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ABSTRACT: An efficient, monomer-based electronic structure method is introduced for
computing noncovalent interactions in molecular and ionic clusters. It builds upon our
explicit polarization plus symmetry-adapted perturbation theory approach, XPol+SAPT
(XPS), but replaces the problematic and expensive sum-over-states dispersion terms with
empirical potentials. This modification reduces the scaling from N( )5 to N( )3 with
respect to monomer size and also facilitates the use of Kohn−Sham density functional
theory (KS-DFT) as a low-cost means to capture intramolecular electron correlation. The
accuracy of the resulting method [XPS(KS)+D], in conjunction with a double-ζ basis set, is
superior to MP2-type methods extrapolated to the basis-set limit, with a mean unsigned
error of 0.27 kcal/mol for the S66 data set. XPS(KS)+D yields accurate potential energy
curves for a variety of challenging systems. As compared to traditional DFT-SAPT
methods, it removes the limitation to dimers and extends SAPT-based methodology to
many-body systems.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

Dispersion interactions are very important in biological
systems, for example, in protein folding and in the

structure of DNA.1 In the latter case, the double helix is
maintained both by dispersion-dominated π-stacking inter-
actions within a strand and by hydrogen bonding between
complementary strands. Although the H-bonding interactions
are dominated by electrostatic effects, dispersion is still
responsible for 20−30% of the base-pairing interaction,2 and
contrary to popular belief, experiments demonstrate that the
stability of the double helix is mainly determined by base
stacking rather than base pairing.3 Therefore, in the theoretical
description of noncovalent interactions, it is crucial to employ
methods that furnish an accurate description of dispersion
interactions.
The “gold standard” of electronic structure theory,

CCSD(T), is accurate enough for this purpose but exhibits a
cost that grows as N( )7 with respect to system size, N. This
fact, in conjunction with the large basis sets that are required
for accurate calculations of intermolecular interaction energies
(e.g., to eliminate basis-set superposition error, BSSE) limits
high-level ab initio calculations to small systems. Furthermore,
even given accurate CCSD(T) results for the intermolecular
interaction energy it is not easy to ascertain how much of this
interaction is due to dispersion versus other effects such as
exchange, electrostatics, or induction.
Symmetry-adapted perturbation theory (SAPT) is an

alternative method to compute intermolecular interaction
energies,1,4,5 using a monomer-based formalism rather than a
supersystem calculation. As such, the SAPT interaction energy
is free of BSSE, by construction, and is also decomposable into
a sum of physically meaningful contributions:1
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Here, we have explicitly listed all terms up to second order in
the intermolecular interaction, with subscripts that denote
electrostatic (elst), exchange (exch), induction (ind), and
dispersion (disp) contributions. These low-order terms neglect
intramolecular electron correlation, and for high-accuracy
SAPT calculations, it is essential to use a double-perturbation
expansion that accounts for both inter- and intramolecular
correlation.1 Inclusion of intramolecular electron correlation,
however, results in a SAPT method whose cost scales as N( )7 ,
so there is no cost savings over CCSD(T), although the SAPT
result can still be used to decompose the interaction energy.
In principle, Kohn−Sham density functional theory (KS-

DFT) offers a low-cost means to describe intramolecular
electron correlation, and has been introduced in the context of
SAPT calculations as the so-called SAPT(KS) method.6,7 This
approach is disastrously unsuccessful, however, unless func-
tionals with asymptotically corrected exchange-correlation
potentials are employed, but even so, the dispersion energies
computed with SAPT(KS) remain quite poor.6−10 The solution
to this dilemma is to replace the MP2-like sum-over-states
dispersion formula used in traditional low-order SAPT with a
formula involving frequency-dependent density susceptibilities,
computed using KS-DFT. This method has variously been
called DFT-SAPT11 or SAPT(DFT).12 Using density-fitting
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techniques, it exhibits N( )5 scaling yet provides an accurate
description of intermolecular interactions.11,13

