Supplementary Material for:

Simplified tuning of long-range corrected time-dependent density functional theory

Aniket Mandal and John M. Herbert* Department of Chemistry and Biochemistry The Ohio State University, Columbus, Ohio 43210 USA

February 23, 2025

Contents	
References	
Tables	
Figures	

 $\mathbf{S2}$

 $\mathbf{S3}$

 $\mathbf{S8}$

List of Tables

$\mathbf{S1}$	CT excitation energy data set.	S3
S2	Valence excitation energy data set, from Ref. 1.	S4
$\mathbf{S3}$	Vertical excitation energies and errors for linear acenes, computed using optimally tuned LRC- ω PBE/def2-	
	TZVPD	S4
$\mathbf{S4}$	DFT and TD-DFT properties for the linear acenes, computed using optimally tuned LRC- ω PBE/def2-TZVPD. ^a	
		S5
S5	DFT and TD-DFT properties for linear acenes computed using optimally tuned LRC- ω PBE/def2-ma-SVP. ^a	S5
$\mathbf{S6}$	DFT and TD-DFT properties for $(PPV)_n$ oligomers computed using optimally tuned LRC- $\omega PBE/def2$ -ma-	
	SVP. ^{<i>a</i>}	S6
$\mathbf{S7}$	DFT and TD-DFT properties for $O_2N(Ph)_nNH_2$ oligomers, computed using optimally tuned LRC- $\omega PBE/$	
	def2-ma-SVP. ^{<i>a</i>} \dots	S6
$\mathbf{S8}$	TD-DFT Results for open-shell and exotic molecules using the LRC- ω PBEh functional. ^a	S7

List of Figures

S1	Mean absolute errors in TD-DFT(TDA)/def2-TZVPD calculations with various functionals, for (a) the ${}^{1}L_{a}$	
	and (b) the ${}^{1}L_{b}$ state of the linear acenes, naphthalene through hexacene	$\mathbf{S8}$
S2	Variation of linear acene properties versus molecular size: (a) tuned ω values, (b) S ₁ excitation energies, and	
	(c) HOMO/LUMO gaps. DFT and TD-DFT(TDA) calculations performed using the def2-ma-SVP basis set.	$\mathbf{S8}$

^{*}herbert@chemistry.ohio-state.edu

S3	TD-DFT results for conjugated polymers using tuned LRC- ω PBE functionals alongside LRC- ω PBE with fixed	
	$\omega = 0.3$ bohr ⁻¹ . (a) TD-DFT(TDA) excitation energies for the S ₁ state, (b) HOMO-LUMO gaps, and (c)	
	exciton size $(d_{\rm rms})$ for linear acene molecules. (d) Excitation energies $\Delta E(S_1)$, (e) HOMO-LUMO gaps, and	
	(f) $d_{\rm rms}$ for $({\rm PPV})_n$ oligomers. (g) Excitation energies $\Delta E(S_1)$, (h) HOMO-LUMO gaps, and (i) $d_{\rm rms}$ for	
	$O_2N(Ph)_nNH_2$. Acene calculations were performed using the def2-TZVPD basis set and other calculations	
	used def2-ma-SVP.	S9
$\mathbf{S4}$	Variation of total energy with respect to fractional electron added, for two open shell systems. All calculations	
		~

