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ABSTRACT
The switching/Gaussia (SWIG) algorithm for intrinsically smooth discretisation of the van der Waals
cavity surface, for use in implicit solvation modelling, is extended here to the case of the solvent-
excluded surface (SES), also known as the Connolly surface or sometimes the molecular surface. In
conjunction with a polarisable continuummodel (PCM), SES-SWIG discretisation affords continuum
electrostatics that vary smoothly with respect to the nuclear coordinates, with a solvation energy
that is analytically differentiablewith respect to those coordinates. If the SES is thedesired cavity con-
struction, then the PCM + SES-SWIG method represents an efficient, boundary-element alternative
to three-dimensional, finite-difference solutionof Poisson’s equation. The algorithm introducedhere
allows the SES to be constructed and discretised quickly and easily, and its analytically differentiable
form paves the way for derivation of analytic gradients.
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I. Introduction

The electrostatic interaction between an arbitrary charge
distribution (solute) and a dielectric continuum (solvent)
is defined by the solution to Poisson’s equation. That
equation, however, does not specify how to determine the
boundary between the solute and the continuum, which
is a crucial aspect of any implicit solvationmodel. Various
definitions of this ‘solute cavity’ are in common use, most
based at some level on a union of atom-centred spheres.
While atomic van der Waals (vdW) radii are available
from crystallographic data [1,2], a solvent molecule is
prevented by its own finite size from approaching so close
to the solute. Thus, crystallographic vdW radii are often
scaled by a factor greater than unity (typically 1.2) for use
in continuum electrostatics calculations [3–5].
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Alternatively, one may augment the atomic vdW radii
by an additional ‘solvent probe’ radius, rprobe, repre-
senting the approximate size of a solvent molecule, e.g.
rprobe = 1.4Å for water. (This represents half the dis-
tance to the first peak in the oxygen–oxygen radial
distribution function of the neat solvent [6].) This
definition,

rSAS = rvdW + rprobe, (1)

results in what is usually called the solvent-accessible sur-
face (SAS). An example of the SAS and its relationship
to the vdW surface is illustrated in Figure 1. As sug-
gested in the figure, the SAS may be conceptualised as
the locus of centre points of a spherical solvent probe,
whose radius is rprobe, as that probe rolls over the vdW
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Figure 1. (a) Two-dimensional and (b) three-dimensional depic-
tions of how a spherical solvent probe is used to define various
cavity surfaces. The van der Waals (vdW) surface and the solvent-
accessible surface (SAS) are defined in the same way but using
different radii for the atom-centred spheres (see Equation (1)).
Alternatively, the SAS can be viewed as the locus of centre points
of a spherical solvent probe (the blue circle) as it rolls over the
vdW surface. The solvent-excluded or Connolly surface (SES) is
not shown in its entirety, but smooths out the cusps in the vdW
surface by adding the ‘re-entrant’ surfaces (indicated in red), in
cases where the probe sphere is simultaneously in contact with
more than one atom-centred sphere. These re-entrant surfaces,
along with the ‘contact surface’ between the vdW surface and
the solvent probe, together define the SES. In (a), the two broken
line segments shown in orange subtend the re-entrant surface
element shown in red, and thereby demonstrate how projection
of discretisation points from the SAS back onto the vdW surface
automatically eliminates points on the vdW surface that ought to
be replacedwith points on the re-entrant surfaceswhen the SES is
constructed.

surface. The SAS is sometimes called the Lee-Richards
surface, after the authors who first proposed it as a mea-
sure of solvent accessibility in proteins [7], but we shall

not use that terminology here. There exists some ambi-
guity about terminology in the literature [8,9], with what
we call the SES sometimes being called the SAS; see
Ref. [10] for a recent example. We follow the conven-
tion of Ref. [11], which is consistent with the terminology
used in the context of polarisable continuum models
(PCMs) [12].

Both the SAS and the vdW surface exhibit cusps along
the seams of intersection between atomic spheres. These
may prove numerically problematic for implicit solvent
models that depend upon the electric field normal to the
cavity surface [12–15], since the surface normal is dis-
continuous at the cusps. Moreover, for macromolecular
solutes these cusps lead to high-dielectric crevices buried
in the interior of the solute [16–20].

To remove the cusps, Richards [21] suggested com-
bining the contact surface (defined by the points of con-
tact between the solvent probe and the SAS) with the
re-entrant surfaces (defined as the inward-facing sur-
face of the probe, in cases where the probe makes
simultaneous contact with more than one atom-centred
sphere). Together, the contact and re-entrant surfaces
constitute what we will call the solvent-excluded surface
(SES), althoughRichards originally called it themolecular
surface [21], a term that is still sometimes used synony-
mously with SES. Also synonymous is the term Con-
nolly surface, in acknowledgement of the fact that it was
Connolly who popularised this particular surface con-
struction [22], and who also developed the first analytic
algorithm for constructing it [23]. Alternative algorithms
for constructing the SES were developed subsequently
[8,10,24–46], mostly in the interest of fast rendering and
visualisation of the SES for large molecules and/or com-
puting molecular surface areas.

The SES enjoys a long history in the context of molec-
ular visualisation [11,22,42,45,47], and is sometimes used
in scoring functions for molecular docking [48,49], and
also increasingly in the context of continuum electro-
statics, specifically finite-difference Poisson-Boltzmann
calculations [16,19,36,50–52]. The latter are always sub-
ject to numerical discontinuities that must be fought
against by means of interpolation and dense grids
[53–56], and the SES has proven particularly problem-
atic in this respect [57,58]. In the context of gener-
alised Born models [59], which are the most popu-
lar implicit solvation models in biomolecular simula-
tions, an analytic alternative to the original SES was
developed [58,60,61], known as the generalised Born
molecular volume (GBMV) model [58]. This algorithm
uses a switching function to smooth out the afore-
mentioned cusps, providing molecular surface areas
that are good approximations to those obtained using
the SES.
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Discontinuities as the atomic coordinates are dis-
placed are also a problem in boundary-element
approaches to continuum electrostatics [62–67], unless
specific efforts are taken to eliminate them. This is true
even if the mathematical specification of the surface is
smooth, and indeed Figure 1 correctly suggests that the
analytic SES is smooth, in the sense that its first deriva-
tives are continuous functions. However, numerical con-
tinuum electrostatics calculations require discretisation
of the surface, and discontinuities arise because the num-
ber of discretisation points is not fixed. Atomic motions
expose, or alternatively bury, parts of the cavity surface.

Here, we introduce an intrinsically smooth numerical
discretisation algorithm that can be used for explicit con-
struction of the SES for use in continuum electrostatics
calculations. This algorithm combines Connolly’s pre-
scription [23] for constructing the SES with an algorithm
for smooth discretisation of the SAS or the vdW surface.
The latter was developed previously by Lange and Her-
bert [66–69], as a generalisation of earlier smooth cavity
discretisation schemes [62,63], and has seen extensive
use in conjunction with PCMs [5,12,13,15,70,71]. These
are are a particular class of boundary-element dielectric
continuum models that, in the case of a classical solute
whose charge distribution is entirely containedwithin the
solute cavity, provide an exact solution for the continuum
electrostatic solvation energy, equivalent to what would
be obtained from the electrostatic potential that comes
from solving Poisson’s equation [5,14]. For a quantum-
mechanical solute, where the tails of the wave function
penetrate into the dielectric medium, the associated ‘vol-
ume polarisation’ can be treated approximately [14,15].
Of particular relevance is recent work suggesting that
use of the SES may help to avoid undesirable artifacts in
PCM calculations that include explicit solvent molecules
[72,73]. As such, we wish not only to construct the SES
(analytic equations for whichwere written down long ago
by Connolly [23]) but also to discretise it, for use in a
PCM.