SAPT methods have mainly been used to study dimers
because calculation of nonadditive three-body interactions
within the SAPT formalism requires computationally expensive
triple excitations.14,15 Many-body (nonpairwise-additive) effects
are large in clusters of polar molecules but are dominated by
induction (i.e., polarization).16−19 In recognition of this, our
group has recently introduced a low-cost, many-body general-
ization of the SAPT methodology that we call XPol+SAPT
(XPS),10,20 in which the variational explicit polarization (XPol)
method21 is used to generate one-body wave functions for
subsequent pairwise SAPT calculations. The XPol procedure
captures many-body polarization effects by means of a charge-
embedded, monomer-based self-consistent field calculation
whose cost scales as n( ) with respect to the number of
monomers, n. The subsequent second-order SAPT calculations
scale as either n( )2 or n( )3 depending on the level of
approximation,10 but in any case these nC2 or nC3 SAPT
calculations are embarrassingly parallelizable. With a suitable
choice of basis set, dimer binding energies computed by XPS
based on a Hartree−Fock description of the monomers
[XPS(HF)] lie within 1 kcal/mol of high-level benchmarks.10,20

As with SAPT(KS), XPS results obtained using KS orbitals
are notably inferior to those obtained using HF orbitals. In
particular, dispersion energies are vastly overestimated by
XPS(KS),10 which is an artifact of the sum-over-states
dispersion formula in conjunction with HOMO/LUMO gaps
that are significantly smaller than HF gaps.6 Ironically, the
dispersion and exchange-dispersion terms are not only the least
accurate but also the most time-consuming to compute, scaling
as the fourth and fifth powers, respectively, of monomer size,
whereas other second-order terms are no worse than N( )3 .22

Recently, Hesselmann22 introduced a method termed SAPT
+D, in which these terms are replaced by empirical atom−atom
potentials. In this work, we implement and test an analogous
XPS(KS)+D method, which offers important advantages over
alternative electronic structure methods for noncovalent
interactions:

(1) Unlike XPS(HF), it incorporates intramolecular correla-
tion, and in a relatively low-cost way.

(2) The expensive and inaccurate sum-over-states dispersion
formulas are replaced by simple scalar potentials.

(3) Unlike SAPT+D, the method is applicable to any number
of monomers.

(4) The cost of XPS(KS)+D calculations is N( )3 with

respect to monomer size and no worse than n( )3 with
respect to the number of monomers, and is thus
amenable to large systems.

Several asymptotic correction (AC) schemes for the KS
exchange-correlation potential, vxc, have been used in
SAPT(KS) and SAPT(DFT),23,24 although a drawback of
these techniques is that the corrected potential, vxc

AC, is not the
functional derivative of the energy. As an alternative to
traditional AC schemes, we utilize long-range-corrected
(LRC) density functionals25,26 to obtain the correct asymptotic
behavior. Specifically, we employ an ansatz that we have called
LRC-ωPBEh,26 which is based on the short-range ωPBE
exchange functional.27 Rather than using the empirically
optimized LRC-ωPBEh parameters suggested in ref 26,
however, we reoptimize the fraction of short-range HF

exchange (CHF) and then apply a system-specific tuning of
the range separation parameter (ω), as suggested by Baer et
al.,28 in order to satisfy the condition

ε = −IPHOMO (2)

where “IP” denotes the lowest ionization potential. For
supersystems composed of well-defined monomers, as consid-
ered here, we assume that noncovalent interactions do not
greatly alter the monomer IPs; hence we just need to determine
ω separately for each monomer using eq 2. The value of ω
appropriate for the supersystem is the one corresponding to the
lowest monomer IP. Our tests reveal that this assumption is
quite robust.
The empirical dispersion potential used in this work is the

one suggested for SAPT+D:22
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is a damping function. The latter differs from the damping
function typically used in dispersion-corrected DFT.29 The role
of the dispersion correction is different in SAPT+D than it is in
DFT+D,22 and in the latter method, the dispersion correction
should turn on only at large intermolecular separation because
DFT models the short-range interactions. As such, Edisp

DFT+D “is a
model-dependent quantity with no real physical meaning”,30

and short-range damping is needed to avoid overcounting of
interactions. In SAPT, however, the dispersion contribution to
the energy is well-defined and should contribute at all
intermolecular distances. However, short-range damping is
still required to ensure that the empirical potential in eq 3 is
finite when rij is small. The damping in eq 4 is much slower
than that used in DFT+D.22

The parameters Cij are defined in terms of atomic C6
coefficients:

=C C C( )ij i j6, 6,
1/2

(5)

The atomic parameters C6,i and Ri used here are taken from
those developed by Grimme.31 The parameters α = 1.087 and β
= 5.67 are taken from SAPT+D,22 where they were fit to
reproduce benchmark intermolecular interaction energies. (The
fact that dispersion is well-defined in SAPT suggests that these
parameters may be transferable; results presented below will
ultimately validate this choice.) Ultimately, β is an empirical
parameter, but the fact that β ≠ 6 can be understood based on
the observation that higher-order multipole terms may
contribute as much as 20−30% to the dispersion interaction
in the middle-range region.32 Moreover, Eexch‑disp

