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Born–Oppenheimer molecular dynamics calculations, especially those that exploit information retained from
previous time steps in order to accelerate convergence of the electronic structure calculations, can suffer from
systematic error in the energy gradient that manifests as a drift in the microcanonical energy. Here, we
demonstrate that this is only the case when the self-consistent field (SCF) convergence criterion is set too low;
using only a marginally tighter threshold (still two orders of magnitude lower than what is standard for geometry
optimizations), the drift disappears completely, for a time scale of several picoseconds. Using a Fock matrix
extrapolation technique, SCF convergence is achieved in as few as three iterations per time step, without
sacrificing energy conservation. In test calculations for C2F4, (H2O)4

�, (H2O)6, and [Fe(H2O)6]
21, we demonstrate

energy-conserving Fock matrix extrapolation that reduces the number of SCF cycles by up to 70% and reduces
the computer time per molecular dynamics step by 45–55%, relative to simulations performed without
extrapolation.

1. Introduction

In Born–Oppenheimer molecular dynamics (BOMD) calcula-
tions, a set of nuclei are propagated according to classical
equations of motion, on a potential energy surface obtained by
‘‘on-the-fly’’ solution of the quantum-mechanical electronic
structure problem. Fundamental to this approach is the fact
that the electronic wave function or density is converged
following each nuclear step, in contrast to extended-Lagran-
gian methods1 such as Car–Parrinello molecular dynamics2

and its Gaussian-orbital-based congeners.3–5 In extended-La-
grangian molecular dynamics (ELMD), the electronic degrees
of freedom are propagated rather than optimized, as in BOMD.
Because ELMD algorithms do not iterate the wave function to
convergence, these methods are inherently more efficient than
BOMD, at least in the sense that simulations consume less
computer time per unit of simulated time. For example, in
recent studies of liquid water and water clusters, it was con-
cluded that ELMD is three to four times more efficient than
BOMD, according to this criterion.6,7 On the other hand,
ELMD represents an approximation to true classical dynamics
on the Born–Oppenheimer potential surface; it is known, for
example, that errors in ELMD vibrational frequencies can be
quite large.4,8–10 The presence and importance of other arti-
facts in ELMD continues to be debated.7,10–12

BOMD is, by definition, the true classical dynamics on the
Born–Oppenheimer potential energy surface, assuming that
the electronic problem is solved exactly (within a given model
chemistry) at each time step, hence improving the efficiency of
this method remains an active area of research. A major
concern is reduction of the number of self-consistent field
(SCF) iterations required to convergence the electronic density
matrix at each nuclear configuration, for this is the only
portion of the calculation for which ELMD is computationally
more efficient than BOMD. (We limit our discussion to SCF
electronic structure theory, as the SCF step is necessary any-
way for more accurate treatments.)

Since energy conservation requires small time steps, an
obvious means to accelerate BOMD simulations is to use the

converged molecular orbitals (MOs) or density matrix at time t
to generate an initial guess at time t þ dt, or better still, to
extrapolate a guess using converged MOs from several pre-
vious time steps.13 Alternatively, one might extrapolate a
sequence of converged Fock matrices instead, as suggested
recently by Pulay and Fogarasi.14 The latter approach has two
advantages: first, the Fock matrix can be extrapolated without
orthogonality or idempotency constraints; and second, Fock
matrix extrapolation obviates the need for a ‘‘Fock build’’ in
the first SCF cycle. In Gaussian basis sets (which are used
exclusively in this work), the cost of constructing the Fock
matrix exceeds the cost of diagonalizing it by an overwhelming
factor, except for very large systems that are presently beyond
the reach of ab initio molecular dynamics. For these reasons,
we focus on Fock matrix extrapolation rather than MO or
density matrix extrapolation.
It is already known that extrapolation can significantly

reduce the number of SCF iterations necessary to reach con-
vergence in BOMD calculations. Given that larger time steps
are possible in BOMD than in ELMD,Marx and Hutter1 go so
far as to conclude that BOMD ‘‘can be made as fast as (or even
faster than) Car–Parrinello molecular dynamics. . . at the ex-
pense of sacrificing accuracy in terms of energy conservation.’’
That last caveat portends a serious problem with BOMD: the
resulting trajectories can suffer from systematic error in the
energy gradient that is exacerbated by extrapolation,14 and is
manifested as a drift (secular error) in the microcanonical
energy.1,13,14

