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On the accuracy of the general, state-specific
polarizable-continuum model for the description
of correlated ground- and excited states in
solution†

Jan-Michael Mewes,*ab John M. Herbertc and Andreas Dreuwa

Equilibrium and non-equilibrium formulations of the state-specific polarizable-continuum model

(SS-PCM) are evaluated in combination with correlated ground- and excited-state densities provided by the

algebraic-diagrammatic construction method (ADC) for the polarization propagator via the computationally

efficient intermediate-state representation (ISR) formalism. Since the influence of the SS-PCM onto

quantum-chemical method is naturally limited to the presence of the apparent surface charges in the

one-electron Hamiltonian and hence fully contained in the polarized MOs, the herein presented solvent

model can be combined with all implemented orders and variants of ADC. Employing ADC/SS-PCM, the

symmetric, ionized dimers of neon, ethene and nitromethane are investigated. Their broken-symmetry

wavefunctions exhibit a low-lying charge-transfer state that is symmetry-equivalent to the ground

state. This curious though ultimately artificial feature is convenient as it allows for a direct comparison of

ADC/SS-PCM for the CT state to the Møller–Plesset/PCM description of the ground state. The agreement

down to 0.02 eV for a wide range of dielectric constants validates the ADC/SS-PCM approach. Eventually,

the relaxed potential-energy surfaces of the ground and lowest excited states of 4-(N,N)-dimethyl-

aminobenzonitrile in cyclohexane and acetonitrile are computed, and it is demonstrated that the

ADC(2)/SS-PCM approach affords excellent agreement with experimental fluorescence data. Only at the

ADC(3) level of theory, however, the experimentally observed solvent-dependent dual fluorescence can

be explained.

1 Introduction

The approximate modeling of molecular environments for
quantum-chemical calculations is a very active field of research.1–8

Polarizable continuum models1 (PCMs) offer an efficient way to
incorporate bulk electrostatic effects, typically the dominant
solvation effect for small, polar molecules and in particular for
charge-transfer states. While PCMs are certainly not the most
accurate or elaborate representation of a molecular environ-
ment, a key advantage is their straightforward application. Once
the construction of a molecular cavity for the solute is specified,
PCMs are essentially ‘‘black box’’ computational models with

only two parameters: the macroscopic dielectric constant e and
its analog in the range of optical frequencies, the optical
dielectric constant eopt = n2, where n denotes the solvent’s index
of refraction. Despite their simplicity, PCMs usually provide a
reasonable estimate of the influence of the environment in a
single calculation, if explicit interactions like e.g. hydrogen-
bonds are weak or absent.9 In combination with correlated
ab initio methods for the QM part of the calculation, this particu-
larly applies to the practically important class of charge-transfer
states, as nicely demonstrated in ref. 10 and 11. Computational
efficiency and straightforward setup of continuum models are
largely due to the fact that they circumvent the need for
sampling of the environment, which is included implicitly in
the macroscopic parameters.

Here, we report the implementation of a self-consistent PCM
description of the environment following the well-established state-
specific (SS) approach12–19 for long-lived, solvent-equilibrated
excited-states. Correlated ground- and excited-state wavefunctions
and densities are obtained with the algebraic-diagrammatic
construction method for the polarization propagator (ADC) and
the intermediate-state representation (ISR) formalism.20 For its
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evaluation, this new approach is combined with the recently
presented perturbative, state-specific (ptSS) non-equilibrium
corrections for vertical transitions,9,21 which enables a numeri-
cally efficient investigation of processes like fluorescence,
phosphorescence and excited-state absorption at up to third
order of ADC, ADC(3). This high level of electronic-structure
theory can be necessary to arrive at a balanced description of
excited states of different character, as will be shown and
discussed for the example of dimethylamino-benzonitrile
(DMABN) in Section 4.2.

Self-consistent implementations of the SS-PCM approach
for long-lived excited states, i.e., equilibrium solvation have
been presented in combination with time-dependent DFT,22

EOM-CCSD23–25 and for the PCM-related COSMO26 also with ADC(2)
(ADC/COSMO).27 For the latter, Lunkenheimer et al. self-consistently
include transition-density related linear-response (LR) contri-
butions into the ADC(2) equations in addition to the charge-
density contributions of the SS-PCM formalism. The LR-PCM
formalism,28,29 which has so far been regarded as an alternative
to the SS formalism, has in the past been used to obtain non-
equilibrium corrections as well as to describe solvent-relaxed
states.30,31 In contrast to the SS-PCM formalism, however,
the physical interpretation of the LR formalism is subject
of ongoing debate,9,27,32 and direct comparison of the LR- and
SS-PCM formalism suggests that the latter affords more accurate
solvent-relaxed geometries and emission spectra.33 In the context
of non-equilibrium corrections to ADC(2) and ADC(3) excitation
energies, we obtain more accurate solvatochromatic shifts using
the SS-PCM formalism as compared to the LR-PCM approach or a
combination of the latter two.9

Hence, unlike ADC/COMSO, the herein presented ADC/
SS-PCM strictly follows the SS approach. Contributions from
the solvent are included only at the level of the one-electron
Hamiltonian and thus fully contained in the respective,
polarized MOs. This provides the advantage that the ADC
equations can remain unchanged and the SS-PCM approach
can be applied in identical fashion to any order and variant
of ADC or related excited-state method. So far, we have tested
the approach in combination with core-valence separated
(CVS)ADC,34,35 spin-opposite scaled (SOS)ADC,36 and spin–flip
(SF)ADC37 (results not shown in this work). In particular for
SF-ADC, the herein presented self-consistent equilibrium solva-
tion approach constitutes a valuable tool to investigate molecules
with a complicated electronic structure in solution, as it allows to
relax the solvent with respect to any state (e.g. the physical ground
state) and not just the high-spin reference. Ultimately, the
resulting solvent-equilibrated wavefunctions can be investigated
using the visualization and analysis tools provided by libwfa.38

Another difference to the ADC/COSMO approach concerns
the excited-state densities. While ADC/COSMO employs relaxed
densities, the excited-state densities used in our ADC/SS-PCM
approach are obtained via the intermediate-state representa-
tion (ISR) formalism as elaborated in ref. 9. This circumvents
the need to compute any orbital response, such that the solvent
model adds only negligible overhead to the cost of a gas-phase
ADC calculation.

