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A method that we have recently introduced for rapid computation of intermolecular interaction

energies is reformulated and subjected to further tests. The method employs monomer-based

self-consistent field calculations with an electrostatic embedding designed to capture many-body

polarization (the ‘‘XPol’’ procedure), augmented by pairwise symmetry-adapted perturbation theory

(SAPT) to capture dispersion and exchange interactions along with any remaining induction effects.

A rigorous derivation of the XPol+SAPT methodology is presented here, which demonstrates that

the method is systematically improvable, and moreover introduces some additional intermolecular

interactions as compared to the more heuristic derivation that was presented previously. Applications

to various non-covalent complexes and clusters are presented, including geometry optimizations and

one-dimensional potential energy scans. The performance of the XPol+SAPT methodology in its

present form (based on second-order intermolecular perturbation theory and neglecting

intramolecular electron correlation) is qualitatively acceptable across a wide variety of systems—and

quantitatively quite good in certain cases—but the quality of the results is rather sensitive to the

choice of one-particle basis set. Basis sets that work well for dispersion-bound systems offer less-than-

optimal performance for clusters dominated by induction and electrostatic interactions, and vice versa.

A compromise basis set is identified that affords good results for both induction and dispersion

interactions, although this favorable performance ultimately relies on error cancellation, as in

traditional low-order SAPT. Suggestions for future improvements to the methodology are discussed.

I. Introduction

Two of the most challenging problems at the frontier of

contemporary electronic structure theory are accurate calcula-

tions of non-covalent interactions, and development of reduced-

scaling algorithms applicable to large systems. To some extent,

these two problems are antithetical, since accurate calculation

of non-covalent interactions (especially when the interaction is

dominated by dispersion) typically requires correlated, post-

Hartree–Fock methods whose computational scaling with

respect to system size precludes the application to large systems.1,2

Nevertheless, to bring quantum chemistry into the condensed

phase—that is, to perform accurate, first-principles, all-electron

Born–Oppenheimer molecular dynamics simulations in liquids

and solids under periodic boundary conditions—both of these

difficult problems must be surmounted.

Of course, there are several pragmatic approaches to con-

densed-phase quantum chemistry that offer immediate and

(in many cases) useful results. Mixed quantum mechanics/

molecular mechanics (QM/MM) simulations, in conjunction

with semi-empirical electronic structure methods that utilize a

simplified electronic Hamiltonian that depends on adjustable

parameters (allowing for relatively large QM regions and/or

relatively long simulation time scales) are the workhorse

methods in condensed-phase and macromolecular electronic

structure theory, and will continue in that role for the foresee-

able future.3,4 Here, however, we wish to consider the possi-

bility of performing all-electron calculations (no MM region!)

in a condensed-phase system, using methods based on ab initio

quantum chemistry.

If an all-electron and more-or-less ab initio approach is

desired, then a variety of codes already exist for performing

plane-wave density functional theory (DFT) calculations in

periodic simulation cells. However, there are several reasons

that one might want to look beyond such an approach. First,

the use of plane-wave basis functions dramatically increases

the cost of incorporating Hartree–Fock (HF) exchange into

DFT calculations. Essentially, this means that most of the

widely-used functionals that are known to be accurate for

molecular properties are prohibitively expensive for condensed-

phase calculations. Moreover, most DFT approaches fail to

incorporate dispersion interactions properly, unless specifically
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parameterized to do so.5–7 Finally, in the absence of further

approximations, such calculations still scale as OðN3Þ with
respect to the system size, N, so that these methods are

extremely expensive and are limited to short simulation time

scales (tens of picoseconds) and small unit cells (e.g., 32–64 water

molecules). This precludes calculation of transport properties as

well as use of specialized sampling algorithms that are needed in

order to simulate rare events.8

What might a ‘‘wish list’’ for a condensed-phase, ab initio

quantum chemistry platform look like? Ideally, such a method

should:

(1) be free of adjustable parameters,

(2) exhibit a computational cost that scales linearly with

system size, and

(3) be amenable to systematic approximations of increasing

accuracy.

Moreover, such a method should also be affordable and

accurate enough to do something useful! Our expeditionary

inroads towards these goals are the subject of this work.

Although we are still very far from our long-term goal of

accurate and affordable all-electron ab initio calculations in

liquids, we have developed a general platform that, with a few

caveats (to be discussed below), satisfies all of the afore-

mentioned criteria and may ultimately provide a theoretical

foundation upon which to construct efficient ab initio simula-

tion methods for condensed phases. At present, it appears to

be a useful method for performing all-electron calculations in

large molecular and ionic clusters.

The methodology introduced here is a reformulation and

slight generalization of a method designed for fast computa-

tion of intermolecular interactions that two of us introduced

recently.9 This method combines one aspect of the explicit

polarization potential (XPol) idea of Gao and co-workers,10–13

which we use to describe many-body polarization effects, with

the well-established methods of symmetry-adapted perturba-

tion theory (SAPT),14,15 which we use to describe other

contributions to the intermolecular interactions, primarily

dispersion and exchange repulsion.

Consider a supersystem composed of interacting monomers.

In the original XPol method,10,11 the intramolecular electronic

structure is described at the self-consistent field (SCF) level,

whereas many-body intermolecular polarization (induction)

effects are described via an embedding scheme, wherein the

monomer SCF equations are solved subject to the electrostatic

potential due to all of the other monomer wave functions. This

electrostatic potential could be the exact one, in principle, but is

typically approximated by collapsing the other monomer elec-

tron densities onto point charges. The computational cost of the

‘‘dual SCF’’ procedure9,10 required to converge the monomer

SCF equations scales linearly with respect to the number of

monomers, by virtue of the ansatz that each monomer’s mole-

cular orbitals are expanded in terms of only those atomic

orbitals that are centered on the same monomer. Our method

utilizes the XPol procedure to define monomer wave functions

that are polarized in a manner that reflects their environment.

Intermolecular polarization is known to be an inherently

many-body (not pairwise-additive) phenomenon, and our hope

is that the dual-SCF XPol procedure incorporates the most

important many-body effects, such that what remains of the

intermolecular interactions can be accurately described in a

pairwise-additive fashion using low-order intermolecular pertur-

bation theory. At the same time, the XPol procedure does not

allow exchange of electrons between monomers and thus does

not capture exchange repulsion. In the original XPol method of

Gao and co-workers,10–13 the dual SCF is supplemented with

empirical (Lennard-Jones) intermolecular potentials, which also

serve to approximate intermolecular dispersion interactions. In

our work,9 we sought to eliminate these empirical terms in favor

of an ab initio approach based on pairwise-additive SAPT (with

a modified perturbation as compared to traditional SAPT, in

order to avoid double-counting). The SAPT calculations build

in dispersion and exchange-repulsion interactions, along with

corrections to the XPol treatment of induction. We call this

method XPol+SAPT, or XPS for short.

Originally, we introduced this XPol+SAPT methodology in

a rather ad hoc way. Here, we reformulate this method in a

more rigorous manner based on perturbative approximations

starting from the supersystem Hamiltonian. Certain three-

body induction corrections, which we did not anticipate in

our intuitive formulation of the method, arise naturally from

this new formulation, and these are shown to be qualitatively

important in certain cases. Moreover, the new formulation

provides a theoretical framework in which systematic

improvements can be made. The developments discussed here

are equally valid with or without charge embedding. The

method is systematically improvable and is ideally suited for

parallelization. Unlike numerous other fragmentation methods

based upon the many-body expansion,16,17 a class that includes

the so-called fragment molecular orbital method,16,18 our

XPol+SAPT approach ultimately rests upon a well-defined

supersystem wave function, so that in principle this approach

provides a route to compute properties other than the energy.

This is a potentially significant advantage relative to alternative

fragmentation methods that are fundamentally combinatorial

(rather than quantum-mechanical) in nature.17

II. Theory

A. Notation

In what follows we will use A,B,C,. . . to label monomers, of

which there are N in total. The indices i,j,k,. . . will be used to

label electrons and a A A, b A B, etc., will label occupied

molecular orbitals (MOs) belonging to fragments A and B,

respectively. Greek indices (m,n,. . .) will label atomic orbitals

(AOs) and I,J,. . . will label nuclei. This will be sufficient

notation to introduce the XPol method in yII B. The SAPT

corrections in yII C require virtual MOs, and we will label

these as r A A, s A B, t A C, and u A D. Only the closed-shell,

spin-restricted case will be considered herein. All equations are

written in atomic units.

B. Many-body polarization: XPol

The XPol method is based upon a direct-product ansatz for

the wave function:

jCXPoli ¼
YN
A¼1
jCAi; ð1Þ
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where |CAi represents the wave function for an individual

fragment (monomer). The XPol energy expression is consis-

tent with this ansatz, and is defined to be that resulting from

the dual-SCF calculation described in yI, wherein the mono-

mers interact with one another only via their electrostatic

potentials. For closed-shell monomers described at the level

of Hartree–Fock theory, this energy expression is9

EXPol ¼
XN
A¼1

2
X
a

cyaðhA þ JA � 1
2K

AÞca þ EA
nuc

" #
þ Eembed:

ð2Þ

The term in square brackets is the ordinary HF energy

expression for fragment A (see ref. 9). The XPol method

employs absolutely localized MOs (ALMOs),19 meaning that

the MO ca is expanded using only AOs centered on monomer

A. This partitioning of the basis set leads to a significant

computational savings and a method whose cost is OðNÞ with
respect to the number of monomers. Furthermore, basis-

set superposition error (BSSE) is excluded by ansatz. Inter-

monomer charge transfer will also be absent in compact basis

sets.

The embedding potential in eqn (2), Eembed, represents the

electrostatic interactions between the monomers, which can be

further decomposed into nuclear and electronic parts, Eembed =

Enucl
embed + Eelec

embed. These two components could, in principle,

be expressed in terms of the monomer densities:

Eelec
embed ¼

1

2

X
A

X
BaA

Z
rAð~r1ÞrBð~r2Þ
j~r1 �~r2j

d~r1d~r2 ð3aÞ

Enucl
embed ¼ �

X
A

X
BaA

X
J2B

Z
ZJrAð~rÞ
j~r� ~RJj

d~r: ð3bÞ

This ‘‘density embedding’’ provides the exact Coulomb inter-

action between monomers, and may be important for describing

short-range induction interactions between strongly inter-

acting monomers. In the present work, however, we rely upon

an approximate ‘‘point-charge embedding’’ instead, in which

the monomer densities rB (for BaA) are collapsed onto a set

of point charges, {qJ}, for the purpose of computing the

embedding potential for monomer A. Thus, we express the

embedding potential as

Eelec
embed ¼ �

X
A

X
BaA

X
J2B

X
a

qJc
y
aIJca ð4aÞ

Enucl
embed ¼ 1

2

X
A

X
BaA

X
I2A

X
J2B

qJLIJ: ð4bÞ

Here, LIJ = ZI|
-

RI –
-

RJ|
�1 and IJ is the matrix of one-electron

integrals

ðIJÞmn ¼
Z

wmð~rÞwnð~rÞ
j~r� ~RJj

d~r; ð5Þ

where wn and wm are AOs centered on A. In the original XPol

method of Gao and co-workers,11 the point charges qJ in

eqn (4) were taken to be Mulliken charges, although other

charge schemes are possible,9 as discussed below. In some

sense, the choice of embedding is systematically improvable in

that one could imagine a procedure that switches seamlessly

from density–density interactions at short range to a multipole

(and, ultimately, point-charge) description of more distant

interactions, as in the continuous fast multipole method.20

We hope to develop a procedure along these lines in future

work.

By requiring that the energy expression in eqn (2) be

stationary with respect to variations in the MO coefficients,

subject to the constraint that MOs within a fragment are

orthonormal, one arrives at the XPol SCF equations:11

F
A
C
A = S

A
C
AeA. (6)

The one-electron energy levels are obtained by diagonalizing

eA = (CA)wFA
C
A. In the AO basis, the Fock matrix for

monomer A has matrix elements

FA
mn ¼ fAmn � 1

2

X
J=2A
ðIJÞmnqJ þ

X
J2A
ðKJÞmnMJ ð7Þ

where fA = 2hA + 2JA � KA is the Fock matrix for fragment A

in isolation. The other two terms in FA
mn arise from the

embedding potential, and in particular the last term accounts

for the variation of the embedding charges with respect to the

MOs, which ensures that the XPol method is variational

within the ALMO ansatz. This variation is expressed in terms

of energy derivatives

MJ ¼
@Eembed

@qJ
ð8Þ

that are trivial to evaluate using eqn (4), and also charge

derivatives

ðKJÞmn ¼
@qJ
@Pmn

ð9Þ

that can be evaluated once one has specified how the embed-

ding charges will be obtained from the monomer densities.