References

- Peach, M. J. G.; Benfield, P.; Helgaker, T.; Tozer, D. J. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 2008, 128, 044118:1–18.
- [2] Herbert, J. M.; Jacobson, L. D. Structure of the aqueous electron: Assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory. J. Phys. Chem. A 2011, 115, 14470– 14483.
- [3] Uhlig, F.; Herbert, J. M.; Coons, M. P.; Jungwirth, P. Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations. J. Phys. Chem. A 2014, 118, 7507–7515.
- [4] Carter-Fenk, K.; Mundy, C. J.; Herbert, J. M. Natural charge-transfer analysis: Eliminating spurious charge-transfer states in time-dependent density functional theory via diabatization, with application to projection-based embedding. J. Chem. Theory Comput. 2021, 17, 4195–4210.
- [5] Carter-Fenk, K.; Johnson, B. A.; Herbert, J. M.; Schenter, G. K.; Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett. 2023, 14, 870–878 Erratum: J. Phys. Chem. Lett. 14, 4150 (2023).
- [6] Loos, P.-F.; Comin, M.; Blase, X.; Jacquemin, D. Reference energies for intramolecular charge-transfer excitations. J. Chem. Theory Comput. 2021, 17, 3666–3686.
- [7] Grimme, S.; Parac, M. Substantial errors from time-dependent density functional theory for the calculation of excited states of large π systems. *ChemPhysChem* **2003**, 4, 292–295.
- [8] Loos, P.-F.; Scemama, A.; Boggio-Pasqua, M.; Jacquemin, D. Mountaineering strategy to excited states: Highly accurate energies and benchmarks for exotic molecules and radicals. J. Chem. Theory Comput. 2020, 16, 3720–3736.

TABLES

	a		(1)	1.5	b TD DET Emore (aV)					
Molecule	State	Benchmark ^a	ω (bol	$(r^{-1})^{0}$		TD	-DFT Erro	ors $(eV)^c$		
		(eV)	GDD	IE	LRC-	LRC-	B3LYP	PBE0	CAM-	LRC-
					$\omega_{ m GDD} PBE$	$\omega_{\rm IE}{\rm PBE}$			B3LYP	$\omega PBEh$
Aminobenzonitrile	$2 {}^{1}\!A_{1}$	5.26	0.314	0.293	-0.09	0.12	-0.35	-0.25	-0.15	-0.22
Aniline	$2 {}^{1}\!A_{1}$	5.87	0.324	0.305	-0.21	-0.02	-0.45	-0.35	-0.30	-0.22
Azulene	$2 {}^{1}\!A_1$	3.89	0.300	0.241	-0.11	-0.17	-0.28	-0.21	-0.16	0.06
Azulene	$^{1}\mathrm{B}_{2}$	4.55	0.300	0.241	0.21	0.13	0.08	0.17	0.22	0.08
Benzonitrile	$^{1}A_{1}$	7.10	0.328	0.297	-0.34	-0.41	-0.90	-0.80	-0.50	0.00
Benzothiadiazole	$^{1}\mathrm{B}_{2}$	4.37	0.312	0.443	-0.08	0.06	-0.58	-0.47	-0.26	-0.16
Dimethylaniline	$^{1}\mathrm{B}_{2}$	4.47	0.305	0.266	0.20	0.12	-0.04	0.05	0.22	0.07
Dimethylaniline	$^{1}A_{1}$	5.54	0.305	0.266	-0.04	-0.10	-0.42	-0.20	-0.08	0.05
Nitroaniline	$^{1}\!\mathrm{A}_{1}$	4.57	0.320	0.284	-0.08	-0.13	-0.64	-0.49	-0.21	0.04
Nitrodimethylaniline	$^{1}A_{1}$	4.28	0.307	0.248	0.02	-0.15	-0.61	-0.46	-0.14	0.16
Phthalazine	$^{1}A_{2}$	3.93	0.312	0.275	0.01	-0.15	-0.41	-0.28	0.12	0.11
Phthalazine	$^{1}B_{1}$	4.34	0.312	0.275	0.46	0.41	-0.40	-0.29	0.05	0.04
Quinoxaline	$^{1}\mathrm{B}_{2}$	4.74	0.311	0.341	-0.04	0.04	-0.65	-0.53	-0.23	-0.11
Quinoxaline	$^{1}A_{1}$	5.75	0.311	0.341	0.22	0.27	-0.03	0.08	0.18	-0.07
Quinoxaline	$^{1}\mathrm{B}_{1}$	6.33	0.311	0.341	0.05	0.10	-0.41	-0.45	-0.11	-0.07
Twisted DMABN	$^{1}A_{2}$	4.17	0.303	0.279	-0.23	-0.36	-0.96	-0.83	-0.19	0.12
Twisted DMABN	$^{1}\mathrm{B}_{1}$	4.84	0.303	0.279	0.37	0.33	-0.97	-0.80	-0.11	0.02
Dipeptide	$n_1 \rightarrow \pi_2^*$	8.07	0.317	0.325	-0.24	-0.08	-1.84	-1.51	-0.27	-0.26
Dipeptide	$\pi_1 \to \pi_2^*$	7.18	0.317	0.325	0.02	0.05	-1.10	-0.86	-0.30	-0.09
β -dipeptide	$n_1 \rightarrow \pi_2^*$	9.13	0.307	0.296	-0.24	0.15	-1.87	-1.49	-0.75	-0.43
β -dipeptide	$\pi_1 \to \pi_2^*$	7.99	0.307	0.296	-0.33	0.01	-0.79	-0.17	0.02	-0.40
N-phenylpyrrole	$2 {}^1\mathrm{B}_2$	5.47	0.312	0.464	-0.03	0.25	-0.86	-0.71	-0.20	-0.07
N-phenylpyrrole	$3 {}^1\!\mathrm{A_1}$	5.94	0.312	0.464	0.39	0.71	-1.29	-1.13	-0.02	-0.08
DMABN	$^{1}\mathrm{A}$	4.56	0.314	0.257	0.35	0.33	0.01	0.11	0.27	0.12