To demonstrate that this combination of ADC with the
SS-PCM provides physically meaningful results, we will at first
perform tests on a set of symmetric ionized dimers whose
symmetry-broken ground state is symmetry-equivalent to the
lowest charge-transfer excited state. This completely artificial test
system allows the new ADC/SS-PCM approach to be compared
and validated against ground-state Møller–Plesset calculations.
Eventually, we employ the prominent example of 4-(N,N)-dimethyl-
aminobenzonitrile (DMABN) to showcase the performance of
ADC/SS-PCM at second and third order of perturbation theory
for the prediction of fluorescence and solvent-relaxed state
energies in solution.

This paper is structured as follows: Section 2 presents the
formalism and implementation. Section 3 describes the technical
details of the calculations. In Section 4 we evaluate and discuss the
ADC/SS-PCM approach as well as the different approaches to treat
electron correlation in the PCM framework, first in symmetric,
ionic dimers and second in the prototypical charge-transfer
compound, 4-(N,N)-dimethylaminobenzonitrile (DMABN). Section 5
summarizes our conclusions.

2 Formalism and implementation

The formalism of the self-consistent ADC/SS-PCM implementa-
tion is described here, following the notation in ref. 9 and 21,
where the analogous, perturbative, non-equilibrium theory is
presented.

2.1 Ground-state equilibrium PCM

In any self-consistent reaction field (SCRF) calculation, the
interaction of the ground state with the reaction field provided
by the PCM is formally contained in the so-called reaction-field
operator, R̂(0):

[Ĥvac + R̂(0)]|0i = E0|0i . (1)

In practice, the molecule is placed in a cavity with the surface S
divided into discretized surface elements s, which in our imple-
mentation are Lebedev grid points situated on atom-centered
spheres.39 The operator R̂ formally accounts for the interaction
of the molecular electrostatic potential (ESP) V(r) with the
apparent surface charge (ASC) g(s) of a state |ii according to

R̂ðiÞ � R̂i ¼
ð
S

giðsÞ
jr� sjds ¼

ð
S

V̂ðr; sÞgiðsÞds; (2)

where V̂(r,s) = |r � s|�1. The operator R̂(i) can be further
simplified by carrying out the integration over r, to yield

0 R̂i

�� ��0� �
¼
ð
S

h0jV̂ðr; sÞj0igiðsÞds

¼
ð
S

V0ðsÞgiðsÞds ¼ E0�i;

(3)

where V0(s) is the ESP for state |0i, evaluated at position s.
In practice, the ASC for state i, gi(s), is represented by a set of
Gaussian-blurred point charges at the positions of the surface
elements s.39
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The quantity E0�i that results from integration over the
cavity surface in eqn (3) is the total solute–solvent interaction
energy for state |0i (the initial state), where the polarization is
induced by state |ii. If solute and solvent are in equilibrium,
as in the ground state or a long-lived excited state, then |0i and
|ii should represent the same state.

The ASC is generated by the solvent-response operator

Q̂ ¼
ð
S

V̂ðr; s0ÞAe
�1ðs; s0Þds0; (4)

such that the ASC for state i is

giðsÞ ¼ hijQ̂jii ¼
ð
S

Viðs0ÞAe
�1ðs; s0Þds0: (5)

These equations depend on the PCM kernel Ae
�1, which depends

on the cavity geometry as well as the dielectric constant, and
is what discriminates between various flavors of PCM, e.g., the
conductor-like approximation (C-PCM),30 the integral-equation
formalism (IEF-PCM),40 or the surface and simulated volume
polarization for electrostatics [SS(V)PE] approach.41,42

2.2 Free energy

Because the concept of a dielectric constant implicitly includes
solvent averaging, the electrostatic energies in PCM theory are free
energies, whereas up to this point we have introduced expressions
for interaction energies only. To obtain free energies, one must
account for the work associated with polarizing the continuum,
which amounts to half of the electrostatic interaction energy.43,44

Thus, the free energy of an equilibrated state |ii is

Gsolv = hi7Ĥvac + 1
2R̂i7ii. (6)

For the case of state |ii in the frozen reaction field of an
equilibrated reference state |eqi, one has to keep in mind that
the polarization work is incurred in the equilibrated reference
state and thus

GEq(eq)
i = hi7Ĥvac + R̂eq7ii � 1

2heq7R̂eq7eqi. (7)

2.3 Equilibration of the excited-state wave function

Any post-Hartree–Fock calculation performed using the polar-
ized MOs afforded by an SCRF calculation implicitly includes the
interaction with the solvent field. As such, calculation of an
equilibrated excited-state wave function using ADC requires that
the SCF calculation is carried out in the presence of an excited-
state reaction field, which of course is not known in advance.
An iterative procedure is therefore required during which the
reaction-field operator R̂(i) and corresponding wave function |ii
achieve self-consistency. Typically (but not necessarily), the
starting point for these iterations is the excited-state density
(or the respective electrostatic potential or reaction field) com-
puted in a ground-state relaxed solvent field (or in the gas-phase).
In the next step, the SCF is iterated to convergence in the presence
of the reaction field of the excited-state wavefunction |ii, and
another excited-state calculation is performed using the new
MOs, in order to update |ii; convergence to ca. 1 meH is typically

achieved in about five iterations and to 1 meV in about seven
(see ESI†). The same procedure can be used to equilibrate the
reaction field of the ground state using a correlated density,
which corresponds to the perturbation-energy-and-density
approach of ref. 45 (see below).