(2) also
contributes to the SAPT dispersion energy, and this component
varies exponentially with distance.
In this work, the parameter sβ in eq 3 was optimized for

XPS(KS)+D using the S22A database,33 which revises the
energetics of the original S22 set of dimers.34 For fixed α and β,
the fit for sβ is a simple linear one that minimizes the absolute
percent deviations, because this provides a more balanced fit for
both weakly- and strongly-bound systems as compared to a
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least-squares fit.22 It is possible that a global, nonlinear fit of all
three parameters might improve the results, but this has not
been attempted.
Optimal values of sβ were obtained for two different basis

sets: aug-cc-pVDZ′ (abbreviated aDZ′)1 and def2-TZVPP.35

(Hereafter, we drop the “def2” on Ahlrichs basis sets.) The
aDZ′ basis has been suggested for use in low-order SAPT0 and
XPS(HF) calculations of dispersion-bound systems.1,36,37 For
XPS(HF) calculations on ion−water complexes, however,
much better results are obtained using TZVP, which exhibits
only slightly worse error statistics for S22A,10 and we have since
discovered that the use of TZVPP further improves the
performance for these systems. As in previous work,10,20 we use
smooth ChElPG embedding charges10 for the XPol calculations
and “projected” (pseudocanonical dimer) basis sets for the
SAPT calculations, along with a resolution-of-identity approx-
imation combined with standard auxiliary basis sets. All
calculations were performed using a locally-modified version
of the Q-Chem program.38

The optimized values of sβ are 0.7267 and 0.8439 for aDZ′
and TZVPP, respectively. For these values of sβ, the optimal
value of CHF = 0.6. Selected error statistics for XPS-based
methods, as applied to the S22A database, are listed in Table 1.
The overall mean unsigned error (MUE) for XPS(KS) is larger
than that for XPS(HF), as previously observed,10 primarily due
to overestimation (by as much as 5 kcal/mol) of binding
energies for dispersion-dominated complexes. These errors are

significantly reduced by replacing the MP2-like sum-over-states
dispersion formula with the empirical potential in eq 3. The
best results are obtained using XPS(KS)+D/aDZ′, for which
the MUE is 0.5 kcal/mol or 9%.
Note that XPS(KS) outperforms XPS(HF) for the strongly

H-bonded subset of S22A, where the intermolecular
interactions are dominated by electrostatics and induction.
We attribute this to the effects of intramolecular electron
correlation because SAPT(KS) has previously been shown to
provide accurate values for components of the intermolecular
interaction other than dispersion, provided that vxc is
asymptotically correct.7,39 Our results demonstrate that LRC
functionals afford an alternative means to enforce correct
asymptotic behavior of vxc without abandoning the relationship
vxc(r) = δExc/δρ(r).
The performance of CBS-extrapolated MP2 and CCSD

methods, along with spin-component-scaled (SCS) versions
thereof,1 was evaluated previously for the S22A data set.33 The
relevant MUEs are:

• 0.88 kcal/mol (MP2/CBS)
• 0.80 kcal/mol (SCS-MP2/CBS)
• 0.28 kcal/mol [SCS(MI)-MP2/CBS]
• 0.24 kcal/mol (SCS-CCSD/CBS)

Our XPS(HF) and XPS(KS)+D results, obtained using a
double-ζ basis set, are better than the MP2/CBS and SCS-
MP2/CBS results. The XPS calculations may benefit from
some cancellation of errors because the double-ζ basis sets used
here are far from complete, but on the other hand BSSE is
absent from XPS by construction. As such, one could argue that
large basis sets are not an essential requirement for XPS
calculations.
The XPS(KS) method will not be considered further because

of known problems with the SAPT(KS) treatment of
dispersion, evident from results in Table 1. The XPS(KS)+D
method contains parameters that were fit to the S22A database,
so it is possible that S22A error statistics are overly optimistic.
For a blind test of this approach, we turn to the S66 database,40

for which error statistics are summarized in Table 2.
Results for S66 obtained using XPS(HF) and XPS(KS)+D,

with the two basis sets considered here, are comparable to or
better than CBS-extrapolated results obtained with the MP2,