In previous work,9 we investigated the Mulliken and

Löwdin prescriptions but found them to be ill-behaved in

some cases, leading to convergence difficulties in the dual-SCF

procedure. Charges derived from the electrostatic potential

(‘‘CHELPG’’ charges21–23) were found to be stable and well-

behaved in all cases examined so far,9 and this is our preferred

choice for the embedding charges. The derivatives in eqn (9)

are worked out in the Appendix for the case of CHELPG

embedding charges, where we also discuss a smoothing

procedure that is employed to ensure that these charges, whose

determination requires the evaluation of the electrostatic

potential on a real-space grid, are smooth functions of the

nuclear coordinates. In some of the calculations in yIII,
however, we do use Löwdin charges because they are much

less expensive to compute. Mulliken charges are unstable in

extended basis sets, and are not used here.

C. XPol+SAPT

1. Motivation and outline. The goal of our approach is to

utilize the dual-SCF XPol procedure described above to

provide an approximate but self-consistent description of

many-body induction. In clusters of polar molecules, the

polarization effect is non-negligible and is expected to constitute

the leading-order many-body effect. In (H2O)6, for example,

energy decomposition analysis suggests that many-body
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(non-pairwise-additive) polarization contributes anywhere

from 9–13 kcal mol�1 to the binding energy, depending upon

the particular isomer, but is the only component of the

interaction energy that exhibits significant non-additivity.24

Although some exchange non-additivity can be seen in

SAPT calculations on HO�(H2O)n, the non-additivity is domi-

nated by induction.25 Furthermore, in the context of many-

body expansion methods, it is found that the MP2 energy

for a cluster of polar molecules (water, ammonia, form-

aldehyde, formamide, etc.) can be accurately approximated

using either a supersystem Hartree–Fock calculation26,27

or else a polarizable force field calculation28,29 to incorporate

many-body polarization, followed by a pairwise-additive

approximation to the correlation energy via dimer MP2

calculations.

Together, these observations indicate that three-body con-

tributions to dispersion and exchange-repulsion are mostly

negligible in polar systems. In non-polar systems, the leading

many-body effect will not be induction, yet three-body effects

are nevertheless found to be small in rare-gas trimers near the

equilibrium geometries (e.g., B1% of the total binding energy

in He3 and Ne3 and B4% in Ar3).
30 In small benzene clusters,

three-body effects are mostly negligible,31 and are estimated to

be negligible as well in crystalline benzene.32

Our approach is therefore inspired by the hypothesis that if

polarization is described accurately enough at the XPol level,

then it may be reasonable to approximate the remaining

intermolecular interactions in a pairwise-additive fashion. In

what follows, we describe the application of SAPT to compute

these pairwise-additive corrections to the XPol energy and

wave function. At a given order in perturbation theory, the

structure of the intermolecular SAPT energy corrections

consists of certain ‘‘direct’’ terms that come from Rayleigh-

Schrödinger perturbation theory (RSPT), along with a corres-

ponding exchange correction for each direct term, which

arises due to the antisymmetry requirement. The RSPT

corrections, which include intramonomer electron correlation,

are described in yII C2, and then in yII C3 we introduce

symmetry adaptation to deal with intermonomer exchange

interactions.

2. Rayleigh–Schrödinger corrections. We begin by writing

the Hamiltonian for an arbitrary number of interacting mono-

mers as the sum of Fock operators (fÂ), Møller–Plesset

fluctuation operators (ŴA), and interaction operators (V̂AB):

Ĥ ¼
X
A

f̂A þ
X
A

xAŴA þ
X
A

X
B4A

zABV̂AB: ð10Þ

The quantities xA and zAB are parameters to keep track of the

order in perturbation theory. As in traditional SAPT,14 it is

convenient to write the interaction operator as

V̂AB ¼
X
i2A

X
j2B

v̂ABðijÞ ð11Þ

with

v̂ABðijÞ ¼
1

j~ri �~rjj
þ v̂AðjÞ

NA
þ v̂BðiÞ

NB
þ V0

NANB
: ð12Þ

Here, i A A and j A B index electrons in monomers A and B,

NA and NB denote the number of electrons in each monomer,

and V0 represents the nuclear interaction energy between A

and B. The operator

v̂AðjÞ ¼ �
X
I2A

ZI

j~rj � ~RIj
ð13Þ

represents the interaction of electron j with the nuclei in

monomer A.

We take the zeroth-order wave function to be the direct

product of XPol monomer wave functions, |C0i = |CXPoli
[see eqn (1)]. Each monomer wave function |CAi consists of a
single determinant of MOs and is an eigenfunction of f̂A. As

such, it makes sense to take

Ĥ0 ¼
XN
A¼1

f̂A ð14Þ

as the zeroth-order Hamiltonian. The zeroth-order energy

is then equal to the sum of the occupied eigenvalues of

each fÂ.

Given this notation, the time-independent Schrödinger

equation can be written

Ĥ0 þ
X
A

xAŴA þ
X
A

X
B4A

zABV̂AB

 !
jCi ¼ EjCi: ð15Þ

Taking the intermediate normalization,33 one can left-multiply

by hC0| to obtain an expression for the interaction energy,

Eint = E � E0:

Eint ¼
X
A

xAhC0jŴAjCi þ
X
A

X
B4A

zABhC0jV̂ABjCi: ð16Þ

We consider Eint, along with the exact wave function |Ci, to be

functions of all N parameters xA and all N(N � 1)/2 para-

meters zAB. Next, we expand the interaction energy and wave

function in terms of these variables:

Eint ¼
X1

m;...;p¼0
q;...;t¼0

#xm1 � � � x
p
Nz

q
1;2z

r
1;3 � � � z

t
N�1;NE

ðm;...;p:q;r;...;tÞ ð17Þ

jCi ¼
X1

m;...;p¼0
q;...;t¼0

xm1 � � � x
p
Nz

q
1;2z

r
1;3 � � � z

t
N�1;NjCðm;...;p:q;r;...;tÞi: ð18Þ

The superscript ‘‘k’’ on the summation in eqn (17) indicates

that the first term in the sum (where all indices are zero) is

excluded. Note that, according to our (m,. . .,p:q,. . .,t) indexing

convention, the N indices to the left of the colon correspond to

corrections for intramonomer electron correlation whereas the

N(N � 1)/2 indices to the right of the colon correspond to

corrections for intermolecular perturbations. Inserting eqns (17)
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and (18) into eqn (16) and collecting matching powers of the

perturbation parameters affords

Eðm;...;n;...;p:q;...;r;...;sÞ

¼
X
A

hC0jŴAjCðm;...;ðn�1ÞA;...;p:q;...;r;...;sÞi

þ
X
A

X
B4A

hC0jV̂ABjCðm;...;n;...;p:q;...;ðr�1ÞAB ;...;sÞi:

ð19Þ

The superscript (n – 1)A in the wave function correction

appearing in the first term indicates that it is the Ath

index that has been decremented. Similarly, the ABth dimer

index has been decremented in the second term. Eqn (19) is

valid only when all indices are greater than or equal to zero.

Eqn (19) is a completely general expression for the intra-

and intermolecular interactions that appear in Rayleigh–

Schrödinger perturbation theory, but in this work we will only

investigate a small number of these terms. The first class of

terms that are of interest here are the first-order intramolecular

corrections, in which one index to the left of the colon is unity

and all other indices are zero. For brevity, we denote these

terms as E[1A;0] � E(0,. . .,0,1A,0,. . .,0,:0,. . .,0), and they are obtained

from simple expectation values,

E[1A;0] = hC0|ŴA|C0i, (20)

where |C0i � |C(0,. . .,0:0,. . .,0)i.
The other terms that we will consider are intermolecular in

nature with all indices to the left of the colon equal to zero,

which amounts to a neglect of intramolecular electron correla-

tion. We consider all intermolecular terms through second

order, i.e., those in which the indices to the right of the colon

sum to no more than two. (In the context of traditional SAPT

calculations, this approximation is often termed ‘‘SAPT0’’.2)

We consider several different types of intermolecular correc-

tions, including the first-order corrections

E[0;1AB] = hC0|V̂AB|C0i (21)

along with corrections that are second-order in a given

monomer,

E[0;2AB] = hC0|V̂AB|C
[0;1AB]i (22)

Here, |C[0;1AB]i � |C(0,. . .,0;0,. . .,0,1AB,0,. . .,0)i. Lastly, we consider

corrections that are first-order in each of two different inter-

molecular perturbations. We denote these as E[0;1AB,1CD] =

E(0,. . .,0;0,. . .,0,1AB,0,. . .,0,1CD,0,. . .,0), and they are given by

E[0;1AB,1CD] = hC0|V̂AB|C
[0;1CD]i + hC0|V̂CD|C

[0;1AB]i. (23)

As described below, eqn (21) gives rise to Coulomb inter-

actions between monomers, eqn (22) gives rise to induction

and dispersion interactions, and eqn (23) can be interpreted in

terms of induction coupling between two pairs of monomers.

These induction-coupling terms arise naturally when we

include all terms through second order in the intermolecular

perturbations, but they were absent in our original, intuitive

formulation of XPol+SAPT.9

To complete the description of the many-body RSPT, we

need to work out the wave function corrections. Only first-order

wave function corrections are required for the second-order

energy corrections considered here, but in the interest of

providing a platform for future development we will present

the corrections in a general form. They are obtained by

subtracting E0 from both sides of eqn (15), then substituting

the expansions in eqns (17) and (18), and collecting like terms.

The result is

(Ĥ0 � E0)|C
(m,. . .,p:q,. . .,s)i (24)

þ
X
A

ŴAjCðm;...;ðn�1ÞA;...;p:q;...;sÞi

þ
X
A

X
B4A

V̂ABjCðm;...;p:q;...;rAB;...;sÞi

¼
Xm;n;...

m0 ;n0;...¼0

#Eðm
0;...;p0:q0;...;r0;...;s0Þ

� jCðm�m0;...;p�p0:q�q0 ;...;s�s0Þi:

ð25Þ

This expression can be simplified by explicitly writing out the

final term in the sum on the right side of the equality, and then

substituting eqn (19). The result is

jCðm;...;p:q;...;sÞi ¼ �
X
A

R̂0ŴAjCðm;...;ðn�1ÞA ;...;p:q;...;sÞi

�
X
AoB

R̂0V̂ABjCðm;...;p:q;...;ðr�1ÞAB;...;sÞi

þ
Xm;n;...

m0 ;n0;...¼0

#"Eðm
0;...;p0:q0 ;...;s0ÞR̂0

� jCðm�m0;...;p�p0:q�q0 ;...;s�s0Þi:

ð26Þ

The ‘‘km‘‘on the final summation in this equation indicates

that this sum does not include either the first term (where m=

n = � � � = 0) or the last term (where m = m0, n = n0,. . .).

Again, only terms in this expression where all indices are non-

negative are included. The reduced resolvent,15 R̂0, that

appears in eqn (26) can be expressed as

R̂0 ¼
X
ia0

jCi
0ihCi

0j
Ei � E0

: ð27Þ

Here, |Ci
0i is a zeroth-order excited state whose energy is Ei. In

this work, the zeroth-order excited states are replacement

determinants and we will only require single and double

excitations, since we consider only first- and second-order

corrections. These require only the first-order corrections to

the wave function, each of which has the form

|C[0;1AB]i = �R̂0V̂AB|C0i. (28)

3. Symmetry adaptation and exchange. The expressions

above account for electrostatic interactions, induction, and

dispersion but neglect the antisymmetry requirement of the

wave function, which is important at short range. We

follow the excellent review of Jeziorski et al.15 and apply

symmetrized RSPT, which is also known as weak symmetry

forcing. In this approach, we accept non-antisymmetric correc-

tions to the direct product wave function but then project away

the Pauli-forbidden components in the energy corrections.
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This amounts to a modification of the interaction energy

formula in eqn (16). The (anti)symmetry-adapted formula is

Eint ¼
X
A

xAhC0jŴAÂjCi þ
X
A

X
B4A

zABhC0jV̂ABÂjCi
" #

� hC0jÂjCi�1;
ð29Þ

where Â is the antisymmetrizer (see below). To obtain expres-

sions for the order-by-order energy corrections, we once again

substitute the energy and wave function expansions, eqns (17)

and (18), to afford

Eðm;...;p:q;...;sÞ ¼ �N�1
A

Xm;n;...
m0 ;n0;...