2.4 From eigenvalues to physical energies

The combination of the two iterative procedures, namely, an
MP/ADC calculation with the ground-state reference as inner loop
and the solvent-field iterations with a different excited-state
reference as an outer loop, leads to complications in the assign-
ment of energies to physical states and processes, which we
elaborate here. In the context of the quantum-chemical calcula-
tion (inner loop), the energy of the ground state is the MP energy
obtained in the frozen reaction field of the equilibrated (outer
loop) reference state, and the excited-state energies are the sum of
this ground-state energy plus an ADC excitation energy. Thus far,
the polarization term in the form 1

2heq7R̂eq7eqi has been
included explicitly at the SCF level of the calculation, whereas
the interaction with the ASC of the reference state, i.e., hi|R̂eq|ii
is included implicitly via the MOs. Accordingly, the excitation
and total energies resulting from an ADC calculation employing
polarized MOs correspond to the energies of the respective
states in the frozen reaction field of the equilibrated (outer-loop
reference) state. Hence, apart from the energy of the latter, the
energies of the other (excited and ground) states have no immediate
physical relevance during this stage of the calculation.

Only in the context of the solvent-field iterations (outer loop)
do the energies of the out-of-equilibrium states acquire physical
significance. For this purpose, they must be regarded in the non-
equilibrium limit according to the Franck–Condon principle,
with only the slow component R̂s of the solvent polarization
frozen with respect to the equilibrated state, whereas the fast
component R̂f is relaxed. To take this into account, we have
modified the ptSS to allow for an arbitrary reference state that
need not be the ground state. For this purpose, all ground-state
quantities in eqn (16) of ref. 9 are replaced with those of the
equilibrated reference state |eqi, yielding

GptSS
i ¼ ið0Þ R̂

f

i

��� ���ið0ÞD E
� ið0Þ R̂

f

eq

��� ���ið0ÞD E

� 1

2
ið0Þ R̂

f

i

��� ���ið0ÞD E
� eq R̂

f

eq

��� ���eqD E� �

þ 1

2

ð
S

gfi ðsÞ � gfeqðsÞ
� �

VgseqðsÞds:

(8)

Here, i(0) refers to the zeroth-order wave function of the state of
interest, |ii, in the non-equilibrium limit. The first line of eqn (8)
accounts for the change in the solute–solvent interaction energy,
the second line accounts for the change in polarization, and the
third line is the change in the self-interaction between the fast
and slow surface charges.

As soon as the reaction field is converged, the sum of the MP
ground-state energy, the ADC excitation energy and the respec-
tive ptSS correction corresponds to the energy of the state |ii in
the non-equilibrium limit, but only with respect to a vertical
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transition from the reference state, e.g. via fluorescence, phos-
phorescence or excited-state absorption. Note that while the
transition probability for fluorescence from the reference to the
ground state is computed per default, state-to-state transition
properties (e.g. for excited-state absorption) are also available
but have to be requested explicitly.

To clearly discriminate between these ‘‘theoretical’’ and
‘‘physical’’ quantities, we will embrace the following partition:
Total and transition energies which are direct results of the
respective HF/MP/ADC calculations for the ground and excited
states are denoted PCM zeroth order. They correspond to the
energy eigenvalues of the respective wave functions in the frozen
ASC of the equilibrated state and hence do not include perturba-
tive, non-equilibrium corrections. Excited states are sorted with
respect to these energies. Transition and total energies including
ptSS non-equilibrium corrections are denoted PCM first order. The
respective ptSS non-equilibrium corrections are always computed
with respect to the equilibrated reference state.

2.5 Electron correlation in the PCM framework

To obtain meaningful results from the comparison of the total
energies of the ionized dimers computed with ADC(2)/SS-PCM
on the one hand and MP/PCM on the other, it is important to
treat the influence of electron correlation onto the solute–solvent
interaction on an equal footing. For the MP ground-state, several
distinct ways have been suggested and explored,46–48 which we
discuss in the following:

(1) PerTurbation-Energy (PTE) approach: Use the solute–
solvent interaction energy computed self-consistently from
the SCF density, then use the resulting, polarized Hartree–Fock
(HF) orbitals for the post-HF calculation, which is MP2 in the
present work.

(2a) PerTurbation-Density (PTD) approach: Compute HF
orbitals and correlation energy in the gas-phase, then obtain
the solute–solvent interaction energy from a PCM calculation
with the correlated gas-phase density.

(3) PerTurbation-Energy-and-Density (PTED, also PTDE)
approach: Equilibrate the correlated density and the solvent
field such that the solute–solvent interaction is self-consistently
included in the MP2 total energy.

A schematic representation of these various methods is
presented in Fig. 1. At first glance, the self-consistent PTED
scheme appears to offer the most sophisticated treatment of the
influence of electron correlation onto the solute–solvent inter-
action, which moreover closely resembles the ADC(2)/SS-PCM
approach. In the case of MP2, however, Àngyàn45 demonstrated
that this iterative scheme involves terms that are at least fourth
order in the density and therefore inconsistent with the respective
level of perturbation theory. The numerical examples in ref. 46–48
show that the PTE and PTED schemes yield nearly identical total
energies, although this might have been the result of small
system sizes and basis sets. To further explore this issue, we
include the total energies and properties computed with both,
the PTE and PTED approaches into our comparison (Section 4.1),
which does not only involve larger systems, but also the

nitromethane molecule, whose electrostatic nature is strongly
affected by correlation effects.

