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ABSTRACT: An efficient procedure is introduced to obtain the basis-set limit in
electronic structure calculations of large molecular and ionic clusters. This approach is
based on a Boys−Bernardi-style counterpoise correction for clusters containing arbitrarily
many monomer units, which is rendered computationally feasible by means of a truncated
many-body expansion. This affords a tractable way to apply the sequence of correlation-
consistent basis sets (aug-cc-pVXZ) to large systems and thereby obtain energies
extrapolated to the complete basis set (CBS) limit. A three-body expansion with three-
body counterpoise corrections is shown to afford errors of ≲0.1−0.2 kcal/mol with
respect to traditional MP2/CBS results, even for challenging systems such as fluoride−
water clusters. A triples correction, δCCSD(T) = ECCSD(T) − EMP2, can be estimated
accurately and efficiently as well. Because the procedure is embarrassingly parallelizable
and requires no electronic structure calculations in systems larger than trimers, it is
extendible to very large clusters. As compared to traditional CBS extrapolations,
computational time is dramatically reduced even without parallelization.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

For electronic structure calculations of dimer binding
energies (BEs), it is well-known that naıv́e attempts to

use the formula

= − −E E EBE AB A B (1)

usually result in significant overestimation of the A···B binding
energy, owing to the basis-set superposition error (BSSE) that
disappears only very slowly as the monomer basis sets approach
completeness. BSSE is a manifestation of the fact that eq 1 is an
unbalanced approximation in the sense that EAB is computed
using a more flexible basis set than is used to compute the
monomer energies. The widely used Boys−Bernardi counter-
poise (CP) procedure1 corrects this imbalance by computing all
three energies using the dimer (AB) basis set. The obvious
generalization of this CP correction to N-body clusters is2−4
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where Ei
IJK... denotes the energy of monomer i computed using a

basis set with functions on monomers I,J,K,··· Operationally,
this means placing “ghost atoms” on all monomers J ≠ i.
Although the generalized CP correction in eq 2 has

sometimes been criticized for neglecting “basis-set extension”
effects,5 which are further discussed below, we will show that
this approach correctly reproduces known complete basis set
(CBS) energetics if the individual energies are evaluated in
large basis sets and extrapolated to the CBS limit. We will
furthermore demonstrate how the cost of such calculations can
be dramatically reduced, without substantial loss of accuracy, by

consistent application of a truncated many-body expansion
(MBE) to each of the energies in eq 2. We thereby aim to
reproduce the whole sequence of CP-corrected MP2/aug-cc-
pVXZ energies (abbreviated MP2/aXZ, for X = D, T, or Q)
and thereby perform MP2/CBS extrapolations in a small
fraction of the computer time that is required for traditional
calculations. Finally, we will show that a triples correction

δ = −E ECCSD(T) CCSD(T) MP2 (3)

can also be accurately approximated by means of truncated
MBEs. Together, these techniques extend well-established
techniques for estimating CCSD(T)/CBS-quality energetics
to clusters that are far larger than what was previously possible.
Equation 2 nominally requires N + 1 calculations in the full

N-body cluster basis set. Our strategy is to replace each
individual energy in this equation with a MBE and then apply a
consistent truncation of each. For the cluster energy EIJK···, this
looks like a traditional MBE
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where

Δ = − −E E E Eij ij i j (5a)
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Δ = − − − + + +E E E E E E E Eijk ijk ij ik jk i j k (5b)

For the monomer energies Ei
IJK···, however, some of the

“bodies” I,J,K,... are simply ghost atoms, and the energy of any
term in the MBE that contains only ghost atoms is zero. The
nonvanishing terms can be written

= + Δ + Δ + ······E E E EI
IJ N

I
I
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(2) (3)

(6)

where ΔEI
(2) and ΔEI

(3) represent the nonvanishing two- and
three-body terms in the MBE of EI

IJ···N. After rearranging some
terms, one obtains the following explicit formulas for these
corrections:
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Here, EI
IJK··· denotes the energy of monomer I, computed in the

IJK··· basis, which therefore contains ghost atoms in place of
monomers J,K,···
The basic idea of this many-body counterpoise correction is

illustrated in Figure 1, which provides a pictorial representation

of some two-body contributions to the binding energy of a
cluster IJKL. The term ΔEIJ is a traditional two-body energy
correction, where dimer IJ is computed using the IJ basis set,
and an estimate of the binding energy is obtained by
subtracting the monomer energies, computed using their
respective monomer basis sets. The term ΔEI

