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Vertical electron detachment energies (VDEs) are calculated for a variety of (H2O)n
� and (HF)n

�

isomers, using different electronic structure methodologies but focusing in particular on a

comparison between second-order Møller–Plesset perturbation theory (MP2) and coupled-cluster

theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small

(H2O)n
� clusters (n r 7), the correlation energy associated with the unpaired electron grows

linearly as a function of the VDE but is unrelated to the number of monomers, n. In every

example considered here, including strongly-bound ‘‘cavity’’ isomers of (H2O)24
�, the correlation

energy associated with the unpaired electron is significantly smaller than that associated with

typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the

CCSD(T) value, approaches a limit of about �7% for (H2O)n
� clusters with VDEs larger than

about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from

above by VDEs calculated using second-order many-body perturbation theory with molecular

orbitals obtained from density functional theory. For a variety of both strongly- and weakly-

bound isomers of (H2O)20
� and (H2O)24

�, including both surface states and cavity states, these

bounds afford typical error bars of �0.1 eV. We have found only one case where the Hartree–

Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds

lie 0.4 eV apart, and second-order perturbation theory may not be reliable.

1. Introduction

Clusters comprised of closed-shell, polar molecules such as HF

or H2O can form stable (or at least metastable) supramole-

cular radical anions that are often termed dipole-bound

anions,1,2 a reference to the fact that the dipole moment m0
of the neutral cluster frequently provides an important stabi-

lizing interaction for the excess electron. In many such sys-

tems, however, dispersion interactions contribute significantly

to electron binding,2–4 and even clusters with m0 E 0 can bind

an extra electron quite strongly within a cavity.5 As such,

accurate calculation of vertical electron detachment energies

(VDEs) for this type of cluster anion is a challenging problem

for electronic structure theory, because electron correlation is

responsible for a significant fraction of the electron binding

energy.1–3,6–9 Water cluster anions, in particular, have been

intensely scrutinized by electronic structure theorists10 in the

two decades since they were first observed in a molecular

beam.11,12 Recent experiments13–16 have detected two new

classes of (H2O)n
� isomers with VDEs that are significantly

smaller, for a given n, than those of the dominant isomers

observed in earlier experiments.17 These new data have re-

kindled an old controversy15–24 regarding whether the excess

electron is solvated within the cluster or at its surface, and how

this solvation mechanism evolves as a function of n.

To this debate, we have recently contributed a benchmark

study5 of electronic structure predictions of VDEs for small

water cluster anions (n r 6), demonstrating that second-order

Møller–Plesset perturbation theory (MP2), in conjunction

with a modest one-electron basis set, underestimates VDEs

by 0.03–0.05 eV, an accuracy that is sufficient to assign the

experimental photoelectron spectra.13,25 A preliminary exam-

ination of selected isomers of (H2O)20
� and (H2O)24

�, using

the same methodology, cast considerable doubt on all previous

electronic structure calculations for large water cluster anions,

all of which utilize density functional theory (DFT) and

probably overestimate VDEs by 0.2–0.4 eV.5 At the time, we

speculated that these were probably the most accurate VDEs

to date for cluster anions of this size, but it is difficult to

quantify this statement absolutely since electronic structure

calculations beyond the MP2 level are tremendously difficult

(and rapidly become impossible) beyond six or seven water

monomers. Moreover, for n > 6 there is no agreement as to

which isomers of (H2O)n
� are actually interrogated in the

experimental photoelectron spectra.

In the present study, we follow up on our previous work,

with the goal of quantifying the accuracy of MP2 detachment

energies for large water cluster anions. This can only be

accomplished indirectly, for the reasons mentioned above;

nevertheless, by extensively benchmarking MP2 detachment

energies against coupled-cluster results, both for (H2O)n
�
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(with nr 7) and also for (HF)n
� (with nr 8), we can establish

whether, and to what extent, the accuracy of MP2 theory

degrades as a function of cluster size. In fact, we find that it

does not; rather, the error in MP2 detachment energy predic-

tions is an approximately constant fraction of the VDEs

themselves. Scaled MP2 results provide VDEs for large cluster

anions with typical estimated errors of �0.1 eV.