Table 1. Error Statistics, with Respect to CCSD(T)/CBSa

Benchmarks, for the S22A Data Set of Ref 33

error/kcal mol−1 % error

method data setb MUEc maxd MUEc maxd

XPS(HF)/aDZ′ all 0.60 1.67 16.7 79.1
H-bond 0.60 1.05 6.5 25.5
disp. 0.85 1.67 32.1 79.1
mixed 0.30 0.55 9.3 17.6

XPS(HF)/TZVPP all 0.53 1.94 12.4 49.8
H-bond 0.40 0.81 3.6 8.4
disp. 0.78 1.94 22.0 49.8
mixed 0.37 0.78 10.1 17.2

XPS(KS)/aDZ′ all 1.03 4.43 23.3 81.0
H-bond 0.53 1.43 5.2 18.6
disp. 1.79 4.43 46.3 81.0
mixed 0.66 1.38 15.1 30.9

XPS(KS)/TZVPP all 1.04 4.95 22.2 69.0
H-bond 0.30 0.70 2.1 4.3
disp. 1.80 4.95 38.2 69.0
mixed 0.90 1.82 24.0 38.8

XPS(KS)+D/aDZ′ all 0.53 1.16 9.4 24.4
H-bond 0.73 1.16 5.9 9.9
disp. 0.38 1.01 9.8 24.4
mixed 0.52 0.99 12.3 21.8

XPS(KS)+D/TZVPP all 0.61 1.48 10.9 33.0
H-bond 0.62 1.22 4.1 7.3
disp. 0.63 1.48 13.0 33.0
mixed 0.59 1.28 15.5 23.2

aCBS = complete basis set. bStatistics listed separately for the entire
S22A data set, along with subsets consisting of strongly H-bonded
dimers, dispersion-dominated dimers, and dimers whose interactions
are of mixed influence, as classified in ref 33. cMean unsigned error.
dMaximum unsigned error.

Table 2. Error Statistics, with Respect to CCSD(T)/CBS
Benchmarks, for the S66 Data Set of Ref 40

error/kcal mol−1 % error

method MUE max MUE max

XPS(HF)/aDZ′ 0.54 1.91 15.3 53.9
XPS(HF)/TZVPP 0.39 1.11 9.9 29.0
XPS(KS)+D/aDZ′ 0.27 0.94 7.0 53.9
XPS(KS)+D/TZVPP 0.46 1.38 11.9 60.9
MP2/CBSa 0.45 40
SCS-MP2/CBSa 0.74 79
SCS(MI)-MP2/CBSa 0.28 54
MP2.5/CBSa 0.12 16
CCSD/CBSa 0.62 73
SCS-CCSD/CBSa 0.15 6
SCS(MI)-CCSD/CBSa 0.06 6
EFPb 0.61

aResults taken from ref 40. bResults for the effective fragment
potential (EFP) from ref 41.
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SCS-MP2, and CCSD methods. Particularly impressive is the
XPS(KS)+D/aDZ′ method, whose MUE is just 0.27 kcal/mol
and whose largest unsigned error is <1 kcal/mol. This method
does exhibit a 54% error for the benzene-ethene dimer (which
is underbound by 0.78 kcal/mol), the maximum percentage
error that we observe for S66 with this approach. If we
eliminate benzene-ethene and also pyridine-ethene, which is
underbound by 0.66 kcal/mol (35%), then the MUE is reduced
to 6% and the maximum unsigned error is reduced to 20% for
XPS(KS)+D/aDZ′.
The high accuracy of XPS(KS)+D for dimers is primarily a

result of the empirical dispersion correction, rather than the
XPol procedure, as evident from a comparison to
SAPT(KS)+D for dimers. Refitting of sβ for use with
SAPT(KS)+D/aDZ′ barely changes this parameter (<0.01),
and the MUE for the S66 database is 0.32 kcal/mol as
compared with 0.27 kcal/mol for XPS(KS)+D/aDZ′.
For clusters of polar molecules, however, the use of XPol

monomer wave functions has a significant effect. Figure 1

shows binding energies for certain10 (H2O)n clusters up to n =
20, as compared with MP2/CBS benchmarks.55−59 Not
surprisingly, XPS-based methods are significantly more accurate
than the corresponding pairwise-additive SAPT methods, which
neglect many-body polarization. Furthermore, XPS(KS)+D is
more accurate than the XPS(HF) method that neglects the
monomer electron correlation and uses the MP2-like sum-over-
states dispersion formula. The accuracy of the XPS and SAPT
binding energies would likely improve if the cluster geometries
were self-consistently optimized at these same levels of
theory,10 whereas MP2 geometries are used in Figure 1.
The error statistics presented in Tables 1 and 2 demonstrate