Energy conservation is clearly a desirable feature, so the
relevant question is how efficient the BOMD algorithm can be
made without introducing any energy drift, at least not on time
scales that are accessible to ab initio molecular dynamics
(currently t50 ps). Using a plane-wave code to simulate
10 ps of dynamics for 64 water molecules in a periodic box,
VandeVondele et al.13 recently demonstrated that, given a
sufficiently tight SCF convergence threshold, energy drift can
be made small enough (2 � 10�7 Eh/ps per atom, where Eh is
the atomic unit of energy, the hartree) to make extrapolation
useful. These authors used MO extrapolation, though no data
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were provided regarding the performance of the extrapolation.
Conversely, Pulay and Fogarasi14 used Fock matrix extrapola-
tion in a Gaussian-orbital-based code and reported conver-
gence in as few as two iterations per time step, but did not
quantify the error in energy conservation caused induced by
the extrapolation procedure.

In this work, we systematically explore the limits of Pulay
and Fogarasi’s Fock matrix extrapolation technique,14 in terms
of energy conservation and convergence acceleration. We
demonstrate that energy drift is only a problem when the
SCF convergence threshold is reduced to a very low value
(10�4Eh). For tighter thresholds (10

�6Eh), the energy drift per
picosecond is smaller than the normal energy fluctuations
arising from the finite time step, which is to say that the former
is effectively zero. Under demands of high accuracy, we find
that Fock matrix extrapolation reduces the cpu time required
for SCF convergence by about 50% in most cases.

2. Extrapolation procedure

Following Pulay and Fogarasi,14 we assume that a Fock matrix
element Fmn in the atomic orbital (AO) basis can be represented
as a low-order polynomial in the time t or, more conveniently,
in the molecular dynamics step number s,

FmnðsÞ ¼
XM

m¼0
cðmnÞm sm: ð2:1Þ

We seek a vector c(mn) of best-fit coefficients for the ansatz in
eqn (2.1), using the previous N values of Fmn as data points. Let
these values be collected into a vector f (mn). Taking s to have
values �(N � 1), �(N � 2),. . .,0, the extrapolation coefficients
c(mn) for s ¼ 1 are obtained by solution of the linear system

Ac(mn) ¼ f (mn), (2.2)

in which A is the N � (M þ 1) matrix with elements

Anm ¼ [�(N � n)]m�1. (2.3)

This system must be solved for each m and n, but since A is
independent of the AO indices, its generalized inverse need be
constructed only once, by singular value decomposition, at the
outset of the calculation. Subsequently, the elements Fmn are
determined by the action of this inverse on the vectors f (mn); the
operation count for this procedure is negligible in comparison
to a proper Fock build.

At t ¼ 0 and for each of the first N time steps, we use a
normal SCF guess for the density matrix, from which a Fock
matrix is constructed in the first SCF cycle. For this purpose,
all of the calculations reported here use the superposition of
atomic densities (SAD) guess, a block-diagonal density matrix
whose blocks are obtained from a library of atomic SCF
calculations. Beginning on the (N þ 1)st time step, the Fock
matrix in the first SCF cycle is obtained by extrapolation and
then diagonalized to obtain an initial density matrix. We refer
to this procedure as (N, M) extrapolation, where N is the
number of saved Fock matrices and M specifies the degree of
the extrapolation polynomial. General (N, M) extrapolation
has been implemented in the Q-Chem electronic structure
package,15 which was used for all of the calculations in this
work.

Fock matrix extrapolation, as described above, embodies a
point of view in which each Fmn is simply an oscillatory
function in time whose undulations may be fit to a low-order
polynomial. Considering the broader point of view, that F is
the representation of an operator in a basis that is finite and
time-dependent (since the basis functions are tied to atoms), it
is tempting to account for the changing nature of the AO basis
by projecting all of the saved Fock matrices into the current
AO basis at each time step, prior to extrapolation. If F1 is a

Fock matrix in some AO basis with overlap matrix S1, then its
representation F2 in a different AO basis is given by

F2 ¼ S21S1
�1F1S1

�1S12, (2.4)

in which S12 ¼ Sw
21 is the overlap matrix of the two AO basis

sets. Upon implementing this procedure, however, we discov-
ered that projection significantly degrades the effectiveness of
the extrapolation procedure, and therefore projection is not
considered further.
In this work, we report results using the (4,2), (6,3), (8,4),