Our surface discretisation algorithm [66,67] uses
systematically-improvable, atom-centred Lebedev
quadrature grids [74,75]. Grid points are therefore
assignable to nuclei so there is no ambiguity regarding
how to associate the forces that are generated by changes
in the dielectric boundary to individual atoms, as there is
for grid-based Poisson solvers [76]. A switching function
is used to smoothly attenuate the contribution from each
grid point as it passes into the interior of the solute cav-
ity, thus guaranteeing a potential energy surface that is a
continuous function of the atomic coordinates. However,
use of a switching function has the unintended con-
sequence of allowing discretisation points to approach
one another more closely than they would if they were

discarded abruptly upon entering the cavity interior.
Because the Coulomb self-energy of the cavity surface
charge is required in order to solve the PCM equa-
tions, the close approach of surface discretisation points
causes undesirable oscillations in the solvation energy
and its gradient as the atoms are displaced [66]. These
unwanted oscillations can be eliminated if the point
charges qi, which are located at the surface discretisa-
tion points si and represent the surface charge induced by
polarisation of the continuum, are replaced by Gaussian
functions:

gi(r) = qi(ζ 2i /π)
3/2 exp(−ζ 2i |r − si|2). (2)

This was originally suggested by York and Karplus
[62]. The Coulomb interaction of two Gaussian-blurred
charges remains finite even as the distance between their
centres goes to zero. Thismodification, alongwith the use
of a switching function and Lebedev grids, defines what
we call the ‘switching/Gaussian’ (SWIG) discretisation
procedure [66,67].

Previously, we implemented the SWIG algorithm
only for cavity surfaces constructed from atom-centred
spheres, i.e. the vdW surface or SAS [66–68]. Here, we
extend this procedure to discretisation of the SES. This
proves to be considerably more involved, as Connolly’s
algorithm for constructing the SES uses not only atom-
centred spheres (for the contact surface) but also addi-
tional spheres and tori for the re-entrant surfaces. The
result is a discretised form of the SES that is intrinsically
smooth with respect to displacement of the atomic coor-
dinates, and numerical examples will demonstrate that
smooth potential energy surfaces for the solute are indeed
obtained. In principle, the SES construction reported
here is amenable to analytic energy gradients that should
provide smooth forces for stable molecular dynamics
simulations in implicit solvent, although we have not yet
implemented the gradients. Even so, the SES construc-
tion provided here is useful for benchmark purposes and
we have already used it in this capacity in two papers
concerning generalised Born models [77,78], although
details of the surface construction were not provided in
those papers.

II. Overview of the algorithm

We first provide an overview of the analytic SES and an
outline of our algorithm for discretising it. The detailed
mathematics is relegated to Section III. To the extent
possible, we follow the the terminology and notation in
Connolly’s work [23]. A notable exception is that we will
use capital letters I, J,K, . . . for atomic indices, whereas
lower-case letters i, j, k, . . . will index grid points.
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A. Nature of the analytic SES

In three dimensions, construction of the SES is more
complicated than the two-dimensional example in
Figure 1(a) suggests, and consists of the contact surface
and two types of re-entrant surfaces. These three types
of surface facets arise from cases where the spherical
solvent probe is tangent to only a single atomic sphere
(which therefore retains two degrees of freedom), cases
where the probe touches two atomic spheres simultane-
ously (where only one degree of freedom remains), and
cases where the probe is simultaneously in contact with
three atomic spheres (with no remaining degrees of free-
dom). Cases where the probe sphere has zero, one, or two
degrees of freedom lead to the following three types of
surface elements.

• Two degrees of freedom. Convex portions of atom-
centred spheres, representing the two-dimensional
contact surface.

• One degree of freedom. Concave portions of tori, gener-
ated by the one-dimensional regions where the probe
sphere makes simultaneous contact with two atom-
centred spheres. An example of what we will call
the toroidal re-entrant surface between atomic spheres
centred at coordinates aI and aJ is depicted in Figure 2.
Motion of the probe sphere (while staying in contact
with both spheres, I and J) delineates a tangent cir-
cle (or contact circle [23]) on either atomic sphere. The

Figure 2. Diagram illustrating construction of the toroidal re-
entrant surface between atomic spheres centred at points aI and
aJ . As theprobe sphere (depicted in blue) is rolled around theone-
dimensional surface of simultaneous contact with both atomic
spheres, its centre traces out the major circle of a torus, which is
depicted in green. The shaded blue region lies on the inner face of
this torus, between the two seams delineated by the ‘contact cir-
cles’ centred at points cIJ and cJI . The contact circles represent the
points of tangency between the probe sphere and either atomic
sphere. This shaded blue region defines the toroidal re-entrant
surface.

Figure 3. Diagram illustrating construction of a spherical re-
entrant surface, contours of which are depicted as curved blue
triangles and correspond to a portion of a probe sphere centred
at the point p+

IJK , which is simultaneously in contact with atomic
spheres I, J, and K. The base triangle connecting aI, aJ , and aK is
shown in green, and together with the pale red lines makes up a
tetrahedron having vertices aI , aJ , aK , andp

+
IJK . For clarity, this dia-

gramomits a secondprobe sphere that is centred at apointp−
IJK on

the opposite side of the base triangle relative to p+
IJK . That second

probe is used to construct a complementary re-entrant surface
on the opposite side of the base triangle. Note that points on the
probe circle sphere outside of the tetrahedron are discarded.

toroidal re-entrant surface is the concave surface of the
probe that lies between the two contact circles.

• Zero degrees of freedom. Concave spherical re-entrant
surfaces, corresponding to a portion of the probe
sphere delineated by points of simultaneous tangency
with three different atom-centred spheres. An example
is depicted in Figure 3.

Each of these surface facets is considered in turn in
Section II B.

Note that Connolly’s original implementation of the
SES algorithm [47] is susceptible to occasional topolog-
ical singularities that render it unable to construct the
surface [33]. These difficulties are specifically associated
with the toroidal re-entrant surface facets, and they are
eliminated in our algorithm as discussed in Section II B 2.

B. Algorithm to discretise the SES

The three types of surface facets described above must
each be discretised, and we refer to the resulting grids
as the atomic grid, the toroidal re-entrant grid, and the
spherical re-entrant grid, respectively. Each is a piece of
the final, discretised SES, involving one, two, or three



MOLECULAR PHYSICS 5

atoms, respectively. There are three main steps in our
algorithm, corresponding to construction of each type of
grid. These are discussed one by one in the sections that
follow.

1. Atomic grids (Contact surface)
The first step is to compute the SAS, with a probe radius
rprobe, using the ‘improved’ SWIG (ISWIG)method [67].
(This method simply replaces the switching function
used in our original work [66] with a somewhat dif-
ferent functional form, from Ref. [67].) The SAS con-
sists of atom-centred spheres whose radii are equal to
rI + rprobe, where rI is the vdW radius for atom I. Each
sphere is discretised with a Lebedev grid and the ith grid
point is subject to the ISWIG switching function Fatomic

i
that is introduced below. This grid point is discarded if
Fatomic
i < �sw, where the dimensionless drop tolerance is

set to�sw = 10−6, as in previous work [67]. Grid points
that are not discarded are then translated inward along
the radial surface normal vectors, by a distance rprobe, so
that they ultimately reside on the vdW surface.

Formally speaking, discontinuities in the potential
surface remain so long as �sw is finite, but the same is
true, e.g. for shell-pair and integral-screening drop toler-
ances, and in any case�sw is a controllable parameter that
can be made as small as machine precision if required. In
our experience, setting �sw = 10−6 does not engender
any perceptible discontinuities, as our numerical results
will confirm.