 Table S1: CT excitation energy data set.

a From Refs. 1 and 6. ^bLRC- ω PBE/def2-TZVPD. ^cTD-DFT/def2-TZVPD, full linear response (no TDA). Positive errors indicate that the TD-DFT transition energy is larger than the benchmark value.

Mologulo	State		TD-	DFT Err	ors $(eV)^a$			$\operatorname{Benchmark}^b$
Molecule	State	LRC-	LRC-	PBE	PBE0	HF-PBE	CIS	(eV)
		$\omega_{\rm GDD}{\rm PBE}$	$\omega_{\rm IE}{\rm PBE}$	IDE	I DE0	III-I DE	015	
Dipeptide	$n_1 \to \pi_1^*$	-0.05	-0.03	-0.28	-0.02	0.95	1.10	5.62
Dipeptide	$n_2 \to \pi_2^*$	0.00	0.02	-0.14	0.02	1.00	1.14	5.79
β -Dipeptide	$n_1 \rightarrow \pi_1^*$	0.13	0.27	-0.05	0.27	1.20	1.35	5.40
β -Dipeptide	$n_2 \to \pi_2^*$	0.51	0.50	0.33	0.49	1.47	1.63	5.10
Naphthalene	$^{1}\mathrm{B}_{2u}$	-0.11	-0.21	-0.77	-0.41	-0.05	0.18	4.88
Naphthalene	${}^{1}\mathrm{B}_{3u}$	0.13	0.07	-0.19	0.09	0.58	0.75	4.46
Anthracene	${}^{1}\mathrm{B}_{2u}$	-0.06	-0.20	-0.77	-0.42	0.09	0.98	3.69
Anthracene	$^{1}\mathrm{B}_{3u}$	0.12	0.03	-0.26	0.05	0.51	0.71	3.89
Tetracene	$^{1}\mathrm{B}_{2u}$	-0.04	0.13	-0.74	-0.41	0.10	1.41	2.90
Tetracene	$^{1}\mathrm{B}_{3u}$	0.11	0.11	0.05	0.01	0.43	0.66	3.52
Pentacene	${}^{1}\mathrm{B}_{2u}$	-0.03	-0.14	-0.73	-0.41	0.07	0.40	2.35
Pentacene	${}^{1}\mathrm{B}_{3u}$	0.11	0.06	-0.89	-0.19	0.36	1.35	3.27
Hexacene	${}^{1}\mathrm{B}_{2u}$	0.14	-0.07	-0.72	-0.42	0.03	0.38	1.95
Hexacene	${}^{1}\mathrm{B}_{3u}$	0.18	-0.20	-0.33	-0.54	0.16	0.42	3.09
N-phenylpyrrole	$1{}^1\mathrm{B}_2$	0.22	0.40	-0.52	0.02	1.09	1.23	4.85
N-phenylpyrrole	$2 {}^{1}\!A_{1}$	0.04	0.21	-0.56	-0.02	0.49	0.61	5.13
DMABN	^{1}B	0.44	0.38	-0.26	0.25	1.02	1.22	4.25
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{2}\mathrm{H}$	$1 {}^{1}\mathrm{B}_{u}$	0.17	-0.01	-0.30	-0.08	0.31	0.52	5.92
$H(C_2H_2)_3H$	$1 {}^1\mathrm{B}_u$	0.13	0.14	-0.39	-0.13	0.36	0.56	4.95
$\mathrm{H}(\mathrm{C}_{2}\mathrm{H}_{2})_{4}\mathrm{H}$	$1 {}^1\mathrm{B}_u$	0.04	0.01	-0.53	-0.25	0.31	0.50	4.41
$H(C_2H_2)_5H$	$1 {}^1\mathrm{B}_u$	-0.26	-0.33	-0.86	-0.57	0.03	0.21	4.27