(2) in the lower
portion of Figure 1 represents a two-body correction for the
energy of monomer I computed in the IJKL basis. This term
consists of three calculations involving a dimer basis with one
ghost monomer, along with a one-body calculation in a one-
body basis set.
An n-body, CP-corrected approximation to the binding

energy is obtained as the difference between the cluster energy
(eq 4) and the monomer energies EI

IJK··· (eq 6), each truncated
at the n-body level. We refer to this procedure as an nth-order
many-body CP correction, MBCP(n), and its aim is to

reproduce the CP-corrected binding energy in eq 2, albeit at
significantly reduced cost. As such, extrapolation is still required
in order to obtain CBS-quality energetics, but this can be
accomplished by traditional means insofar as a high-quality
approximation to eq 2 can be obtained for a whole sequence of
correlation-consistent basis sets. It is worth noting that
alternative fragment-based approaches such as the fragment
molecular orbital (FMO) method6 appear to work best in small
basis sets7 and therefore cannot be exploited for what we aim to
accomplish here.
The CP correction that is embodied by eq 2 has been

criticized5 for neglecting so-called “basis-set extension” effects,
which are best defined in the context of the projection-operator
formalism of the chemical Hamiltonian approach8 but that
should disappear in the CBS limit. An alternative CP correction
that directly addresses basis-set extension effects has been
proposed by Valiron and Mayer,5 but the number of
independent electronic structure calculations required for this
Valiron−Mayer function counterpoise (VMFC) approach
grows factorially with the number of monomers. Truncated
two- and three-body versions, which we will call VMFC(2) and
VMFC(3), were introduced later.9,10

In fact, VMFC(2) is completely equivalent to MBCP(2),
though the two approaches differ starting at n = 3. For n ≥ 3,
our MBCP(n) approach requires fewer independent electronic
structure calculations; at the n = 3 level, for example, MBCP(3)
requires only monomer calculations in the trimer basis set,
whereas VMFC(3) requires both monomer and dimer
calculations in the trimer basis. For a cluster with N = 11
monomer units, as in some of the numerical examples that
follow, the VMFC(2)/MBCP(2) method requires 110 distinct
electronic structure calculations, whereas three-body ap-
proaches require an additional 990 calculations for VMFC(3)
but only half of that number for MBCP(3).
Before considering CBS extrapolations, which is the main

topic of this Letter, we first consider a numerical comparison of
the VMFC(n) and MBCP(n) schemes. Figure 2 shows the
binding energy errors for various two- and three-body methods
applied to two different systems, F−(H2O)10 and Gly(H2O)10,
where “Gly” denotes the zwitterionic tautomer of glycine.Figure 1. Illustration of one particular two-body term (ΔEIJ, eq 5a)

that contributes to the binding energy of cluster IJKL and also a two-
body term ΔEI(2) that appears in the monomer energy EI

IJKL (eq 7a).
Monomers labeled with letters are actual molecules containing
electrons, whereas unlabeled monomers are comprised of ghost
atoms. Monomers shaded red are included in the calculation, whereas
monomers shaded gray are not.

Figure 2. Comparison of two- and three-body counterpoise
corrections, with and without electrostatic embedding (EE), for
MP2/aDZ calculations on two different systems. Errors are reported
with respect to a calculation performed on the entire cluster, for which
the CP-corrected binding energy is defined by eq 2. To better
resemble the self-consistent charge-embedding used in the VMFC(n)
calculations in ref 10, embedding charges are computed using the self-
consistent XPol-CHELPG procedure.16,17
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(These are challenging test cases owing to large many-body
polarization effects, and we have previously used them to test a
variety of fragment-based approaches.11−16) Ten different
isomers of both systems were used to generate error statistics,
and “error” is defined in this work as deviation from the binding
energy computed using eq 2.
Some of the monomer-based methods considered in Figure 2

utilize electrostatic embedding (EE) for the n-body (dimer and
trimer) electronic structure calculations, and in the VMFC(n)
calculations originally reported in ref 10, this was done in a
sophisticated way based on charges and point dipoles that were
iterated to self-consistency. In the interest of making a fair
comparison, the EE results in Figure 2 also employ self-
consistent embedding charges, determined using our
CHELPG-based version16,17 of the “explicit polarization”
(XPol) procedure.18