Our experience with the ptSS approach for ADC excited
states9 suggests that it is desirable to compute at least the
solvent field for a correlated density, due to the fact that
excitation energies contain the interaction with the nuclear
component of the ground-state solvent field in zeroth order.
Following this insight, we developed a correction related to
the PTD scheme that eliminates systematic errors due to the
neglect of correlation effects and improves the accuracy of the
ptSS approach for excitation energies. In ref. 9 we called this
the ‘‘PTD’’ approach, but to distinguish this from the PTD method
for the ground state described above, we refer to it here as:

(2b) PTE-PTD approach: Combination of PTD and PTE in
which polarized HF orbitals from a PTE calculation are used for
the PTD post-HF procedure. Obtain the final solute–solvent
interaction energy and solvent field for the correlated (ground
and/or excited state) density from an additional PCM calcula-
tion with the MP density. Although initially developed as a
correction to excitation energies,9 this may also be used to
correct the MP ground-state energy.

Within the PTE-PTD scheme, which we also investigate in
Section 4.1, the interaction energy of any state’s density with the
HF and MP solvent reaction fields is computed explicitly from
stored densities and electrostatic potentials, after the calculation
has converged. For this purpose, the (unrelaxed) MP density
computed from the polarized HF orbitals is used. Eventually
the interaction with the HF solvent field, which is implicitly

Fig. 1 Flowchart of the different approaches to include electron correla-
tion in a PCM framework. Here, r refers to the charge density and g to the
apparent surface charge. The down-pointing arrows indicate at which point
in the procedure the HF, solvation and correlation energies are computed.
Only in the iterative PTED scheme are the MP density and the solvent field
iterated to self-consistency and therefore correlation contributions to the
solute–solvent interaction are contained in the MOs. In all other schemes,
the MOs contain the interaction with the solvent field, computed for the SCF
density. The solvent field equilibration for an excited state is essentially
identical to a PTED calculation, but with an ADC instead of an MP density.
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contained in the energies as elaborated in Section 2.3, is
calculated explicitly and can be replaced with the respective
quantity computed for the MP density.

3 Computational details
3.1 Software

All ADC/SS-PCM calculations were carried out using a locally-
modified version of Q-Chem49 v. 4.3.2 and unless stated otherwise
employ Dunning’s correlation-consistent double- and triple-z basis
sets.50 The PCM implemented in Q-Chem was used with default
settings, i.e., a smooth Lebedev-grid based cavity construction39 with
Bondi’s atomic van der Waals radii,51,52 scaled by a factor of 1.2. Our
recently-introduced ptSS non-equilibrium solvent correction9 was
used to obtain a perturbative estimate of the relaxed energies (using
the full dielectric constant in place of eopt) as well as in the originally
intended purpose, i.e., to compute non-equilibrium corrections
to state energies in solution. The ground-state geometry of DMABN
was computed at the RI-MP2/cc-pVDZ level using Orca v. 3.0.1.53

Excited-state geometries of DMABN were computed at the
RI-ADC(2)/cc-pVDZ level using Turbomole v. 6.3.1.54

3.2 Broken-symmetry wave functions for ionic dimers

Calculations on the symmetric ionic dimers (separation 1 nm)
were performed without point-group symmetry, and the SCF
solution was converged to an asymmetrically-charged, broken-
symmetry solution. The resulting (physically incorrect) wave
function exhibits an energetically low-lying charge-transfer
state, which is a formally symmetric ‘‘charge inverse’’ to the
ground state, e.g.,

Mþ � � �M �!hn M � � �Mþ: (9)

A method that perfectly describes orbital relaxation upon charge
transfer excitation would afford an excitation energy of zero for
the formally-identical charge-transfer (FICT) state in eqn (9). In
practice, however, the MOs are optimized for the asymmetrically-
charged ground state and approximate single-reference excited-
state methods cannot provide quantitative orbital relaxation, so
the gas-phase excitation energies OFICT

vac for the FICT state differ
significantly from zero. For the methods and systems considered
in this work, OFICT

vac ranges from �1 eV to +1 eV. However, this
constant difference does not present a problem in the context
of this work. It is computed in the gas phase and subtracted
from the energy differences obtained from PCM calculations to
obtain the energy difference shown in the plots:

DEplot = EFICT
ADC/SS–PCM � Egs

MP/PCM � OFICT
vac . (10)

4 Results and discussion
4.1 Symmetric ionic dimers

As a first test of the internal consistency of the ADC/SS-
PCM approach and to shed some light onto the different
approaches to treat electron correlation in the PCM framework,
we perform calculations on three symmetric ionized dimers

whose asymmetrically-charged, broken-symmetry ground states
can be computed with MP theory (MP/PTE, MP/PTE-PTD, or
MP/PTED schemes) and compared to ADC/SS-PCM and ADC/
ptSS-PCM calculations of the formally identical charge-transfer state.

4.1.1 Cationic neon dimer. Ne2
+ is the simplest system

considered in this work. The ADC(2) gas-phase excitation energy
or in other words the difference between the ground state and the
FICT state is �0.77 eV. For the MP2 ground state of this simple,
highly symmetrical system, IEF-PCM with e = 32 (typical of polar
organic solvents) yields h0|R̂(0)|0i = 7.56 eV for the solvation
energy (note that this is not the solvation free energy, but just the
solute–solvent interaction without the polarization work), regardless
of whether the PTE, PTE-PTD, or PTED approach is employed.

For the respective FICT state, the ADC(2)/SS-PCM approach
also yields a solvation energy of hCT|R̂(CT)|CTi = 7.56 eV and, as
evident from Fig. 2, the deviation of the solvent-relaxed total
energies computed with the various approaches stays well below
0.5 meV along the whole scanned range of e. This holds even for
the non-iterative ptSS approach, which can be used to obtain a
perturbative estimate of the energy of the solvent-relaxed state by
using the value of the full dielectric constant e also for the optical
dielectric constant n2. This accuracy is surprising since perturba-
tive, non-equilibrium corrections such as our ptSS correction9 or
the ‘‘corrected linear response approach’’ of ref. 22 were designed
to treat small density changes, whereas the FICT state involves
a complete reversal of the 48 Debye dipole moment of Ne+� � �Ne!