2. Technical details

Drawing upon what we learned in ref. 5, all calculations

reported in this work employ the 6-31(1+,3+)G* basis set

unless otherwise stated.26 This basis augments the standard

6-31++G* basis with two additional diffuse s functions on

each hydrogen atom, whose exponents are decremented by

successive factors of 3.32. Comparison to larger and more

diffuse basis sets indicates that this basis affords VDEs at both

the MP2 and the CCSD(T) levels that are 0.01–0.02 eV below

their respective complete-basis limits.5 For example, the cis-

(H2O)2
�, cyclic (H2O)3

�, and linear (H2O)3
� clusters intro-

duced below afford MP2/6-31(1+,3+)G* VDEs of 0.026,

0.007, and 0.141 eV, respectively, whereas the correspond-

ing MP2/TZVPP+3s2p values27 are 0.031, 0.021, and

0.139 eV.

Again consistent with our previous work,5 the calculations

discussed here use drop tolerances of 10�12–10�14 au. Eigen-

vectors of the overlap matrix that correspond to eigenvalues

smaller than the square root of the drop tolerance are pro-

jected out of the atomic orbital basis. Numerical integrations

required for DFT exploit the SG-1 grid,29 and all self-consis-

tent field (SCF) calculations are converged to a maximum

occupied-virtual Fock matrix element of 10�8 au. Except

where noted, all geometries are optimized using the

B3LYP30,31 density functional with no constraints on point-

group symmetry. Electronic structure calculations were per-

formed using Q-Chem,32 and the Molden33 and VMD34

programs were used for visualization.

We have confirmed through numerous examples that sun-

dry standard procedures for generating an SCF guess all lead

to the same SCF solution, except in one high-symmetry case

that is discussed in Section 3.2. In contrast, when converged

molecular orbitals for (H2O)n are used as an initial guess for

(H2O)n
� at the same geometry, we have found cases where the

SCF calculation for the anion converges to a higher-energy

(and qualitatively different) solution than that obtained with a

standard SCF guess. For this reason, we never employ neutral

molecular orbitals as an initial guess.

Fig. 1 depicts a catalogue of B3LYP/6-31(1+,3+)G* opti-

mized geometries for (H2O)n
� isomers with n r 7 and

possessing CCSD(T)/6-31(1+,3+)G* detachment energies

that range from nearly zero up to about 0.75 eV. This will

serve as our test set for the calculations described in Section

3.1. In order to facilitate future benchmarking, the geometries

and absolute energies (at various levels of theory) for all

(H2O)n
� isomers discussed in this work are available as

electronic supplementary information (ESI).w

Fig. 1 Isomers of (H2O)n
� considered in this work, optimized at the B3LYP/6-31(1+,3+)G* level. Also indicated for each isomer is the dipole

moment m0 of the neutral cluster and the changes in natural atomic charges that accompany electron detachment, both calculated at the Hartree–

Fock/6-31(1+,3+)G* level. The dqi values in black correspond to hydrogen atoms while those in gray are for oxygen atoms.
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3. Results and discussion

3.1. Benchmark results for small clusters

Natural population analysis35,36 provides a convenient

atomic partition of the singly-occupied molecular orbital

(SOMO) coefficients from an SCF calculation, and is one

way to assess and quantify which atoms are most directly

responsible for solvating the extra electron. (Unlike Mulliken

populations, natural populations are reasonably stable with

respect to basis-set expansion.35) In our catalogue of (H2O)n
�

isomers, Fig. 1, we indicate the changes dqi in natural

atomic charges that accompany electron detachment. For

clarity, dqi is given explicitly only for those atoms i where

|dqi| Z 0.050, whereas atoms with 0.025 r |dqi| o 0.050 are

indicated by asterisks, and cases where |dqi| o 0.025 are

omitted.

Except for certain weak-binding cyclic isomers, in which the

excess electron is delocalized over many dangling hydrogen

atoms, natural population analysis reveals that the excess

electron is typically localized on two or three hydrogen atoms.

In cases where the electron is bound to both hydrogen

atoms on a single water molecule, this is accompanied by a

small change in charge on the oxygen atom (dq E 0.05–0.10).

This is the so-called double hydrogen-bond acceptor or

‘‘AA’’ binding motif, and isomers of this sort represent the

dominant feature in the dimer through hexamer photo-

electron spectra.14,25,37,38 This inherent localization of the

SOMO is consistent with previous electronic structure results

indicating that diffuse basis functions on the hydrogen

atoms are much more important in VDE calculations than

are diffuse functions on the oxygen atoms, at least in (H2O)n
�

clusters.5

In Fig. 2, we plot both the absolute and the fractional errors

in the MP2 detachment energies for each of the isomers in Fig.