#"Eðm
0;...;p0:q0;...;s0Þ

� hC0jÂjCðm�m
0 ;...;p�p0:q�q0;...;s�s0Þi

þN�1
A
X
A

hC0jŴAÂjCðm;...;ðn�1ÞA;...;p:q;...;sÞi

þN�1
A
X
A

X
B4A

hC0jV̂ABÂjCðm;...;p:q;...;rAB;...;sÞi

ð30Þ

where

NA ¼ hC0jÂjC0i: ð31Þ

As above, only corrections up to second order are considered

here. There are three types of corrections,

E½0;1AB� ¼N�1
A hC0jV̂ABÂjC0i; ð32Þ

E½0;1AB;1CD � ¼N�1
A ½hC0jV̂AB � E½0;1AB�ÞÂjC½0;1CD �i

þ hC0jðV̂CD � E½0;1CD �ÞÂjC½0;1AB�i�:
ð33Þ

and

E½0;2AB� ¼N�1
A ½hC0jV̂ABÂjC½0;1AB�i � E½0;1AB�hC0jÂjC½0;1AB�i�;

ð34Þ

which are analogous to the RSPT corrections in eqns (21)–(23)

To proceed towards practical formulas for these energy

corrections, we write the antisymmetrizer as

Â ¼
Q

A NA!ÂAP
A NA

� �
!
ð1þ P̂ð2Þ þ P̂ 0Þ; ð35Þ

where ÂA is the antisymmetrizer for fragment A, P̂ð2Þ is the

sum of all pairwise electron exchanges between monomer A

and the other monomers, and the operator P̂ 0 consists of all
higher-order exchanges, which we will neglect. (In the SAPT

literature, this is known as the single-exchange approxi-

mation.15) Lotrich and Szalewicz34,35 have considered the

three-body exchange non-additivity in SAPT by including

terms up to P̂ð4Þ in the antisymmetrizer, but we are interested

in low-order terms that can be evaluated efficiently. In any

case, the effects of multiple exchanges are thought to small

except possibly at intermolecular distances much shorter than

the van der Waals separation.34–38

Our aim is to generalize the symmetrized RSPT expansion15

to the case of an arbitrary number of interacting monomers.

We have initially explored only low-order perturbation theory,

in the interest of efficiency. Each of the corrections appearing

in eqns (32)–(34) consists of an RSPT correction, arising

from V̂AB or V̂CD, along with an exchange correction arising

from Â:

E(0,. . .,0;q,. . .,s) = E(0,. . .,0;q,. . .,s)
RSPT + E(0,. . .,0;q,. . .,s)

exch . (36)

The RSPT corrections correspond to eqns (21)–(23) whereas

eqns (32)–(34) will generate both the RSPT terms and the

exchange terms.

By inserting eqn (35) into eqns (32)–(34) and keeping terms

proportional to the square of the intermolecular overlap

integral (corresponding to the aforementioned single-exchange

approximation), one obtains the following expressions for the

exchange corrections:

E
½0;1AB�
exch ¼ hV̂ABP̂

ð2Þi � hV̂ABihP̂
ð2Þi; ð37Þ

E
½0;1AB;1CD�
exch ¼ hC0jV̂ABP̂

ð2Þ � V̂ABhP̂
ð2Þi

� hV̂ABiP̂
ð2ÞjC½0;1CD�i þ hC0jV̂CDP̂

ð2Þ

� V̂CDhP̂
ð2Þi � hV̂CDiP̂

ð2ÞjC½0;1AB�i;

ð38Þ

and

E
½0;2AB�
exch ¼ hC0jV̂ABP̂

ð2Þ � V̂ABhP̂
ð2Þi � hV̂ABiP̂

ð2ÞjC½0;1AB �i:
ð39Þ

(Except where indicated otherwise, angle brackets denote

expectation values with respect to |C0i). The corresponding

RSPT corrections are relatively simple:

E
½0;1AB�
RSPT ¼ hV̂ABi; ð40Þ

E
½0;1AB;1CD�
RSPT ¼ hC0jV̂ABjC½0;1CD�i þ hC0jV̂CDjC½0;1AB�i; ð41Þ

and

E
½0;2AB�
RSPT ¼ hC0jV̂ABjC½0;1AB�i: ð42Þ

In order to evaluate the second-order corrections, we need to

specify the wave function corrections to first order, as implied

by eqn (28). Taking the zeroth-order excited states to be single

and double replacement determinants, we obtain

jC½0;1AB�i ¼
X
r;a2A
ðtABÞar jC1i � � � jCAira � � � jCBi � � � jCNi

þ
X
s;b2B
ðtABÞbs jC1i � � � jCAi � � � jCBisb � � � jCNi

þ
X
r;a2A

X
s;b2B
ðtABÞabrs jC1i� � � jCAira � � � jCBisb � � � jCNi:

ð43Þ

The single and double excitation amplitudes, (tAB)
a
r and

(tAB)
ab
rs , give rise to induction and dispersion, respectively, in
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the second-order energy corrections. These amplitudes are

given by

ðtABÞar ¼
X
b

ðrajv̂ABjbbÞ
ea � er

ð44aÞ

ðtABÞabrs ¼
ðrajv̂ABjsbÞ

ea þ eb � er � es
; ð44bÞ

where we use ‘‘chemists’ notation’’ for the two-electron

integrals.33

Given the wave function corrections in eqn (43), we see that

eqn (40) corresponds to a Coulomb interaction between frag-

ments A and B. This term appears in the two-body version of

RSPT and is generally denoted E(1)
elst, i.e., it is the first-order

electrostatic correction. Eqn (42) is also familiar and can be

identified with the induction (E(2)
ind) and dispersion (E(2)

disp)

corrections that arise at second order in V̂AB in a standard

RSPT or SAPT treatment.14,15 The energy correction in

eqn (41), however, does not arise in two-body SAPT. This

term vanishes due to orthogonality, unless the set {A,B,C,D}

consists of at most three distinct indices. Furthermore, only

single excitations (induction amplitudes) contribute to this

particular energy correction. As a concrete example, suppose

that B = D. Then the first term on the right side of eqn (41),

hC0jV̂ADjC½0;1CD �i, represents the contraction of CD induction

amplitudes, representing single excitations out of monomer D,

with interaction integrals over V̂AD. That is,

E
½0;1AB;1CD �
RSPT ¼

X
d;u2D

X
a

ðdujv̂ADjaaÞðtCDÞdu

"

þ
X
b

ðdujv̂CDjbbÞðtADÞdu

#
:

ð45Þ

Physically, this term represents the coupling between the

electronic polarization of D by A and the polarization of D

by C. We refer to this term as a three-body induction coupling.

These terms were absent in our original formulation of

XPol+SAPT.9

To simplify the expressions appearing in eqns (37)–(39), we

introduce a diagonal exchange approximation.9 First, we parti-

tion the pairwise exchange operator, P̂ð2Þ, into a sum of

exchanges between all pairs of dimers,

P̂ð2Þ ¼
X
A

X
B4A

P̂AB: ð46Þ

The operator P̂AB generates all possible swaps of one electron

in A with one electron in B. (Multiple exchanges, i.e., terms

higher than P̂ð2Þ in the antisymmetrizer, have already been

neglected.) The expression for P̂ð2Þ in eqn (46) can be inserted

into the energy correction formulas in eqns (37)–(39) and mani-

pulated as was done previously by Lotrich and Szalewicz34,35

in deriving expressions for the exchange non-additivity in

three-body SAPT calculations. However, the resulting formulas

are complicated and would be difficult to program absent

further approximation.

If we imagine pairwise exchange as a simultaneous tunneling

of two electrons,15 then it stands to reason that this dynamical

process will be most important when the two electrons are

coupled by some interaction operator. For this reason, we

expect that terms such as hV̂ADP̂CDi, where A, C, and D are

distinct monomers, will be less important than the ‘‘diagonal’’

terms where A = C. (Furthermore, terms such as hV̂ABP̂CDi
with no indices in common should not contribute at all.)

Neglecting all but the ‘‘diagonal’’ terms leaves us with

E
½0;1AB �
exch � hV̂ABP̂ABi � hV̂ABihP̂ABi; ð47Þ

E
½0;1AB;1CD �
exch � hC0jV̂ABP̂AB � V̂ABhP̂ABi

� hV̂ABiP̂ABjC½0;1CD �i þ hC0jV̂CDP̂CD

� V̂CDhP̂CDi � hV̂CDiP̂CDjC½0;1AB �i

ð48Þ

and

E
½0;2AB�
exch � hC0jV̂ABP̂AB � V̂ABhP̂ABi � hV̂ABiP̂ABjC½0;1AB �i:

ð49Þ

We expect the diagonal exchange approximation to be

most severe for the first-order exchange correction, eqn (47).

For trimers, the terms that we have neglected in eqns (47)–(49)

have been considered previously by Moszynski et al.39 and

by Lotrich and Szalewicz,34,35 in the context of three-body

SAPT calculations. There is no reason, in principle, why

these terms could not be included in XPol+SAPT , but they

would add additional computational cost and have not been

programmed.

Eqn (47) is equivalent to the first-order exchange correction

in two-body SAPT, E(1)
exch. Eqn (49) incorporates the second-

order exchange-induction (E(2)
exch-ind) and exchange-dispersion

(E(2)
exch-disp) corrections, explicit expressions for which can be

found in the literature.14,40 By inserting the expressions for the

first-order corrected wave function, it is easy to see that

eqn (48) is analogous to eqn (45) but with a pairwise exchange

operator accompanying the interaction matrix element. These

integrals are identical to those required to evaluate the second-

order exchange-induction interaction in two-body SAPT, but

are contracted against different amplitudes in eqn (48).

4. Final XPol+SAPT formulas and remarks. The inter-

molecular perturbation indicated in eqn (13) is valid for non-

interacting zeroth-order monomers, i.e., for traditional SAPT

calculations. When XPol is used to generate the zeroth-order

wave functions and energies, one should remove from the

perturbation those intermolecular interactions contained in

the XPol single-particle eigenvalues. The appropriate replace-

ment for the AB interaction is9

v̂AðjÞ ¼ �
X
I2A

ZI � 1
2qI

� �
ÎIðjÞ �

X
J2B

MA
J L̂JðjÞ; ð50Þ

with a similar expression for vB(i). The operator L̂j is defined

so that it has the matrix elements that appear in eqn (9), and

MA
J is an element of an ‘‘M-vector’’ [MJ in eqn (8)] that

contains only contributions from monomer A.9

The total energy is constructed from the sum of zeroth-

order fragment energies (XPol eigenvalues) plus the first-order

intramolecular RSPT corrections and the sum of intermole-

cular RSPT and SAPT corrections to second order, including
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induction and exchange-induction couplings. The resulting

energy expression can be written

EXPS ¼
X
A

X
a

2eAa � cyaðJA � 1
2K

AÞca
� �

þ EA
nuc

 !

þ
X
A

X
B4A

ðE½0;1AB�
RSPT þ E

½0;2AB�
RSPT Þ

þ
X
A;C

X
B4A

X
D4C

ðE½0;1AB;1CD �
RSPT þ E

½0;1AB;1CD �
exch Þ:

ð51Þ

It is to be understood that the final set of summations includes

only those terms with least one index in common between AB

and CD.