2. Toroidal re-entrant grids
The next step is to locate the toroidal portions of the
re-entrant surface. These connect pairs of atoms I and J
whose separation dIJ = ‖aI − aJ‖ satisfies the criterion

dIJ < RI + RJ (3)

where

RI = rI + rprobe (4)

is the augmented SAS radius for atom I. Equation (3)
serves as a cutoff distance in a pairwise search. In addi-
tion, the search is limited to atoms I and J having at least
one remaining grid point following construction of the
atomic grids and application of the switching function
Fatomic
i . (Otherwise, the atom in question does not con-

tribute to the SAS and therefore cannot support a toroidal
re-entrant surface.) This significantly reduces the search
effort inmany cases, and excludes nearly all of the interior
atoms in large, globular molecules such as the proteins
considered in some of our previous work [77,78].

For atom pairs IJ that are not excluded, a toroidal grid
connecting the two vdW spheres is constructed, which
discretises the translucent blue surface shown in Figure 2.

Two switching functions are then applied to grid points
on this torus. The first of these eliminates the case of a
‘self-intersecting’ or ‘spindle’ torus, in which the distance
between the centre of the solvent probe sphere and the
centre of the torus (tIJ in Figure 2) becomes smaller than
rprobe. (Inmathematical language [79,80], thismeans that
the major radius of the torus becomes smaller than its
minor radius.) The case of a self-intersecting torus causes
instabilities inConnolly’s original SES algorithm [33], but
these are handled automatically by the algorithm pre-
sented here. We have yet to encounter cases where the
SES could not be constructed according to the present
prescription.

Finally, a second switching function smoothly atten-
uates grid points outside of the region delineated by the
two contact circles. If the solvent probe is able to roll com-
pletely around this torus without making contact with a
third atomic sphere, then the result is a ‘free’ torus, to
use Connolly’s terminology [23]. In this case, the toroidal
grid for atom pair (I, J) is then complete.

3. Spherical re-entrant grids
The third type of surface facet is the spherical re-entrant
surface. To determine where these are required, we check
for three-body contacts by considering the pairwise list
of atoms (I, J) for which toroidal re-entrant grids were
constructed, then subjecting this list to another switching
function that removes grid points on any atom K that is
inaccessible to the solvent probe sphere. Any toroidal grid
point for which this third switching function is too small
(Ftorusi < �sw) is discarded.

The final step is to create the spherical portions of
the re-entrant surfaces wherever three-body contacts are
found. Such contacts can exist between atoms I, J, and K
only if

dIJ < RI + RJ (5a)

dIK < RI + RK (5b)

dJK < RJ + RK . (5c)

Rather than performing a cubic-scaling search over
triples (I, J,K), we leverage information from the
previously-determined tori to limit the search to unique
pairs (I, J) that are connected by a toroidal re-entrant sur-
face, and for those atoms K for which either (I,K) or
(J,K) is also connected by a toroidal re-entrant surface.
Having located a satisfactory triple (I, J,K) from the pair-
wise toroidal list, the distance criteria in Equation (5) are
then checked.

For triples (I, J,K) satisfying Equation (5), we com-
pute p+

IJK and p−
IJK , which are the centres of the probe

sphere when it makes simultaneous contact with spheres
I, J, and K. (One of the points p±

IJK is centred above the
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plane defined by the atomic centres aI , aJ , and aK while
the other is positioned below; see Figure 3.) The probe
spheres centred at p±

IJK are each discretised with a Lebe-
dev grid and several switching functions are applied. One
of these accounts for the case in which the probe makes
contact with a fourth atom and another accounts for the
case where the two probe spheres intersect. Additional
switching functions serve to remove grid points exterior
to two tetrahedra having vertices at aI , aJ , aK , and p±

IJK ,
one of which is depicted in Figure 3. Any grid point for
which Fspherei < �sw is discarded.

4. Example
Mathematical details of the implementation are provided
in Section III, but we first pause to consider an exam-
ple. Figure 4 depicts the discretised SES generated by
our algorithm, for the 384-atom protein 2MRB. (Rela-
tive to the structure obtained from the protein data bank,
we have removed three Cd2+ ions and added missing
hydrogens.) Using 110 Lebedev grid points to discre-
tises each atomic sphere, a 20 × 20 toroidal grid (see
Section IIID), and a drop tolerance�sw = 10−6, the con-
tact surface consists of 6,537 points while the toroidal and
spherical facets of the re-entrant surface consist of 39,922
and 9,271 discretisation points, respectively. Neverthe-
less, we are able to construct the entire discretisation grid
in 11 sec on a single processor. For comparison, using
a recently-introduced numerical algorithm for integrat-
ing the SES, in the context of finite-difference Poisson-
Boltzmann calculations, a timing of 53 sec is reported for
‘probe generation’ [51].

III. Implementation

This section provides a detailed description of how we
implement and discretise Connolly’s analytic construc-
tion of the SES. Relevant geometrical definitions and
equations fromConnolly’s work [23] are listed in Table 1.

Table 1. Definitions and notation used in the analytic construc-
tion of the solvent-excluded surface.a

Quantity Notation and/or definition

Atomic coordinates aI , aJ , aK , . . .
Atomic vdW radii rI , rJ , rK , . . .
Probe radius rprobe
Atomic SAS radius RI = rI + rprobe
Interatomic distance dIJ = ‖aI − aJ‖
Torus axis unit vector uIJ = (aI − aJ)/dIJ
Torus centre tIJ = 1

2 (aI + aJ)+ 1
2 (aJ − aI)(R2I − R2J )/d

2
IJ

Torus radius rIJ = 1
2 [(RI + RJ)2 − d2IJ]

1/2[d2IJ − (rI −
rJ)2]1/2/dIJ

Contact circle centre cIJ = (rItIJ + aI rprobe)/RI
Base triangle angle ωIJK = cos−1(uIJ · uIK )
Base plane normal vector uIJK = (uIJ × uIK )/ sin(ωIJK )

Torus base-point unit vector uTB = uIJK × uIJ
Base point bIJK = tIJ + [uIK · (tIK − tIJ)]uTB/ sin(ωIJK )

Probe height hIJK = (R2I − ‖bIJK − aI‖2)1/2
Probe position, 3-body
contacts

p±
IJK = bIJK ± hIJK uIJK

Vertex vI = (rI pIJK + aIrprobe)/RI
aNotation mostly follows that introduced by Connolly in Ref. [23].

A. Atomic grids

The contact surface is formed from atomic grids that are
constructed by first building a SAS and then projecting
the grid points back onto the vdW surface, along the sur-
face normals. The discretised SAS consists of a Lebedev
grid of radius rI + rprobe centred at the point aI , for each
atom I. The atomic switching function

Fatomic
i =

atoms∏
J,i/∈J

f Ji (6)

for the grid point i ∈ I is a slightly modified version of
the ISWIG switching function [67]. It is a product of
‘primitive’ switching functions, one for each atom J �= I:

f Ji = 1 − 1
2 {erf[γ atomic

i (RJ − diJ)]

+ erf[γ atomic
i (RJ + diJ)]}. (7)

Figure 4. Examples of the discretised SES for a small protein (PDB code 2MRB, 384 atoms). Depicted are (a) amodel of the protein based
on van derWaals atomic spheres, (b) the discretised SES superimposed upon the van derWaals spheres, and (c) the discretised SES alone.
Discretisation points for the atomic contact surfaces are shown in black, those for the toroidal facets of the re-entrant surfaces in cyan,
and those for the spherical facets of the re-entrant surfaces in orange.
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Here, diJ = ‖si − aJ‖ is the distance between the surface
discretisation point si and the atomic centre (nucleus)
located at aI . The function f Ji contains a parameter

γ atomic
i = ζ atomic

w1/2
i RI

(8)

where wi is the Lebedev quadrature weight associated
with the point si. The parameter ζ atomic plays the role
of the Gaussian width parameter ζ in Equation (2). (We
call it ζ atomic because a different width parameter, ζ torus,
will be used in discretising the toroidal portions of the
surface.) As in our previous work on SWIG discretisa-
tion [66,67], we take the value of ζ atomic from Ref. [81],
in which a different value of ζ is optimised for each dif-
ferent Lebedev grid in order to reproduce the energy for
the Born ion model of a point charge centred in a spher-
ical cavity inside of a continuum dielectric medium. In
other words, once the number of Lebedev grid points per
atomic sphere has been selected, which determines the
quality of the discretisation, then ζ atomic can be obtained
from the values tabulated in Ref. [81].