1. Here and elsewhere in this work, we define ‘‘error’’ to mean

the difference with respect to the CCSD(T) value in the same

basis set. As the predicted VDE increases, so does the differ-

ence between the MP2 and the CCSD(T) detachment energies,

but this error is apparently uncorrelated with the number of

monomers, n. On the other hand, the fraction of the CCSD(T)

detachment energy recovered at the MP2 level appears to

approach an asymptotic limit as the VDE increases, and for

the ten (H2O)n
� isomers in our data set that have VDEs

greater than 0.4 eV, MP2 theory recovers an average of

93.3 � 1.0% of the CCSD(T) detachment energy. (Uncertain-

ties reported in this work represent one standard deviation.)

Moreover, this asymptotic behavior appears to be rather

general: as shown in Fig. 3, VDEs obtained from full fourth-

order Møller–Plesset perturbation theory (MP4) as well as

from coupled-cluster theory at the singles-doubles level

(CCSD) also approach limiting fractions of the CCSD(T)

detachment energy as the VDE increases. These data

indicate that MP4 theory recovers a larger fraction of the

VDE than does MP2 theory, with CCSD recovering a larger

fraction still. As demonstrated below, the electron correlation

contribution to the VDE increases as the VDE itself increases,

hence we expect this trend to continue in larger, higher-

binding isomers.

Trends in the MP2 error noted above can best be under-

stood by examining trends in the correlation energy D asso-

ciated with the unpaired electron,

D = Ecorr(anion) � Ecorr(neutral).

We will use the notation DX to indicate a particular level of

theory, X. Note that DX is also the correction to the Hartree–

Fock VDE. The quantities DMP2 and DCCSD(T) are plotted in

Fig. 4, and again we find no correlation whatsoever with

cluster size but a clear trend with increasing VDE, namely, D
is an approximately linear function of the VDE. Hartree–Fock

VDEs and DCCSD(T) corrections for our catalogue of (H2O)n
�

isomers are listed in Table 1.

Averaging over all (H2O)n
� cluster sizes and isomers, we

find that MP2 theory recovers 94.90 � 0.07% of the CCSD(T)

correlation energy, and 95.00 � 0.07% in the case of the

corresponding neutral clusters. (Uncertainties represent one

standard deviation.) That these fractions are nearly geometry-

and size-independent merely reflects the fact that the total

correlation energy is dominated by the sum of monomer

correlation energies, but together with the linear relationship

between D and the VDE, this explains the asymptotic frac-

tional error observed in Fig. 2. The increasing importance of

electron correlation as a function of the VDE eventually

overshadows any differences between isomers at the Hartree–

Fock level, such that in strong-binding isomers, the error in

Fig. 2 Absolute errors (upper panel) and fractional errors (lower

panel) in MP2 detachment energies, with respect to CCSD(T) values,

for various isomers of (H2O)n
�. All calculations use the 6-

31(1+,3+)G* basis set.
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the MP2 calculation is dominated solely by the difference

between DMP2 and DCCSD(T).

In addition to wave function-based electronic structure

methods, we also calculate VDEs using the BHLYP5,39 density

functional (EBHLYP
XC = 0.5ELDA

X + 0.5EHF
X + ELYP

C ), which

tends to be the least overbinding of the common density

functionals. Fig. 3 suggests that, for (H2O)n
� isomers with

VDEs in excess of about 0.4 eV, BHLYP overestimates the

VDE by about 15%, though the scatter among data points in

the asymptotic region is greater than in the case of wave

function-based methods. Somewhat more consistent behavior

is obtained when BHLYP molecular orbitals are used in

second-order many-body perturbation theory (MBPT2), in-

cluding single excitations. We refer to this procedure as the

MBPT2(BHLYP) method.40 As shown in Fig. 5, the CCSD(T)

detachment energy is bounded from below by the MP2 value,

which averages 93.2 � 1.1% of the CCSD(T) detachment

energy, and from above by MBPT2(BHLYP), at an average of

111.1 � 1.4% of CCSD(T). In calculating these averages and

standard deviations, we have included only those isomers

whose CCSD(T) detachment energies exceed 0.4 eV, since

we demonstrated above that it is only in these cases that

MP2 affords an approximately constant fractional error. Our

conclusions regarding the accuracy of second-order perturba-

tion theory thus apply mainly to strongly-bound isomers

(VDE \ 0.4 eV).