the excellent performance of XPS(KS)+D at equilibrium
geometries, but it is also important to understand how this
method performs across a range of intermolecular distances. To
test this, we have chosen several challenging systems: Ar···Ne,
formic acid dimer, benzene dimer, and X−(H2O) with X = F,
Cl. In the case of Ar···Ne, several DFT approaches thought to
be accurate for noncovalent interactions predict qualitatively
incorrect potential energy curves (PECs) for this system, even in
cases where the binding energy evaluated at the minimum-

energy geometry is accurate.42 (Examples can be found in the
Supporting Information.) The binding energy of the formic
acid dimer has a large contribution from intramolecular
electron correlation37 and among the S22A molecules exhibits
the maximum error at the SAPT0/aDZ′ level. Benzene dimer
also represents a stringent test of dispersion interactions, and
we consider both the “sandwich” isomer, which is dispersion-
dominated, as well as the T-shaped isomer, where quadrupolar
electrostatic interactions are important as well.33 Finally, the
X−(H2O) complexes exhibit much larger binding energies than
any of the S22A dimers.
One-dimensional PECs for these systems are depicted in

Figures 2−5. The XPS(KS)+D/aDZ′ method yields PECs that

are quite comparable to benchmark results for all of these
difficult cases except F−(H2O). For the charge-neutral systems,
binding energy errors evaluated at equilibrium geometries range
from 0.02 kcal/mol for Ar···Ne to 0.77 kcal/mol for
(HCO2H)2. For Cl−(H2O) and F−(H2O), the XPS(KS)+D/
aDZ′ method affords larger binding energy errors: 2.07 and
2.94 kcal/mol, respectively, at the equilibrium geometries.
Similar binding energies are obtained at the XPS(HF)/aDZ′

Figure 1. Binding energies for some (H2O)n clusters, n = 2−20,
computed at MP2 geometries. Binding energies on the vertical axis
were computed with various XPS and SAPT methods using the aDZ′
basis, whereas the horizontal axis represents MP2/CBS benchmarks.
Along the solid line, the XPS or SAPT result would be equal to the
benchmark value.

Figure 2. Binding energy curves for Ar···Ne. Benchmark results were
computed using a dispersionless density functional (dlDF) augmented
with a dispersion correction (the dlDF+Das/aTZ method of ref 42).

Figure 3. Binding energy curves for formic acid dimer. Benchmark
CCSD(T)/CBS results are taken from ref 43. The horizontal axis is
the scaled equilibrium distance between the centers of mass of the two
monomers.
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level, whereas XPS(HF)/TZVPP binding energies are much
more accurate, consistent with our previous results10 suggesting
that large basis sets are required for systems whose binding is
dominated by electrostatics and induction.
To examine whether these larger errors are systemic to ions

in general, we computed binding energies for a database45 of 15
ionic H-bonded dimers, in which the ionic partner is either
acetate, guanidinium, methylammonium, or imidazolium. Error
statistics are listed in Table 3 and are somewhat larger than
those seen for the neutral S22A and S66 data sets. Here the
importance of monomer electron correlation and triple-ζ basis
sets is clear: in the absence of either of those two factors, MUEs
are ≳1 kcal/mol and maximum errors are 2 to 3 kcal/mol. This
is consistent with previous XPS results, indicating that the
description of H-bonded and induction-bound systems
generally improves in a systematic way with respect to basis-
set quality and the treatment of electron correlation.10 The
XPS(KS)+D/TZVPP method delivers a root-mean-square
error (RMSE) of 0.56 kcal/mol for the ionic H-bonded data
set, which is significantly better than MP2/cc-pVTZ results and
comparable to BLYP+D3/QZVP results but at significantly
reduced cost.
Returning to F−(H2O), we note that the PECs computed by

XPS(KS)+D methods (Figure 5a) are qualitatively incorrect for
intermolecular distances smaller than the equilibrium distance.
Several factors may account for this. First, no ionic systems
were used in fitting the empirical potential Edisp

SAPT+D. Second, this

potential actually diverges for rij ≪ Ri + Rj,
22 and we note that

the van der Waals radius Ri for the anion is larger than that of
the corresponding neutral atom, which may explain the fact that
PECs for the neutral systems are accurate even at relatively
short distances. Lastly, the intermolecular interaction in
F−(H2O) is known to have substantial covalent character
resulting from a low-energy FH···OH− diabatic state,46 and as
such this system may be especially problematic for monomer-
based quantum chemistry.
As a final test of XPS(KS)+D, we have computed binding

energies for nucleobase tetramers arranged in average B-DNA
geometries,47 for which MP2, SCS-MP2, and DFT-SAPT

Figure 4. Binding energy curves for (a) the “sandwich” and (b) the
“T-shaped” isomer of benzene dimer. The distance coordinate in
either case is the center-to-center distance between the benzene rings.
Benchmark CCSD(T)/CBS results are taken from ref 44.