After Fatomic
i is evaluated for each grid point and the

grid pruned accordingly (using the drop tolerance�sw),
these SAS surface points are projected back along the
outward-pointing surface normal vectors ni, each by a
distance rprobe, so that they lie on the vdW surface:

satomic
i = sSASi − rprobeni. (9)

As shown in Figure 1(a), this backwards projection auto-
matically eliminates that portion of the vdW surface that
is to be replaced by a re-entrant surface.

The surface area associated with the ith grid point,
assuming that it resides on a sphere of radius rI , is [66]

ãatomic
i = wir2I . (10)

To ensure that the surface area is a smooth function of
the atomic coordinates, these areas must be scaled by the
switching function. We therefore define the surface area
associated with grid point si to be [66]

aatomic
i = ãatomic

i Fatomic
i . (11)

The total surface area of the contact portion of the SES is
then the sum of all aatomic

i . Similarly, if we define

aSASi = wiR2I F
atomic
i , (12)

then the sum over all i in Equation (12) affords the total
surface area of the SAS.

B. Toroidal re-entrant grids

If the torus axis in Figure 2 is taken to be the z axis,
then the torus suggested in the figure is defined by the
equation [79]

(
rIJ −

√
x2 + y2

)2
+ z2 = r2probe, (13)

or else parametrically as [79]

x = (rIJ + rprobe cos θ) cosφ (14a)

y = (rIJ + rprobe cos θ) sinφ (14b)

z = rprobe sin θ (14c)

for θ ,φ ∈ [0, 2π). The quantities rIJ (Table 1) and rprobe
are the major and minor radii of the torus, respectively.
Examples are shown in Figure 5.

To construct the toroidal grids, we first create a prim-
itive toroidal grid by discretising a torus as a ‘circle of
circles’ around the torus axis in Figure 2; see also Figure 5.
The minor circle of the torus has radius rprobe, and a
minor circle grid is divided into N1 points of equal arc
length,	θ1 = 2π/N1. Likewise, a major circle is divided
intoN2 parts of equal arc length,	θ2 = 2π/N2. (In prac-
tice, we will set N1 = N2, but this is not required.) The
major circle radiuswill ultimately be set equal to the torus
radius, rIJ . A set of N2 radial unit vectors lying in the

Figure 5. Cutaway cross sections of various tori, each with a
minor (tube) radius of r= 1.4 (in arbitrary units) but having dif-
ferent values for the major (wheel) radius, R, as indicated. (a) The
‘ring’ torus (or ‘free’ torus, in Connolly’s language [23]) is char-
acterised by R> r and is the case depicted also in Figure 2. (b)
The ‘horn’ torus is the special case where R= r. (c) For R< r, one
obtains a ‘self-intersecting’ or ‘spindle’ torus, containing an inner
(spindle) surface that is sometimes called the ‘lemon surface’ [79].
Both the horn and spindle tori lack the familiar ‘doughnut hole’ of
the ring torus, but the horn can nevertheless be discretised in the
same manner as the ring.
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plane perpendicular to the unit axis are then computed,
each pointing from the origin outwardwith the arc length
spacing 	θ2. The surface normals of the primitive torus
are computed initially here, pointing outward from the
minor circle centres.

As discussed in Section II B, a toroidal re-entrant sur-
face will only exist between two atoms for which dIJ <
RI + RJ , and only if atoms I and J each possess at least one
non-negligible atomic surface grid point. Additionally,
we check the sign of the two radicands in the definition
of rIJ (see Table 1), and if either is negative then the can-
didate torus is discarded. We perform a pairwise atom
search with these screening criteria, in order to find
atom pairs that will support a toroidal re-entrant surface.
Having located such a pair (I, J), the primitive toroidal
grid described above is translated to the torus centre,
tIJ , and rotated such that the primitive torus axis aligns
with uIJ = (aI − aJ)/dIJ . The minor circle grids are then
translated outward along the rotated radial vectors by a
distance rIJ , forming the complete toroidal grid connect-
ing atomic spheres I and J. At this stage we also compute
the surface normal vectors ntorusi , for the torus in its final
position and orientation.

A switching function

Ftorusi = gIJi,1g
JI
i,1gi,2gi,3 (15)

for the toroidal grid points is itself a product of four
primitive switching functions. The functions gIJi,1 and gJIi,1
measure the extent to which the ith grid point lies beyond
the plane of the contact circle centre, cIJ , on both sides
of the torus spanning atoms I and J. In principle, all
toroidal grid points should lie between the planes defined
by the two contact circles (see Figure 2), but in the
spirit of the SWIG method they are allowed to penetrate
slightly beyond that plane, so that they may be smoothly
attenuated to zero weight. This is accomplished via the
switching function

gIJi,1 = 1
2
[
1 + erfc(2ζ torusci,IJ)

]
, (16)

where ci,IJ is the projection of the torus axis uIJ onto the
vector that connects the grid point si to the centre of the
contact circle, cIJ :

ci,IJ = (si − cIJ) · uIJ . (17)

Then, for the opposite side of the torus, we have

gJIi,1 = 1
2
[
1 + erfc(2ζ torusci,JI)

]
(18)

where ci,JI = −ci,IJ .
The function gi,2 in Equation (15) accounts for the case

of a spindle torus [79,80], for which rIJ < rprobe. In this
case, which is depicted in Figure 5(c), the torus exhibits

an inner ‘lemon’ surface [79], and as the probe sphere
rolls over the vdW surface only the lower half of the
lemon should be included in the SES. These points are
easily identifiable, for if we take the torus axis to be z, then
the two halves of a cross section of the lemon in the xz
plane are [79]

z± = ± [
(rIJ + rprobe)2 − (x + rIJ − rprobe)2

]1/2 . (19)

The intersecting points are removed via the function

gi,2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − exp
[−(ζ torusd torus

i )2
]
,

for si on the lower half of the lemon
0,
for si on the upper half of the lemon

.

(20)
Here, d torus

i is the distance from the ith toroidal grid point
si to the torus axis uIJ . The parameter ζ torus is analo-
gous to the parameter ζ atomic for the atomic grid (see
Equation (8)), and we have determined a set of values for
ζ torus, one for each Lebedev grid density, as described in
Section III D. In practice, to determine whether si lies on
the appropriate half of the lemon, we compute the dis-
tance from the ith grid point to the major circle on the
opposite side of the torus. If that distance is less than
rprobe, then si lies on the wrong half and is discarded.

Finally, the function gi,3 in Equation (15) accounts for
the possibility of a third atom, K (distinct from I and J)
being close enough to the torus that it ought to prevent
access by the probe sphere. We use a switching func-
tion similar to that used in the ISWIG method [67] to
attenuate such points:

gi,3 =
atoms∏
K /∈{I,J}

[
1 + erf(ζ torus‖ric − aK‖)] /2. (21)

Here, the points ric are centre points of N1 minor circles
of the torus. (That is, these points lie in the middle of
the tube, on the torus’ major circle). Specifically, ric is the
centre point closest to si, which lies on the torus itself.