Having only a small number of data points above 0.4 eV, we

cannot be certain that the apparently asymptotic behavior

observed in the 0.4–0.8 eV range persists to higher detachment

energies. For additional data, we turn to (HF)n
� clusters, since

a relatively small number of HF molecules can bind an

electron much more strongly than can a small water cluster.

Optimized geometries for (HF)n
�, n = 3–8, are depicted in

Fig. 3 Fractional errors, with respect to CCSD(T) values, in VDEs

calculated for the (H2O)n
� isomers in Fig. 1.

Table 1 Hartree–Fock VDEs and CCSD(T) corrections to the VDE,
DCCSD(T), for isomers of (H2O)n

�

Isomer Hartree–Fock VDE/eV DCCSD(T)/eV

n = 2 0.000 0.037
n = 3(A) �0.018 0.039
n = 3(B) 0.092 0.069
n = 4(A) 0.248 0.131
n = 4(B) 0.128 0.101
n = 4(C) 0.010 0.051
n = 4(D) 0.170 0.108
n = 4(E) 0.127 0.091
n = 4(F) 0.189 0.100
n = 5(A) 0.298 0.141
n = 5(B) 0.038 0.063
n = 5(C) 0.325 0.154
n = 5(D) 0.189 0.130
n = 5(E) 0.263 0.141
n = 5(F) 0.264 0.124
n = 6(A) �0.019 0.052
n = 6(B) 0.513 0.227
n = 6(C) �0.011 0.058
n = 6(D) 0.056 0.071
n = 6(E) 0.343 0.162
n = 6(F) 0.371 0.170
n = 6(G) 0.322 0.154
n = 7(A) 0.477 0.198
n = 7(B) 0.434 0.173
n = 7(C) 0.348 0.136

Fig. 4 Correlation energy DX [X = MP2 or CCSD(T)] associated

with the unpaired electron, for various isomers of (H2O)n
�. Lines

indicate best fits to the data.

Fig. 5 Predicted VDEs for the (H2O)n
� isomers shown in Fig. 1.

CCSD(T) VDEs lie along the diagonal (solid line); the upper and lower

broken lines represent 111.1% and 93.2% of the CCSD(T) VDE,

which represent the average fractions recovered by the

MBPT2(BHLYP) and MP2 methods, respectively.

This journal is �c the Owner Societies 2006 Phys. Chem. Chem. Phys., 2006, 8, 68–78 | 71



Fig. 6, and clearly show the evolution of a nascent cavity

within the cluster, in which protons are oriented toward the

excess electron. None of these isomers has a neutral dipole

moment larger than 2.7 D and in most cases m0 is considerably
smaller than the critical value (E2.4 D; see ref. 2) necessary to

obtain anionic states that are rigorously dipole-bound. Never-

theless, these clusters exhibit VDEs as large as 4.0 eV. Along

with their cavity-like structures, this fact implies that these

clusters are true ‘‘solvated electron’’ systems, in contrast to

small water cluster anions, which are sometimes termed ‘‘wet

electron’’ systems41 to emphasize that the electron is not

solvated in the bulk sense. The existence of solvated electron

or ‘‘cavity states’’ (as we shall call them) at such a small

number of monomers is important because it allows us to

perform coupled-cluster calculations for such species, which

are anticipated to be important in large water cluster anions

but cannot be located in clusters small enough to be treated

with coupled-cluster theory.

We digress briefly here to discuss some technical details

related to electronic structure calculations for (HF)n
�. First of

all, we observe that these clusters are not quite as insensitive to

basis sets effects as are (H2O)n
� clusters. In (HF)3

�, for

example, expansion of the basis from 6-31(m+,n+)G* to

6-311(m+,n+)G** decreases the MP2 detachment energy

by about 0.06 eV, while additional diffuse shells added to

the fluorine atoms increase the VDE by about 0.02 eV. The

fact that basis set effects of this magnitude are not observed in

(H2O)n
� is consistent with our earlier explanation5 that the

bent geometry of a water molecule allows the SOMO (essen-

tially an sp hybrid) to acquire p character by mixing together

two s functions on different hydrogen atoms; as such, diffuse p

functions are not absolutely required in the case of (H2O)n
�.