Examining the MP2/aDZ results in Figure 2, we see that the
two-body method is simply unacceptable unless electrostatic
embedding is employed, consistent with the results of MBEs in
which no attempt at CP correction is made.19 The difference
here is that CP-corrected MP2/aDZ is an acceptable (if
qualitative) level of theory for clusters, whereas small-basis
MP2 calculations with no correction for BSSE whatsoever
should not be trusted. The fact that fragment-based methods
can accurately approximate supersystem energies in clusters is
largely meaningless unless BSSE is addressed by means of large
basis sets and/or CP corrections.
The VMFC(3) method, with or without electrostatic

embedding, exhibits larger errors for the very challenging
F−(H2O)10 system, as compared to MBCP(3), and the EE-
MBCP(3) method appears quite promising. For this reason,
our primary focus will be on extending EE-MBCP(n) methods
to larger basis sets and evaluating their performance in CBS
extrapolations, although a few additional results using the
VMFC(n) approach will be considered below, for comparative
purposes.
Electrostatically embedded MBEs are often remarkably

insensitive to the details of the embedding scheme,20 at least
for clusters composed of small, polar monomers, and in view of
this observation, the remaining calculations presented herein
employ a very simple embedding in which those monomer
units that are not included in the electronic structure
calculation are replaced with gas-phase Mulliken charges
computed at the B3LYP/6-31G* level. (Ghost atoms do not
contribute embedding charges.) This approach is admittedly
more simplistic than a self-consistent embedding procedure,
and it is possible that a more sophisticated embedding might
improve the EE-VMFC(n) results. In view of the favorable
performance of EE-MBCP(n) with this simple embedding,
however, we have not considered such alternatives.
Figure 3 shows the convergence toward the basis set limit of

MP2/aXZ binding energies for the “bag” isomer of (H2O)6.
(Analogous plots for seven other isomers can be found in the
Supporting Information, but the behavior of the methods
discussed here is very similar in each case.) Extrapolating to the
CBS limit using standard techniques (see the Computational
Methods section for details), we obtain the same binding
energy, to four significant digits, that was previously reported21

as the MP2/CBS limit, based on MP2-R12 calculations in a
very large basis (modified aug-cc-pV5Z). CBS extrapolation
using aug-cc-pVXZ through X = 5 agrees with these results as
well,22 which gives us confidence that the MP2/CBS binding
energy has been accurately determined for this system. Results

in Figure 3 demonstrate that we can accurately approximate
this limit via a low-order MBE, provided that CP corrections
are included.
When attempting to compute cluster binding energies in the

CBS limit, it is commonly assumed that the CP-corrected and
uncorrected results place error bars on the value that would be
obtained in the CBS limit.22,23 For this (H2O)6 example, we do
obtain usable error bars, but even at the quadruple-ζ level, these
bounds are no better than ±1 kcal/mol. On the other hand, the
average of the CP-corrected and uncorrected binding energies
affords a quite accurate estimate of the CBS limit at the triple-ζ
level (<0.04 kcal/mol error). The same cannot be said at the
double-ζ level, where even this average is in error by 1.4 kcal/
mol. This is important to consider in the context of fragment-
based electronic structure methods, which have often10,19,24−27

(though not always28−34) been performed using double-ζ basis
sets.
Here, we observe monotonic convergence of the many-body

approximations to the binding energy, as a function of X (=
D,T,Q). The EE-MBCP(3) method affords a very accurate
approximation to the CP-corrected MP2 binding energy in
each basis set (errors < 0.3 kcal/mol and improving with basis
size) and can be used on its own to obtain the MP2/CBS result
(error = 0.12 kcal/mol). Better still, having done that
calculation, one has all of the information required for a
more traditional three-body approximation without CP
correction. This method, which we call EE-MB(3), affords a
highly accurate approximation to the uncorrected MP2 binding
energy (except at the double-ζ level, where the error is 0.8 kcal/
mol). Together, the EE-MBCP(3) and EE-MB(3) methods can
be used to bracket the CBS limit in the usual way but without
the need for any electronic structure calculations on systems
larger than trimers.
Furthermore, these MP2/CBS binding energies can be

extended to CCSD(T)/CBS quality by means of a MBE
applied to the difference ECCSD(T) − EMP2, eq 3. This difference
converges more rapidly with respect to basis expansion than do
either of the individual energies,35−38 and basis sets of triple-ζ
quality are sufficient to converge this correction term. In the
case of (H2O)6, the haTZ basis set (aTZ without diffuse
functions on hydrogen) has been used for this purpose, and