Absent the switching functions, the surface area for
the ith toroidal grid point is analogous to the ‘prim-
itive’ atomic surface area ãatomic

i that is defined in
Equation (10), and the primitive toroidal surface area is
computed as follows. We first compute the perpendicu-
lar distance, d torus

i , from the ith toroidal grid point to the
torus axis uIJ . (In practice, and for simplicity, we do this
prior to rotating the torus from its temporary alignment
with the z axis to align it with uIJ .) Note that the cir-
cumference of the circle on the torus surface that passes
through si and whose normal aligns with uIJ is ctorusi =
2πd torus

i . The toroidal grid suggested in Figure 5, which
we call a ‘circle of circles’ (imagining a set of circles with
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slightly different radii, displaced along the torus axis)
naturally divides the toroidal surface circle into N2 seg-
ments, and the ith grid point owns an arc length equal to
ctorusi /N2. Analogously, the minor circle has been divided
into N1 portions, and the ith grid point owns an arc
whose length is 2πrprobe/N1. Taken together, this affords
a primitive surface area

ãtorusi = 4π2rprobed torus
i

N1N2
(22)

for the ith toroidal grid point.
The analytic result for the surface area of a torus is

4π2Rr, where R = rIJ + rprobe is the radius of the major
circle of the torus and r = rIJ − rprobe is the radius of its
minor circle. Summing Equation (22) over i reproduces
this result to high accuracy for any of the torus grids that
we have investigated having N1 ≥ 6 and N2 ≥ 6. Apply-
ing the toroidal switching functions for smoothness, the
actual contribution to the SES surface area that arises
from the toroidal grid point si is

atorusi = ãtorusi Ftorusi (23)

analogous to Equation (11) for aatomic
i .

C. Spherical re-entrant grids

As discussed in Section II B, candidate triples of atoms
(I, J,K) are selected by searching those pairs of atoms that
are already known to be connected by a toroidal grid. If
I and J are connected by a toroidal grid, and if either I
and K, or else J and K, are also connected by a toroidal
grid, then (I, J,K)may involve a three-body contact with
the probe sphere. This will be the case if all three dis-
tance criteria in Equation (5) are satisfied, in which case
a spherical re-entrant grid is required. Lebedev grids of
radius rprobe are then centred at the two positions p±

IJK .
These two probe spheres lie tangent to all three atoms I,
J, and K.

The switching function for the ith spherical re-entrant
grid point is a product of elementary switching functions,

Fsphericali = hi,1hi,2hi,3h±
i,4hi,5δi, (24)

which depend on whether si is on the p+
IJK sphere or

the p−
IJK sphere. Functions hi,1, hi,2, and hi,3 are used to

determine if si lies inside either of the tetrahedra whose
triangular bases are formed by the atomic coordinates aI ,
aJ , and aK , and whose peaks are located at p+

IJK and p−
IJK ;

see Figure 3. We will refer to the triangle aI-aJ-aK as the
base of the tetrahedron, and the remaining three faces as
its sides. Vectors normal to these three sides are

n1 = uIJ × (pIJK − aI)
‖uIJ × (pIJK − aI)‖ (25a)

n2 = uIJ × (pIJK − aJ)
‖uIJ × (pIJK − aJ)‖ (25b)

n3 = (pIJK − aK)× uIJ
‖(pIJK − aK)× uIJ‖ (25c)

in which pIJK could be either p+
IJK or p−

IJK , depending on
which tetrahedron we are considering for the grid point
in question.

The three sides of the tetrahedron intersect the probe
sphere along its great circles. Using the normal vectors in
Equation (25), we can compute the distance between si
and the planes that define each of the three sides of the
tetrahedron:

diα = nα · (pIJK − si) (26)

for α = 1, 2, or 3, and pIJK = p+
IJK or p−

IJK , as appropriate.
The first three switching functions hiα in Equation (24)
are defined in terms of the distances diα :

hi,α =
{
0, for diα ≤ 0
1 − exp[−(γ atomic

i diα)2], for diα > 0
. (27)

In short, Fsphericali = 0 whenever si lies on the exterior
side of any one of the three planes that make up the sides
of the aforementioned tetrahedron.

The switching function h±
i,4 in Equation (24) accounts

for the case where the two probes centred at p+
IJK and

p−
IJK intersect one another, in which case grid points lying

inside the opposite probe sphere need to be removed.
This is accomplished by measuring the distance between
si on the ‘plus’ sphere (centered at p+

IJK) to the probe
position of the ‘minus’ sphere (p−

IJK),

d+
ip = ‖si − (bIJK − hIJKuIJK)‖, (28a)

and vice versa for a point on the minus sphere,

d−
ip = ‖si − (bIJK + hIJKuIJK)‖. (28b)

The relevant switching function is then

h±
i,4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0,
d±
ip ≤ rprobe

1 − exp
{
−[γ spherical

i (d±
iP − rprobe)]2

}
,

d±
ip > rprobe

(29)
with

γ
spherical
i = ζ atomic

w1/2
i rprobe

. (30)

The function hi,5 in Equation (24) checks for collisions
of the probe sphere with a fourth atom, L, removing grid
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points when such a collision occurs. Defining

rpL = ‖pIJK − aL‖ − RL, (31)

this switching function is defined as

hi,5 =

⎧⎪⎪⎨
⎪⎪⎩
1, rpL ≥ 0
atoms∏

L/∈{I,J,K}
exp

[
−(3γ spherical

i rpL/4)2
]
, rpL < 0

.

(32)
The probe collides with atom L when rpL < 0, at which
point hi,5 attenuates the switching function smoothly
to zero. A factor of 3/4 is included in the exponent of
Equation (32) in order to provide switching on a rea-
sonable length scale for the spherical re-entrant sur-
face elements, while using ζ atomic to define γ spherical

i in
Equation (30). This is an alternative to introducing a new
parameter ζ spherical to define the exponent.

Finally, the function δi in Equation (24) simply deter-
mineswhether or not si resides on the correct hemisphere
of the probe sphere, which is the hemisphere in contact
with the atoms I, J, and K. The other hemisphere will not
contribute to the surface. The function δi is evaluated by
computing the distance diB from the ith grid point to the
base triangle of the tetrahedron,

diB = (bIJK − si) ·
(

bIJK − pIJK
‖bIJK − pIJK‖

)
, (33)

for pIJK = p+
IJK or pIJK = p−

IJK , as appropriate. Then

δi =
{
1, diB ≤ hIJK
0, diB > hIJK

. (34)

In practice, δi is evaluated prior to the other switching
functions in order to avoid unnecessary computation.

Surface areas associated with spherical re-entrant grid
points are computed in a manner similar to those for the
atomic grid points,

asphericali = wir2I F
spherical
i . (35)

The surface normals are simply

nsphericali = pIJK − si
‖pIJK − si‖ (36)

for pIJK = p+
IJK or p−

IJK , as appropriate.

D. Numerical fit for the toroidal exponent

The parameter ζ torus in SES-SWIG is important beyond
the construction of the geometrical grid because we
assume that the Gaussian surface charges gi(r) that

discretise the toroidal grid (Equation (2)) have width
parameters

ζ torusi = ζ torus

(ãtorusi )1/2
. (37)

Thus, ζ torus is a universal parameter for the toroidal grids.
In PCM calculations, this parameter appears in both
the Coulomb self-energy of the surface charge as well
as the Coulomb interaction between the surface charge
and the solute’s electrostatic potential. It must there-
fore be determined carefully in order to afford accurate
energetics.

The same can be said for the parameter ζ atomic that
controls the widths of the Gaussians used in discretising
the spherical parts of the SES, and in that case the value of
the width parameter was optimised in Ref. [81] to repro-
duce the energy of a point charge centred in a spherical
cavity (Born ion model [82]), in a conductor medium
(ε = ∞), with a Gaussian discretisation of the spherical
surface and using a Lebedev quadrature grid. We wish to
do something similar in order to determine ζ torus, but we
are unaware of any simple analytical model for a toroidal
cavity shape. Instead,we fit to amodel problemconsisting
of a uniformly charged ring placed inside a toroidal cav-
ity, such that the charged ring coincides with the major
circle of the torus. This system is embedded in a conduc-
tor dielectric so that the result is independent of ε and the
PCMmodels tested are exact within numerical precision.