4.1.2 Cationic ethene dimer. For (C2H4)2
+ the ADC(2)/cc-

pVTZ gas-phase excitation energy is �0.34 eV. MP2/PTE with
e = 32 affords a solvation energy of 6.05 eV and the PTE-PTD and
PTED alternatives are almost identical at 6.04 eV. Differences
between the total energies are even smaller and lie between
0.5 meV (PTE-PTED) and 5.0 meV (PTE-PTE-PTD); see Fig. 2.

Turning to the charge-inverted FICT state computed with
ADC/SS-PCM, the solvation energy is just slightly larger at
6.11 eV. The difference between the total energies (Fig. 2),
however, is much smaller. After correcting for the gas-phase
excitation energy (i.e., subtracting the difference between gas-
phase MP ground-state and ADC excited-state energies), the
differences between total energies obtained with ADC/SS-PCM
remains below 2 meV compared to the MP/PTE and MP/PTED
methods. Even the perturbative ptSS approach provides a
reasonable estimate of the relaxed energy of the FICT state that
lies within 50 meV of the self-consistent schemes.

4.1.3 Anionic nitromethane dimer. (CH3NO2)2
� is the largest

and lowest-symmetry species of our three ionized dimers. In
previous work on nitrobenzene,55 it was established that the
dipole moment and hence electrostatic nature of the nitro group
differs significantly between the HF and MP description. The
ADC(2)/cc-pVDZ gas-phase excitation energy of the FICT state
is �0.66 eV. The MP2/PTE solute–solvent interaction energy is
7.08 eV for e = 32. The correlation-dependent electrostatics
manifest in a significant lowering of the solvation energy to
6.75 eV, when the MP2/PTE-PTD scheme is employed, or 6.70 eV
using MP2/PTED, and ADC(2)/SS-PCM affords a solvation energy
of 6.75 eV for the FICT state. These pronounced differences
relative to MP2/PTE originate from the impact of electron
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correlation onto the dipole moment, which is 25% larger at the
HF level than it is at the MP2 level. Despite these significant
differences when correlation is included in the solvation energy,
the total energies differ by less than 20 meV. The best agreement is
obtained between the MP2/PTE and ADC(2)/SS-PCM approaches,

which afford a difference of 9 meV compared to 24 meV
between MP2/PTED and ADC/SS-PCM. The PTE-PTD approach
yields a total energy that differs from the other approaches by
140–200 meV.

4.1.4 Discussion. From these ionized dimer examples we
see that solvent-relaxed total energies for symmetric, ionized
dimers agree to within tens of meV across various methods,
even in the case of (CH3NO2)2

� where correlation effects on the
electrostatics are significant. For Ne2

+, where electron correlation
is mostly irrelevant, the self-consistent and even the non-iterative
ptSS approach afford essentially perfect agreement. We conclude
that the description of excited-state solvation effects at the ADC(2)/
SS-PCM level is essentially equivalent to the ground-state MP2/
PTE and MP2/PTED methods, which validates the former.

Despite significant differences in the solvation energy predicted
by the self-consistent PTE and PTED approaches for some of the
cases, the resulting total energies agree with very high accuracy,
consistent with the results of previous investigations.45–48 Consider
the case of (CH3NO2)2

�, for which the PTE and PTED total energies
agree to within 20 meV across a broad range of dielectric con-
stants, despite an electron correlation contribution of 380 meV.
On the other hand, the PTE-PTD combination systematically
deviates from the other approaches, despite the fact that its
predicted solute–solvent interaction energies lie between those
predicted by the PTE and PTED approaches.

Altogether, these findings strongly suggest that not only
the PTED but also the PTE approach provides an adequate
treatment of electron correlation effects in the solute–solvent
interaction, whereas the correlation-corrected PTE-PTD approach
appears to introduce a double-counting of these effects. Despite
previous, successful applications in the framework of the non-
equilibrium corrections within the ptSS approach for vertical
excited states,9 the PTE-PTD correction cannot be recommended
for the ground state.

4.2 Dimethylaminobenzonitrile

In this section the ADC(2)/SS-PCM and ADC(3)/SS-PCM methods
are applied to investigate the photophysics of DMABN, a mole-
cule that is perhaps the canonical example of ‘‘dual fluorescence’’
as a function of solvent polarity.56 This feature originates in the
presence of two low-lying excited states, one of which is a weakly
dipole-allowed (the ‘‘locally excited’’ state, LE) and the other of
which is characterized by intramolecular charge transfer (CT)
that is strongly dipole allowed. While the former is the lowest
excitation in gas phase and unpolar solution (e.g. cyclohexane),
the CT state is supposed to become slightly lower in energy than
LE in polar solution (e.g. acetonitrile), leading to a second
fluorescence band ascribable to S2(LE) - S1(CT) internal conver-
sion. The details of the mechanism such as e.g. the involvement
of an ps* excited state and the interconversion between these
states are, however, subject of an ongoing debate, which is
beyond the scope of this work. For a recent overview, please be
referred to ref. 57. Here, we merely employ DMABN to illustrate
the accuracy of ADC/SS-PCM for the prediction of vertical
fluorescence as well as relative state energies in solution. It
has been reported that there exists a large discrepancy between

Fig. 2 Differences between the solvent-relaxed total energies of Ne2
+,

(C2H4)2
+, and (CH3NO2)2

�, each with a separation of 1 nm between the
monomers, computed using MP2/PTE, MP2/PTE-PTD, or MP2/PTED for
the ground state and ADC(2)/SS-PCM equilibrium solvation (abbreviated
EqS) or ADC(2)/ptSS for the formally identical charge-transfer (CT) state, as
a function of e (horizontal axis). For clarity, the difference between the gas-
phase MP and ADC energies has been removed. The cc-pVTZ basis set is
used for neon and ethene and the cc-pVDZ basis set for nitromethane.
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experimental and calculated fluorescence energies for the CT
state of DMABN and related compounds in polar solvents.27,58