Figure 3. Convergence to the CBS limit for the bag isomer21 of
(H2O)6. CP-MP2 denotes traditional counterpoise-corrected MP2 (eq
2), whereas EE-MBCP(3) is a three-body approximation to CP-MP2.
The EE-MB(3) method is a three-body approximation to the
uncorrected MP2 energy. The shaded region delineates ±1 kcal/mol
of the MP2/CBS binding energy.
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values of δCCSD(T) for eight different isomers are reported in ref
21.
Table 1 compares these benchmark values to corrections

obtained based on a two- or a three-body approximation to

δCCSD(T). Both approximations prove to be quite accurate, with
mean unsigned errors (MUEs) of only 0.09 kcal/mol for the
EE-MB(2) approximation and <0.01 kcal/mol for the EE-
MB(3) approximation, with respect to an exact calculation of
δCCSD(T) requiring CCSD(T)/haTZ calculations on the full
hexamer. In terms of accuracy, the EE-MBCP(3) method,
applied to approximate the sequence of MP2/aXZ energies and
thereby to extrapolate the MP2/CBS limit, augmented with a
two-body CCSD(T) approximation, affords results that differ
by <0.1 kcal/mol as compared to the best existing estimates of
the CCSD(T)/CBS binding energies for isomers of (H2O)6.
It is certainly true that the triples correction for (H2O)6 is

small relative to values obtained for some dispersion-dominated
systems. An example of the latter is the benzene dimer, for
which δCCSD(T) ≈ 2.0−2.5 kcal/mol.39 On the other hand,
three-body effects are no larger than 0.33 kcal/mol for any
isomer of the benzene trimer40 and are more often an order-of-
magnitude smaller than that.40,41 In acetylene clusters, the
triples correction is not much larger than it is for the water
hexamer.33,42 In view of the general success of two-body
approximations to the correlation energy,24,29,30,43 we expect
the combination of fragment-based and CP-corrected MP2/
CBS extrapolations, in conjunction with a two-body CCSD(T)
correction, to be a robust and accurate approach.
Moreover, this approach requires only a fraction of the

computer time that is required for traditional supersystem
calculations. Considering only the MP2 calculations, Figure 4
shows the total aggregate computer time required to perform
CP-corrected MP2/aXZ calculations for the F−(H2O)10 system,
for X = D, T, and Q. For X = Q, the 12 different calculations
required by eq 2 consume a total of 87 days of wall time.
Setting aside, for the moment, the fact that the MBCP(n)
calculations are embarrassingly parallelizable and instead
focusing simply on the total wall time required for all of the
individual calculations, we find that the MBCP(3) approach
reduces the total time for X = Q by more than 70%, and
MBCP(2) reduces it by more than 98%! Moreover, no single
electronic structure calculation is more expensive than 1737 s

[MBCP(2)] or 8510 s [MBCP(3)]; therefore, the total waiting
time can be made as short as that, given a sufficient number of
processors. (For N = 11 monomers, that “sufficient number” is
445, which nowadays does not even constitute “massively
parallel”.)
To test the robustness of these procedures, we examine

errors (with respect to MP2/CBS benchmarks21) for eight
isomers of (H2O)6. Figure 5a shows error statistics obtained
using a variety of MBE-based methods to approximate the
MP2/aXZ energies, which are then extrapolated to the CBS
limit and compared to the benchmarks to determine the error.
(Several of these methods represent “control experiments”
designed to understand the limits of the methodology rather
than practical procedures intended for production calculations,
as will become clear in the discussion below.)
Consistent with the results for the bag isomer in Figure 3,

where extrapolation of uncorrected MP2 binding energies does
not afford the correct MP2/CBS limit, we observe MUEs > 0.4
kcal/mol for the EE-MB(2) and EE-MB(3) methods that do
not employ CP correction. In fact, the three-body approx-
imation actually affords the larger error, owing to fortuitous
error cancellation in the two-body case. Specifically, three-body
effects contribute ∼10 kcal/mol to the binding energy of
(H2O)6; therefore, a two-body approximation would underbind
by about this much except that BSSE overstabilizes the cluster
by approximately the same amount. This error cancellation is
also the reason why CP correction slightly increases the mean
error at the two-body level, but when the important three-body
interactions are included, CP correction serves to significantly
decrease the mean error. Together, these results demonstrate
the importance of CP correction even when CBS extrapolation
is employed, as is also seen in the basis-set convergence
behavior shown in Figure 3, which is smoother for the CP-
corrected results than for the uncorrected ones.
As another experiment, we use an n-body [EE-MB(n)]

approximation to the cluster energy and subtract from this a
“full” CP correction, in which each monomer energy is
computed using the entire cluster basis set. (In other words,
we use an n-body approximation for EIJK··· in eq 2 but not for
Ei
IJK···.) We consider this to be an unbalanced approximation

Table 1. Triples Corrections, δCCSD(T), for Isomers of (H2O)6
and Errors Engendered by Low-Order Many-Body
Approximations to δCCSD(T)

a

errorc

isomer δCCSD(T)
b EE-MB(2) EE-MB(3)

bag 0.33 −0.08 0.00
boat1 0.53 0.04 0.01
boat2 0.51 0.04 0.01
book1 0.33 −0.04 0.00
book2 0.33 −0.04 0.01
cage 0.13 −0.20 0.00
cyclic 0.53 0.05 0.01
prism −0.06 −0.20 0.00
MUEd 0.09 0.00

aAll values in kcal/mol. bValues obtained from CCSD(T)/haTZ
calculations in ref 21. cErrors engendered by two- and three-body
CCSD(T)/haTZ calculations. dMean unsigned error for all eight
isomers.