Figure 5. Binding energy curves for (a) F−(H2O) and (b) Cl−(H2O).
The distance coordinate is the halide−oxygen distance, and the
benchmarks are CCSD(T)/CBS.

Table 3. Error Statistics, with Respect to CCSD(T)/CBS
Benchmarks, For a Set of Ionic H-bonded Dimers from Ref
45

error/kcal mol−1 % error

method MUE RMSE max MUE max

XPS(HF)/aDZ′ 1.26 1.61 3.31 6.3 12.4
XPS(HF)/TZVPP 0.97 1.15 1.92 6.0 10.6
XPS(KS)/aDZ′ 0.85 1.03 2.10 4.4 10.7
XPS(KS)/TZVPP 0.66 0.72 1.29 3.5 7.4
XPS(KS)+D/aDZ′ 1.02 1.14 1.96 5.4 14.1
XPS(KS)+D/TZVPP 0.48 0.56 1.08 2.5 6.2
MP2/cc-pVTZa 1.81
BLYP+D3/QZVPa 0.59

aCounterpoise-corrected results from ref 45.
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results are available.48 The MP2 method is known to
overestimate binding energies of π-stacked complexes;44 SCS-
MP2 is sometimes used to reduce this systematic error.49,50

However, SCS-MP2 underestimates the binding energy of the π-
stacked uracil dimer51 by 3 kcal/mol as compared with the
CCSD(T)/CBS benchmark of 9.7 kcal/mol.33 The SCS(MI)-
MP2 method,52 in which the two SCS scaling parameters are
optimized (in a basis-set-specific way) using the S22 database,
reduces this error to 0.4 kcal/mol,51 comparable to the MUE
for the S66 database obtained at the SCS(MI)-MP2/CBS level
(see Table 2).40 The XPS(KS)+D/aDZ′ method exhibits
comparable error statistics for S66.
Results for nucleobase tetramers are listed in Table 4.

CCSD(T)/CBS benchmarks are only available for base pairs,

but in that case comparison to DFT-SAPT suggests that the
DFT-SAPT/aTZ results in Table 4 are systematically too
small.2,54 For example, the DFT-SAPT/aTZ binding energy2

for the π-stacked AT dimer is underestimated by 1.4 kcal/mol,
as compared with the CCSD(T)/CBS benchmark (11.66 kcal/
mol), if the so-called δ(HF) correction1 is used in the SAPT
calculation. If it is not, then the binding energy is under-
estimated by 3 kcal/mol. Hence, in perusing the DFT-SAPT/
aTZ results in Table 4, one should anticipate that binding
energies are underestimated by ≳1 kcal/mol. At the same time,
the XPS(KS)+D/aDZ′ method overestimates the π-stacked AT
binding energy by 0.8 kcal/mol. Therefore, the correct binding
energies for the nucleobase tetramers probably lie between the
DFT-SAPT/aTZ and XPS(KS)+D/aDZ′ results in Table 4.
This conclusion is bolstered by DFT-SAPT results in which

the dispersion energy is scaled by an empirical factor of 1.051,
suggested in ref 53 as a means of accounting for the slow basis-
set convergence of this term. Scaled DFT-SAPT/aTZ binding
energies lie between the unscaled DFT-SAPT/aTZ results and
the XPS(KS)+D/aDZ′ results, except for CG-CG where the
scaled DFT-SAPT and XPS(KS)+D results are essentially
identical. Together, the nucleobase calculations presented here
place plausible bounds on the tetramer binding energies and
lend support to the accuracy of the scaled DFT-SAPT/aTZ
approach.53

As compared with DFT-SAPT, however, XPS(KS)+D has
important advantages. First, it avoids the supermolecular HF

calculation that is required to compute the δ(HF) correction.1

Second, the cost of XPS(KS)+D scales as N( )3 with respect
to dimer size, whereas DFT-SAPT or SAPT(DFT) scales as