While the agreement for the LE and CT states in the gas phase
and in non-polar solution is reasonable, the predicted ADC(2)
fluorescence energies for the CT state of DMABN and related
molecules are underestimated by more than 1 eV in polar
solvents.27,58 This deviation is much larger than the typical
ADC(2) error of 0.3–0.5 eV, and persists even when solvent
effects on the excited-state structures are taken into account.27

4.2.1 Computational approach. Ground and excited-state
geometries have been computed in the gas phase at the RI-MP2/
and RI-ADC(2)/cc-pVDZ levels of theory, respectively. While for
the ground and LE states only the fully relaxed structures are
investigated, the relaxation of the CT state is explored in more
detail. For this purpose, the relaxation is split into five intermediate
steps beginning with a constrained, planar, CT-optimized structure
(CT0), then twisting the amino group by 45 and 68 to 901 (CT45,
CT68 and CT90), and eventually pyramidilizing the aromatic
carbon (CT90P), as shown in Fig. 3. For each of these geometries,
solvent-relaxed ground- and excited-state energies and properties as
well as the non-equilibrium terms corresponding to vertical absorp-
tion or fluorescence were computed at the ADC(2)/SS-PCM/cc-pVDZ
level of theory, with selected points treated at the ADC(3) level of
theory. In all of these calculations, PCM parameters for cyclo-
hexane (e = 1.89, n2 = 1.88) or acetonitrile (e = 36.7, n2 = 1.81)
were used in combination with the IEF-PCM kernel.

Since the influence of the solvent is accounted for in a
separate ADC/SS-PCM calculation for the fixed gas-phase geo-
metries, this approach neglects the direct interaction of the
geometric relaxation and solvation. In particular in case of the
CT states, in which the solvent stabilization can be as large as
1 eV, there may be a significant influence onto the geometry.
This might explain the larger discrepancies between the
fluorescence energies computed for the CT state compared to
those in the gas phase and non-polar solvents. An implementa-
tion of gradients for solvent-relaxed states computed with ADC/
SS-PCM is in progress, but not yet available.

4.2.2 Results. MP2 and ADC(2) results are summarized in
Fig. 3. Vertical excitation energies in the gas phase are 4.49 eV
for the LE state (expt. = 4.13 eV) and 4.75 eV for the CT state
(expt. = 4.57 eV). For acetonitrile solution, an ADC(2)/ptSS-
PCM(PTED) calculation affords LE and CT states that are
essentially degenerate at 4.39 eV. Calculated solvatochromatic
shifts of �0.10 eV (LE) and �0.36 eV (CT) are in reasonable
agreement with the experimental values, which are �0.27 eV and
�0.34 eV, respectively. Excitation energies in cyclohexane lie
between those computed for the gas phase and for acetonitrile.
Experimental values for the cyclohexane-to-acetonitrile solvent
shift in the LE state (�0.19 eV) and the CT state (�0.26 eV) are
accurately reproduced at �0.14 eV and �0.25 eV, respectively.

On the horizontal axis of Fig. 3, we use a notation ‘‘X//Y’’ to
indicate the state X on which the geometry is relaxed and the state
Y to which the solvent is relaxed. For acetonitrile, full equili-
bration of the continuum solvent at the ground-state geometry
(GS//LE or GS//CT) affords only a small energy reduction of 0.02 eV
and 0.05 eV compared to the ptSS corrections of �0.05 eV (LE)

and �0.09 eV (CT). In cyclohexane, which does not possess a
nuclear polarization component, the differences between ptSS-
corrected non-equilibrium and solvent-relaxed energies are even
smaller. In our experience, this is quite typical and even for polar
solvents the ptSS corrections based on the electronic polarizability
(reflected in n2) often recover most of the energy reduction
obtained with full relaxation of the solvent. This circumstance
can be exploited to estimate the fully-relaxed energy of any state
in a single calculation with the ptSS approach by setting the
dielectric constant equal to n2.

Relaxation of the geometry of the solute for the LE state
yields a much larger energy reduction than the solvent-field
equilibration (i.e., relaxation of the solvent geometry) and a
slightly twisted structure with CCNC dihedral angle of 211, 4.17 eV
above the global ground-state minimum. This corresponds to a
fluorescence energy of 3.73 eV that is very close to the experi-
mental gas-phase value of 3.68 eV. The solvent-field equilibration
for cyclohexane slightly reduces the energy of the LE state by only
0.06 eV, and the fluorescence energy predicted with the ptSS
correction (3.65 eV) is quite close to the gas-phase value and is
also in agreement with experimental data in hexane (3.65 eV).59

The equilibrated solvent field of acetonitrile reduces the energy
of the LE by 0.20 eV to 3.97 eV. At the same time, the energy of
the ground state (in the non-equilibrium limit, i.e., including
ptSS terms) increases by 0.26 eV, to 0.70 eV. This yields a
fluorescence energy of 3.26 eV, which agrees reasonably well
with the experimental value of 3.44 eV.

Unconstrained relaxation of the geometry for the CT state in the
gas phase yields a twisted and distorted structure (CCNC dihedral
angle of 901), in which the amino moiety is bent out of the
aromatic plane. We label this structure CT90P, and it corresponds
to ICT-D in ref. 27. The energy of the CT state for this structure is
3.91 eV, as compared to the twisted-only, C2v-symmetric structure
CT90 at 4.05 eV. Since the ground-state energy increases drama-
tically along the twisting and distortion coordinates, the calculated
gas-phase fluorescence energy for CT90P is as low as 2.39 eV, far
below the experimental value of 3.55 eV.