The same argument does not apply to (HF)n
�, and for these

systems it appears that p functions on the hydrogen atoms

have an important effect. Furthermore, as demonstrated by

the natural charge differences given in Fig. 6, the excess

electron density is shared by a far greater number of atoms

in the (HF)n
� cavity states than in most of the (H2O)n

�

isomers shown in Fig. 1. Despite these considerations, we will

stick to the 6-31(1+,3+)G* basis set for consistency and

because our primary interest lies in (H2O)n
�, keeping in mind

that our calculated VDEs for (HF)n
� isomers likely lie further

below the complete-basis limit than they do in the case of

(H2O)n
�.

With this in mind, it is interesting to note that our calculated

VDEs, especially for the larger (HF)n
� cavity isomers, are

substantially greater than those reported in older calcula-

tions.2,3 One possible explanation for the discrepancy is the

fact that previous calculations focused on high-symmetry

geometries, e.g., Oh symmetry for the hexamer anion.2

Although we do obtain fully-relaxed DNh, D3h, and Td

stationary points for the dimer, trimer, and tetramer anions,

respectively, we failed in repeated attempts to locate a D3h

stationary point for (HF)5
� or an Oh stationary point for

(HF)6
�, both of which have been reported elsewhere.2,3 At the

B3LYP/6-31(1+,3+)G* level, both the pentamer and the

hexamer anions adopt structures in which the excess electron

is tetrahedrally coordinated, with the additional HF mole-

cule(s) forming an incipient second solvation shell. A station-

ary point of (HF)6
� with Oh symmetry can be located if point-

group symmetry is constrained, and the resulting Oh structure

has a VDE of 2.76 eV, compared to 3.07 eV for the fully-

relaxed structure in Fig. 6. [Both VDEs are CCSD(T)/6-

31(1+,3+)G* values.] In comparison, Jordan and Wang2

report a VDE of 2.69 eV for their Oh structure, also at the

CCSD(T) level. On the other hand, our D3h trimer anion has a

predicted VDE of 0.93 eV, much larger than the values of

E0.6 eV reported by Gutowski and co-workers3,42 for com-

parable D3h structures. Further calculations—in particular,

geometry optimizations at higher levels of theory, and a more

thorough exploration of basis set effects—are necessary in

order to resolve the true structures of these clusters, but for the

purpose of benchmarking VDE calculations, the structures

presented in Fig. 6 will suffice.

In addition to these cavity isomers of (HF)n
�, we also

consider HF� � �HF� � �HF� � � chains, artificially constrained to

linear geometries but otherwise optimized at the B3LYP/6-

31(1+,3+)G* level. These isomers bind an electron very

weakly at the H-terminus and, as compared to the cavity

isomers, are more analogous to the surface-bound anions

obtained from small water clusters. Fig. 7 bolsters this ana-

logy, as it shows that the fractional error in the MP2 detach-

ment energy behaves in much the same way for these linear

(HF)n
� isomers as it does for small (H2O)n

� isomers. (Numer-

ical data corresponding to this figure are given in Table 2.) In

contrast, for cavity isomers of (HF)n
�, MP2 predicts a larger

VDE than does CCSD(T). Given their very different electron

Fig. 6 Optimized B3LYP/6-31(1+,3+)G* geometries of (HF)n
�

‘‘cavity’’ isomers, along with VDEs [CCSD(T)/6-31(1+,3+)G* level]

and selected dqi values [Hartree–Fock/6-31(1+,3+)G* level].
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binding motifs, there is no reason why the MP2 fractional

errors should behave the same way for linear versus globular

(HF)n
�; the important observation is that, in both cases, the

MP2 fractional error appears to approach an asymptotic limit

as the VDE increases.

Tables 1 and 2 list DCCSD(T) for each (H2O)n
� and (HF)n

�

isomer examined so far. In no case does this quantity exceed

0.23 eV, which is substantially smaller than the standard a

priori estimate of B1 eV of correlation energy per valence

electron pair. Not surprisingly, DCCSD(T) is somewhat larger

for the cavity isomers of (HF)n
� than it is for the linear

isomers, since the excess electron is bound more tightly and

interacts more strongly with the cluster in the former case, but

while DCCSD(T) (and, similarly, DMP2) demonstrates a clear

surface state/internal state correlation, this quantity does not

correlate with the number of H2O or HF monomers.

As a final set of small-cluster benchmarks, in Fig. 8 we

compare absolute errors obtained from intermediate-level

treatments of electron correlation, including CCSD, full

MP4, and MP4 sans triple excitations, MP4(SDQ). Notably,

the CCSD, MP4, and MP4(SDQ) methods exhibit essentially

constant absolute errors for the (HF)n
� cavity isomers, where

the VDEs are large. The same does not hold for the more

weakly-binding (H2O)n
� isomers, although these methods

remain more accurate than MP2. In future work, we shall

attempt to quantify the importance of various individual

correlations beyond second order in perturbation theory.