Table S2: Valence excitation energy data set, from Ref. 1.

 a TD-DFT/def2-TZVPD, full linear response (no TDA). Positive errors indicate that the TD-DFT transition energy is larger than the benchmark value. b From Ref. 1.

Table S3: Vertical excitation energies and errors for linear acenes, computed using optimally tuned LRC- ω PBE/def2-TZVPD.

Molecule	Transition	$Expt.^a$			TD-DFT E1	$(eV)^b$		ΔLRC
		(eV)	DBE	DBEO	HE DBE	LRC-	LRC-	$(eV)^d$
			L DF	F BE0	IIF-FDE	$\omega_{\rm GDD}{\rm PBE}^c$	$\omega_{\rm IE}{\rm PBE}^c$	
Naphthalene	$^{1}L_{a}$	4.66	-0.57	-0.22	0.17	-0.09	0.01	0.08
Naphthalene	${}^{1}L_{b}$	4.13	0.14	0.42	0.91	0.45	0.40	0.05
Anthracene	$^{1}L_{a}$	3.60	-0.68	-0.33	0.18	-0.03	-0.11	0.06
Anthracene	${}^{1}L_{b}$	3.64	-0.01	0.28	0.76	0.41	0.30	0.09
Tetracene	$^{1}L_{a}$	2.88	-0.72	-0.39	0.12	-0.07	-0.18	0.11
Tetracene	${}^{1}L_{b}$	3.39	-0.35	0.14	0.56	0.34	0.18	0.16
Pentacene	$^{1}L_{a}$	2.37	-0.75	-0.43	0.05	-0.05	-0.16	0.11
Pentacene	${}^{1}L_{b}$	3.12	-0.74	-0.04	0.51	0.41	0.21	0.20
Hexacene	${}^{1}L_{a}$	2.02	-0.79	-0.49	-0.04	-0.03	-0.14	0.11
Hexacene	${}^{1}L_{b}$	2.87	-0.11	-0.32	0.38	0.16	0.02	0.14
MAE^{e}						0.20	0.17	0.12

^{*a*}From Ref. 7. ^{*b*}Relative to experiment. ^{*c*}Optimal tuning, $c_{\rm hfx} = 0$. ^{*d*}Difference between LRC- $\omega_{\rm GDD}$ PBE and LRC- $\omega_{\rm IE}$ PBE excitation energies. ^{*e*} Mean absolute error, relative to experiment