In non-polar cyclohexane, the CT state is stabilized by about
0.16 eV at the CT0 structure, 0.26 eV for CT90, and 0.11 eV for
CT90P. As a result, the latter two structures are energetically
much closer in non-polar solvents (DE = �0.04 eV) than in gas
phase (DE = �0.14 eV). A much larger stabilization is seen in
acetonitrile: 0.41 eV for CT0, then increasing to 0.73 eV along
the twisting angle but reduced to 0.51 eV for the pyramidalized
CT90P structure. This means that in acetonitrile the CT90
structure at 3.37 eV constitutes the minimum of the potential
energy surface of the CT state, whereas CT90P is slightly (0.03 eV)
higher in energy. This translates into a predicted fluorescence
energy of merely 1.23 eV from the gas-phase minimum CT90P,
much lower than the experimental value of 2.52 eV. Even if the
energy minimum in solution (CT90) is taken as the origin of
the fluorescence as suggested in ref. 27, the predicted energy is
1.83 eV and thus still much lower than the experimental value.

4.2.3 Discussion. We first discuss the disagreement between
computed and measured fluorescence energy of the CT state of
DMABN, which may be attributable to an overly static picture of
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the fluorescence process. As usual, we have assumed that
fluorescence occurs from the minimum of the excited-state
potential surface and hence the maximum of the fluorescence
spectrum is identified as the energy difference at the minimum-
energy structure of the excited state. For the CT state of DMABN,
however, the transition moment ( fosc) between the ground and
CT state is exactly zero at the minimum (twisted intramolecular
CT structures CT90 and CT90P), as evident from Fig. 3. As such,
the maximum of the fluorescence spectrum most certainly
does not originate from the twisted minimum-energy structure,
but instead most of the fluorescence probably arises from less-
twisted structures. For a reduction of the twisting angle to 681,
which costs about 0.18 eV in the gas phase (with respect to the
CT90P minimum) and 0.10 eV in acetonitrile (with respect to
CT90), fosc increases to 0.1. Since the fluorescence energy
strongly depends on the twisting angle in polar solvents
(0.26 eV difference between CT90 and CT68 in CH3CN) and

even more so on the distortion coordinate (0.72 eV between
CT90P and CT90 in CH3CN), a consideration of the twisting
motion in combination with the actual minimum in solution
significantly reduces the deviation between the computed and
experimental values, to 0.41 eV or �0.20 eV assuming the
maximum corresponds to CT68 or CT45, respectively. Turning
this around, one can extrapolate that the twisting angle at
which experimental and calculated values coincide lies between
501 and 551 (depicted as black arrows in Fig. 3). While the same
argument applies to non-polar solvents as well, such solvents
do not strongly modulate the excitation energy along the
twisting coordinate (in particular between CT90 and CT68),
which explains why the agreement is better already in the static
picture in cyclohexane.

Turning to the switching of the dual fluorescence between
polar and non-polar environments, we find that ADC(2) does
not even provide a qualitatively correct picture. The computed

Fig. 3 Relative energies of the LE and CT states of DMABN for the ground state (GS) and excited-state (LE, CT0, CT45, CT68, CT90 and CT90P)
optimized (all gas-phase) geometries without a solvent model (thin lines, dark colors), with equilibrium solvation (EqS) and PCM parameters for
cyclohexane (bold lines, intermediate color), and EqS with parameters for acetonitrile (bold lines, bright color). All energies are given with respect to the
energy of the ground-state in the respective solvent. Starting from the ground-state structure in the ground-state relaxed solvent field (GS//GS, blue), we
use a notation ‘‘X//Y’’ as well as the color gradient on the x-axis to denote the subsequent relaxation of the geometry (X) and the solvent (Y), with respect
to the LE state (to the left, green) and the CT state (to the right, red). Solid lines show the SS-PCM zeroth-order energies of the states in the frozen
solvent-field of the reference state, while the dotted lines (only for non-reference, out-of-equilibrium states) show the first-order energy, which includes
the ptSS non-equilibrium corrections (for a transition from the reference state). Selected experimental fluorescence energies are depicted as arrows and
the remaining values (ref. 59) are given in the inlay. The computed oscillator strength of the CT state (in acetonitrile solution) is plotted with respect to the
secondary axis. All calculations were performed at the ADC(2)/SS-PCM/cc-pVDZ level of theory with IEF-PCM.
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relative energies of the LE and CT states would not give rise to
the observed behavior. Experimentally, emission is observed
only from the LE state in gas phase and non-polar solvents,
whereas in polar solvents there is strong emission from the CT
state along with weak emission from the LE state. Assuming
fast internal conversion between the two states, one would
expect the CT state to lie far above the LE state (i.e., CT thermally
inaccessible) in the gas phase and non-polar solution, while in
polar solution the relaxed minimum of the CT state should
be situated slightly below the LE minimum (LE thermally
accessible). At the ADC(2) level of theory, however, the relaxed
minimum of the CT state lies slightly (0.05 eV) below that of the
LE state already in the gas phase, and is 0.3 eV below the LE
minimum in cyclohexane and 0.5 eV below in acetonitrile. We
suspect that this arises from a deficiency for ADC(2), which in
our experience overestimates the energetic impact of orbital
relaxation and thus underestimates the energy of CT states
relative to locally excited states. This is evident also from the
predicted fluorescence energy, which agrees nicely for the LE
state but is systematically underestimated for the CT state.