(12,6) and (16,8) extrapolation schemes [Although the accuracy
of the extrapolation typically increases with N andM, there are
no ‘‘magic’’ combinations; exploratory calculations with other
N and M values (M r 8 and N r 2M) afforded similar
behavior.] We also report results using converged MOs from
the previous time step as an initial guess (from which a Fock
matrix is constructed in the first SCF cycle) and also using the
converged Fock matrix from the previous time step, i.e., (1,0)
extrapolation. As a control, we also discuss simulations with-
out extrapolation, in which a SAD guess is used at each time
step. (For most applications, the SAD guess is the most
accurate non-extrapolated initial guess available in Q-Chem.)
For the systems and basis sets examined herein, diagonaliza-
tion of the Fock matrix represents a negligible amount of
overhead, so we characterize the effciency of various SCF
guesses in terms of the average number of Fock builds per
time step, NFB.
The performance of these methods is evaluated as a function

of the SCF convergence threshold. We use the notation eSCF ¼
n to indicate that convergence is achieved when all elements of
the occupied-virtual component of the Fock matrix are smaller
than 10�n Eh in magnitude. (All calculations utilize Pulay’s
direct inversion in the iterative subspace algorithm16 to con-
verge the SCF calculations.) eSCF ¼ n also implies that the
threshold for neglecting shell pairs is 10�(n13) and that the
threshold for neglecting AO integrals is 10�(n13) Eh. (In cases
of near-linear dependencies in the AO basis, these shell pair
and integral thresholds would need to be tightened, but we do
not anticipate that linear dependencies will affect the behavior
of the algorithm with respect to the SCF convergence thres-
hold, which is the main focus of the present study.)

3. Numerical tests

3.1. A toy system

In order to compare with the work of Pulay and Fogarasi,14

who first introduced the Fock matrix extrapolation procedure
described in the previous section, we focus first on one of the
test systems used by those authors, namely, the Hartree–Fock
(HF)/3-21G dynamics of C2F4 at T ¼ 500 K. Our simulations
are run in the microcanonical ensemble, so ‘‘temperature’’ in
this work specifies a Maxwell–Boltzmann distribution from
which initial velocities are sampled. When comparing different
extrapolation methods, all methods use the same initial velo-
cities and coordinates, the latter corresponding to the mini-
mum-energy molecular geometry. The results discussed below
for C2F4 are averages over five different trajectories, though the
performance statistics (number of Fock builds and energy
fluctuations) do not depend strongly on the particular initial
conditions. Each C2F4 trajectory was propagated for 2.0 ps
using the velocity Verlet algorithm, with a time step dt ¼ 20 au
(E0.484 fs). The corresponding calculations by Pulay and
Fogarasi14 were propagated for 0.5 ps with dt ¼ 10 au and
eSCF ¼ 4.
Table 1 characterizes the results of our simulations in terms

of energy fluctuations and the average number of Fock builds
per time step. Consider first the eSCF ¼ 4 results. Using low-
order extrapolation schemes like (4,2) and (6,3) we recover the
spectacular result demonstrated by Pulay and Fogarasi,14
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namely, SCF convergence using fewer than two Fock builds
per time step. As noted by those authors, this rapid conver-
gence comes at the cost of serious systematic error in the
gradient, which manifests as a rapid drift in the energy.
Perhaps paradoxically, higher-order extrapolations (not con-
sidered by Pulay and Fogarasi) require more SCF cycles per
time step than lower-order ones, although these higher-order
extrapolations substantially reduce the energy drift.

Fig. 1 typifies the fluctuations in the energy that are observed
with eSCF ¼ 4. Consistent with earlier results regarding energy
drift in BOMD1,14 and in ordinary (analytic potential) mole-
cular dynamics,17 the drift is linear in time, so we quantify it by
fitting E(t) to a linear function of time, the slope of which we
report in Table 1. (Energy drifts are reported in units of mEh

ps�1, but the fits utilize the entire 2.0 ps of simulated time). We
also tabulate the root mean square fluctuations in the energy
after removal of the linear drift term. This quantity, termed
energy noise,18 provides a measure of the energy fluctuations
that arise solely from the finite time step. The energy drift
should be interpreted as effectively zero unless the product of

the drift rate and the total simulation time is significantly larger
than the energy noise.
The appearance of any energy drift at all may seem curious,

