Supporting Information

Theoretical approach to evaluate the gas-sensing performance of graphene nanoribbon/oligothiophene composites

Ayesha Ashraf^{a,b}, John M. Herbert^b, Shabbir Muhammad^c, Bilal Ahmad Farooqi^a, Umar Farooq^a, Muhammad Salman^a, Khurshid Ayub^{d*}

^aInstitute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan

^bDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.

^cDepartment of Physics, College of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia

^dDepartment of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.

*Correspondence

Phone: +92-992-383591-6

Fax: +92-992-383441

khurshid@cuiatd.edu.pk

1

¹ Present Address: Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

Figure S1: Optimized geometries of (a) $C_{54}H_{30} \dots 5PT \dots CO$, (b) $C_{54}H_{30} \dots 5PT \dots NH_3$, (c) $C_{54}H_{30} \dots 5PT \dots SO_2$ and (d) $C_{54}H_{30} \dots 5PT \dots NO_2$ composite-analyte complexes

Figure S2: Optimized geometries of (a) $C_{54}H_{30} \dots 7PT \dots CO$, (b) $C_{54}H_{30} \dots 7PT \dots NH_3$, (c) $C_{54}H_{30} \dots 7PT \dots SO_2$ and (d) $C_{54}H_{30} \dots 7PT \dots NO_2$ composite-analyte complexes

Figure S3: Optimized geometries of (a) $C_{54}H_{30}$... 9PT ... CO, (b) $C_{54}H_{30}$... 9PT ... NH₃, (c) $C_{54}H_{30}$... 9PT ... SO₂ and (d) $C_{54}H_{30}$... 9PT ... NO₂ composite-analyte complexes

Figure S4: HOMO and LUMO orbitals of (a, e) C₅₄H₃₀... 5PT ... CO, (b, f) C₅₄H₃₀... 5PT ... NH₃, (c, g) C₅₄H₃₀... 5PT ... SO₂ and (d, h) C₅₄H₃₀... 5PT ... NO₂ composite-analyte complexes

Figure S5: HOMO and LUMO orbitals of (a, e) $C_{54}H_{30}...7PT...CO$, (b, f) $C_{54}H_{30}...7PT...NH_3$, (c, g) $C_{54}H_{30}...7PT...SO_2$ and (d, h) $C_{54}H_{30}...7PT...NO_2$ composite-analyte complexes

Figure S6: HOMO and LUMO orbitals of (a, e) C₅₄H₃₀... 9PT ... CO, (b, f) C₅₄H₃₀... 9PT ... NH₃, (c, g) C₅₄H₃₀... 9PT ... SO₂ and (d, h) C₅₄H₃₀... 9PT ... NO₂ composite-analyte complexes

System	I.E	E.A	Chemical	Softness	Hardness	Electrophilicity
			Potential			(ω)
			(μ)	(S)	(ŋ)	
C ₅₄ H ₃₀ 3PT	3.86	3.22	-3.54	1.58	0.32	19.80
C ₅₄ H ₃₀ 3PTCO	3.88	3.23	-3.55	1.54	0.32	19.47
$C_{54}H_{30}3PTNH_3$	3.92	3.27	-3.59	1.54	0.32	19.92
$C_{54}H_{30}3PT\ldots SO_2$	3.92	3.29	-3.61	1.60	0.31	20.85
$C_{54}H_{30}3PT\ldots NO_2$	4.45	2.56	-3.51	0.53	0.94	6.51
C ₅₄ H ₃₀ 5PT	3.78	3.19	-3.48	1.71	0.29	20.67
C ₅₄ H ₃₀ 5PTCO	3.79	3.19	-3.49	1.69	0.30	20.62
$C_{54}H_{30}5PT\ldots NH_3$	3.83	3.24	-3.53	1.69	0.30	21.14
$C_{54}H_{30}5PT\ldots SO_2$	3.82	3.23	-3.53	1.91	0.30	21.04
$C_{54}H_{30}5PT\ldots NO_2$	4.28	2.62	-3.45	0.60	0.83	7.18
C ₅₄ H ₃₀ 7PT	3.77	3.19	-3.48	1.72	0.29	20.77
C ₅₄ H ₃₀ 7PTCO	3.78	663	-3.49	1.72	0.29	20.86
$C_{54}H_{30}7PTNH_3$	3.81	3.23	-3.52	1.72	0.29	21.26
$C_{54}H_{30}7PTSO_2$	3.82	3.24	-3.53	1.72	0.29	21.42
$C_{54}H_{30}7PT\ldots NO_2$	4.03	3.19	-3.61	1.19	0.42	15.53
C ₅₄ H ₃₀ 9PT	3.76	3.18	-3.47	1.73	0.29	20.79
C ₅₄ H ₃₀ 9PTCO	3.77	3.19	-3.48	1.73	0.29	20.91
$C_{54}H_{30}9PT\ldots NH_3$	3.81	3.22	-3.52	1.72	0.29	21.28
$C_{54}H_{30}9PT\ldots SO_2$	3.80	3.21	-3.51	1.72	0.29	21.16
$C_{54}H_{30}9PT\ldots NO_2$	4.01	3.39	-3.70	1.63	0.31	22.38