Without any formal justification, we can extend the XPol+

SAPT methodology to a Kohn–Sham (KS) DFT description

of the monomers simply by adding the DFT exchange–

correlation matrix to the Fock matrix for each monomer,

and possibly scaling the KA terms, as appropriate. In the

context of traditional SAPT calculations, this extension is

known as ‘‘SAPT(KS)’’.41,42 Although this represents a tempting

way to incorporate intramolecular electron correlation at low

cost, the perils of SAPT(KS) calculations—namely, severe

overestimation of dispersion interactions due to incorrect

asymptotic behavior of the exchange–correlation potential—

are well documented.47 These problems are inherited by the

‘‘XPS(KS)’’ generalization of SAPT(KS),9 which we will dis-

cuss only briefly, in yIII B.

D. Implementation details

The XPol and XPol+SAPT methods, as described above,

have been implemented in a developers’ version of the

Q-CHEM software.49 Our implementation of the dual-SCF

XPol procedure and the intermolecular SAPT corrections was

reported previously,9 and the implementation of the exchange-

induction couplings requires no new integrals. To evaluate the

induction coupling corrections, we loop over all unique AB

pairs once, and store the induction amplitudes on disk. A

second loop over AB pairs is then performed to compute the

interaction energies. The result is a OðN2Þ algorithm with a

large prefactor, as opposed to a OðN3Þ algorithm that would

not require any amplitudes to be stored.

The second-order SAPT procedure is MP2-like, and like

MP2, the cost of this procedure can be reduced substantially

by means of a resolution-of-identity (RI) approximation50 that

eliminates four-index integrals by expanding basis function

products in an auxiliary basis set. The RI procedure, in

conjunction with standard auxiliary basis sets,51 is employed

for most of the calculations in this work, and introduces

negligible errors in energy differences as compared to the

standard procedure.50

As discussed above, the XPol monomer wave functions are

computed in the ALMO basis, meaning that only AOs

centered on monomer A are allowed to contribute to |CAi.
In the language of SAPT calculations, this corresponds to

using what is traditionally termed the monomer-centered basis

set. This is not the preferred choice for two-body SAPT

calculations because its use precludes the description of charge

transfer between A and B, except as the monomer basis sets

approach completeness. More often, SAPT calculations employ

the dimer-centered basis set (DCBS), in which the combined

AB basis set is used to compute the zeroth-order wave func-

tions for both monomers.52 The dimer-centered approach is

attractive because it can potentially capture charge-transfer

effects that would be absent in a monomer-centered calcula-

tion, but it may be significantly more expensive if the

monomer basis sets are large, and moreover it is not clear

how the dimer-centered approach can be generalized, in an

efficient way, to systems with more than two monomers.

As an affordable alternative to the DCBS, we have proposed

what we call a ‘‘projected’’ basis set.9 For a given pair of

monomers, A+B, this entails computing XPol wave functions

|CAi and |CBi in the individual ALMO bases for monomers A

and B, then performing a pseudocanonicalization53 of the

A+B dimer basis, i.e., a diagonalization of the occupied–

occupied and virtual–virtual blocks of the dimer Fock matrix.

The two-body SAPT calculation is then performed in the

pseudocanonical dimer basis, which does not disturb the

converged XPol MOs for the monomers but does provide a

larger set of virtual orbitals—extending over both mono-

mers—for the subsequent SAPT calculation. However, the

pseudocanonical MOs are not eigenfunctions of the fragment

Fock operators. Although we could, in principle, include a

‘‘non-Brillouin singles’’ term19 of the form
P

ar F
A
ar=ðea � erÞ

for fragment A (similarly for B), we decline to do so because

this would re-introduce BSSE that is absent, by construction,

in the monomer-centered ALMO basis.

Finally, we call attention to two parts of the XPol+SAPT

interaction energy that will be turned on or off in various

calculations reported in yIII. First, there are the three-body

induction coupling terms in eqn (45), which were absent in our

original work.9 In certain cases we shall delete these terms

from the energy expression, as a means to test their impor-

tance. Furthermore (as in traditional two-body SAPT), one

may compute an infinite-order correction for the polarization

of monomer A that results from a frozen density on monomer

B, and vice versa. To do so, one replaces the second-order

induction and exchange-induction energies with their

‘‘response’’ analogues, in which the the induction amplitudes

(tAB)
a
r in eqn (44a) are replaced by amplitudes obtained by

solving coupled-perturbed SCF equations for either monomer.

The perturbation in these equations is the partner’s electro-

static potential. (See refs. 9 and 14 for additional details.)

Consistent with the terminology used in SAPT,14 we call this

the ‘‘response’’ (resp) version of XPol+SAPT,9 although we

will frequently refer to this as the ‘‘CPHF correction’’ in what

follows.

III. Numerical results

Below, we present some applications to benchmark systems

including water clusters (yIII A), the S22 database (yIII B), some

anion–water clusters (yIII C), and several dispersion-bound dimers

(yIII D). Most studies of non-covalent clusters emphasize binding

energies, but in addition we shall explore geometry optimizations

and one-dimensional potential energy scans. In some cases,

we will compare XPol+SAPT results to conventional SAPT

within a pairwise-additive, single-exchange approximation.
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The difference between these two approaches is simply whether

the zeroth-order wave function is a direct product of Hartree–

Fock or XPol wave functions for the monomers.

All calculations were performed using a developers’ version

of Q-CHEM.49 Analytic energy gradients are not yet available

for the XPol+SAPT methodology, so in cases where we

report XPol+SAPT geometry optimizations, these were per-

formed via finite difference, using displacements of 10�3 bohr.

(As discussed in the Appendix, the CHELPG algorithm that

we have implemented is designed to provide charges that are

continuous functions of the nuclear coordinates.)

A. Water clusters

Previously,9 we explored the accuracy of XPol+SAPT calcu-

lations for one-dimensional dissociation curves of four symmetry-

distinct conformers of (H2O)2.
54 Reasonable potential energy

curves can be obtained in a variety of basis sets, but the best

results are obtained using projected basis sets. The dissociation

curves shown in Fig. 1 were obtained using the aug-cc-

pVDZ(proj) basis set, i.e., the projected version of a monomer-

centered aug-cc-pVDZ basis; these dissociation curves are in

quantitative agreement with complete basis set (CBS) MP2 results.

Calculations on water dimer do not exploit the full many-

body nature of the XPol+SAPT methodology, so we next

examine the relative energies of eight different (H2O)6 isomers,

for which CCSD(T)/CBS results are available.55 Unlike in the

(H2O)2 calculations, where geometries were relaxed self-con-

sistently at each level of theory, here we utilize the MP2/haTZ

geometries56 from ref. 55.

In Fig. 2, we show XPol+SAPT results for (H2O)6 in

comparison to the CCSD(T)/CBS benchmarks. Using CHELPG

embedding charges, and with CPHF and three-body induction

corrections turned on, we find that the aDZ(proj) and

aTZ(proj) basis sets (where ‘‘aXZ’’ stands for aug-cc-pVXZ)

correctly reproduce the trend in relative energies amongst

Fig. 1 Minimum-energy dissociation curves, along the O–O distance

coordinate, for four symmetry-distinct isomers if (H2O)2. At each O–O

distance, all other degrees of freedom have been relaxed at the MP2/

aTZ level, subject to the constraint of point-group symmetry, and

these MP2 geometries are used for all calculations. Solid curves

represent single points computed at the XPS(HF)/aDZ(proj) level

and dashed curves are MP2/CBS results. The XPS results employ

CHELPG embedding charges, but nearly identical potential energy

curves are obtained using Löwdin charges. The CPHF induction

correction has not been employed.

Fig. 2 Relative energies of (H2O)6 isomers as compared to bench-

mark CCSD(T)/CBS results from ref. 55, using MP2/haTZ geome-

tries. The XPol+SAPT calculations in (a) all utilize CHELPG

embedding charges, whereas (b) compares CHELPG and Löwdin

embedding charges. (Note that the vertical energy scale is different

in the two panels.) In (c), we compare one of the better XPS methods

to supersystem (frozen core) RIMP2 results. All XPol+SAPT calcu-

lations include the infinite-order (frozen density) induction corrections

obtained by solving monomer CPHF equations, and thus could be

labeled ‘‘XPS-resp’’.
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these isomers, with the exception that the ‘‘cyclic chair’’ isomer

is overstabilized by about 0.5 kcal mol�1 [see Fig. 2(a)]. Over-

all, the mean absolute errors (MAEs) evaluated over seven

isomers (excluding the prism isomer that defines E = 0) are

0.34 and 0.24 kcal mol�1, respectively, for the aDZ(proj) and

aTZ(proj) basis sets. Basis-set projection is essential to obtain

results of this quality; use of the unprojected aDZ basis set

affords a MAE of 1.58 kcal mol�1. For this reason, we will use

projected basis sets almost exclusively in subsequent calcula-

tions. On the other hand, basis-set projection is necessary but

not sufficient for accurate results; the relative energies

obtained with the 6-311G*(proj) and 6-311++G**(proj) basis

sets (the latter being the Pople-style analogue of Dunning’s

aTZ) are poor, with MAEs of 1.12 and 0.93 kcal mol�1,

respectively.

Fig. 2(b) compares XPol+SAPT results using either

CHELPG or Löwdin embedding charges. Although the general

conclusion in ref. 9 was that XPol+SAPT binding energies

computed with CHELPG embedding charges were superior to

those obtained using Löwdin charges, the latter can be com-

puted at negligible cost, and are therefore worth exploring

further in comparison to the CHELPG charges that do add a

non-trivial amount of overhead, owing to the need to evaluate

the electrostatic potential over a grid. Use of Löwdin charges,

however, seriously degrades the quality of results obtained in the

aDZ(proj) basis set, as compared to the quite good results

obtained with CHELPG charges using the same basis set. The

difference is less pronounced in the 6-311G*(proj) basis.

In Fig. 2(c), we compare the two XPS methods that were

found to provide the best results for (H2O)6 with supersystem

RIMP2 results using the same basis sets. For the prism, cage,

bag, and book isomers, the RIMP2 and XPS results are quite

comparable (and accurate), but as mentioned above the XPS

methods exhibit a tendency to overstabilize the cyclic structures,

so that RIMP2 is notably more accurate in these cases. It is not

clear to us why this is the case, although energy decomposition

analysis of (H2O)6 at the MP2/aug-cc-pV5Z level does indicate

that the three cyclic isomers exhibit the largest many-body

contributions to the binding energy.24 Note that the pairwise

SAPT calculations that we employ are quite similar to MP2, in

terms of the excitations that are included, and the primary

differences between XPS and supersystem MP2 are a different

SCF procedure (supersystem HF versus XPol), and also the

fact that MP2 incorporates some monomer electron correla-

tion, whereas XPol+SAPT neglects this entirely. MP2 also

incorporates some three-body correlation effects insofar as a

double excitation can couple together three monomers, but

based on the rather small magnitudes of the XPol+SAPT

three-body induction couplings (as documented below), we

suspect that these effects are small in this particular case.

All of the XPol+SAPT results depicted in Fig. 2 include

both the CPHF and three-body induction couplings. Since

both of these items add extra cost to the calculation, it is worth

exploring whether they are necessary. Of the basis sets tested

for this system, aTZ(proj) affords the best results, so in Fig. 3

we explore XPol+SAPT calculations of (H2O)6 using this

basis set but turning off either the CPHF induction correction,

the three-body induction couplings, or both. Each of these new

variants affords a larger MAE than does the ‘‘full’’ XPol+SAPT

calculation, although the trends in the relative isomer energies

are basically the same in each case, with the exception that the

‘‘3-body only’’ version (no CPHF) significantly overstabilizes

the cage isomer. For best results, the CPHF correction appears

to be important, which is not altogether surprising since the

use this correction is recommended in SAPT calculations of

polar molecules.14

Whereas all of the XPol+SAPT calculations in Fig. 3 use

CHELPG embedding charges, we observe that the CPHF and

three-body induction corrections can be more significant when

Löwdin charges are used instead—as large as 2 kcal mol�1 for

certain isomers, as shown in Fig. 4. Because these corrections

push the relative energies closer to the benchmark results, we

suspect that in the case of Löwdin embedding these corrections

serve to compensate for deficiencies in the description of the

embedding potential. [Recall that the perturbation used in the

SAPT part of the calculation is the full intermolecular inter-

action potential minus the embedding potential; see eqn (50).]