given that the velocity Verlet integrator is usually understood to
be symplectic,17 time-reversible,19 and remarkably stable against
roundoff errors,20,21 properties that are intimately connected to
the existence of stable, conservative trajectories at long
times.17,22–25 Strict time reversibility, however, requires that
the energy gradient be evaluated in a time-reversible manner.
This is trivial if an analytic potential is available, but not in cases
where the energy is evaluated via self-consistent iteration and
converged only to finite precision. In practice convergence is
always incomplete, and as such no BOMD algorithm can be
strictly time-reversible unless the initial guess for the SCF
solution is independent of the previous time steps. SCF guess
procedures such as the SAD guess that depend only on the
locations of the nuclei (along with fixed parameters such as the
one-electron basis set) thus satisfy time-reversibility, but extra-
polations do not. Hence the velocity-Verlet/SAD algorithm
affords time-reversible, symplectic dynamics (up to errors intro-
duced by the finite convergence threshold), and indeed the
‘‘drift’’ reported for the SAD guess at eSCF ¼ 4 (Table 1) is only
slightly larger than the noise and probably does not represent a
true secular error. In contrast, several of the extrapolations
schemes afford energy drifts that are one or more orders of
magnitude larger than the noise, although the drift decreases
significantly when higher-order extrapolations are employed.
In their work on Fock matrix extrapolation, Pulay and

Fogarasi14 propose that energy drift stems from systematic
error in the gradient, which in turn arises from overdamped
convergence when the SCF guess is very close to the converged
solution. In other words, they propose that when using extra-
polation, the HF wave function converges from the ‘‘same
side’’ in Hilbert space at each time step. To test this idea, we set
the SCF convergence threshold to 10�10 Eh and recomputed
the energy gradient at each molecular geometry for several of
the C2F4 trajectories obtained with eSCF ¼ 4. AO integral
thresholds were set to the same value in both calculations, in
order to isolate the error due to incomplete SCF convergence.
Fig. 2 illustrates the difference between the ‘‘exact’’ (10�10 Eh)
force between the two carbon atoms and that obtained using
eSCF ¼ 4 and eSCF ¼ 6 with either of two different SCF guesses.
It is apparent that the SAD guess provides an unbiased error in
the force, whereas the mean error using (4,2) extrapolation is
clearly different from zero. Still, the force error is highly
oscillatory and may take either sign, which means that the
picture is somewhat more complicated than the simple expla-
nation offeered by Pulay and Fogarasi.14 It is also interesting
that the overall magnitude of the force error is smaller when
using (4,2) extrapolation than using the SAD guess, despite the
systematic error in the former.
Paradoxically, while high-order extrapolations significantly

reduce the energy drift at eSCF ¼ 4, they do not always reduce

Table 1 Energy fluctuations and average number of Fock builds, NFB, for five 2.0 ps HF/3-21G trajectories for C2F4 at T ¼ 500 K (dt ¼ 20 au)