Figure 4. Timing data for RI-MP2/aXZ single-point calculations on
F−(H2O)10. The total aggregate wall time required for a CP-MP2
calculation is shown on the logarithmic scale at the right, whereas the
linear axis on the left shows the ratio of the MBCP(2) or MBCP(3)
time to the CP-MP2 time, which indicates the speed-up for the
fragment-based calculations. All calculations were run in serial on a
single 2.5 GHz Opteron processor, meaning that we have not taken
advantage of the embarrassingly parallel nature of the MBCP(n)
methods.
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and one that is rather expensive as compared to EE-MBCP(n),
but we include it here simply to demonstrate that such a
correction cannot rescue the n = 2 calculations from errors >
0.4 kcal/mol. On the other hand, a balanced, two-body
approximation to eq 2, that is, the EE-MBCP(2) method,
actually affords slightly larger errors as compared to this
unbalanced “full CP” correction.
To achieve an accuracy of ≲0.1 kcal/mol, three-body terms

are evidently required, as has been found in previous studies
where CP-corrected two- and three-body terms have been used
in a MBE.44−46 For the EE-MBCP(3) method, the MUE is an
acceptable 0.1 kcal/mol. A “full” CP correction reduces this
MUE only very slightly (and not in all cases, as shown below)
and does not justify the greatly increased cost of adding a
cluster’s worth of extra virtual orbitals to each monomer
calculation.
In Figure 5b, we consider a larger and more challenging test

case, namely, 10 isomers of F−(H2O)10, where binding energies
for our unrelaxed structures are on the order of −115 kcal/mol
and span a range of 10 kcal/mol. Here, the performance of EE-
MBCP(3) exceeds even that of EE-MB(3) with a full CP
correctionpossibly owing the unbalanced nature of the latter
approachand affords a MUE of 0.18 kcal/mol with respect to
CP-corrected MP2/CBS benchmarks. The EE-VMFC(3)
approach affords a MUE that is only slightly larger, 0.28

kcal/mol, demonstrating that any “basis extension” effects5,8

still present in the CP-corrected binding energy defined by eq 2
must be quite small. The MUE for the relative isomer energies,
computed at the EE-MBCP(3) level, is 0.24 kcal/mol, which
demonstrates that not only total binding energies but also
relative conformational energies are predicted accurately by this
low-cost approximation.
In summary, we have shown that the EE-MBCP(3) method,

which incorporates counterpoise corrections in a simple way
and requires electronic structure calculations on subsystems no
larger than trimers, can be used to approximate the sequence of
CP-corrected MP2/aug-cc-pVXZ calculations (X = D,T,Q).
The MP2/CBS limit can thus be obtained (via traditional
extrapolation techniques) at low cost, even in challenging
systems such as F−(H2O)10. This many-body counterpoise
correction may also be useful in studies of noncovalent
interactions in even larger systems, where no attempt may be
made to extrapolate to the CBS limit but where CP correction
is nevertheless useful for avoiding large artifacts in potential
energy surfaces that are caused by BSSE.47−51

Total computational time is dramatically reduced by our EE-
MBCP(3) procedure, even if no parallelism is exploited at all.
Owing to the embarrassingly-parallel nature of the truncated
MBE, wall times can be reduced even further by farming out
the subsystem calculations to a large number of processors. For
rough screening of the energy landscape at a slightly lower level
of accuracy, two-body EE-MBCP(2) calculations can be
performed at a total cost that is dramatically reduced even in
comparison to the three-body method.
In conjunction with two-body CCSD(T) calculations in a

triple-ζ basis set, binding energies within ≲0.2 kcal/mol of
CCSD(T)/CBS benchmarks are obtained for hydrogen-
bonded clusters whose total binding energies exceed 40 kcal/
mol, which represents an error of <0.5%. Previous work at
much lower levels of theory (e.g., B3LYP/double-ζ) has shown
that we can reproduce lower-level binding energy benchmarks
quite accurately in systems as large as (H2O)57,

11−13 which
makes us optimistic about our ability to scale up the techniques
presented here to significantly larger cluster sizes. This paves
the way to obtaining CCSD(T)/CBS-quality energetics in
clusters of hitherto unthinkable size, as well as to geometry
optimizations on BSSE-free potential energy surfaces. Such
applications, along with a fuller characterization of the accuracy
of the methodology in large systems, are currently underway in
our group.