3.2. Comparison to large (H2O)n
�
clusters

The results of the previous section provide strong evidence

that MP2/6-31(1+,3+)G* detachment energies for (H2O)n
�

lie within about 7% of CCDS(T) values for isomers with

VDEs greater than 0.4 eV. For the dominant features in the

photoelectron spectra, this régime is broached starting with

n= 6, while larger clusters have even greater VDEs: 0.7 eV for

(H2O)11
�, and 1.0–1.2 eV for (H2O)20

� and (H2O)24
�, for

example.15,23 In this section we attempt to address the

Fig. 7 Fractional errors in MP2 detachment energies, with respect to

CCSD(T) values, for isomers of (HF)n
�.

Table 2 Hartree–Fock VDEs and CCSD(T) corrections to the VDE,
DCCSD(T), for isomers of (HF)n

�

Isomer Hartree–Fock VDE/eV DCCSD(T)/eV

n = 2 (linear) 0.004 0.023
n = 3 (linear) 0.106 0.041
n = 4 (linear) 0.183 0.053
n = 5 (linear) 0.240 0.061
n = 6 (linear) 0.280 0.065
n = 7 (linear) 0.310 0.068
n = 8 (linear) 0.332 0.069
n = 2 (cavity) �0.009 0.123
n = 3 (cavity) 0.721 0.213
n = 4 (cavity) 1.595 0.196
n = 5 (cavity) 2.314 0.168
n = 6 (cavity) 2.917 0.150
n = 7 (cavity) 3.406 0.144
n = 8 (cavity) 3.868 0.137

Fig. 8 Errors in VDEs at different levels of theory, for (H2O)n
� iso-

mers (upper panel) and (HF)n
�cavity isomers (lower panel). For

(H2O)n
� isomers, full MP4 calculations were performed only for nr 6.
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accuracy of MP2 detachment energies for larger clusters,

taking (H2O)20
� and (H2O)24

� as representative examples.

Fig. 9 presents the results of natural population analysis for

several isomers of (H2O)20
� and (H2O)24

�. These isomers were

first studied in ref. 5, and the isomeric labels introduced in that

work, which indicate the number of four-, five-, and six-

member rings that comprise the cluster, are retained here. In

order to make a fair comparison with the calculations in the

previous section, we have re-optimized the geometries ob-

tained in ref. 5 at the B3LYP/6-31(1+,3+)G* level, though

this has no qualitative impact on the structures.

The three structures shown in the upper part of Fig. 9 are

pentagonal dodecahedral or ‘‘512’’ isomers of (H2O)20
� that

bind the extra electron on the surface of the cluster, but via

quite different morphologies, depending upon how the ten

dangling hydrogen atoms are distributed. In 512 isomers A and

B, the dangling hydrogens are asymmetrically distributed and

the corresponding neutral clusters have enormous dipole mo-

ments (28.9 D and 21.9 D, respectively, at the Hartree–Fock

level). As a result, the SOMO in each of these isomers is

localized at one end of the cluster, which is clearly reflected in

the dqi values. Significant polarization is found only on two

surface hydrogen atoms, and none of the hydrogen atoms

involved in hydrogen bonding is significantly polarized by

electron attachment. Charge penetration into these (H2O)20
�

isomers does not appear to be any more significant than in the

smaller water cluster anions depicted in Fig. 1, implying

similar electronic structure in both cases.

Isomer 512F of (H2O)20
� is markedly different from A and

B. In this isomer, the ten dangling hydrogen atoms are located

symmetrically around the equator of the cluster, so that m0 E
0 and the SOMO is a torus that is completely delocalized over

these hydrogens [see Fig. 13(c) of ref. 5]. None of these

hydrogens has a |dqi| value exceeding 0.050 but a large number

of atomic charges lie in the range 0.025 r |dqi| o 0.050. For

this particular isomer, the electron binding mechanism ap-

pears to differ significantly from any that we observed in small

cluster anions. On the other hand, the predicted VDE for this

isomer (see Table 3) is far too small to be consistent with the

experimental estimates of 1.0–1.2 eV.15,23

Cavity isomers of large water cluster anions have different

characteristics altogether, and Fig. 9 depicts two such isomers

of (H2O)24
�. The electron binding mechanism is again appar-

ent from the natural population analysis: dqi is quite large for
each of the four hydrogen atoms that directly solvates the

extra electron, but charge rearrangement is not limited to these

atoms and is observed throughout the cluster. The SOMOs for

these isomers (see Fig. 13 of ref. 5) corroborate this picture: the

unpaired electron density has spherical symmetry and origi-

nates at the center of the cluster, but a non-negligible part of

the SOMO extends beyond the cavity and into the water

network. This same sort of through-cluster polarization was

observed in cavity states of (HF)n
�, however, and did not

affect the conclusion that MP2 calculations recover a constant

fraction of the CCSD(T) correlation energy.