If so, then the comparative smallness of the CPHF and three-

body induction corrections in the CHELPG case offers addi-

tional evidence that the CHELPG charges provide a better

description of the molecular electrostatic potential.

Our motivation for considering Löwdin charges lies in the

fact that these charges are far less costly to compute, hence

XPS-Löwdin calculations are more amenable to finite-

difference geometry optimizations. (These optimizations are

still quite costly, however!) In Fig. 4, we also plot the (H2O)6
relative energies following geometry optimization at two

different XPol+SAPT levels of theory. In all cases where the

CPHF and three-body induction corrections are included,

geometry optimization serves to move all of the relative isomer

energies closer to the benchmark values, and furthermore

preserves the energetic ordering of the isomers. This ordering

is basically correct with respect to the benchmark calculations,

aside from reversing the order of the nearly-degenerate book1/

book2 and cyclic boat1/cyclic boat2 isomer pairs, which differ

Fig. 3 Relative energies of (H2O)6 isomers computed at the

XPS(HF)-CHELPG/aTZ(proj) level, as compared to CCSD(T)/CBS

benchmarks from ref. 55, using MP2/haTZ geometries. Results from

different variants of XPS(HF) are compared, depending on whether

the three-body induction couplings and/or the infinite-order frozen-

density induction corrections (based on solving CPHF equations) are

included.
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only in the orientation of the dangling O–H moieties. Absent

the CPHF and three-body corrections, optimization moves the

energies closer to benchmark values in every case except that

of the ‘‘bag’’ isomer, which is strongly overstabilized following

optimization.

Examining the optimized geometries of each isomer, some

examples of which are depicted in Fig. 5, we find that the

various levels of theory afford optimized structures that are

essentially indistinguishable to the eye, except in the case of the

‘‘bag’’ isomer. In that particular case, omission of the CPHF

and three-body corrections causes two of the H2O molecules to

orient in a qualitatively incorrect fashion, as compared to the

MP2 geometry. This fact is clearly evident if we compute the

root-mean-square deviations (RMSDs) with respect to MP2

geometries,57 which are listed in Table 1. All of the RMSDs are

less than 0.2 Å except for the bag structure optimized without

CPHF or three-body corrections, for which the RMSD> 0.5 Å.

As such, the bag structure represents the lone exception to the

trend in relative energies observed in Fig. 4 and is also an outlier

with respect to the structural RMSDs.

Table 1 also lists the average deviations in hydrogen bond

lengths and angles with respect to MP2/haTZ results.59

Examining the entire data set of H-bond lengths and angles

(not shown), we find that the results with the CPHF and three-

body induction corrections are almost universally more accurate

as compared to results where these corrections are omitted,

which speaks to the systematic improvability of the method.

For the more accurate ‘‘XPS+CPHF+3-body’’ results,

H-bond lengths are consistently overestimated by 0.09–0.15 Å,

whereas in the absence of these corrections the MADs in

H-bond lengths are E0.05–0.06 Å larger still. For the H-bond

lengths, the XPS calculations err in every case toward longer

bond lengths. Hydrogen bond angles are accurate to within a

few degrees, and often (but not always) err toward smaller

H-bond angles. (Geometric constraints occasionally cause a

few of the XPol+SAPT H-bond angles to be larger than

benchmark results.)

We will have more to say about these data in yIII C, but for
now the conclusion seems to be the following. For water

clusters, the CPHF correction offers consistent (albeit modest)

improvements to geometries and relative energies in most cases.

In some cases, use of this correction avoids an egregious outlier.

Finally, let us consider binding energies in some larger

(H2O)n clusters. As benchmarks, we take MP2/CBS results

for n = 2, 3, 4, 5, 6, 8, 11 and 20.61–67 Multiple isomers are

available for certain of these cluster sizes, but the differences

amongst their BEs are small relative to the differences between

variants of XPS, so we consider only one isomer at each cluster

size except for n = 20, where the energy differences are much

larger. In this case, we consider one isomer from each family of

low-lying minima (dodecahedron, fused cubes, face-sharing

pentagonal prisms, and edge-sharing pentagonal prisms).

XPS/aDZ(proj) binding energies (BEs) for these species,

relative to relaxed H2O monomers, are plotted against MP2/

CBS benchmark values in Fig. 6. This plot includes two sets of

XPS-CHELPG and XPS-Löwdin results: one in which the

cluster geometries (and the relaxed H2O monomer geometry)

are the MP2 geometries used to compute the MP2/CBS

benchmarks,61–67 and another in which the geometry has been

optimized using the same XPS method that is used for the

single-point BE calculation.60 Errors are observed to increase

with cluster size in all cases. In previous work,9 we noted that

XPol+SAPT calculations in various basis sets achieve a

roughly constant BE error per hydrogen bond, for clusters

containing more than about five hydrogen bonds, which

suggests that the total error should be an extensive quantity

and thus explains the trend seen in Fig. 6. For homologous

clusters in general, this same trend is likely to be observed

insofar as the XPol+SAPT method achieves a consistent, if

approximate, description of each intermolecular interaction.

Fig. 4 Relative energies of (H2O)6 isomers computed at the

XPS(HF)-Löwdin/aDZ(proj) level. Two sets of XPS calculations

employ both the CPHF and three-body induction corrections, whereas

the other two sets of XPS calculations employ neither. XPS results are

compared at benchmark (MP2/haTZ) geometries and also at geome-

tries that are optimized at the same (XPS) level of theory that is used to

compute the binding energy.

Fig. 5 Comparison of optimized geometries for several isomers of

(H2O)6. In each case, the geometry rendered in grey has been opti-

mized at the MP2/haTZ level while the remaining two geometries are

optimized at the XPS(HF)-Löwdin/aDZ(proj) level, either with CPHF

and three-body induction corrections (geometries in blue) or without

these corrections (geometries in red).
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When MP2 geometries are used, we note from Fig. 6 that

the XPS-Löwdin method is only slightly more accurate than a

pairwise-additive SAPT calculation with no embedding what-

soever,68 a method that entirely neglects many-body effects!

Given that XPS-CHELPG results at the same geometries are

significantly more accurate that pairwise-additive SAPT results,

this result is a strong indictment of the Löwdin charge scheme,

which does not appear to be appropriate for large clusters.

One should bear in mind that the MP2 and XPol+SAPT

methods predict somewhat different monomer geometries,

since the latter (in its present form) neglects monomer electron

correlation. As such, one should anticipate that XPol+SAPT

errors in BEs will decrease if XPS-optimized geometries are

employed instead, and the data in Fig. 6 demonstrate that this

is indeed the case. Self-consistent optimization significantly

improves the accuracy of BEs computed at both the

XPS-Löwdin and XPS-CHELPG levels. (BEs computed using

the XPS-CHELPG method with CPHF and three-body

induction corrections are nearly indistinguishable from the

XPS-CHELPG results presented in Fig. 6, although we are

unable to optimize geometries in the presence of these correc-

tions, owing to the tremendous computational expense.)

B. S22 database

The S22 data set, originally assembled by Hobza and co-workers69

but whose energetics were subsequently revised by Sherrill and

co-workers,70 consists of estimates of the CCSD(T)/CBS

binding energy for 22 dimers ranging in size from species like

(NH3)2 and (CH4)2 up to adenine–thymine and indole–

benzene. This database offers a convenient way to screen a

large number of different basis sets and other variations of the

XPol+SAPT methodology. Because our aim is to develop a

low-cost method applicable to large clusters, we focus primarily

on double-z basis sets. Because projected basis sets afford such

excellent results for the water dimer potential energy surface,

the calculations described below all use projected basis sets.

Whereas all of the calculations in yIII A used Hartree–Fock

theory to obtain the monomer wave functions, there is nothing

in principle to stop us from using KS-DFT in the XPol

procedure, and subsequently using the KS determinant as

the zeroth-order monomer wave function. As mentioned in

yII C 4, this constitutes a many-body extension of what is

usually called SAPT(KS).41,42 The SAPT(KS) approach was

originally deemed unsuccessful,47 in that the electrostatic and

induction energies failed to reproduce traditional SAPT(HF)

values. Discrepancies between SAPT(HF) and SAPT(KS)

calculations were ultimately traced to the incorrect asymptotic

behavior of typical exchange–correlation (XC) functionals

used in DFT, and an asymptotic correction to the XC

potential was found to improve the agreement with benchmark

values.47 Even following asymptotic correction, however,

SAPT(KS) dispersion energies are still poor, which ultimately

led to the development of alternative ‘‘SAPT(DFT)’’

methods.42–46,48 These methods are not considered here,

although they represent a promising direction for the XPol+SAPT

methodology, as discussed in yIV.
Fig. 7 compares error statistics for S22 binding energies at

the SAPT(HF) and SAPT(KS) levels, and we note that BE

Table 1 Errors in XPS-optimized geometries for isomers of (H2O)6, as compared to MP2/haTZ geometries. Several structural parameters are
listed that characterize the deviation from the MP2/haTZ geometry. These parameters are: the root-mean-square deviation (RMSD) of the atomic
Cartesian coordinates; the mean absolute deviation (MAD) in the hydrogen-bond distances (H� � �O); and the MAD in the hydrogen-bond
(O–H� � �O) angles. All XPS calculations are XPS(HF)-Löwdin/aDZ(proj); the comparison is whether or not the CPHF and three-body induction
corrections are included

Isomer

XPS (including CPHF and 3-body) XPS (without CPHF or 3-body)

Coordinate H-bond H-bond Coordinate H-bond H-bond
RMSD/Å Distance, MAD/Å angle, MAD (1) RMSD/Å Distance, MAD/Å angle, MAD (1)

prism 0.069 0.090 3.4 0.109 0.143 5.1
cage 0.087 0.090 2.5 0.136 0.136 4.0
book1 0.089 0.117 1.6 0.140 0.174 2.7
book2 0.085 0.115 1.8 0.134 0.173 2.3
bag 0.121 0.120 1.3 0.533 0.193 9.1
cyclic chair 0.111 0.149 0.4 0.178 0.217 2.9
cyclic boat1 0.125 0.145 0.8 0.165 0.214 2.0
cyclic boat2 0.118 0.147 0.4 0.163 0.214 2.1

Fig. 6 SAPT(HF)/aDZ(proj) and XPS(HF)/aDZ(proj) binding energies

for (H2O)n clusters, as compared to MP2/CBS benchmarks. In the

XPS cases, results are shown both at the benchmark MP2 geometries

and also at geometries that have been self-consistently optimized (or at

least, relaxed60) on the XPS potential energy surface. In all XPS cases,

three-body induction couplings are neglected and we do not solve

CPHF equations. The cluster isomers include four different n = 20

isomers along with one isomer each for n= 2, 3, 4, 5, 6, 8, and 11. The

oblique line indicates where the XPS or SAPT binding energy would

coincide with the benchmark.
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errors in SAPT(KS) calculations are indeed quite large for the

dispersion-dominated subset of S22. This is a result of the

MP2-like sum-over-states dispersion formula that is used in

SAPT0, in association with the fact that KS-DFT methods

tend to predict smaller HOMO/LUMO gaps than HF theory.

Long-range corrected (LRC) density functionals tend to widen

the HOMO/LUMO gap,71,78 and furthermore provide HOMO

eigenvalues that better approximate ionization potentials,

indicating an improved description of the asymptotic part of

the XC potential. Previously, we found that the LRC-oPBEh
functional72,76 offered the best results among the limited set of

functionals that we tested,9 and from Fig. 7 we see that this

functional does indeed offer a significant improvement over

the global hybrid PBE0 functional,73 although the errors in

BEs for dispersion-dominated dimers remain significantly

larger than SAPT(HF) results. (A system-specific tuning of

o, as suggested for other DFT applications,74 might improve

the results, but we have not pursued such an approach here.)