■ COMPUTATIONAL METHODS

For (H2O)6, we use the MP2/haTZ geometries from ref 21,
whereas Gly(H2O)10 and F−(H2O)10 structures are taken from
our own simulations, using the AMOEBA force field,52 and
were not relaxed. Only valence electrons were correlated in
MP2 and CCSD(T) calculations, and MP2 calculations for
Gly(H2O)10 and F−(H2O)10 employed the resolution-of-
identity (RI) approximation, in conjunction with standard
auxiliary basis sets.53 For CBS extrapolations, we first
extrapolate the Hartree−Fock energy using a three-point (D,
T, Q) exponential ansatz54 and then use a two-point (T, Q)
extrapolation of the MP2 correlation energy, using an X−3

ansatz.55 All electronic structure calculations were performed
using Q-Chem.56,57 A home-built code, Fragme∩t (as described
in refs 12 and 13) was used as a driver.

Figure 5. MUEs with respect to MP2/CBS binding energies for (a) 8
isomers of (H2O)6 and (b) 10 isomers of F−(H2O)10, computed by
basis-set extrapolation using an assortment of low-cost many-body
methods to approximate the MP2/aXZ energies (X = D, T, Q). For
(H2O)6, the benchmark MP2/CBS results are taken from ref 21. The
“full CP” correction means that the entire cluster basis set is used to
compute the monomer energies.
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(9) Salvador, P.; Szcze ̧sńiak, M. M. Counterpoise-Corrected
Geometries and Harmonic Frequencies of N-Body Clusters:
Application to HFn (n = 3, 4). J. Chem. Phys. 2003, 118, 537−549.
(10) Kamiya, M.; Hirata, S.; Valiev, M. Fast Electron Correlation
Methods for Molecular Clusters without Basis Set Superposition
Errors. J. Chem. Phys. 2008, 128, 074103/1−074103/11.
(11) Jacobson, L. D.; Richard, R. M.; Lao, K. U.; Herbert, J. M.
Efficient Monomer-Based Quantum Chemistry Methods for Molecular
and Ionic Clusters. Annu. Rep. Comput. Chem. 2013, in press.
(12) Richard, R. M.; Herbert, J. M. A Generalized Many-Body
Expansion and a Unified View of Fragment-Based Methods in
Quantum Chemistry. J. Chem. Phys. 2012, 137, 064113:1−17.
(13) Richard, R. M.; Herbert, J. M. Many-Body Expansion with
Overlapping Fragments: Analysis of Two Approaches. J. Chem. Theory
Comput. 2013, 9, 1408−1416.
(14) Lao, K. U.; Herbert, J. M. Breakdown of the Single-Exchange
Approximation in Third-Order Symmetry-Adapted Perturbation
Theory. J. Phys. Chem. A 2012, 116, 3042−3047.