Hartree–Fock, MP2, and BHLYP detachment energies for

these and several other (H2O)20
� and (H2O)24

� isomers stu-

died in our previous work5 are listed in Table 3. For certain of

these clusters, we have experimented with different density

functionals (B3LYP and X3LYP43) and different basis sets for

performing the geometry optimizations, in order to evaluate

how much this aspect affects the VDE. Note also that DMP2 is

given by the difference between the Hartree–Fock and MP2

detachment energies. In most cases DMP2 t 0.02 eV, just as we

found in the small cluster examples of Section 3.1. The

exceptions, (H2O)24
� isomers 4868B and 51262B, are cases

Fig. 9 Isomers of (H2O)20
� (top row) and of (H2O)24

� (bottom row), along with Hartree–Fock m0 and dqi values. The dqi values in black

correspond to hydrogen atoms while those in gray are for oxygen atoms.
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where the extra electron is bound inside of the cluster. For

these isomers, DMP2 E 0.5 eV, still considerably smaller than

the correlation energy associated with valence electron pairs.

Several of the isomers listed in Table 3 possess VDEs that

are slightly negative at the Hartree–Fock level. This represents

a basis set artifact; a complete basis would correctly describe

continuum states and therefore any unbound anion would

have a VDE of exactly zero. In the present cases, a higher-

quality basis set might bind some of the anions at the Hartree–

Fock level, but even without further calculations we can say

with confidence that the resulting VDEs would be quite small,

since our previous work5 suggests that basis set effects beyond

6-31(1+,3+)G* are typically on the order of 0.05 eV or less.

As an example, we performed a Hartree–Fock VDE calcula-

tion for (H2O)24
� isomer 41464B using the much larger TZVPP

+ 3s2p basis introduced in Section 2, which ought to be close

to basis-set saturation at the SCF level. The resulting VDE,

�0.027 eV, is nearly equal to the value of �0.035 eV obtained

at the Hartree–Fock/6-31(1+,3+)G* level. On the one hand,

this demonstrates that it is essentially impossible, in practice,

to obtain a correct description of continuum states using

atom-centered Gaussian basis functions. More importantly,

however, this calculation offers additional evidence that im-

provements upon the 6-31(1+,3+)G* basis set are not likely

to alter the conclusions reached in this study.

MP2 corrections to the negative Hartree–Fock VDEs in

question are also quite small, affording VDEs that mostly

remain negative, and in no case are greater than +0.004 eV.

Clearly, the anions in question are either very weakly bound or

else not bound at all, though a treatment of electron correla-

tion beyond the MP2 level is required in order to make a

definitive case for one of these possibilities over the other.

Table 3 also presents two corrected values of each MP2

detachment energy. The first is obtained by scaling the corre-

lation energies of both the neutral and the anionic cluster by a

factor of 1.053, the average ratio of the CCSD(T) to MP2

correlation energies for all of the data listed in Table 1. (DMP2

is an extensive quantity, so in order to preserve the size-

consistency of the MP2 method, the neutral and anionic

correlation energies must be scaled by the same factor.) This

correction amounts to less than 0.03 eV in every case except

isomer 51262C of (H2O)24
�, where it is almost 0.06 eV. In light

of the consistent results obtained for small clusters in Section

3.1, and given that several other empirical scaling procedures

for MP2 correlation energies have been shown to improve

calculated properties significantly,44–48 we consider these

scaled MP2 values to be our most accurate estimates of the

VDEs for these clusters. An alternative correction provided in

Table 3 is obtained by scaling the VDE itself by a factor of

1.070, obtained by a fit of the fractional error data (Fig. 2) for

the nine isomers of (H2O)n
� whose MP2 detachment energies

exceed 0.4 eV. This procedure results in a somewhat larger

correction to the MP2 detachment energy, increasing the

largest VDEs by 0.05–0.06 eV.