We also note that the errors for dispersion-dominated dimers

tend to increase in augmented basis sets, even in the

SAPT(HF) case, which is consistent with an overestimate of

the dispersion interaction along with the general observation

that the dispersion energy increases in extended basis sets.52

This is a fundamental limitation of the second-order (SAPT0)

treatment of dispersion; when higher-order terms are included

in the SAPT calculation, very accurate results are obtained for

both (CH4)2 and (C6H6)2, even in large, diffuse basis sets.2

Whereas both SAPT(HF) and SAPT(KS) tend to overbind

the dispersion-dominated dimers, these methods typically

underbind the strongly H-bonded dimers. Like the over-

estimation of the dispersion interaction, this effect is more

pronounced in augmented basis sets, so that while SAPT(KS)

tends to be more accurate than SAPT(HF) for H-bonded

systems in small basis sets, this trend is reversed when diffuse

basis functions are present. We have previously suggested9

that this behavior may result from delocalization error75 in

DFT, which leads to SAPT(KS) exchange-repulsion energies

that are too large, and therefore BEs that are too small.

One final trend that is evident from the data in Fig. 7 is that

for SAPT(HF) calculations, increasing the quality of the basis

set tends to improve the results for systems dominated by

hydrogen bonding but degrades the accuracy for systems

dominated by dispersion. As a result of this contrasting

behavior, much of the rest of this work is devoted to a study

of the basis-set dependence of XPS results, with the aim to

identify (if possible) a basis set that affords reasonable results

across a wide variety of intermolecular interactions.

Owing to the large errors encountered in SAPT(KS) calcu-

lations for dispersion-dominated systems, we focus exclusively

on SAPT(HF) and XPS(HF) calculations in the remainder of

this work. Fig. 8 compares S22 error statistics for SAPT(HF)

and XPS(HF) calculations using various basis sets. The

SAPT(HF) and XPS(HF) error statistics are quite compar-

able, and because SAPT(HF) is a reasonable approach for

these two-body systems (unlike in larger water clusters, where

this method misses important many-body polarization effects),

this favorable comparison between SAPT(HF) and XPS(HF)

serves to demonstrate that the XPS-CHELPG charge-embedding

scheme has not introduced any significant new errors.

The comparison of different double-z basis sets in Fig. 8

proves to be quite interesting, and confirms several of the

observations made above. For the subset of S22 consisting of

strongly H-bonded dimers, the mean accuracy of the BEs is

seen to improve in the presence of diffuse basis functions,

which is generally in line with the results for water clusters

discussed above. However, full augmentation degrades the

accuracy of the binding energies for the dispersion-dominated

Fig. 7 Mean absolute errors in SAPT(KS)-resp/cc-pVDZ(proj) calcu-

lations for the S22 database,69 comparing Hartree–Fock theory to

results from two different density functionals, using (a) the cc-pVDZ(proj)

basis and (b) the aDZ(proj) basis. In each case, we plot the mean

absolute error (colored bars) and maximum absolute errors (gray bars)

evaluated over the entire S22 set as well as three different subsets.

From left to right, the data sets for each functional are: the full S22

data set (red), the subset of seven dimers dominated by hydrogen

bonding (orange), the subset of eight dimers dominated by dispersion

(blue), and the subset of seven dimers whose interactions are of mixed

influence (green), as classified by Sherrill and co-workers.70 For the

SAPT(PBE0)/aDZ(proj) calculations, the maximum error in the dis-

persion-bound subset (11.5 kcal mol�1) is off scale in the figure.

Fig. 8 Mean absolute errors in SAPT(HF) and XPS(HF) calcula-

tions for the S22 database,69 evaluated for various basis sets. As in

Fig. 7, the mean absolute error (colored bars) and maximum absolute

errors (gray bars) are shown, evaluated over both the entire S22 set

(red bars) and also three different subsets: H-bonded dimers (orange

bars), dispersion-bound dimers (blue bars), and dimers of mixed

influence (green bars). Except in the leftmost data set, all calculations

solve CPHF equations to compute the infinite-order frozen-density

induction correction.
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dimers, and (to a lesser extent) reduces the accuracy for the

subset of dimers of ‘‘mixed influence’’ interactions as well.

Observations along these lines have led Sherrill and

co-workers2,50,79,80 to recommend a partially-augmented basis

set for use in MP2 and SAPT0 calculations of dispersion-

dominated systems. This basis, which they call aug-cc-pVDZ0

(and which we abbreviate as aDZ0) consists of cc-pVDZ for

the hydrogen atoms and aDZ for the heavy atoms, except that

the diffuse d functions are removed from the latter. Of the

basis sets that we have tested, aDZ0(proj) is clearly the best for

the S22 data set, as shown in Fig. 8. Errors in dispersion-

dominated complexes are greatly reduced, relatively to

aDZ(proj) results, but this basis also reduces both the mean

and maximum error for the strongly H-bonded subset of S22.

At least in these S22 examples, and for the low-order forms

of SAPT and XPS that are used here, induction and dispersion

interactions appear to have competing needs in terms of

selection of the monomer basis set. In order to examine this

competition in more detail, we consider in yIII C some anion–

water clusters, which ought to exhibit even larger induction

effects than the charge-neutral H-bonded systems that we have

considered thus far. Then, as a counterpoint, in yIII D we will

examine a few dispersion-bound systems in more detail.

C. Anion–water clusters

Results presented above for water clusters and for the S22

database suggest that, for systems bound primarily by electro-

statics and induction, binding energies typically improve as

basis-set quality improves. Next, we consider the F�(H2O)

dimer, which is not included in the S22 data set and whose

CCSD(T)/CBS binding energy (25.4 kcal mol�1) is consider-

ably larger than that of any of the S22 dimers. Several one-

dimensional potential energy scans along the F�� � �HOH

coordinate, computed at the SAPT(HF) level using various

projected basis sets, are depicted in Fig. 9. (Since our previous

results indicate that projected basis sets are necessary to obtain

high-accuracy potential energy surfaces for water clusters,9 we

shall use projected basis sets exclusively in all remaining

calculations.) Little difference is observed amongst these basis

sets, and the accuracy is no better than 1 kcal mol�1 in any case.

This is consistent with—if perhaps a bit larger than—what one

might have expected based on S22 results for hydrogen-bonded

dimers.

However, one of the potential energy curves depicted in

Fig. 9 is not accurate at all, and severely overbinds the

F�(H2O) complex. This is the calculation in which the

so-called dEHF
int correction is added to the SAPT(HF) binding

energy.2,15 This correction is defined as

dEHF
int = EHF

int � (E(1)
elst +E(1)

exch + E(2)
ind,resp + E(2)

exch-ind,resp),

(52)

where EHF
int is the dimer energy computed at the Hartree–Fock

level. Addition of this correction helps to build in higher-order

induction effects that would otherwise be absent in a SAPT0

calculation.2 As such, the use of dEHF
int is recommended for

polar systems.2,81 Clearly, this correction is disadvantageous

for the F�(H2O) system, at least at the SAPT(HF)-resp/

aTZ(DCBS) level considered in Fig. 9. The reasons for this

have to do with a subtle imbalance between competing inter-

actions when the dEHF
int correction is applied; as we discuss

detail elsewhere,38 this can be rectified by including higher-

order terms in the SAPT calculation. The details are not

particularly important here, and we include this example

merely to point out that one cannot always appeal to dEHF
int

to correct the deficiencies of a SAPT0 calculation, even when

polar molecules are involved. More importantly in the present

context, we wish to avoid the use of dEHF
int for the simple reason

that this correction is no longer well-defined for a system

comprised of more than two monomers.9

Fig. 10 shows various XPS(HF) results for the same one-

dimensional potential energy curve for F�(H2O), in compar-

ison to both CCSD(T)/CBS results and also to the most

accurate SAPT(HF) curve from Fig. 9. When the CPHF

induction correction is included, the XPS result is more

accurate than SAPT, whether the embedding charges are of

the Löwdin or the CHELPG variety, and the latter method

[XPS(HF)-resp-CHELPG/aTZ(proj)] is extremely accurate,

consistent with the notion that high-quality monomer basis

sets are preferred for describing induction and electrostatics.

In addition, we note that XPS with CHELPG charges is more

accurate than XPS with Löwdin charges even when the former

method does not include the CPHF correction. This provides

another strong argument in favor of CHELPG charges.

Fig. 11 presents a thorough comparison of basis sets for

XPS(HF) calculations of the F�(H2O) potential curve. Com-

paring results obtained with Pople-style basis sets [Fig. 11(a)]

to those obtained using Dunning-style basis sets [Fig. 11(b)], a

few general remarks can be made. First, diffuse basis functions

are crucial. In their absence, the complex is overbound (in a

vertical sense) by 5–8 kcal mol�1 at the benchmark geometry,

and errors in the adiabatic BE (measured from the XPS

potential minimum) are even larger, up to 10.4 kcal mol�1.

The minimum-energy F� � �O distance is also too short, by

0.1–0.2 Å, in the absence of diffuse basis functions. Addition

of diffuse functions shifts the whole potential energy curve

upward, and shifts the minimum to longer F� � �O distance,

Fig. 9 One-dimensional potential energy scans for F�(H2O) along

the F–O distance coordinate, at a fixed H2O geometry, computed

using several variants of SAPT(HF) as described in the text. Results of

a CCSD(T)/CBS benchmark calculation are also shown. The dSCF
term is the correction defined in eqn (52).
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although in smaller basis sets both effects overshoot in the

opposite direction. The particular case of aDZ0 [Fig. 11(b)] is

especially interesting in light of its excellent performance

for S22, along with the fact that XPS(HF)/aDZ0(proj) calcula-

tions afford accurate potential energy curves for (C6H6)2.
9 For

F�(H2O), this limited set of diffuse basis functions eliminates

the severe (7 kcal mol�1) overbinding observed at the XPS/

cc-pVDZ(proj) level but results in a small (3 kcal mol�1)

underbinding, and a minimum-energy F� � �O distance that is

too long by about 0.1 Å. In contrast, full augmentation (i.e.,

aDZ) provides a more accurate potential energy curve, with the

minimum in the right place and a BE error of o 2 kcal mol�1.

The aTZ basis set, on the other hand, affords a potential

energy curve that agrees quantitatively with the CCSD(T)/

CBS benchmark, and this leads to a second general statement,

that improving the quality of the basis set generally improves

the quality of the F�(H2O) potential energy curve. This is

consistent with results obtained above for other systems

dominated by electrostatic and induction effects. However,

quantitative results are obtained not only using aTZ but also

using the Pople-style 6-311++G(3df,3pd) basis, which is a

better approximation to Dunning’s aTZ than is the more

standard 6-311++G(d,p).

As we have already seen in the context of diffuse functions,

however, improving the basis set does not afford monotonic

convergence toward the benchmark result, due to several

competing effects. Increasing the number of valence basis

functions (i.e., switching from double-z to triple-z) increases
the F�(H2O) binding energy by 1–2 kcal mol�1, and adding

additional polarization functions tends to have the same effect

[see Fig. 11(a)]. In contrast, addition of diffuse basis functions

engenders a dramatic decrease in the binding energy.

The analysis above holds for the Dunning- and Pople-style

basis sets, where the results are fairly systematic. Results for

the second-generation (‘‘def2’’) Karlsruhe basis sets [Fig. 11(c)]

are not quite as systematic in their convergence toward the

benchmark result, especially with regard to the role of increasing

the ‘‘z number’’ of the basis as well as the number of

polarization functions. Some of the trends observed above

can still be seen, however. For example, the double-z def2-SVP
basis affords a BE that is more than 6 kcal mol�1 too large and

a minimum-energy distance that is 0.1 Å too short, while

augmentation (def2-SVPD) reduces the BE error to about

2 kcal mol�1 but in the opposite direction, and affords a

minimum-energy F� � �O distance that is 0.1 Å too long. None

of the Karlsruhe triple-z bases, however, achieves a quantita-

tive result. The best result is obtained using the def2-TZVP

basis set, which predicts the correct minimum-energy F� � �O
distance, and overbinds the complex by only 1.1 kcal mol�1.

Fig. 10 One-dimensional potential energy scans for F�(H2O) along

the F–O distance coordinate, at a fixed H2O geometry, computed

using several variants of XPS(HF) as described in the text. Also shown

are a CCSD(T)/CBS benchmark calculation, along with the most

accurate SAPT(HF) potential energy scan from Fig. 9.

Fig. 11 One-dimensional potential energy scans for F�(H2O) along

the F–O distance coordinate, at a fixed H2O geometry, computed

using the XPS(HF)-resp-CHELPG method with (a) Pople basis sets,

(b) Dunning basis sets, and (c) Karlsruhe basis sets. In the latter case,

note that basis sets ending in ‘‘D’’ include diffuse functions. A

CCSD(T)/CBS benchmark result is also shown.
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This basis set will ultimately emerge as our best compromise

choice, after considering dispersion-bound systems in yIII D.