(15) Lao, K. U.; Herbert, J. M. An Improved Treatment of Empirical
Dispersion and a Many-Body Energy Decomposition Scheme for the
Explicit Polarization Plus Symmetry-Adapted Perturbation Theory
(XSAPT) Method. J. Chem. Phys. 2013, 139, 034107/1−034107/16.
(16) Herbert, J. M.; Jacobson, L. D.; Lao, K. U.; Rohrdanz, M. A.
Rapid Computation of Intermolecular Interactions in Molecular and
Ionic Clusters: Self-Consistent Polarization Plus Symmetry-Adapted
Perturbation Theory. Phys. Chem. Chem. Phys. 2012, 14, 7679−7699.
(17) Jacobson, L. D.; Herbert, J. M. An Efficient, Fragment-Based
Electronic Structure Method for Molecular Systems: Self-Consistent
Polarization with Perturbative Two-Body Exchange and Dispersion. J.
Chem. Phys. 2011, 134, 094118/1−094118/17.
(18) Xie, W.; Song, L.; Truhlar, D. G.; Gao, J. The Variational
Explicit Polarization Potential and Analytical First Derivative of
Energy: Towards a Next Generation Force Field. J. Chem. Phys. 2008,
128, 234108/1−234108/9.
(19) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-
Body Expansion for Large Systems, with Applications to Water
Clusters. J. Chem. Theory Comput. 2007, 3, 46−53.
(20) Leverentz, H. R.; Truhlar, D. G. Electrostatically Embedded
Many-Body Approximation for Systems of Water, Ammonia, and
Sulfuric Acid and the Dependence of Its Performance on Embedding
Charges. J. Chem. Theory Comput. 2009, 5, 1573−1584.
(21) Bates, D. M.; Tschumper, G. S. CCSD(T) Complete Basis Set
Limit Relative Energies for Low-Lying Water Hexamer Structures. J.
Phys. Chem. A 2009, 113, 3555−3559.
(22) Xantheas, S. S.; Burnham, C. J.; Harrison, R. J. Development of
Transferable Interaction Models for Water. II. Accurate Energetics of
the First Few Water Clusters from First Principles. J. Chem. Phys.
2002, 116, 1493−1499.
(23) Clarkson, J. R.; Herbert, J. M.; Zwier, T. S. Infrared
Photodissociation of a Water Molecule from a Flexible Molecule−
H2O Complex: Rates and Conformational Product Yields Following
XH Stretch Excitation. J. Chem. Phys. 2007, 126, 134306/1−134306/
15.
(24) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-
Body Correlation Energy, with Applications to the Calculation of
Accurate Second-Order Møller−Plesset Perturbation Theory Energies
for Large Water Clusters. J. Chem. Theory Comput. 2007, 3, 1342−
1348.
(25) Dahlke, E. E.; Truhlar, D. G. Application of the Electrostatically
Embedded Many-Body Expansion to Microsolvation of Ammonia in
Water Clusters. J. Chem. Theory Comput. 2008, 4, 1−6.
(26) Fedorov, D. G.; Kitaura, K. The Importance of Three-Body
Terms in the Fragment Molecular Orbital Method. J. Chem. Phys.
2004, 120, 6832−6840.
(27) Fedorov, D. G.; Kitaura, K. On the Accuracy of the 3-Body
Fragment Molecular Orbital Method (FMO) Applied to Density
Functional Theory. Chem. Phys. Lett. 2004, 389, 129−134.
(28) Hermann, A.; Schwerdtfeger, P. Complete Basis Set Limit
Second-Order Møller−Plesset Calculations for the fcc Lattices of
Neon, Argon, Krypton, and Xenon. J. Chem. Phys. 2009, 131, 244508/
1−244508/7.
(29) Beran, G. J. O. Approximating Quantum Many-Body
Intermolecular Interactions in Molecular Clusters Using Classical
Polarizable Force Fields. J. Chem. Phys. 2009, 130, 164115/1−164115/
9.
(30) Beran, G. J. O.; Nanda, K. Predicting Organic Crystal Lattice
Energies with Chemical Accuracy. J. Phys. Chem. Lett. 2010, 1, 3480−
3487.
(31) Bates, D. M.; Smith, J. R.; Janowski, T.; Tschumper, G. S.
Development of a 3-Body:Many-Body Integrated Fragmentation
Method for Weakly Bound Clusters and Application to Water clusters
(H2O)n=3−10,16,17. J. Chem. Phys. 2011, 135, 044123/1−044123/8.
(32) Bates, D. M.; Smith, J. R.; Tschumper, G. S. Efficient and
Accurate Methods for the Geometry Optimization of Water Clusters:
Application of Analytic Gradients for the Two-Body:Many-Body
QM:QM Fragmentation Method to (H2O)n, n = 3−10. J. Chem.
Theory Comput. 2011, 7, 2753−2760.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz401368u | J. Phys. Chem. Lett. 2013, 4, 2674−26802679

