of the maximally localized Wannier function corresponding to the SOMO of e−(aq),
computed using spin-polarized orbitals.
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Localization of the CTTS state to form e−(aq) is associated
with significant stabilization of the ROKS potential energy
(Figure 1), driven by reorientation of nearby water molecules
in an effort to adapt to a new charge distribution and to form
new hydrogen bonds. The electron−oxygen RDF in Figure 3a
shows that the first hydration shell of e−(aq) extends to 3.1 Å
and the integrated g(r) in the inset implies that 4−5 water
molecules coordinate to e−(aq). This is consistent with other
ab initio simulations of the equilibrated hydrated electron,
using the same functional.46

Values of rg obtained in various simulations of e−(aq)
correlate very well with the ground-state excitation energy of
the equilibrated species,6,85 with an rg−2 dependence for the
excitation energy that is consistent with a spherical particle-in-
a-box potential.85 TDDFT calculations along the equilibrated
I•:e−(aq) trajectory afford an average excitation energy of 1.91
± 0.76 eV, computed using a long-range corrected (LRC)
functional86−88 with an “optimally tuned” range-separation
parameter,54,88 as described in the Computational Methods.
Although this excitation energy is slightly larger than the
experimental absorption maximum of 1.7 eV,2,89 it is consistent
with a radius of gyration of rg = 2.3 Å.85 Remaining
discrepancies are well within the intrinsic accuracy of
TDDFT.90

The ab initio picture of the photodetachment process that
we have described so far is entirely consistent with the results
from one-electron pseudopotential simulations,31−37 but our
ab initio protocol offers the intriguing prospect of studying the
hydration structure of the iodine radical that is left behind.
Incremental iodine−oxygen RDFs for I•:e− (Figure 4), which

indicate the position of successive neighboring oxygen atoms
around the iodine radical in the equilibrated ion−radical
ground state, suggest a highly asymmetric solvation structure in
which the closest hydrating water molecule is much closer to I•

than any of the others. This nearest-neighbor water molecule is
primarily responsible for the first peak in the full iodine−
oxygen RDF, in agreement with DFT simulations of I•(aq).91

In contrast, one-electron pseudopotential models, which
describe the intermolecular forces entirely via classical force
fields, produce a symmetric solvation environment for
I•(aq).62,91 (It may be possible to describe the asymmetry
using polarizable force fields, as in the case of I−,92 but this has
not been considered in previous one-electron simulations of
the photodetachment mechanism.) The good agreement
between the iodine−water structural parameters that we
obtain for the ion−radical pair I•:e−, as compared to those
obtained for I•(aq) in the absence of a solvated electron,77,91

suggests that the structure of I•(aq) is not significantly
perturbed by the presence of e−(aq). The ability to describe
this asymmetric hydration structure gives ab initio simulations
a clear advantage over one-electron models for future
consideration of geminate recombination pathways that are
likely to be strongly influenced by the hydration structure
around the radical.

Beyond the molecular picture of e−(aq) and I•(aq) that is
described above, we have an opportunity to construct a
reduced statistical framework that is guided by Marcus theory
and informed by the simulation data. Bradforth and co-
workers26 have suggested that evolution of e−(aq) starting
from the CTTS state of I−(aq) proceeds as shown in Figure 5a.
We next make contact with this picture, based on ab initio
simulation data.

To determine the shape of the relevant electronic surfaces,
we calculated the electrostatic potential generated by the water
molecules at the position of either solute species, I−(aq) or
e−(aq), along the ab initio trajectories. (Details can be found in
the Supporting Information.) Configurations are binned
according to the solvent’s electrostatic potential, and the
resulting histograms are fit to Gaussian functions.93,94 The
electrostatic potential is a promising reaction coordinate along
which to construct local potential energy surfaces, because it
can encapsulate rearrangement of a large number of solvent
molecules. In Figure 5b, we present the fitted potential surfaces
along with the raw histogram data, for the I−(aq) and e−(aq)
states, and we suggest the relaxation process from the CTTS
state to the equilibrated e−(aq) state.