eSCF ¼ 4 eSCF ¼ 6 eSCF ¼ 8

dE/mEh dE/mEh dE/mEh

SCF guess NFB Noise Drift/ps�1 NFB Noise Drift/ps�1 NFB Noise Drift/ps�1

SAD 6.1 6.5 8.4 9.3 3.5 0.1 13.2 3.5 0.1

Previous MOs 2.1 753.1 5044.9 6.5 3.5 1.7 10.3 3.5 0.1

(1,0) extrap. 4.1 53.2 1519.4 7.2 2.8 8.9 10.7 3.5 0.1

(4,2) extrap. 1.6 23.0 795.4 3.8 3.7 38.1 7.5 3.5 0.1

(6,3) extrap. 1.9 9.7 43.3 2.8 3.5 0.8 6.4 3.5 0.1

(8,4) extrap. 2.5 10.5 6.9 2.8 3.5 3.0 6.3 3.5 0.2

(12,6) extrap. 2.9 12.5 13.7 2.9 3.5 1.1 4.5 3.5 0.1

(16,8) extrap. 3.2 11.8 21.3 3.0 3.5 0.4 3.9 3.5 0.1

Fig. 1 Energy fluctuations for one C2F4 trajectory (eSCF ¼ 4),
obtained using different SCF guesses and time steps.
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the overall magnitude of the force errors, as shown in Fig. 3.
Only by increasing eSCF is the force error systematically
reduced, and by the time eSCF ¼ 6 there is little difference,
overall, in the force errors for high- versus low-order extra-
polations. The data listed in Table 1 for eSCF ¼ 6 and eSCF ¼ 8
testify that this is generally true: for eSCF Z 6, all cubic and
higher-order extrapolations afford precisely the same energy
noise and energy drift as measured for the SAD guess, and this
drift is smaller, per picosecond, than the energy noise. We
conclude that the behavior of Fock extrapolation at eSCF ¼ 4 is
an artifact of the erratic behavior induced by a loose conver-
gence threshold. (Q-Chem’s default is eSCF ¼ 8 for calculations
that require the energy gradient.) This erratic behavior can be
seen, for example, in the fact that for eSCF Z 6 the average
number of Fock builds decreases steadily as the extrapolation
is taken to higher orders (though ultimately reaching some
limit), whereas for eSCF ¼ 4, the smallest value of NFB is
obtained using a quadratic extrapolation.

Although Pulay and Fogarasi14 considered only eSCF ¼ 4,
other work1 also indicates that BOMD energy drifts are
reduced significantly by tightening the SCF convergence
threshold, though at a cost of additional SCF cycles at each
time step. In the present case, use of eSCF ¼ 6 affords energy-
conserving dynamics and requires essentially just one Fock
build beyond what is required for the most efficient (non-
energy-conserving) extrapolations at eSCF ¼ 4. This is a small
price to pay for preserving a fundamental invariant of the
dynamics.

In Gaussian basis sets, the SCF gradient computation is 2–5
times more expensive than a single Fock build, and intuition
therefore suggests that it is disadvantageous to decrease dt,
even though this increases the accuracy of the extrapolation.
To confirm this intuition, we simulated the same HF/3-21G
trajectories for C2F2 using a time step of 10 au rather than 20
au; the results are summarized in Table 2. For high-order
extrapolations, the smaller time step reduces the average
number of Fock builds by one build or fewer, but requires
twice as many gradient calculations. Moreover, at eSCF ¼ 4,
energy conservation is not necessarily any better than it is at

the smaller value of dt; Fig. 1 illustrates that the rate of energy
drift may either increase or decrease with the time step, for the
same initial conditions. Thus, even when using Fock matrix
extrapolation, one should make dt as large as possible, with the
upper limit dictated by acceptable energy noise.
In fact, even the larger time step explored above is quite

conservative, since the shortest normal mode vibrational per-
iod in C2F4 is 15 fs. Exploratory calculations with dt ¼ 100 au
(E2.42 fs), in conjunction with (12,6) extrapolation, afforded
an energy noise of only 4 � 10�5 Eh over 1.0 ps of simulation
time, with essentially zero drift. We will continue to utilize
rather conservative (though not unreasonable) time steps in
this work, in order to demontrate that energy drift can be
eliminated under demands of high accuracy. In chemical
applications, it may be possible to increase the time step
considerably.

3.2. Realistic applications

The HF/3-21G model is really only a toy, useful for testing a
broad swath of extrapolation schemes but not representative of

Fig. 2 Errors in the C–C force in C2F4.

Fig. 3 Errors in the C–C force in C2F4. Each panel uses a different
vertical scale.
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realistic BOMD applications. In this section we explore several
more realistic problems, starting with C2F4 in a larger basis set,
6-311G*, and also using potentials from density functional
theory (DFT). A statistical summary of HF/6-311G* calcula-
tions for C2F4 appears in Table 3, while Table 4 gives the same
information for BLYP26,27 and B3LYP28,29 simulations of this
molecule. The trends are mostly the same as those observed at
the HF/3-21G level: large energy drifts are observed with
eSCF ¼ 4, but these disappear for eSCF Z 6, whereupon all
methods yield comparable, dt-limited energy noise, although in
the DFT case this requires somewhat higher-order extrapola-
tions than were necessary in HF calculations. For the HF and
B3LYP models, we achieve energy-conserving dynamics with
an average of as few as three Fock builds per time step. For
BLYP, an average of four builds are required per time step,
consistent with our experience that BLYP is typically more
difficult to converge than B3LYP.