The target polarisation energy (i.e. the energy of the
reaction field interacting with the ring of charge) for this
model problem is computed with the D-PCM approach
[5,12,83,84]. D-PCM is the modern nomenclature [12]
for the original PCM of Miertuš, Scrocco, and Tomasi
[83,84], but is little-used nowadays because it requires
explicit evaluation of the surface normal electric field,
whereasmore recentmodels require only the electrostatic
potential. In this particular case, however, D-PCM has a
unique advantage over other models, as explained below.

For these calculations, we use a point-charge dis-
cretisation of the surface charge density, as opposed to
the spherical Gaussian charge discretisation of SWIG,
in order to make the target D-PCM energy indepen-
dent of any Gaussian exponents. (Recall that Gaussian
blurring only becomes important when switching func-
tions are used, which they will not be for these D-
PCM calculations.) The utility of the D-PCM approach
is that whereas the diagonal (self-interaction) matrix
elements in most PCMs involve approximations to the
Coulomb integrals within individual surface elements
[5], within D-PCM these matrix elements can be com-
puted exactly using a sum rule [85]. (This sum rule is only
approximate for arbitrary cavity shapes and sometimes
becomes problematic [67,70], but is free of such problems
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Table 2. Convergence behaviour for polarisation energies of a
charged ring in a torus, embedded in a dielectric medium.a

energy (kcal/mol)

N1 D-PCM C-PCM errorb

6 −49.734 −49.777 0.028
8 −49.783 −49.796 0.009
10 −49.795 −49.798 0.007
12 −49.800 −49.799 0.006
14 −49.802 −49.799 0.006
16 −49.804 −49.799 0.006
18 −49.804 −49.799 0.006
20 −49.805 −49.800 0.005
aC-PCM energies are for ζ torus = 4.28 for all values of N1, and we take N2 =
N1.bDifference between the C-PCM value and the converged (N1 = 20) D-
PCM value.

for the special case of a toroidal cavity.) Thus, we employ
D-PCMwith a point charge discretisation and a sum rule
for the diagonal elements in the linear equations that
define the model, in order to compute a high-accuracy
solvation energy for this charged-ring system. In prac-
tice, D-PCM energies are not very different from those
computed using C-PCM (which does not employ a sum
rule), as seen in Table 2.

While one could exhaustively test many combinations
of tori and charged rings, we have opted for simplicity by
fitting to only one definition of ring and torus that we feel
is within the common realm of application for Connolly
surfaces.We choose a ring of radius 3Å and having a total
charge of +e, discretised as 100 separate point charges
spaced at uniform angular increments around the ring,
eachwith a charge of+0.01e. This ring is then enclosed in
a torus whose major circle has a radius of 3Å. The radius
of the minor circle is set to the frequently-used choice of
1.4Å, corresponding to rprobe for water [12].

Table 2 showsD-PCMandC-PCMenergies computed
for this model system, corresponding to grids with N1 =
N2. Several values for ζ torus were tested, and we ulti-
mately settled on the (dimensionless) value ζ torus = 4.28
for all values of N1, based on calculations using D-PCM.
TheD-PCM energies converge to the polarisation energy
of −49.805 kcal/mol. C-PCM energies using the same
value of ζ torus converge to an energy of−49.800 kcal/mol,
which is a comforting check given the significant dif-
ferences in the working equations for C-PCM versus
D-PCM.

IV. Numerical results

A. Computational details

We have implemented the SES-SWIG discretisation
in the Q-Chem software package [86,87], and the
method was released with Q-Chem v. 5.0. Within our
implementation, the solute can be described either using

electronic structure theory (‘QM’) or else using amolecu-
lar mechanics (MM) force field, i.e. atomic point charges,
since only the solute’s electrostatic potential is required.
Our implementation allows for QM/MM/PCM calcu-
lations although we focus on QM/PCM calculation in
this work. The algorithm has been implemented for use
with PCMs including C-PCM, COSMO, IEF-PCM, and
SS(V)PE; consult the literature for an explanation of these
models [5,15,70]. It has also been integrated for use with
‘screened’ PCMs appropriate for solvents with non-zero
ionic strength [69,88,89], including our Debye–Hückel-
like screeningmodel (DESMO) [69]. All calculations per-
formed here are done in water (ε = 78.4 and rprobe =
1.4Å), hence we will use C-PCM as it is virtually iden-
tical to IEF-PCM in high-dielectric solvents [70], but is
less expensive.

All calculations use unscaled Bondi radii for the
atomic spheres [1], except that the radius for hydrogen
is reduced from 1.2 to 1.1Å, per the recommendation in
Ref. [2]. To construct the SAS, the Bondi radii are sim-
ply increased by an amount equal to rprobe. In principle
the SES smoothing procedure can be applied to either
set of radii (i.e. vdW radii {rI} or SAS radii {RI = rI +
rprobe}), and for comparative purposes we will examine
both. Use of rI corresponds to the traditional definition
of the SES, wherein the probe sphere rolls over the vdW
surface as depicted in Figure 1.We expect the results from
this approach to be roughly comparable (in magnitude at
least) to those based on the vdW cavity construction, as
the cavity size is about the same but without the cusps in
the SES case. We will also consider a non-traditional SES
based on atomic radii {rI}. This corresponds to rolling
the probe sphere over the SAS, so we expect this con-
struction to be more comparable to SAS-based results
rather than those based on the vdW surface. We will
refer to these two versions of the SES as ‘SES(rvdW)’ and
‘SES(rvdW + rprobe)’, to distinguish which radii are used.

All cavity surfaces are discretised using the SWIG
algorithm as described above and in Ref. [67], except
as noted in a few examples where we intentionally turn
off the smoothing procedure for the vdW surface con-
struction, for demonstrative purposes. We will call this
(undesirable) surface construction the ‘fixed’ vdW sur-
face, because no switching function is employed. For the
fixed surface, Lebedev grid points are discarded abruptly
as they enter the interior of the solute cavity. Except
where otherwise noted, we use 110 Lebedev points per
sphere (prior to discarding negligible ones) for both
the contact surface and the spherical re-entrant surface.
Prior work on the SWIG-vdW surface construction sug-
gests smooth convergence with respect to the number
of Lebedev discretisation grid points, with results for
N=110 that are converged to <1 kcal/mol with respect
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to the infinite-grid limit [67,70], with rotational invari-
ance errors <0.1 kcal/mol [67]. We use N1 = 20 = N2
points for the other surface elements, which affords con-
verged results according to the data in Table 2. A few
additional convergence tests for molecular surface areas
are presented below.

B. Energy profiles

Grant et al. [90] have argued that the SES has the ‘unpleas-
ant characteristic [that] the infinitesimal movement of a
single atom can produce large surface changes’. In partic-
ular, they argue that a small change might immediately
exclude an (implicit) solvent molecule, as depicted in
Figure 6(a). From a physical point of view, this seems
dubious because the total charge that is contained within
the cavity does not change as a function of this defor-
mation and therefore one would not expect any abrupt
change in the electrostatic solvation energy. (There is no
concept, within implicit solvation, of a discrete solvent
molecule being ‘squeezed out’ of the gap that is depicted
in Figure 6.) In fact, with a smooth construction of the
SES there is no discontinuity in this case at all, as we now
demonstrate.

In Figure 6(b) we show the SES-SWIG discretisation
grids for the initial and final geometries of the model
problem suggested by Grant et al. [90]. Each discretisa-
tion grid point si is drawn as a sphere whose diameter
is equal to a1/2i , where ai is the surface area associated
with that particular grid point. One may note that the
density of grid points for the spherical facets of the re-
entrant surfaces appears to be greater than it is for the
contact surface or the toroidal surfaces, but the grid
points on the latter generally have larger individual sur-
face areas as compared to the spherical re-entrant grid
points.