In the calculations on water clusters in yIII A, we noted that

XPol+SAPT binding energies improve substantially, with

respect to benchmark values, when cluster geometries are

optimized self-consistently at the XPol+SAPT level. More-

over, we have just seen that the choice of basis set shifts the

location of the F�� � �HOH potential energy minimum by as

much as 0.2 Å even when the geometry of H2O is fixed.

Therefore, we next wish to examine some fully XPS-optimized

anion–water cluster geometries. Fully-optimized results, com-

puted at the XPS-resp-CHELPG level using a variety of basis

sets, are presented in Table 2. A CCSD(T)/CBS benchmark

binding energy is available for this system,82 but differs by only

0.16 kcal mol�1 (0.6%) from the MP2/aTZ result, so we take

the latter as a suitable benchmark since we have access to

geometrical parameters for the MP2/aTZ calculation.

One interesting point to note from these data is that the

XPS-resp-CHELPG/aTZ binding energy reported in Table 2

differs from the best available benchmark by 1.6 kcal mol�1,

whereas previously (in the context of Fig. 11) we noted that the

XPS-resp-CHELPG/aTZ potential curve was in quantitative

agreement with CCSD(T)/CBS results. The difference is that

the value reported in Table 2 corresponds to a fully-optimized

dimer geometry, whereas in constructing the potential curves

in Fig. 11 we used H2O geometries obtained using correlated

wave functions. In a sense, Fig. 11 ‘‘cheats’’ a little bit by using an

H2O geometry computed at a correlated level of theory, which

will modify the H2O multipole moments relative to the fully-

relaxed XPS geometry, where monomer correlation is absent.

Because analytic gradients for XPol+SAPT are not avail-

able, in efforts to optimize larger clusters we must be quite

judicious in our choice of basis set. Thus, the comparisons for

F�(H2O) in Table 2 include a variety of Karlsruhe basis sets,

as we have found that these are relatively cost-effective as

compared to Dunning- or Pople-style basis sets that afford a

similar level of accuracy. Comparing the XPS results in

Table 2 to the MP2/aTZ benchmark, we see that even in very

large basis sets, the XPS method consistently overestimates

the F� � �O distance by 0.11–0.25 Å and underestimates the

F� � �H–O angle by a few degrees, similar to results obtained for

optimized (H2O)6 geometries.

The fact that XPol+SAPT calculations produce hydrogen-

bond angles that are typically a few degrees less linear than

benchmark results may be due to orbital overlap effects,

present in supersystem Hartree–Fock calculations but not in

XPol calculations, that provide a driving force for linear

X� � �H–O bonds.83 However, this effect amounts to only a

few degrees, and in our view the more significant problem is

the error in H-bond lengths. Because this artifact persists

across a wide variety of basis sets (including Karlsruhe basis

sets that are lacking in diffuse functions), we suspect that it is

not a deficiency of the intermolecular perturbation theory

per se, but rather originates mostly in the lack of monomer

correlation. When the F�(H2O) geometry is optimized at the

MP2/aTZ level, the O–H bond length for the F� � �H–O moiety

is 0.06 Å shorter than when the dimer geometry is optimized at

the HF/aTZ level, hence one might attribute E0.06 Å of the

overly-long F� � �O distances computed at the XPS(HF) level

simply to the Hartree–Fock description of the H2O geometry,

with the remaining error attributable to changes in the multi-

pole moments when a correlated H2O geometry is used, as well

as inherent deficiencies (e.g., absence of charge transfer) in the

XPol procedure itself.

An immediately practical result that we glean from the

basis-set comparison in Table 2 is that the def2-TZVP and

def2-TZVPP basis sets affording binding energies that are

within 0.5 kcal mol�1 (2%) of the best available benchmark,

and are relatively economical [74 and 90 basis functions,

respectively, for F�(H2O), as compared to 114 basis functions

for 6-311++G(3df,3pd) and 138 for aTZ, which were the basis

sets one might have recommended based on the results for

H-bonded systems in yIII A and yIII B].
To further economize the optimizations, we must decide

which embedding charges to use and whether to employ the

CPHF induction correction. Although we find, in general, that

CHELPG charges are more accurate than Löwdin charges,

they are also considerably more expensive to compute. After

some experimentation, we found that the def2-TZVPP basis

set, in conjunction with Löwdin embedding charges and with-

out the CPHF correction affords a good BE for F�(H2O):

27.16 kcal mol�1 as compared to 27.04 kcal mol�1 computed

at the MP2/aTZ level. Undoubtedly, there is substantial

cancellation of errors at work in these results, but at a practical

level, this level of theory is affordable enough for finite-

difference geometry optimizations in somewhat larger clusters.

Results of these optimizations, for several different

F�(H2O)n, Cl
�(H2O)n, and OH�(H2O)n clusters, are summar-

ized in Tables 3 and 4. Whereas we experimented with turning

off the three-body induction couplings in yIII A, before

ultimately concluding that this is not a good idea, here we

include these terms in all cluster calculations, since they are a

natural part of the second-order intermolecular perturbation

theory for systems composed of three or more monomers.

(The CPHF correction, on the other hand, is ‘‘extra’’, in the

sense that it is an infinite-order correction. It is not used here,

in order to make the geometry optimizations tractable.)

For eachX�(H2O)n cluster that we consider, the XPS-optimized

geometry is structurally quite similar to the MP2-optimized

Table 2 Comparison of optimized XPS(HF)-resp-CHELPG geome-
tries and binding energies (BEs) for F�(H2O), using a variety of basis
sets. Benchmark MP2 and CCSD(T) values are also reported

Method r(F� � �H) Å +(F� � �H–O) (1)
BE/
kcal mol�1

MP2/CBS 26.93a

CCSD(T)/CBS 27.20a

MP2/aug-cc-pVTZ 1.375 177.2 27.04b

XPS/6-311++G(3df,3pd) 1.513 172.6 25.80
XPS/aug-cc-pVTZ 1.508 173.2 25.61
XPS/def2-SVPD 1.591 169.6 23.50
XPS/def2-TZVP 1.539 171.4 26.81
XPS/def2-TZVPD 1.622 171.3 22.60
XPS/def2-TZVPP 1.512 172.3 27.71
XPS/def2-TZVPPD 1.578 172.2 23.64
XPS/def2-QZVPD,TZVPPc 1.484 174.8 28.84

a From ref. 82. b Average of counterpoise-corrected and uncorrected

results. c Basis consists of def2-QZVPD for H and def2-TZVPP for

O and F.
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geometry, although certainly the monomer geometries will

differ since they are correlated at the MP2 level but not at

the XPS level. A close examination of the intermolecular

geometrical parameters (Table 3) demonstrates that the XPS

results do not degrade with increasing cluster size; in fact, the

geometrical parameters are slightly more accurate, on average,

in the larger clusters, with the exception of the X� � �H–O angles

in HO�(H2O)3.

Binding energies at the XPS-optimized geometries are

reported in Table 4, where they are compared to MP2 bench-

marks as well as XPS binding energies computed at MP2-

optimized geometries. As seen previously for (H2O)n clusters,

the XPS binding energies are typically much more accurate

when the geometry is optimized self-consistently rather than

using the MP2 geometry. Upon self-consistent optimization,

XPS binding energy errors do not exceed 1.5 kcal mol�1

(or 0.5 kcal mol�1/water molecule), except for the HO�(H2O)3
system. For this particular system, the water molecules tend to

aggregate together upon XPS optimization, which enhances

the binding energy between the water molecules and over-

stabilizes the cluster, relative to the MP2 benchmark.

D. Dispersion-dominated complexes

To contrast the results for strongly H-bonded systems pre-

sented in yIII A and yIII C, we next examine in detail a few

dimers that are bound primarily by dispersion. We have seen

that a meaningful comparison to benchmark BEs typically

requires geometry optimization, which at present is quite

expensive for XPol+SAPT calculations. Thus, we have

selected three of the smallest dispersion-bound systems from

the S22 database [(CH4)2, (C2H4)2, and C2H4� � �C2H2] for

geometry optimization and subsequent calculation of the

binding energy. The results are presented in Table 5, where

we make comparison to two small H-bonded dimers, (H2O)2
and (NH3)2, where geometry optimization is also possible. The

basis set (def2-TZVP) was selected, after some experimenta-

tion, to provide reasonable binding energies for all five

systems, and we observe that in an absolute sense, the BEs

for the dispersion-bound dimers are not substantially less

accurate than they are for the H-bonded dimers, although

the fractional errors are much larger (up to 55%) for the

dispersion-bound systems.

One-dimensional potential energy scans for (C2H4)2 and

(C6H6)2 reveal errors in the minimum-energy geometries of no

more than 0.1 Å and 0.04 Å, respectively, as compared to

high-level ab initio results. These errors are comparable to the

errors in H-bond distances that we observed for (H2O)6 and

for X�(H2O)n. The CPHF correction is found to be entirely

negligible in these nonpolar systems, and the choice of

embedding charges also makes very little difference: less than

0.25 kcal mol�1 in the BE of (C6H6)2, for example. The choice

of basis set is crucial, however, since the second-order disper-

sion formula is very sensitive to this choice.

Table 3 Mean absolute deviations between X�(H2O)n cluster geome-
tries optimized at the XPS(HF)-Löwdin/def2-TZVP level, relative to
MP2/aTZ benchmark geometries

Cluster r(X� � �H)/Å

Angle (1)

X� � �H–O H� � �X� � �H

F�(H2O)1 0.163 5.9 —
F�(H2O)2 0.139 9.3 16.2
F�(H2O)3 0.104 4.6 1.1
F�(H2O)6 0.075 1.7 1.8
Cl�(H2O)1 0.172 14.5 —
Cl�(H2O)2 0.145 8.6 1.0
Cl�(H2O)3 0.117 3.3 0.7
HO�(H2O)1 0.268 7.3 —
HO�(H2O)2 0.193 10.7 42.4
HO�(H2O)3 0.189 16.1 24.8

Table 4 Comparison of binding energies (in kcal mol�1) for
X�(H2O)n clusters. All XPS(HF) results used the def2-TZVP basis
set with Löwdin embedding charges

Cluster MP2a/aTZ

XPS(HF)

MP2 geom. XPS geom.

F�(H2O)1 27.04 23.70 26.02
F�(H2O)2 47.90 45.31 47.73
F�(H2O)3 66.01 65.62 67.50
F�(H2O)6 111.68 108.00 112.20
Cl�(H2O)1 15.03 14.03 14.85
Cl�(H2O)2 30.04 28.52 29.85
Cl�(H2O)3 45.99 44.25 45.89
HO�(H2O)1 26.51 21.85 26.70
HO�(H2O)2 48.09 45.59 49.64
HO�(H2O)3 66.72 65.40 70.82

a Average of counterpoise-corrected and uncorrected results.

Table 5 Binding energies (BEs) for several of the S22 dimers,
computed at the XPS(HF)-Löwdin/def2-TZVP level and at the
CCSD(T)/CBS level

Dimer

BE/kcal mol�1

XPS CCSD(T)

CH4� � �CH4 (D3d) 0.24 0.53
C2H4� � �C2H4 (D2d) 0.97 1.48
C2H4� � �C2H2 (C2v) 1.48 1.50
NH3� � �NH3 (C2h) 2.88 3.15
H2O� � �H2O (Cs) 5.02 5.07

Fig. 12 Potential energy curves (for fixed monomer geometries) of

the ‘‘sandwich’’ isomer of (C6H6)2 computed at various XPS levels of

theory. (The CPHF correction is not employed, as it is negligible for

this system.) Benchmark CCSD(T)/CBS results are taken from ref. 84.