The electronic structure of the C2F4 molecule is admittedly
very simple, so in the remainder of this work we examine more
challenging electronic structure problems, including a hydro-
gen-bonded cluster, a radical anion, and a transition metal
complex. For the first of these, we selected the ‘‘book’’ isomer30

of (H2O)6. One might expect a degradation in the performance
of AO-based extrapolation procedures when applied to clusters
(as opposed to purely covalent systems), since intermolecular

interactions can lead to significant recoupling of the AOs as the
monomers reorient relative to one another. Table 5 sum-
marizes the results of three 1.0 ps simulations of (H2O)6 at
T ¼ 300 K, using the HF, BLYP, and B3LYP potentials in the
6–31G* basis, with eSCF ¼ 6. As in the C2F4 simulations, high-
order extrapolations like (12,6) and (16,8) afford energy-con-
serving dynamics at a cost of three Fock builds per time step,
for both DFT and HF models; lower-order extrapolations like
(6,3) occasionally engender a slight energy drift. Even though
our simulations extend only to t ¼ 1.0 ps (4134 time steps of
width dt ¼ 10 au), we do not expect the rate of energy drift to
increase substantially over longer time scales, since BOMD
simulations out to 8 ps exhibit energy drifts that are still linear
in time,1 while large-scale molecular dynamics simulations on
analytic potentials exhibit energy drifts that are linear in time
out to at least 1 ns.17

For the (H2O)6 system, extrapolation reduces the number of
Fock builds by 65–70% relative to using the SAD guess at each
time step, though the reduction in cpu time is smaller than this
factor, because in Gaussian basis sets the cost of an SCF
gradient calculation is 2–5 times that of a single Fock build.
Specifically, for (H2O)6 in the 6-31G* basis, the gradient
computation is 4.9 times more expensive than a single Fock
build, at the HF level; 3.6 times more expensive at the B3LYP
level; and 2.1 times more expensive at the BLYP level. (These

Table 2 Energy fluctuations and average number of Fock builds, NFB, for five 2.0 ps HF/3-21G trajectories for C2F4 at T ¼ 500 K (dt ¼ 10 au)

eSCF ¼ 4 eSCF ¼ 6 eSCF ¼ 8

dE/mEh dE/mEh dE/mEh

SCF guess NFB Noise Drift/ps�1 NFB Noise Drift/ps�1 NFB Noise Drift/ps�1

SAD 6.1 11.2 11.6 9.3 1.0 0.2 13.2 1.0 0.0

Previous MOs 2.0 364.0 6123.6 5.9 1.0 2.0 9.7 1.0 0.0

(1,0) extrap. 4.0 9.2 1136.2 6.6 0.9 2.6 10.0 1.0 0.0

(4,2) extrap. 1.2 4.6 114.5 2.3 1.1 31.6 5.8 1.0 0.1

(6,3) extrap. 2.0 8.0 33.9 2.1 1.0 1.0 4.3 1.0 0.0

(8,4) extrap. 2.5 8.0 20.8 2.4 1.0 0.3 3.0 1.0 0.1

(12,6) extrap. 3.0 7.6 16.5 2.7 0.9 0.3 2.9 1.0 0.0

Table 3 Energy fluctuations and average number of Fock builds, NFB, for five 2.0 ps HF/6-311G* trajectories for C2F4 at T ¼ 500 K (dt ¼ 20 au)

eSCF ¼ 4 eSCF ¼ 6 eSCF ¼ 8

dE/mEh dE/mEh dE/mEh

SCF guess NFB Noise Drift/ps�1 NFB Noise Drift/ps�1 NFB Noise Drift/ps�1

SAD 6.0 11.2 16.9 9.6 4.1 2.5 13.3 3.5 0.3

Previous MOs 2.0 887.7 4997.0 6.0 3.7 16.0 10.2 3.6 0.4

(6,3) extrap. 2.0 24.5 65.8 2.8 3.6 8.9 6.0 3.6 0.2

(12,6) extrap. 3.1 25.2 48.3 3.1 3.6 0.4 4.1 3.6 0.2

(16,8)extrap. 3.5 26.1 53.9 3.1 3.6 0.3 3.9 3.6 0.2

Table 4 Energy fluctuations and average number of Fock builds, NFB, for five 1.0 ps DFT/6-311G* trajectories for C2F4 at T ¼ 500 K (dt ¼ 20 au)