http://pubs.acs.org
mailto:herbert@chemistry.ohio-state.edu


(33) Rahalkar, A. P.; Mishra, B. K.; Ramanathan, V.; Gadre, S. R.
“Gold Standard” Coupled-Cluster Study of Acetylene Pentamers and
Hexamers via Molecular Tailoring Approach. Theor. Chem. Acc. 2011,
130, 491−500.
(34) Bygrave, P. J.; Allan, N. L.; Manby, F. R. The Embedded Many-
Body Expansion for the Energetics of Molecular Crystals. J. Chem.
Phys. 2012, 137, 164102/1−164102/9.
(35) Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the
Ab Initio Limit for π−π Interactions: The Benzene Dimer. J. Am.
Chem. Soc. 2002, 124, 10887−10893.
(36) Tsuzuki, S.; Honda, K.; Azumi, R. Model Chemistry
Calculations of Thiophene Dimer Interactions: Origin of π-Stacking.
J. Am. Chem. Soc. 2002, 124, 12200−12209.
(37) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K.
Origin of Attraction and Directionality of the π/π Interaction: Model
Chemistry Calculations of Benzene Dimer Interaction. J. Am. Chem.
Soc. 2002, 124, 104−112.
(38) Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev, E.
F.; Schaefer, H. F., III; Quack, M. Anchoring the Water Dimer
Potential Energy Surface with Explicitly Correlated Computations and
Focal Point Analysis. J. Chem. Phys. 2002, 116, 690−701.
(39) Sinnokrot, M. O.; Sherrill, C. D. Highly Accurate Coupled
Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-
Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A 2004,
108, 10200−10207.
(40) Tauer, T. P.; Sherrill, C. D. Beyond the Benzene Dimer: An
Investigation of the Additivity of π−π Interactions. J. Phys. Chem. A
2005, 109, 10475−10478.
(41) Ringer, A. L.; Sherrill, C. D. First Principles Computation of
Lattice Energies of Organic Solids: The Benzene Crystal. Chem.Eur.
J. 2008, 14, 2542−2547.
(42) Hopkins, B. W.; Tschumper, G. S. Ab Initio Studies of π···π
Interactions: The Effects of Quadruple Excitations. J. Phys. Chem. A
2004, 108, 2941−2948.
(43) Nanda, K. D.; Beran, G. J. O. Prediction of Organic Molecular
Crystal Geometries from MP2-Level Fragment Quantum Mechanical
Molecular Mechanical Calculations. J. Chem. Phys. 2012, 137, 174106/
1−174106/11.
(44) White, J. C.; Davidson, E. R. An Analysis of the Hydrogen Bond
in Ice. J. Chem. Phys. 1990, 93, 8029−8035.
(45) Pedulla, J. M.; Kim, K.; Jordan, K. D. Theoretical Study of the n-
Body Interaction Energies of the Ring, Cage and Prism Forms of
(H2O)6. Chem. Phys. Lett. 1998, 291, 78−84.
(46) Christie, R. A.; Jordan, K. D. n-Body Decomposition Approach
to the Calculation of Interaction Energies of Water Clusters. In
Intermolecular Forces and Clusters II; Wales, D., Christie, R. A., Eds.;
Springer: New York, 2005; Vol. 116, pp 27−41.
(47) Shields, A. E.; van Mourik, T. Comparison of Ab Initio and DFT
Electronic Structure Methods for Peptides Containing an Aromatic
Ring: Effect of Dispersion and BSSE. J. Phys. Chem. A 2007, 111,
13272−13277.
(48) van Mourik, T. Basis Set Superposition Error Effects Cause the
Apparent Nonexistence of the Ethene/Benzenium Ion Complex on
the MP2 Potential Energy Surface. J. Phys. Chem. A 2008, 112, 11017−
11020.
(49) van Mourik, T. Comment on ‘To stack or Not To Stack:
Performance of a New Density Functional for the Uracil and Thymine
Dimers’ [Chem. Phys. Lett. 459 (2008) 164]. Chem. Phys. Lett. 2009,
473, 206.
(50) Cao, J.; van Mourik, T. Performance of the M06-L Density
Functional for a Folded Tyr−Gly Conformer. Chem. Phys. Lett. 2010,
485, 40−44.
(51) Toroz, D.; van Mourik, T. Structure of the Gas-Phase Glycine
Tripeptide. Phys. Chem. Chem. Phys. 2010, 12, 3463−3473.
(52) Grossfield, A.; Ren, P.; Ponder, J. W. Ion Solvation
Thermodynamics from Simulation with a Polarizable Force Field. J.
Am. Chem. Soc. 2003, 125, 15671−15682.

(53) Weigend, F.; Has̈er, M.; Patzelt, J.; Ahlrichs, R. RI-MP2:
Optimized Auxiliary Basis Sets and Demonstration of Efficiency. Chem.
Phys. Lett. 1998, 294, 143−152.
(54) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Olsen, J.
Basis-Set Convergence of the Energy in Molecular Hartree−Fock
Calculations. Chem. Phys. Lett. 1999, 302, 437−446.
(55) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; Wiley: New York, 2000.
(56) Shao, Y.; et al. Advances in Methods and Algorithms in a
Modern Quantum Chemistry Program Package. Phys. Chem. Chem.
Phys. 2006, 8, 3172−3191.
(57) Krylov, A. I.; Gill, P. M. W. Q-Chem: An Engine for Innovation.
WIREs Comput. Mol. Sci. 2013, 3, 317−326.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz401368u | J. Phys. Chem. Lett. 2013, 4, 2674−26802680