No.		GDD tur	ning			IE tuni	ng		LF	$LRC-\omega PBE$		
Rings	$\omega_{ m GDD}$	$\Delta E(^{1}\mathrm{L}_{a})^{b}$	$d_{\rm rms}$	KS gap	ω_{IE}	$\Delta E(^{1}\mathrm{L}_{a})^{b}$	$d_{\rm rms}$	KS gap	$\Delta E({}^{1}\mathrm{L}_{a})^{b}$	$d_{\rm rms}$	KS gap	
	$(bohr^{-1})$	(eV)	(Å)	$(E_{\rm h})$	$(bohr^{-1})$	(eV)	(Å)	$(E_{\rm h})$	(eV)	(Å)	$(E_{\rm h})$	
2	0.302	4.58	3.1672	0.312	0.256	4.51	3.197	0.300	4.58	3.1681	0.312	
3	0.289	3.57	3.9707	0.252	0.227	3.45	4.0411	0.237	3.59	3.9608	0.255	
4	0.276	2.82	4.4754	0.214	0.207	2.70	4.5859	0.197	2.84	4.4498	0.218	
5	0.267	2.32	4.9265	0.187	0.191	2.21	5.0967	0.170	2.35	4.8843	0.192	
6	0.262	1.99	5.3269	0.169	0.179	1.87	5.5729	0.150	2.01	5.2702	0.174	
7	0.255	1.75	5.6908	0.155	0.169	1.63	6.0201	0.136	1.76	5.6123	0.160	
8	0.252	1.58	6.0090	0.145	0.162	1.45	6.4289	0.125	1.59	5.9149	0.150	
9	0.248	1.45	6.2957	0.137	0.157	1.32	6.7994	0.117	1.45	6.1819	0.142	

Table S4: DFT and TD-DFT properties for the linear acenes, computed using optimally tuned LRC-ωPBE/def2-TZVPD.^a

^{*a*}These are the data used in Fig. 3. ^{*b*}TD-DFT(TDA).

No. of		GDD tuning			IE tuning	
Rings	$\omega_{ m GDD}$	$\Delta E(^{1}\mathrm{L}_{a})^{b}$	KS gap	ω_{IE}	$\Delta E(^{1}\mathrm{L}_{a})^{b}$	KS gap
	$(bohr^{-1})$	(eV)	$(E_{\rm h})$	$(bohr^{-1})$) (eV)	$(E_{\rm h})$
2	0.316	4.65	0.315	0.270	4.61	0.308
3	0.299	3.72	0.257	0.238	3.60	0.242
4	0.286	2.98	0.219	0.216	2.84	0.202
5	0.277	2.49	0.194	0.198	2.34	0.173
6	0.270	2.14	0.175	0.186	1.98	0.152
7	0.267	1.90	0.162	0.175	1.63	0.136
8	0.262	1.72	0.152	0.168	1.54	0.129
9	0.257	1.59	0.144	0.162	1.44	0.121
10	0.252	-0.01	0.087	0.158	1.34	0.115
11	0.250	0.02	0.087	0.127	0.26	0.074
12	0.245	0.05	0.087	0.121	0.29	0.073
15	0.238	0.06	0.086	0.107	0.33	0.070
20	0.229	0.07	0.085	0.102	0.32	0.068
40	0.212	0.11	0.080	0.098	0.31	0.066

Table S5: DFT and TD-DFT properties for linear accenes computed using optimally tuned LRC- ω PBE/def2-ma-SVP.^a

^{*a*}These are the data used in Fig S2. ^{*b*}TD-DFT(TDA).