eSCF ¼ 6 eSCF ¼ 8

dE/mEh dE/mEh

Functional SCF guess NFB Noise Drift/ps�1 NFB Noise Drift/ps�1

BLYP SAD 10.8 2.6 0.6 13.4 2.6 0.3

BLYP (6,3) 3.3 2.6 15.9 6.8 2.6 0.3

BLYP (12,6) 4.0 2.7 1.4 4.5 2.6 0.3

B3LYP SAD 9.6 3.4 2.4 13.0 3.4 0.5

B3LYP (6,3) 3.8 3.4 12.2 6.4 3.4 0.5

B3LYP (12,6) 3.0 3.4 0.9 4.1 3.4 0.5
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values are averages over all time steps, and incremental Fock
builds31,32 have been used to accelerate computation of the
Fock matrix.) The ratio of SCF convergence time to SCF
gradient time for each (H2O)6 calculations is listed in Table 5.
Absent Fock matrix extrapolation, SCF convergence is the
overwhelming bottleneck at each time step, but with high-order
extrapolations this step is comparable to, or even faster than,
computation of the SCF energy gradient. Finally, we list in
Table 5 the total cpu time that is required for dynamics with
Fock matrix extrapolation, as a fraction of the time required
for dynamics using only the SAD guess. Due to the relatively
high cost of gradient calculations, the aforementioned 65–70%
reduction in the number of Fock builds translates into about a
45–55% reduction in overall cpu time.

In SCF electronic structure calculations, radicals and transi-
tion metal complexes typically require a larger number of SCF
iterations than closed-shell, main-group molecules. In recent
work,33 we have simulated temperature-dependent photoelec-
tron spectra for the radical anion (H2O)4

�, and here we take
advantage of the rather large number of trajectories required
for that study in order to demonstrate the robustness of the
Fock matrix extrapolation procedure. The (H2O)4

� system
presents a more challenging test of extrapolation than either
C2F4 or (H2O)6 because the excess electron in (H2O)4

� is
bound only by the dipole moment of the underlying water
cluster, so highly diffuse basis sets are required in order to
obtain accurate electron detachment energies. Our simulations
of (H2O)4

� utilize the B3LYP/6-31(1þ,3þ)G* model,34 where
the indicated basis set contains one set of diffuse sp functions
on each oxygen atom and three sets of diffuse s functions on
each hydrogen atom, with orbital exponents that are decre-

mented by successive factors of 3.32. The most diffuse of these
Gaussian basis functions has a full width at half maximum of
15.4 Å, hence the diffuse basis functions centered on different
atoms overlap significantly and thus the singly-occupied mo-
lecular orbital can fluctuate markedly, coupling together dif-
ferent AOs as the dipole moment vector changes in time.
A statistical summary of (H2O)4

� trajectories appears in
Table 6, where the averages involve three different structural
isomers and 50–100 half-picosecond trajectories at each of six
different temperatures. All simulations used (12,6) extrapola-
tion with eSCF ¼ 8. Whereas the SAD guess consistently
requires 16 Fock builds per time step, extrapolation reduces
NFB to 7.5–8.5 (depending somewhat on the temperature). In
hindsight, the use of eSCF ¼ 8 seems overly conservative;
exploratory calculations for T ¼ 50 K and T ¼ 300 K using
eSCF ¼ 6 show a reduction in NFB to 5–7 builds per time step
using (12,6) extrapolation, whereas the SAD guess consistently
requires 11 Fock builds with this threshold. In either case,
Fock matrix extrapolation reduces NFB by 45–50% relative to
the SAD guess. This is not quit as dramatic as the 65–70%
reduction obtained for (H2O)6, reflecting the more complicated
electronic structure of (H2O)4

�.
As a final example, we have simulated the dynamics of the

octahedrally-coordinated [Fe(H2O)6]
21 complex at T ¼ 150 K

using the B3LYP/6-31G* potential. The results (Table 7) are
averaged over three 0.5 ps trajectories using eSCF ¼ 6. Relative
to B3LYP/6-31G* simulations of (H2O)6 using the same con-
vergence threshold (Table 5), this complex requires approxi-
mately four more Fock builds per time step, absent
extrapolation. Using high-order extrapolation, however, only
about two additional builds are required relative to extrapo-
lated simulations for the electronically simpler (H2O)6 com-
plex. Just as we saw for (H2O)6, in the case of [Fe(H2O)6]

21

Fock matrix extrapolation reduces the total cpu time for SCF
convergence by about 45%, meaning that this step consumes
essentially the same amount of time as calculation of the SCF
energy gradient.