Table S1: Ionization energy, electron affinity, chemical potential (μ), hardness (η), softness (S), and electrophilicity (ω) of $C_{54}H_{30}...$ nPT ... CO, $C_{54}H_{30}...$ nPT ... NH₃, $C_{54}H_{30}...$ nPT ... SO₂ and $C_{54}H_{30}...$ nPT ... NO₂ (n= 3, 5, 7, 9) composite-analyte complexes

Figure S7: UV-vis spectra of $C_{54}H_{30}$... 5PT, $C_{54}H_{30}$... 5PT... CO, $C_{54}H_{30}$... 5PT ... NH₃, $C_{54}H_{30}$... 5PT ... SO₂ and $C_{54}H_{30}$... 5PT ... NO₂ composite-analyte complexes, computed at the TD-B3LYP/6-31G** level.

Figure S8: UV-vis spectra of $C_{54}H_{30}$... 7PT, $C_{54}H_{30}$... 7PT... CO, $C_{54}H_{30}$... 7PT ... NH₃, $C_{54}H_{30}$... 7PT ... SO₂ and $C_{54}H_{30}$... 7PT ... NO₂ composite-analyte complexes, computed at the TD-B3LYP/6-31G** level.

Figure S9: UV-vis spectra of C₅₄H₃₀ ... 9PT, C₅₄H₃₀ ... 9PT... CO, C₅₄H₃₀ ... 9PT ... NH₃, C₅₄H₃₀ ... 9PT ... SO₂ and C₅₄H₃₀ ... 9PT ... NO₂ composite-analyte complexes, computed at the TD-B3LYP/6-31G** level.

Figure S10: DOS spectra of (a) C₅₄H₃₀... 5PT ... CO, (b) C₅₄H₃₀... 5PT ... NH₃, (c) C₅₄H₃₀... 5PT ... SO₂ and (d) C₅₄H₃₀... 5PT ... NO₂ composite-analyte complexes

Figure S11: DOS spectra of (a) C₅₄H₃₀ ... 7PT ... CO, (b) C₅₄H₃₀ ... 7PT ... NH₃, (c) C₅₄H₃₀ ... 7PT ... SO₂ and (d) C₅₄H₃₀ ... 7PT ... NO₂ composite-analyte complexes

Figure S12: DOS spectra of (a) C₅₄H₃₀ ... 9PT ... CO, (b) C₅₄H₃₀ ... 9PT ... NH₃, (c) C₅₄H₃₀ ... 9PT ... SO₂ and (d) C₅₄H₃₀ ... 9PT ... NO₂ composite-analyte complexes

Figure S13: Color-mapped RDG isosurface graphs (3D) and scatter diagrams (2D) of (a) $C_{54}H_{30}$... SPT ... CO, (b) $C_{54}H_{30}$... SPT ... NH₃, (c) $C_{54}H_{30}$... SPT ... SO₂ and (d) $C_{54}H_{30}$... SPT ... NO₂ composite-analyte complexes

Figure S14: Color-mapped RDG isosurface graphs (3D) and scatter diagrams (2D) of (a) $C_{54}H_{30}$... 7PT ... CO, (b) $C_{54}H_{30}$... 7PT ... NH₃, (c) $C_{54}H_{30}$... 7PT ... SO₂ and (d) $C_{54}H_{30}$... 7PT ... NO₂ composite-analyte complexes

Figure S15: Color-mapped RDG isosurface graphs (3D) and scatter diagrams (2D) of (a) $C_{54}H_{30}...$ 9PT ... CO, (b) $C_{54}H_{30}$... 9PT ... NH₃, (c) $C_{54}H_{30}...$ 9PT ... SO₂ and (d) $C_{54}H_{30}...$ 9PT ... NO₂ composite-analyte complexes