To examine how this changes at third order for perturbation
theory, gas-phase and solvent-relaxed energies of the CT and LE
states were recomputed at the ADC(3) level using ADC(2)
geometries. We first carried out ADC(3) calculation in the
solvent field relaxed with respect to the ADC(2) densities, and
subsequently also in the fully consistent ADC(3) reaction field.
As evident from Fig. 4, ADC(3) corrects the shortcomings of
ADC(2) and already the difference between the vertical energies
of the LE and CT states in the gas phase is about 0.2 eV larger.
More importantly, the impact of the geometric relaxation of the
CT state in the gas phase is reduced dramatically from 0.82 eV
to 0.29 eV at the ADC(3) level of theory, while the influence of
solvation is very similar. Altogether, ADC(3)/SS-PCM provides
relative excited-state energies that are in excellent agreement
with the experimentally observed behavior.

Concerning the agreement between the mixed and consistent
third-order approach for the solvent-field shown in Fig. 4, the
differences are surprisingly largest for the LE state in acetonitrile,
at 0.1 eV. This amounts to half of the total relaxation of the LE
state in CH3CN, and indicates that the mixed approach should be
used with caution. One can, however, use the ptSS corrections of
the reference state in the final ADC(3) calculation as a diagnostic
tool. As long as they stay small (say, below 0.005 eV), the second-
and third-order solute–solvent interactions are similar and the
ADC(2) solvent field is appropriate. This is the case for the CT
state, for which the ptSS terms are 0.004 eV and the difference
between the approaches is only 0.02 eV. For the LE state, however,
the ptSS terms amount to 0.02 eV, indicating a significant difference
between the ADC(2) and ADC(3) solvent fields. In such a case, the
fully consistent approach is advisable.

While ADC(3) certainly improves the relative energies of the
CT and LE states compared to ADC(2), the agreement of the
vertical fluorescence energies computed at this level of theory is
slightly worse than with ADC(2). In our experience, this is typical for
vertical excitation energies, which ADC(2) often overestimates as
much as ADC(3) underestimates.60 Consequently, the best estimate
is usually the average of both methods, which appears to be the
case here for fluorescence energies (see table in Fig. 3).

The results of our ADC(2)/SS-PCM approach qualitatively agree
with the closely related ADC(2)/COSMO approach of Lunkenheimer
et al.27 Differences of up to 0.3 eV (but on average o0.1 eV) between
ref. 27 and the present work are present in both the gas phase
and in acetonitrile, and can be attributed to the use of slightly
different geometries (ADC(2)/cc-pVDZ versus RI-CC2/TZVPP),
basis sets (cc-pVDZ versus TZVPP), densities (ISR versus relaxed)
van-der-Waals scaling factor used in construction of the solute
cavity (1.3 versus 1.2) and the PCM itself (IEF-PCM versus
COSMO). Adjusting all these parameters and using C-PCM rather
than IEF-PCM, as it better resembles COSMO, we find both
models agree to within 0.1 eV.

5 Summary and conclusions

It was demonstrated that a general, state-specific PCM in combi-
nation with an ADC(2) or ADC(3) description of the solute’s
electronic structure provides excellent energies of solvent-relaxed
states and vertical transitions in solution. Since we limited our
approach to the state-specific picture, where the solvent effect
enters the quantum-chemical calculation only via one-electron
charge-density Coulomb integrals, the underlying ADC equations
are unmodified and the model can be used in combination with
any flavor of ADC. Moreover, due to this clear separation between
quantum-chemical part of the calculation and the solvent model,
the results are presumably of general validity for both, the
SS-PCM approach as well as the excited-state method.

To validate ADC/SS-PCM, a set of symmetric, ionized dimers was
employed, whose lowest energy CT states are formally identical
to the broken-symmetry ground state. Computing the latter
using the well-established MP/PTE approach and comparing
the results to the CT state computed using ADC/SS-PCM, the

Fig. 4 Comparison of the vertical (gas-phase) and relaxed ADC/SS-PCM
excitation energies of the LE (blue) and CT (orange) states of DMABN.
Results are shown at both second order [ADC(2)] and third order, along
with a mixed approach that uses ADC(3) with the ADC(2) reaction field. All
calculations employ MP2/ADC(2) optimized gas-phase geometries.
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deviation between the two methods was found to be o0.02 eV
over a wide range of dielectric constants. This holds even for the
challenging (CH3NO2)2

� case where electron correlation effects
are large.

In addition to ADC/SS-PCM, we examined the ‘‘PTED’’ variant
of the MP/PCM approach that introduces full self-consistency
between the reaction field and the excited-state density, but found
that differences with respect to the more affordable PTE approach
were negligible. Hence, we conclude that even the PTE approach
includes the impact of electron correlation on the total energy.
Nevertheless, the uncorrelated PTE (SCF) solvent-field can be a
source of errors, e.g. in the calculation of vertical excitation
energies. For this reason, we introduced the PTE-PTD (formerly
PTD) approach, which was successfully applied to improve com-
puted excitation energies in the non-equilibrium formalism in
ref. 9. Applied to the ground state, however, large deviations from
the other approaches were encountered for this a posteriori
correlation correction. This was traced back to a double-counting
of correlation effects, and we thus discourage the use of the
respective correlation correction for the ground state.

Ultimately, ADC/SS-PCM was employed to investigate
solvent-relaxed potential energy surfaces of 4-(N,N)-dimethylamino-
benzonitrile (DMABN). The agreement with experimental fluores-
cence data is excellent for the LE state under all circumstances, in
particular with ADC(2). For the CT state, however, it was demon-
strated that an intra-molecular twisting coordinate has to be
considered in detail to achieve a similar agreement. In general,
the agreement of ADC(2)/SS-PCM is consistently better than for
ADC(3) for fluorescence energies. For the relative energies of the
LE and CT states, however, only ADC(3) yields results that are
consistent with the experimental observation of dual fluorescence
in polar solvents but not in non-polar ones. This was traced back
to an underestimation of the energy of the CT state compared to
the LE state at second order of perturbation theory.

After all, the ADC/SS-PCM approach constitutes valuable tool
that enables an accurate yet efficient description of solvent-
relaxed excited states and transitions in solution at up to third
order of ADC.
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