As the solvent is allowed to reorganize around the I−*
intermediate, the CTTS state is stabilized and this appears as a
decrease in its energy, as observed in the simulation data
(Figure 1) and shown schematically in Figure 5b. Solvent
relaxation brings the CTTS state into coalescence with the
equilibrated ground state of the ion−radical pair. Our
simulations exhibit several instances of near-degeneracy
between the ROKS excited state and the ground state of
e−(aq), but we simply switch to the ground-state potential at
these points rather than computing nonadiabatic couplings.
This is consistent with the idea that the CTTS → e−(aq)
transition can be achieved adiabatically via solvation dynamics.

The picture that emerges from the simulations is therefore
substantially similar to that inferred by Bradforth and co-
workers,26 including the strictly adiabatic transition from the
CTTS state to e−(aq). Indeed, a key finding from our
simulations is that there is no surface crossing from the CTTS
state to e−(aq), but instead the solvent simply reorganizes to
accommodate e−(aq). Solvent relaxation results in an addi-
tional stabilization of ∼1.5 eV, following the ∼250 fs
localization process that is documented in Figure 1. This is
consistent with the experimentally measured Stokes shifts95

and with results from one-electron pseudopotential simu-
lations.34,35 It is also direct evidence of trap-digging behavior,

Figure 4. Iodine−oxygen RDF, g(r), for the equilibrated ground state
of I•:e−(aq). The inset decomposes g(r) into incremental contribu-
tions arising from the nearest oxygen atom (labeled “1st”), second-
nearest oxygen atom (“2nd”), etc. These incremental distributions are
not normalized.
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consistent with the interpretation in ref 3 that the delocalized
wet electron is trap-seeking for its first ∼250 fs before
transitioning to trap-digging behavior at later times. The
emergence of a 250 fs time scale is consistent with ultrafast
spectroscopy25−27 and with one-electron simulation re-
sults.35−37

The following picture emerges to describe the “birth” of
e−(aq) from the CTTS state. Vertical excitation to the CTTS
state is microstate-dependent (trap-seeking), due to the
nonuniform nature of the solvent fluctuations, but this
frustrated Rydberg state is short-lived. It localizes to form
e−(aq) in ∼250 fs and fully equilibrates to the ground state of
I•:e−(aq) within ∼1 ps, via solvent relaxation or trap-digging
behavior. This species remains within the Marcus inverted
region (Figure 5b), consistent with the picture put forward by
Bradforth and co-workers (Figure 5a).26

Thus, we have presented a fully ab initio protocol for
generating e−(aq) from the ground state of an aqueous anion.
Our results are consistent with the known vertical excitation
energies of I−(aq) and e−(aq), with structural properties of
e−(aq) including coordination number and radius of gyration,
and also with the relative energies of the I−(aq) and I•:e−(aq)
ground states. A Marcus-like picture can be inferred from
fluctuations in the solvent’s electrostatic potential, consistent
with the reaction path used to understand the experimental
photodetachment dynamics of I−(aq),26 yet a refined under-
standing of the locally excited I−* intermediate emerges from
the simulations. The initially delocalized electron is trap-
seeking following vertical excitation but rapidly transitions to a
trap-digging species that drives significant solvent relaxation,
without any nonadiabatic surface crossings. This suggests that
the photoinduced electron transfer rate from halide to solvent
is limited by solvent reorganization. Our approach may provide
a useful cornerstone upon which ab initio simulations of
solution-phase electron-transfer parameters76,96 can be per-
formed, in order to describe photoinduced electron transfer in
solution.

■ COMPUTATIONAL METHODS
Ab initio molecular dynamics simulations on I−(H2O)96, in a
(14.4 Å)3 unit cell, were performed using CP2K v. 9.1.97 These
simulations used either the BLYP+D2 functional63−65 or the
PBEh(40)-rVV10 functional,46 with the DZVP-MOLOPT-SR
basis set.98 (Following ref 46, we set the parameter b = 5.3 in
rVV10.) The temperature was maintained at T = 298 K using
canonical sampling with velocity rescaling.99 The procedure
used to generate Figure 5 is described in the Supporting
Information.