N( )5 .11,13 Finally, XPS(KS)+D can be extended to any
number of monomer units, at n( )3 cost, whereas DFT-SAPT
is restricted to dimers only. This restriction means that the
nucleobase tetramer calculations in Table 4 must be computed
using base pairs as the monomer units, which significantly adds
to the cost of DFT-SAPT.
Figure 6 shows timings for XPol, XPS(KS)+D, and

supersystem DFT calculations on (adenine)n systems, arranged

as in single-stranded B-DNA. For the XPS calculations, we plot
both serial timings (representing the total CPU time required)
as well as timings when run in “embarrassingly parallel” mode
(representing wall time, assuming that nC2 processors are
available). For these particular systems, the cost of any one
dimer SAPT calculation (with or without the dispersion and
exchange-dispersion terms) is negligible in comparison to the
time required for the XPol procedure, which in these
calculations is performed entirely on a single processor. As
such, XPS(KS) and XPS(KS)+D timings are very similar. More
importantly, the cost of such calculations scales as n( ), with a
very small prefactor. The wall time required for an XPS(KS)+D
calculation on (adenine)10 is only about four times larger than
what is required for (adenine)2!
In summary, the expensive and problematic sum-over-states

dispersion terms in XPS(KS) have been replaced by empirical
atom−atom potentials. Using a “tuned” LRC functional26,28

and modest basis sets, the method exhibits an accuracy that is
comparable to or better than MP2, SCS-MP2, SCS(MI)-MP2,
and CCSD results extrapolated to the complete basis limit, and
we have used this approach (in conjunction with existing DFT-
SAPT calculations) to obtain the best estimates to date of the
binding energies for nucleobase tetramers. The cost of
XPS(KS)+D calculations grows cubically with respect to
monomer size, just like traditional DFT, but no worse than
cubically with respect to the number of monomer units. This
makes XPS(KS)+D a promising method for use in fragment-
based drug design, although the performance for ions suggests
that extensions to larger basis sets and a more extensive
parametrization of the dispersion potential may be in order.
Such work is currently underway in our group.

Table 4. Binding Energies for Nucleobase Tetramers

binding energy/kcal mol−1

DFT-SAPTa

systemb
MP2/
aTZc,d

SCS-MP2/
aTZc,d aTZd

scaled
disp.e

XPS(KS)+D/
aDZ′

AT-AT −16.45 −11.10 −11.39 −12.41 −13.50
AT-CG −14.77 −9.33 −9.82 −10.89 −11.57
AT-GC −14.91 −9.34 −10.03 −11.12 −11.30
AT-TA −12.22 −6.62 −7.33 −8.42 −8.99
CG-AT −15.56 −10.33 −11.32 −12.36 −12.78
CG-CG −13.55 −7.99 −8.57 −9.65 −9.59
CG-GC −17.51 −11.83 −13.14 −14.30 −14.70
GC-AT −15.10 −9.83 −9.97 −10.97 −11.79
GC-CG −16.54 −11.15 −10.92 −11.97 −13.02
TA-AT −14.82 −9.96 −10.54 −11.48 −12.09
aIncludes the δ(HF) correction. bNotation WX-YZ means that WX
and YZ are Watson−Crick pairs, treated as monomers. cCounterpoise
corrected. dValues from ref 48. eIncludes empirical scaling of the
dispersion energy, as recommended in ref 53.

Figure 6. Timings for XPol, XPS(KS)+D, and supersystem DFT
calculations for π-stacked (adenine)n systems. All calculations use the
LRC-ωPBEh functional and the aDZ′ basis set.
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Theory Symmetry-Adapted Intermolecular Perturbation Theory with
Density Fitting: A New Efficient Method to Study Intermolecular
Interaction Energies. J. Chem. Phys. 2005, 122 (014103), 1−17.
(12) Misquitta, A. J.; Podeszwa, R.; Jeziorski, B.; Szalewicz, K.
Intermolecular Potentials Based on Symmetry-Adapted Perturbation
Theory with Dispersion Energies from Time-Dependent Density-
Functional Calculations. J. Chem. Phys. 2005, 123 (214103), 1−14.