To test the scenario envisioned by Grant et al. [90], we
continuously displace two atomic centres as suggested by
the arrows in Figure 6(b), adjusting the ‘gap size’ between
their centres. A classical point charge is placed at the cen-
tre of each atomic sphere and the C-PCM polarisation
energy (i.e. the solute/continuum electrostatic interac-
tion) is plotted in Figure 7. Both the C-PCM polarisa-
tion energy and the total energy are completely smooth
functions of the displacement coordinate, as should be
expected since the amount of solute charge that is con-
tained within the cavity does not change as a function
of this deformation. Even with displacements as small
as 	x = 0.002Å (inset of Figure 7), we observe no spu-
rious wiggles –and certainly no discontinuities – in the
energy. Addition of a nonelectrostatic term to the sol-
vation energy will not change this situation since the
cavity surface area is a continuous function of the nuclear

Figure 6. (a) Hypothetical example fromRef. [90] inwhich a small
displacement of certain atomic spheres causes a large change in
the SES. The ‘low-dielectric’ region is simply the interior of the
SES. (b) SWIG discretisation grids for the initial and final geome-
tries of thismodelproblem,witharrows indicatinghowtheatomic
spheres are displaced to generate the final geometry. In (b), each
grey ball is centred at a discretisation grid point, and the diameter
of the ball is equal to a1/2i . The plane of the page divides the SES
into two symmetry-equivalent halves andgridpoints lyingbehind
that plane are omitted for visual clarity. Panel (a) is reproduced
with permission from Ref. [90]; copyright 2001 JohnWiley & Sons.

coordinates within our smooth SES construction. An
example of such a nonelectrostatic term is presented in
Section IV C.

Next we consider a realistic molecular example,
namely, the torsional energy profile of the zwitterionic
tautomer of the Gly-Gly dipeptide as a function of its
backbone angle, ψ , with other internal coordinates held
fixed. Representative structures along this coordinate are
shown in Figure 8. The minimum-energy geometry cor-
responds to ψ = 180◦ and it should be noted that some
of these structures are quite unrealistic (e.g. forψ � 60◦),
due to steric clash between two oxygen atoms that will be
obvious from the energy profile. It is nevertheless inter-
esting to examine the full domain of ψ , as this demon-
strates that the cavity construction continues to function
even in such cases. Moreover, in a QM/PCM context, one
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Figure 7. C-PCM polarisation energy for continuous deforma-
tion of the SES by adjusting the relative positions of two atomic
spheres as indicated in Figure 6(b). The solute consists of classical
atomic point charges and themedium is characterised by ε = 78.
The inset is a close-up view of the region delineated in the box,
in which the spacing between data points has been reduced from
0.020Å to 0.002Å.

Figure 8. Structures of diglycine along a scan of the backbone
torsion angleψ , with other internal coordinates held fixed.

might want the ability to break bonds within the solute
and thus the implicit solvent model, including the cavity
construction algorithm, ideally ought to be able to handle
this, as it can in our original SWIG algorithm [67]. (We
will consider a bond-breaking example below.)

Figure 9 shows the Gly-Gly torsional energy pro-
file computed at the B3LYP/6-31+G* level using C-
PCM with ε = 78.4. The data points are very closely
spaced (	ψ = 1◦), yet the potential energy curves are
completely smooth for both the ‘rvdW’ and the ‘rvdW +
rprobe’ versions of the SES. Energies obtained using
SES(rvdW) are noticeably offset from results obtained
using the vdW construction even though the atomic
radii are the same. However, the SES(rvdW + rprobe) sur-
face (which uses radii rI + rprobe) affords results that are
essentially identical to SAS results. The reason for this
is intuitively clear from Figure 1: for the smaller radii,
the crevices in the union-of-spheres surface are deeper,

Figure 9. Absolute energy profiles of diglycine across the tor-
sion angle ψ (see Figure 8), computed at the B3LYP/6-31+G*
level with C-PCM and ε = 78.4, using various cavity definitions.
For the SES, two different sets of radii are used. The traditional
definition of the SES uses vdW radii and is indicated by SES(rvdW);
it is a vdW surface with cusps removed, as shown in Figure 1(a).
Alternatively, SES(rvdW + rprobe) uses SAS radii, Equation (1), and
corresponds to the SAS with cusps removed. With the larger radii
RI = rI + rprobe, energy profiles based on the SES and the SAS are
essentially identical.

and thus the SES(rvdW) construction modifies the vdW
construction more so than the SES(rvdW + rprobe) con-
struction modifies the SAS.

In fact, the rvdW + rprobe version of the SES modifies
the SAS so little that even zooming in on the minimum-
energy configuration, and setting E(ψ = 180◦) equal to
zero for all methods, we can discern virtually no dif-
ference between SES(rvdW + rprobe) and SAS results; see
Figure 10. In the case of the traditional construction
SES(rvdW), the torsional profile is noticeably different
as compared to that predicted using the vdW cav-
ity, for the reason discussed above, but the important
result is that the SES energy profiles are smooth. In the
SES(rvdW) results one can observe very small bumps in
the potential energy curve, e.g. for ψ ≈ 270◦, but these
are not discontinuities. To demonstrate what genuine dis-
continuities look like in comparison, we performed a
PCM calculation using the vdW cavity but discretised
in a ‘fixed’ away, without the benefit of switching func-
tions to ensure continuity. The vdW(fixed) energy profile
in Figure 10 basically tracks the smooth vdW(SWIG)
potential curve, but numerous and sizable discontinuities
are evident. For vdW surfaces, we have previously doc-
umented the serious problems that such discontinuities
cause, e.g. in geometry optimisations, vibrational fre-
quency calculations, and molecular dynamics [66,67].

It is beyond the scope of this work to consider which of
these cavity constructions is most accurate. In quantum
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Figure 10. Relative energy profiles of diglycine across the torsion
angleψ (see Figure8), computedat theB3LYP/6-31+G* levelwith
C-PCM and ε = 78.4, using various cavity definitions. For the vdW
surface, intrinsically-smooth SWIG results are shown along with a
‘fixed’ discretisation algorithm that does not employ a switching
function, leading to discontinuities in the potential energy sur-
face. All of the potential curves are set to zero at their respective
minima except for the vdW(fixed) curve, which is set to zero at
ψ = 180◦.

chemistry applications of PCMs, it is traditional to scale
the Bondi radii by a factor of 1.2 [5], which we have not
done here because such scaling is atypical in biomolecu-
lar applications. As mentioned above, our algorithm for
surface construction appears to be competitive in cost
with alternatives currently in use in the biomolecular
simulation community [51].

For QM/PCM calculations, an important feature of
the SWIG discretisation scheme is that the potential sur-
face remains continuous even for chemical reactions. We
have previously demonstrated this for the vdW-SWIG
surface using the intramolecular proton transfer reac-
tion in glycine [67], where the NH2CH2CO(O)H tau-
tomer that is the most stable geometry in the gas phase
spontaneously forms the zwitterion +NH3CH2CO−

2 in
water. For the present work, we used the freezing string
algorithm [91] (with finite-difference gradients) to deter-
mine a pathway between these two isomers in aqueous
solution, represented by C-PCM with ε = 78. A portion
of this pathway is shown in Figure 11. Although the spac-
ing between the images (nodes on the string) is large as
compared to the very small spacing (	ψ = 1◦) in the
diglycine example, it is nevertheless clear from Figure 11
that the energy profile is smooth, despite the significant
changes in bonding evident from the chemical structures
that are shown.