The ground-state wave function of I•:e− was found to have
triplet multiplicity, which may be a consequence of our neglect
of spin−orbit effects, as the singlet does not yield a solvent-
separated ion−radical pair. However, the triplet has been
found to be a reasonable proxy for modeling CTTS
dynamics.62 Spin−orbit corrections have been introduced for
ROKS simulations only very recently,100 and these effects are
neglected here. Experimentally, the spin−orbit coupling splits
the CTTS spectrum of I−(aq) into 2P3/2 and 2P1/2 bands
centered at 5.5 and 6.44 eV, respectively.24 A spin−orbit-free
excitation energy can be estimated from these experimental
values as [E(2P1/2) + 2E(2P3/2)]/3 = 5.8 eV,101,102 which is
roughly in line with our ROKS excitation energies.

Calculations in atom-centered basis sets were performed
with a quantum mechanics/molecular mechanics (QM/MM)
protocol used previously for e−(aq),15,54,56 in which water
molecules within 8.5 Å of the iodine atom (along with iodine
itself) were included in the QM region, for an average of 157
water molecules per snapshot. This requires periodic
replication of the unit cell and periodic images of iodine
were omitted. Additional water molecules were included as
MM point charges, out to a radius of 30 Å. These calculations
were performed with Q-Chem v. 6.0,103 using the PBEh(40)-
rVV10 functional and the minimally augmented def2-ma-SVP
basis set104 for the ground-state rg calculations. For TDDFT
calculations, we used LRC-ωPBEh(40)-rVV10/def2-ma-SVP
with a tuned range-separation parameter, ω = 0.24 bohr−1. The

Figure 5. Conceptual models for the emergence of e−(aq) following CTTS excitation of I−(aq). (a) The model proposed by Bradforth and co-
workers based on experimental work.26 (b) Fitted potential energy surfaces obtained from ab initio simulations. In (b), the energies obtained from
ground-state I−(aq) trajectories are shown as blue squares, and those for equilibrated e−(aq) are shown as magenta circles. Each set of energies was
fit to a Gaussian (black curves). The reaction coordinate along the horizontal axis is a collective solvent coordinate corresponding to the
electrostatic potential generated by the water molecules and evaluated at the coordinates of I− or at the centroid of the SOMO of e−(aq). The
uppermost surface is the CTTS state, which is initially excited at 5.5 eV above the I−(aq) ground state. Gray parabolas provide a schematic view of
solvent relaxation and energetic stabilization of the short-lived CTTS state. Panel (a) is adapted with permission from Kloepfer et al. J. Chem. Phys.
2000, 113, 6288−6307. Copyright 2000 American institute of Physics.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c03460
J. Phys. Chem. Lett. 2023, 14, 870−878

874

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c03460/suppl_file/jz2c03460_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c03460/suppl_file/jz2c03460_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03460?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03460?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03460?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03460?fig=fig5&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c03460?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


value of ω was determined using the global density-dependent
tuning procedure,105−107 as in previous work on the CTTS
state of I−(aq).76 This approach is a convenient alternative to
“optimal tuning” based on the ionization energy condition.88
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We recently reported ab initio molecular dynamics
simulations of an aqueous electron generated from an

excited state of I−(aq).1 It was subsequently brought to our
attention that the version of the CP2K code used in those
simulations contained an error for restricted open shell Kohn−
Sham (ROKS) calculations with hybrid functionals. The
Hartree−Fock exchange component of the energy was not
included consistently in both terms in the ROKS singlet energy
formula (Es = 2Em − Et),

2 resulting in a spin-contaminated
wave function. This error has been remedied, and the ROKS
trajectory from ref 1 was rerun using the exact starting point
from our published results. The two traces are statistically
equivalent (see Figure 1), indicating a rather small exchange
interaction between e−(aq) and I•(aq). The refurbished low-
spin ROKS trajectory produced a solvated electron via the
same mechanism that is described in our original work,1 thus
our published results and conclusion remain unaltered. In
particular, because the ground-state simulations are unaffected,
and due to the statistical equivalence of the energies in Figure
1, the average excitation energy is also unaffected. To
reproduce our work going forward, the interested researcher
should use the latest trunk version of CP2K.3 This can be
obtained via the command

Figure 1. Original ROKS trajectory from ref 1 in comparison to new
data based on modifications to the CP2K code. At early times, the
trajectories are essentially equivalent, and this sets the scale for the
ROKS excitation energy reported in ref 1.

$git clone --recursive
https://github.com/cp2k/cp2k.git cp2k
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