(13) Podeszwa, R.; Cencek, W.; Szalewicz, K. Efficient Calculations
of Dispersion Energies for Nanoscale Systems from Coupled Density
Response Functions. J. Chem. Theory Comput. 2012, 8, 1963−1969.
(14) Lotrich, V. F.; Szalewicz, K. Symmetry-Adapted Perturbation
Theory of Three-Body Nonadditivity of Intermolecular Interaction
Energy. J. Chem. Phys. 1997, 106, 9668−9687.
(15) Lotrich, V. F.; Szalewicz, K. Perturbation Theory of Three-Body
Exchange Nonadditivity and Application to Helium Trimer. J. Chem.
Phys. 2000, 112, 112−121.
(16) Turki, N.; Milet, A.; Rahmouni, A.; Ouamerali, O.; Moszynski,
R.; Kochanski, E.; Wormer, P. E. S. Theoretical Study of the
OH−(H2O)2 System: Nature and Importance of Three-Body
Interactions. J. Chem. Phys. 1998, 109, 7157−7168.
(17) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-
Body Expansion for Large Systems, with Applications to Water
Clusters. J. Chem. Theory Comput. 2007, 3, 46−53.
(18) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-
Body Correlation Energy, with Applications to the Calculation of
Accurate Second-Order Møller−Plesset Perturbation Theory Energies
for Large Water Clusters. J. Chem. Theory Comput. 2007, 3, 1342−
1348.
(19) Chen, Y.; Li, H. Intermolecular Interaction in Water Hexamer. J.
Phys. Chem. A 2010, 114, 11719−11724.
(20) Jacobson, L. D.; Herbert, J. M. An Efficient, Fragment-Based
Electronic Structure Method for Molecular Systems: Self-Consistent
Polarization with Perturbative Two-Body Exchange and Dispersion. J.
Chem. Phys. 2011, 134 (094118), 1−17.
(21) Xie, W.; Song, L.; Truhlar, D. G.; Gao, J. The Variational
Explicit Polarization Potential and Analytical First Derivative of
Energy: Towards a Next Generation Force Field. J. Chem. Phys. 2008,
128 (234108), 1−9.
(22) Hesselmann, A. Comparison of Intermolecular Interaction
Energies from SAPT and DFT Including Empirical Dispersion
Contributions. J. Phys. Chem. A 2011, 115, 11321−11330.
(23) Tozer, D. J.; Handy, N. C. Improving Virtual Kohn−Sham
Orbitals and Eigenvalues: Application to Excitation Energies and Static
Polarizabilities. J. Chem. Phys. 1998, 109, 10180−10189.
(24) Gruning, M.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends,
E. J. Shape Corrections to Exchange-Correlation Potentials by
Gradient-Regulated Seamless Connection of Model Potentials for
Inner and Outer Region. J. Chem. Phys. 2001, 114, 652−660.
(25) Lange, A. W.; Rohrdanz, M. A.; Herbert, J. M. Charge-Transfer
Excited States in a π-Stacked Adenine Dimer, as Predicted Using
Long-Range-Corrected Time-Dependent Density Functional Theory.
J. Phys. Chem. B 2008, 112, 6304−6308.
(26) Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. A Long-Range-
Corrected Density Functional that Performs Well for Both Ground-
State Properties and Time-Dependent Density Functional Theory
Excitation Energies, Including Charge-Transfer Excited States. J. Chem.
Phys. 2009, 130 (054112), 1−8.
(27) Henderson, T. M.; Janesko, B. G.; Scuseria, G. E. Generalized
Gradient Approximation Model Exchange Holes for Range-Separated
Hybrids. J. Chem. Phys. 2008, 128 (194105), 1−9.
(28) Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated
Hybrids in Density Functional Theory. Annu. Rev. Phys. Chem. 2010,
61, 85−109.
(29) Grimme, S. Density Functional Theory with London Dispersion
Corrections. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 211−
228.
(30) Grimme, S. Accurate Description of van der Waals Complexes
by Density Functional Theory Including Empirical Corrections. J.
Comput. Chem. 2004, 25, 1463−1473.
(31) Grimme, S. Semiempirical GGA-Type Density Functional
Constructed with Long-Range Dispersion Correction. J. Comput.
Chem. 2006, 27, 1787−1799.
(32) Adamovic, I.; Gordon, M. S. Dynamic Polarizability, Dispersion
Coefficient C6 and Dispersion Energy in the Effective Fragment
Potential Method. Mol. Phys. 2005, 103, 379−387.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz301015p | J. Phys. Chem. Lett. 2012, 3, 3241−32483247

http://pubs.acs.org
mailto:herbert@chemistry.ohio-state.edu


(33) Takatani, T.; Hohenstein, E. G.; Malagoli, M.; Marshall, M. S.;
Sherrill, C. D. Basis Set Consistent Revision of the S22 Test Set of
Noncovalent Interaction Energies. J. Chem. Phys. 2010, 132 (144104),
1−5.
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