Table 5 Statistical summary of three 1.0 ps trajectories for (H2O)6 at T ¼ 300 K in the 6-31G* basis set (eSCF ¼ 6, dt ¼ 10 au). Also listed is the

relative cpu time for each SCF guess method, as well as the ratio of time spent in SCF convergence to time spent in gradient computation

dE/mEh

Functional SCF guess NFB Relative cpu time SCF time/grad. time Noise Drift/ps�1

HF SAD 9.0 1.00 1.85 8.7 1.8

HF (6,3) 3.1 0.58 0.64 8.8 92.9

HF (12,6) 3.2 0.56 0.61 8.7 0.5

HF (16,8) 3.2 0.57 0.61 8.7 0.9

BLYP SAD 10.5 1.00 4.92 8.1 5.5

BLYP (6,3) 4.0 0.50 2.02 7.0 10.2

BLYP (12,6) 3.4 0.46 1.76 7.0 2.9

BLYP (16,8) 3.0 0.44 1.61 5.0 2.8

B3LYP SAD 9.0 1.00 2.56 6.9 1.9

B3LYP (6,3) 3.9 0.60 1.15 6.9 5.3

B3LYP (12,6) 3.2 0.55 0.97 6.9 1.7

B3LYP (16,8) 3.0 0.54 0.91 6.9 2.0

Table 6 Energy fluctuations and average number of Fock builds,NFB,

for simulations of (H2O)4
� at various temperatures, using (12,6)

extrapolation and eSCF ¼ 8. (Standard deviations are given in

parentheses.)

dE/mEh

T/K NFB Noise Drift/ps�1

50a 7.3(0.9) 2.7(1.4) 3.1 (4.8)

100a 7.8(0.8) 5.4(2.9) 2.9 (2.5)

150b 8.0(0.8) 7.7(3.5) 2.7 (2.9)

200b 8.2(0.9) 10.4(5.4) 4.0 (3.9)

250c 8.4(1.0) 16.1(8.5) 5.9 (6.7)

300c 8.5(1.1) 16.5(8.6) 9.5(11.5)

a Average over 50 trajectories. b Average over 100 trajectories. c Aver-

age over 60 trajectories.

Table 7 Statistical summary of three 0.5 ps B3LYP/6-31G* trajec-

tories for [Fe(H2O)6]
21 at T ¼ 150 K (eSCF ¼ 6, dt ¼ 10 au)

dE/mEh

SCF guess NFB Relative

cpu time

SCF time/

grad. time

Noise Drift/ps�1

SAD 13.2 1.00 2.71 8.1 24.4

(6,3) 4.3 0.50 0.86 7.1 18.4

(12,6) 5.0 0.54 0.98 7.0 1.9

(16,8) 5.3 0.55 1.03 7.1 2.3
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4. Summary

Catastrophic energy drift in BOMD is an artifact of excessively
loose SCF convergence thresholds; using even a modest thres-
hold (10�6 Eh in the occupied-virtual Fock matrix elements),
systematic energy drift is reduced to a few microhartree
(B10�3 kcal mol�1) per picosecond of simulated time, a rate
that appears to be stable over time scales currently accessible to
ab initio molecular dynamics. For all practical purposes, this
means that energy drift is eliminated entirely, since typical
molecular dynamics time steps introduce unbiased energy
fluctuations on the order of a few microhartree.

Extrapolation of Fock matrices retained from previous time
steps reduces the overall cost of BOMD simulations by 45–
55%. For the convergence threshold mentioned above, extra-
polation using quartic or higher polynomials is recommended,
as opposed to the quadratic scheme originally recommended
by Pulay and Fogarasi.14 In particular, the ‘‘(12,6)’’ extrapola-
tion scheme (12 saved Fock matrices and a sixth-degree poly-
nomial extrapolation), in conjuction with an SCF convergence
threshold of 10�6 Eh, provides energy-conserving dynamics for
a variety of nontrivial systems, including radicals and transi-
tion metal complexes, using both Hartree–Fock and density
functional potentials in a variety of common Gaussian basis
sets. With the aforementioned threshold, SCF convergence is
consistently achieved in 3–5 Fock builds, which means that
SCF convergence is no longer the overwhelming bottleneck in
BOMD calculations, but instead is comparable in cost to
calculation of the energy gradient. Fock matrix extrapolation
considerably narrows the gap in efficiency between BOMD and
extended-Lagrangian molecular dynamics methods, without
introducing any additional approximations.
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