Figure adapted from ref. 9 with additional new data; copyright 2011

American Institute of Physics.
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The aDZ0(proj) basis set, with its reduced set of diffuse

functions (see yIII B), affords a nearly quantitative XPS(HF)

potential energy curve for the D6h ‘‘sandwich’’ isomer of

(C6H6)2, as shown in Fig. 12. (Results for the other two

isomers are also quite good, albeit not quantitative.9) These

results are consistent with the favorable error cancellation

reported by Sherrill and co-workers in SAPT0/aDZ0 calcula-

tions for a larger set of dispersion-dominated systems.2,50,80

Unfortunately, the F�(H2O) complex is underbound by at

least 3 kcal mol�1 when the aDZ0(proj) basis is used (see yIII C).
The def2-TZVP(proj) basis performs much better, and affords

the best results for F�(H2O) of any basis except for the fully-

augmented ones that perform poorly for (C6H6)2. As such, the

def2-TZVP(proj) basis appears to be an affordable comprise

for XPS(HF) calculations that provides a semi-quantitative

description of both strongly H-bonded systems such as

F�(H2O) and dispersion-dominated systems such as (C6H6)2.

IV. Summary and conclusions

In this work, we have reformulated the XPol+SAPT formalism

first introduced in ref. 9, to obtain a systematically-improvable

methodology for rapid, first-principles energy computations in

large systems composed of small molecules. The method starts

with a monomer-based SCF calculation in which a super-

system embedding potential is added in a variational way,

based on the XPol idea of Gao and co-workers.10 The cost of

this step is OðNÞ with respect to the number of monomers,

with a small prefactor.9 On top of this modified XPol calcula-

tion, we add second-order intermolecular perturbation theory,

based on a modified version of the two-body SAPT formalism.15

This combination results in a method cost scales as OðN2Þ,
although we have argued9 that with parallelization and

distance-based thresholding, the cost in wall time can be

reduced to OðNÞ given a sufficient number of processors, since

the bottleneck step is N(N � 1)/2 pairwise SAPT calculations

that are completely independent of one another.

The present version of XPol+SAPT represents a many-

body generalization of the ‘‘SAPT0’’ methodology2 and could,

in principle, be extended to include intramolecular electron

correlation (neglected in the version that is currently imple-

mented) as well as higher-order intermolecular terms and

certain exchange interactions that have been neglected here

owing to their complexity. The inclusion of higher-order

correlation terms amounts to a many-body generalization of

the existing hierarchy of two-body SAPT methods [SAPT0,

SAPT2, SAPT2+, SAPT2+(3), SAPT2+3].2,50 Three-body

SAPT contributions that go beyond the single-exchange

approximation34,35 could also be incorporated, although all

of these additions would increase the cost of the method

relative to the version described here.

We are ultimately interested in developing an affordable

ab initio method for molecular simulations, and as such we

have sought to keep the cost low for the pairwise SAPT

calculations. The cost of each such calculation grows as OðN5
bfÞ,

where Nbf represents the number of monomer basis func-

tions. The prefactor in this scaling expression has been reduced

by means of an RI approximation,50 nevertheless cost consi-

derations dictate that we be very judicious regarding the choice

of monomer basis set. In this work, we have explored a wide

range of basis sets for a variety of non-covalent clusters

ranging from (H2O)n clusters with binding energies in excess

of 200 kcal mol�1, binary anion–water complexes with

binding energies as large as 25 kcal mol�1, and dispersion-

bound complexes with binding energies of o 1 kcal mol�1.

From these calculations, we conclude that although the

XPol+SAPT methodology is parameter-free in principle, the

accuracy of the low-order version that has been implemented

so far is quite sensitive to the choice of monomer basis set.

As with the analogous two-body SAPT0 method,50 these

low-order XPS(HF) calculations rely on error cancellation

for accuracy and therefore selection of an appropriate

basis set is crucial and, in effect, functions as an adjustable

parameter.

Our results indicate that systems with very different non-

covalent interactions place very different demands on the

monomer basis set. When the binding energy is dominated

by electrostatics and polarization, high-quality basis sets (e.g.,

aug-cc-pVTZ) perform best, but such basis sets substantially

overestimate the binding energies of dispersion-bound systems.

The origin of this artifact traces ultimately to the MP2-like

dispersion formula used in SAPT0, which significantly over-

estimates the dispersion interaction in diffuse basis sets. A

partially-augmented basis (aug-cc-pVDZ0) has been suggested

for SAPT0 calculations in dispersion-bound systems,2,50,80 and

while this basis works well for the S22 database, results are less

accurate for anion–H2O complexes. Fortunately, we have

identified an affordable, compromise basis set, def2-TZVP,

that appears to provide semi-quantitative results for both

strongly H-bonded and dispersion-bound complexes. This

offer a promising route to realistic applications in the near

future, with the existing version of the methodology. The main

technical hurdles that remain are the need to parallelize the

pairwise SAPT calculations, which is not fundamentally diffi-

cult, and the need to implement analytic energy gradients,

which is more challenging but in some sense resembles a more

complicated version of the RIMP2 analytic gradient.85

Regarding future improvements to the theory, the most

pressing problem (in our view) is the tremendous sensitivity

to the choice of monomer basis set. Lack of intramolecular

electron correlation is also an important shortcoming, even in

cases where its impact on binding energies is small, because

geometries and vibrational frequencies suffer from this defect

as well. Both of these issues might share a common solution,

however. First of all, we note that when electrostatics

and induction dominate the intermolecular interactions,

XPol+SAPT calculations behave in a generally systematic

way with respect to the choice of basis set, whereas for

dispersion-bound systems this is not the case. This observation

suggests to us that the SAPT0 sum-over-states dispersion

formula is a prime target for improvement. At the same time,

a DFT description of the monomers would be a relatively low-

cost way to incorporate intramolecular electron correlation,

except that this approach further exacerbates problems with

the description of dispersion interactions. Therefore, we suggest

that a promising way forward is to incorporate so-called

SAPT(DFT) methods43–46,48 within the XPol+SAPT formal-

ism. In SAPT(DFT), the sum-over-states dispersion formula is
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replaced by a generalized Casimir-Polder formula involving

frequency-dependent density susceptibilities for the monomers

that are obtained by solving coupled-perturbed Kohn–Sham

equations. This eliminates energy denominators in the dispersion

formula, which are the primary source of the basis-set depen-

dence, and it seems reasonable that the basis-set convergence

of the density susceptibilities might be more systematic. We

hope to report on such an extension in future work.

Appendix: CHELPG charges

Here, we provide explicit working equations for the CHELPG

charges and for the derivatives of these charges, (KJ)mn, that

are required in the XPol procedure [see eqn (9)]. This material

also serves to document the manner in which the CHELPG

algorithm is implemented in the Q-CHEM program,49 which is

important in view of the fact that our implementation utilizes a

weighted least-squares approach that is not described in the

original CHELP or CHELPG papers.21–23 By applying a

smoothing function to the weights, this procedure ensures that

charges are continuous functions of the nuclear coordinates,

despite the reliance on a real-space grid. Some of the material

in this Appendix was discussed already in the Supplementary

Material that accompanies ref. 9, but in hindsight the notation

in that reference is slightly misleading. This Appendix is

offered as a clarification.

1. Charge derivatives

By definition,21,22 the CHELPG atomic charges are the set of

charges {qJ} whose electrostatic potential, f(
-

R), is the closest

(in a least-squares sense) to the true molecular electrostatic

potential, F(
-

R), subject to the constraint that the CHELPG

charges must sum to the total charge of the system, Q. Both

electrostatic potentials are evaluated on a real-space grid. Let

Fk = F(
-

Rk) denote the true molecular electrostatic potential,

evaluated at the kth grid point:

Fk ¼
XNatoms

J

ZJ

j~Rk � ~RJj
�
X
mn
ðIkÞmnPmn : ðA:1Þ

The electrostatic potential fk = f(
-

Rk) generated by the

charges qJ is

fk ¼
XNatoms

J

qJ

j~Rk � ~RJj
: ðA:2Þ

The CHELPG charges are defined as the ones that minimize

the Lagrangian

L ¼
XNgrid

k

wkðFk � fkÞ
2 þ l

XNatoms

K

qK �Q

 !
; ðA:3Þ

where l is a Lagrange multiplier and wk is the weight given to

the kth grid point, as defined below.

A formula for qJ is obtained by setting @L=@l ¼ 0 and

@L=@qJ ¼ 0. Solving the resulting Natoms + 1 linear equations

and eliminating l affords

qJ ¼ gJ þ a
X
K

ðG�1ÞJK; ðA:4Þ

where the matrix G is defined by

GIJ ¼
XNgrid

k

wkj~Rk � ~RIj�1j~Rk � ~RJj�1 ðA:5Þ

and the vector g=G
�1
e is defined in terms of a vector e whose

elements are

eJ ¼
XNgrid

k

wkFk

j~Rk � ~RJj
: ðA:6Þ

Finally,

a ¼ Q�
P

J gJP
J;K ðG�1ÞJK

: ðA:7Þ

Note thatG is independent of the density matrix elements, Pmn,

but eJ (and therefore a) depends on Pmn via the electrostatic

potential, eqn (A.1)

Eqn (A.4) represents a formal solution to the so-called

normal equations that define the least-squares problem. Espe-

cially in large molecules, the design matrix of the CHELPG

least-squares problem may be rank-deficient, such that the

effective dimensionality of the data set is less than Natoms, and

therefore Natoms statistically-significant charges cannot be

determined.86,87 In such cases, an alternative procedure based

on singular value decomposition,87 which does not entail direct

solution of the normal equations, may be desirable. We have

not found it necessary to use such a procedure in the examples

considered here or in ref. 9, so this has not been implemented.

It is straightforward to evaluate the derivative of eqn (A.4)

with respect to Pmn. The result is a formula for the charge

derivatives, (KK)mn

ðKKÞmn ¼�
X
L

ðG�1ÞKLðXLÞmn

þ
P

J ðG�1ÞKJP
I;J ðG�1ÞIJ

 !X
LM

ðG�1ÞLMðXMÞmn

ðA:8Þ

where

ðXMÞmn ¼
XNgrid

k

wkðIkÞmn
j~Rk � ~RMj

: ðA:9Þ

2. Smooth implementation

In our implementation, the weights {wk} associated with the

grid points {
-

Rk} are chosen to ensure that the CHELPG

charges are continuous functions of the nuclear coordinates.

We set

wk ¼ wLR
k

YNatoms

J

AJ
k; ðA:10Þ

where wLR
k is a long-range weighting function that is discussed

below, and each AJ
k is an atomic switching function defined as

AJ
k ¼

0 if j~Rk � ~RJjoRshort
cut;J

tðj~Rk � ~RJj;Rshort
cut;J ;Ron;JÞ if Rshort

cut;J � j~Rk � ~RJjoRon;J

1 otherwise

8<
: :

ðA:11Þ
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The cutoff parameters Rshort
cut,J and Ron,J are given below. The

tapering function, t, is taken from ref. 88:

tðR;Rcut;RoffÞ ¼
ðR� RcutÞ2ð3Roff � Rcut � 2RÞ

ðRoff � RcutÞ3
: ðA:12Þ

This function changes smoothly from t = 0 at R = Rcut to

t = 1 at R = Roff, thus the parameters Rshort
cut,J and Ron,J in

eqn (A.11) function as short- and long-range cutoffs, respec-

tively, for the grid points
-

Rk, with respect to the position of

atom J.

To determine the long-range weight, wLR
k , we first find the

minimum distance from the grid point
-

Rk to any nucleus:

Rmin
k ¼ min

J
j~Rk � ~RJj: ðA:13Þ

We then define

wLR
k ¼

1 if Rmin
k oRlong

cut

0 if Rmin
k 4Roff

1� tðRmin
k ;Rlong

cut ;RoffÞ otherwise

8<
: : ðA:14Þ

To evaluate the weights, we set the short-range cutoff Rshort
cut,J

equal to the Bondi radius89,90 for atom J. (Essentially identical

results are obtained if we instead use radii obtained from the

UFF force field.91 These have the advantage that they are

defined for the entire periodic table.) We set Roff = 3.0 Å,

Ron,J = Rshort
cut,J + Dr, and Rlong

cut = Roff � Dr, where the

quantity Dr controls how rapidly a grid point’s weight is scaled

to zero by the tapering function. We use a fairly small value,

Dr = 0.1 bohr, due to concerns about possible discontinuities

during finite-difference geometry optimizations. We have not

encountered any problems when using these values, although

it is possible that they might need to be modified to ensure

sufficient smoothness for molecular dynamics applications.
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