Size		GDD tu	ning			IE tun	ing		L	$LRC-\omega PBE$		
(n)	$\omega_{ m GDD}$	$\Delta E(\mathbf{S}_1)^b$	$d_{\rm rms}$	KS gap	ω_{IE}	$\Delta E(\mathbf{S}_1)^b$	$d_{ m rms}$	KS gap	$\Delta E(\mathbf{S}_1)^b$	$d_{\rm rms}$	KS gap	
	$(bohr^{-1})$	(eV)	(Å)	$(E_{\rm h})$	(bohr^{-1})	(eV)	(Å)	$(E_{\rm h})$	(eV)	(Å)	$(E_{\rm h})$	
1	0.321	5.18	2.9082	0.291	0.270	5.06	2.9536	0.334	5.13	2.9241	0.343	
2	0.285	4.14	4.3247	0.273	0.214	3.99	4.5459	0.250	4.16	4.2917	0.277	
3	0.268	3.58	5.1117	0.244	0.187	3.36	5.5840	0.214	3.64	5.0006	0.252	
4	0.258	3.29	5.5871	0.229	0.173	3.04	6.2880	0.197	3.38	5.4009	0.239	
5	0.249	3.12	5.8904	0.219	0.166	2.85	6.7351	0.187	3.23	5.6271	0.232	
6	0.242	3.01	6.0869	0.213	0.162	2.73	7.0164	0.181	3.14	5.7568	0.228	
7	0.237	2.93	6.2170	0.209	0.160	2.65	7.1876	0.178	3.08	5.8352	0.225	
8	0.233	2.88	6.3092	0.205	0.162	2.62	7.2343	0.176	3.04	5.8852	0.223	
9	0.229	2.84	6.3835	0.203	0.162	2.58	7.2885	0.175	3.01	5.9175	0.222	
10	0.226	2.80	6.4399	0.201	0.166	2.57	7.2504	0.176	2.99	5.9413	0.221	
11	0.223	2.78	6.4801	0.199	0.168	2.57	7.2268	0.177	2.98	5.9493	0.221	

Table S6: DFT and TD-DFT properties for $(PPV)_n$ oligomers computed using optimally tuned LRC- $\omega PBE/def2$ -ma-SVP.^a

 $^a\mathrm{These}$ are the data used in Fig. 3. $^b\mathrm{TD}\text{-}\mathrm{DFT}(\mathrm{TDA}).$

Table S7: DFT and TD-DFT properties for $O_2N(Ph)_nNH_2$ oligomers, computed using optimally tuned LRC- ω PBE/def2-ma-SVP.^a

Size		GDD tu	ning			IE tuni	ing		L	$LRC-\omega PBE$		
(n)	$\omega_{ m GDD}$	$\Delta E(\mathbf{S}_1)^b$	$d_{ m rms}$	KS gap	ω_{IE}	$\Delta E(\mathbf{S}_1)^b$	$d_{ m rms}$	KS gap	$\Delta E(\mathbf{S}_1)^b$	$d_{\rm rms}$	KS gap	
	$(bohr^{-1})$	(eV)	(Å)	$(E_{\rm h})$	$(bohr^{-1})$	(eV)	(Å)	$(E_{\rm h})$	(eV)	(Å)	$(E_{\rm h})$	
1	0.315	3.9248	2.3415	0.2962	0.248	3.8349	2.4354	0.2747	3.9047	2.3587	0.2921	
2	0.290	3.8454	2.4303	0.2535	0.222	3.7498	2.5863	0.2307	3.8591	2.4142	0.2562	
3	0.278	3.8271	2.4008	0.2398	0.217	3.7385	2.6224	0.2177	3.8576	2.3625	0.2461	
4	0.269	3.8139	2.4003	0.2332	0.216	3.7367	2.5342	0.2134	3.8571	2.3500	0.2424	
5	0.259	3.7992	2.4201	0.2251	0.215	3.7344	2.5325	0.2083	3.8566	2.3495	0.2375	
6	0.253	3.7887	2.4281	0.2216	0.214	3.7308	2.5274	0.2063	3.8547	2.3473	0.2359	
7	0.248	3.7825	2.4425	0.2207	0.215	3.7333	2.5296	0.2077	3.8558	2.3498	0.2370	
8	0.243	3.7764	2.4527	0.2187	0.215	3.7345	2.5275	0.2074	3.8571	2.3491	0.2367	

^{*a*}These are the data used in Fig. 3. ^{*b*}TD-DFT(TDA).