Figure 11. Energy profile for intramolecular proton transfer in
glycine, computed using the frozen string method. Calculations
were performed at the B3LYP/6-31+G* level using the SES in
conjunction with C-PCM and ε = 78.4.

C. Surface areas

Within the discretised approach, the SES molecular
surface area is equal to the sum of all surface areas
associate with atomic grid points (aatomic

i , Equation (11)),
toroidal grid points (atorusi , Equation (23)), and spheri-
cal re-entrant grid points (asphericali , Equation (35)). As in
our original SWIG implementation of the vdW surface
[66,67], these discretised surface areas include a factor of
the switching function, and are therefore smoothly atten-
uated to zero as si passes from the exterior to the interior
of the cavity or vice versa. In Figure 12, we plot the total
surface area afforded by several different cavity construc-
tions, for the same diglycine torsional coordinate that was
considered in Sectoin IV B and found to afford smooth
energy profiles for SWIG-based cavity constructions.

In Figure 12(a), surface areas for the vdW(SWIG)
and vdW(fixed) cavities are compared to those for SES-
SWIG, using the same (unscaled Bondi) atomic radii in
each case. Clearly and unsurprisingly, the vdW(fixed)
construction exhibits discontinuous jumps on nearly
every single step in the torsion angle, despite the very
small step size of 	ψ = 1◦. These discontinuities are
eliminated by the vdW(SWIG) construction, which pre-
dicts a slightly larger surface area as compared to the
vdW(fixed) construction, but generally the former tracks
the latter, without the discontinuities. The SES-SWIG
construction results in a noticeably smaller surface area,
as the deep, sharp cusps in the vdW surface are pushed
out and smoothed. We must also note that although the
SES-SWIG surface is provably smooth in the mathe-
matical sense of possessing continuous derivatives, at a
colloquial or intuitive level it is certainly ‘less smooth’
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Figure 12. Surface area of diglycine along the torsion angle pro-
file, computedusing cavity surfacedefinitionsbasedon (a) Bondi’s
vdW radii or else (b) Bondi radii augmentedby a 1.4Åprobe radius.
In (a), we compare surface areas for the vdW surface based on a
primitive (‘fixed’) Lebedev discretisation with no switching func-
tion, versus those computed with the smooth SWIG approach. All
cavities except the ‘fixed’ vdWone are constructed using the SWIG
approach.

as compared to the vdW(SWIG) surface, in the sense of
exhibiting more rapid oscillations in the surface area as a
function of ψ .

Recall that the energy profiles as a function of ψ that
are obtained from the vdW(SWIG) and SES-SWIG cav-
ity constructions are somewhat different when Bondi
radii are used (Figure 10), but are essentially iden-
tical when these atomic radii are augmented by the
solvent probe radius. In light of this, we have also com-
puted the surface area profiles using these augmented
radii, which means a comparison of the SAS cavity
and the SES(rvdW + rprobe) cavity, which is shown in
Figure 12(b). As expected, the difference between the

two surface areas is generally smaller than the difference
between the vdW and SES(rvdW) surface areas, although
the SES(rvdW + rprobe) surface area continues to exhibit
more rapid (albeit smooth) oscillations.

The fact that the SES(rvdW + rprobe) surface exhibits
such oscillations leads us to suspect that these are simply
an intrinsic feature of the discretised SES; convergence
tests with respect to the number of discretisation grid
points seem to bear this out. In Figure 13(a) we vary the
number of Lebedev points used to discretise each spher-
ical surface element, using a fixed 20 × 20 grid for the
toroidal elements. Oscillations in the total surface area
persist, even though the total change in the surface area
is small, as the grid is switched between N=110, 302,
and 590 points per spherical facet. In Figure 13(b), we
fix the spherical grid at 110 points and vary the N × N
re-entrant grid (see Table 2) between N=4, 10, 14, and
20. These variations have a somewhat larger effect on

Figure 13. SES surface area for diglycine along its torsion angle
profile, as a function of the number of surface discretisation
points: (a) varying the number of grid points per spherical surface
element, using a fixed 20 × 20 grid to discretise the toroidal ele-
ments; and (b) varying the toroidal grid for a fixed value of 110
points per spherical element. Theblack curves in (a) and (b) are the
same data, for a 20 × 20 grid for the re-entrant surface elements
and 110 points per atomic sphere.
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the overall surface area as compared to changes in the
spherical grid, and the fluctuations remain.

QM-based implicit solvation models often contain a
non-electrostatic (or ‘non-polar’) term proportional to
the cavity surface area [92–94], intended to capture van
der Waals and Pauli repulsion interactions, and we wish
to examine whether fluctuations in surface area of the
magnitude documented above are important or problem-
atic in this context. To do this, we consider a slightlymore
sophisticated model for the non-electrostatic free energy,

	Gnonels =
atoms∑

I
σIAI , (38)

parameterised in terms of ‘solvent-exposed’ atomic sur-
face areas AI (i.e. the contribution to total surface area
arising from atom I), with parameters σI having dimen-
sions of surface tension. In the MM community, models
based on Equation (38) are known as solvent-accessible
surface area (SASA) models [11,95], but this functional
form is also used in someQM solvationmodels including
the popular SMxmodels [96, 97].

We are not aware of any non-electrostatic model that
is parameterised for use with the SES, and to do so the
re-entrant surface elements would need to be assigned
to particular atoms. This is feasible but is beyond the
scope of the present work. Instead, we consider non-
electrostatic models parameterised for use with the vdW
surface, and compare the vdW(SWIG) and vdW(fixed)
cavity constructions as the latter obviously exhibits much
larger fluctuations, e.g. as a function of the diglycine tor-
sional coordinate. Figure 14 shows the non-electrostatic
energy profile obtained along this coordinate, using

Figure 14. Non-electrostatic contribution to the solvation
energy as predicted by the AGBNP model [98], which depends
on the exposed atomic surface areas (Equation (38)). The vdW
cavity construction is used, but with atomic radii as suggested in
Ref. [98] rather than Bondi radii.

the aforementioned cavity constructions in conjunction
with the ‘AGBNP’ non-electrostatic model of Ref. [98].
(For this purpose we use the atomic radii suggested
in Ref. [98], which differ from Bondi’s values, to con-
struct the cavity.) Clearly, the sharp discontinuities in the
total surface area (and, by extension, in the individual
atomic surface areas as well) exhibited by the vdW(fixed)
construction manifest directly as discontinuities in the
SASA non-electrostatic energy as a function of the dihe-
dral angle. The vdW(SWIG) construction smooths this
out. The same behaviour is observed with an alternative
parameterisation of the non-electrostatic energy [99],
although in this case the total non-electrostatic contri-
bution is <1 kcal/mol and the fluctuations correspond-
ingly smaller. Even given the larger and highly flux-
ional values of the AGBNP-vdW(fixed) non-electrostatic
energy, however, we note that the changes in energy
from one step to the next are rather small. Given that
the (smooth) oscillations in the SES surface area are
smaller in magnitude that the (discontinuous) oscilla-
tions in the vdW(fixed) surface area, we expect that any
reasonable parameterisation of a SASA model for use
with the SES would likely exhibit fluctuations in the
energy that are small compared to those observed for
AGBNP-vdW(fixed). We conclude that the (apparently
intrinsic) fluctuations in the discretised SES surface area
seem unlikely to be problematic in practice.

V. Summary

We have presented a method for computing Connolly’s
solvent-excluded surface, through a generalisation of the
switching/Gaussian method introduced previously for
discretisation of other types of solute/continuum bound-
aries [66,67]. The new approach, SES-SWIG, affords
a discretisation of the surface that is continuous and
smooth with respect to displacements of the atomic coor-
dinates. As such, it is appropriate for use in the numerical
surface integrals that appear in boundary-element for-
mulations of continuum electrostatics, including polar-
isable continuum models.
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