Table	S8 :	TD-DFT	Resul	ts for	open-shell
and ex	xotic	molecules	using	the Ll	$RC-\omega PBEh$
functio	onal.	ι			

Transition	$\omega \; (\mathrm{bohr}^{-1})$		Error $(eV)^b$	
	GDD	IE	GDD	IE
BeF $(^{2}\Pi)$	0.392	0.457	0.07	0.07
$BH_2 (^2B_1)$	0.407	0.427	0.11	0.11
CN $(^{2}\Pi)$	0.485	c	-0.28	c
HCF $({}^{1}A'')$	0.466	0.401	-0.09	-0.13
$\rm NH_2~(^2A_1)$	0.536	0.566	-0.09	-0.09
NO $(^{2}\Sigma^{+})$	0.509	0.515	-0.11	-0.11
OH $(^{2}\Sigma^{+})$	0.443	1.490	0.12	0.68
NCO $(^{2}\Sigma^{+})$	0.448	1.426	0.49	0.86
MAE			0.10	0.29

^{*a*}LRC- ω PBEh/def2-TZVPD. ^{*b*}With respect to theoretical best estimates from Ref. 8. Positive errors indicate that the TD-DFT transition energy is larger than the benchmark. ^{*c*}IE tuning is omitted because $\omega_{\rm IE} \rightarrow \infty$.

FIGURES

Figure S1: Mean absolute errors in TD-DFT(TDA)/def2-TZVPD calculations with various functionals, for (a) the ${}^{1}L_{a}$ and (b) the ${}^{1}L_{b}$ state of the linear acenes, naphthalene through hexacene.

Figure S2: Variation of linear acene properties versus molecular size: (a) tuned ω values, (b) S₁ excitation energies, and (c) HOMO/LUMO gaps. DFT and TD-DFT(TDA) calculations performed using the def2-ma-SVP basis set.

Figure S3: TD-DFT results for conjugated polymers using tuned LRC- ω PBE functionals alongside LRC- ω PBE with fixed $\omega = 0.3 \text{ bohr}^{-1}$. (a) TD-DFT(TDA) excitation energies for the S₁ state, (b) HOMO-LUMO gaps, and (c) exciton size (d_{rms}) for linear acene molecules. (d) Excitation energies $\Delta E(S_1)$, (e) HOMO-LUMO gaps, and (f) d_{rms} for (PPV)_n oligomers. (g) Excitation energies $\Delta E(S_1)$, (h) HOMO-LUMO gaps, and (i) d_{rms} for O₂N(Ph)_nNH₂. Acene calculations were performed using the def2-TZVPD basis set and other calculations used def2-ma-SVP.

Figure S4: Variation of total energy with respect to fractional electron added, for two open shell systems. All calculations were performed using the def2-TZVPD basis set.

Figure S5: Simulated absorption spectra of $e^{-}(aq)$ using three QM/MM snapshots with 68–71 DFT water molecules. Vertical transition energies computed using TD-DFT(TDA)/6-31++G* were broadened by 0.2 eV Gaussians and weighted by oscillator strength. Spectra in solid colors include 15 excited states and the translucent spectra on top illustrate the result from just the first three excited states. The procedure is the same as that used with the LRC- ω PBE functional in Fig. 4, but the LRC- μ BOP and LRC- ω PBE(40)-rVV10 functionals is used here, as in previous studies of the $e^{-}(aq)$ absorption spectrum.^{2–5} Additional data points would smooth out the blue tail, as in Fig. 4 that uses seven QM/MM snapshots.