BHLYP detachment energies for our (H2O)20
� and

(H2O)24
� isomers are also listed in Table 3, and, consistent

with the results for smaller clusters, are significantly larger

than the corresponding (raw) MP2 values. The

MBPT2(BHLYP) detachment energy can be larger or smaller

than the BHLYP value, with the two results generally falling

within 0.1–0.2 eV of one another. Upon scaling the

MBPT2(BHLYP) detachment energies by a factor of 0.8715,

equal to the average ratio of MBPT2(BHLYP) and CCSD(T)

detachment energies for the small (H2O)n
� isomers in our test

Table 3 Estimated VDEs for various isomers of (H2O)20
� (upper data set) and (H2O)24

� (lower data set), at X3LYP/6-31++G* optimized
geometries (geometry I, from ref. 5); B3LYP/6-31(1+,3+)G* optimized geometries (geometry II); and B3LYP/6-31G* optimized geometries
(geometry III)

VDE/eV

Isomer Hartree–Fock MP2 Corrected MP2 BHLYP

MBPT2(BHLYP)

Raw Scaledb

445462 I 0.026 0.074 0.077 0.079 0.181 0.219 0.191
512A I 0.883 1.083 1.094 1.159 1.286 1.245 1.085

II 0.903 1.101 1.111 1.178 1.291 1.254 1.093
512B I 0.723 0.908 0.918 0.972 1.084 1.062 0.925

II 0.704 0.883 0.892 0.945 1.050 1.030 0.898
512C I 0.497 0.657 0.666 0.703 0.818 0.810 0.706
512D I 0.379 0.515 0.522 0.551 0.668 0.672 0.586
512E I �0.051 �0.022 �0.021 — 0.111 0.135 0.118
512F II 0.053 0.150 0.155 0.160 0.438 0.375 0.327

III 0.093 0.227 0.234 0.243 0.559 0.483 0.421

4668A I �0.086 �0.066 �0.065 — 0.010 0.084 0.073
4668B I 0.080 0.575 0.601 0.615 0.863 0.726 0.632

II 0.177 0.583 0.605 0.624 0.838 0.716 0.624
41464A I �0.035 0.003 0.004 0.004 0.171 0.201 0.175
41464B I �0.035 0.004 0.004 0.004 0.421 0.346 0.302
51262A I �0.076 �0.051 �0.050 — 0.079 0.118 0.103
51262B I 0.254 0.793 0.821 0.849 1.100 0.927 0.808

II 0.337 0.782 0.807 0.837 1.068 0.901 0.785
51262C I 0.049 0.136 0.192 0.146 0.430 0.362 0.316
414 I �0.077 �0.055 �0.055 — 0.048 0.141 0.123

a Corrections to the MP2 VDE obtained by scaling the MP2 correlation energies by 1.053 (left column), or by scaling the MP2 VDE by 1.070 (right

column). b VDE scaled by 0.8715.
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set, all but one of the resulting VDEs are within 0.18 eV of the

scaled MP2 values. We regard the electronic structure of these

isomers to be a solved problem, and consider the adjusted

MP2 results (using scaled correlation energies) to be the most

accurate existing estimates of their VDEs.

The lone outlier is (H2O)24
� isomer 41464B, which has a

VDE of essentially zero at the MP2 level (corrected or

uncorrected), but has an MBPT2(BHLYP) detachment energy

of 0.302 eV after downward scaling. While even the BHLYP

detachment energy for this isomer is far too small to account

for the experimental photoelectron spectrum, the discrepancy

between MP2 andMBPT2(BHLYP) is nevertheless worrisome

insofar as it may portend a breakdown in the accuracy of

second-order perturbation theory.

Examination of the Hartree–Fock and BHLYP SOMOs

(Fig. 10) reveals that each is qualitatively consistent with the

VDE obtained by subsequent second-order perturbation

theory. In particular, the Hartree–Fock SOMO exhibits two

diffuse lobes on the surface of the cluster, indicative of a

weakly-bound anion. By changing the SCF initial guess (from

a superposition of atomic densities to diagonalization of the

core Hamiltonian), one can locate a second Hartree–Fock

solution in which the SOMO consists of only one of these

lobes, but which is only 2 � 10�5 au above the two-lobe

solution shown in Fig. 10(a), and only 5 � 10�5 au higher in

energy at the MP2 level. These energy differences are small but

clearly distinct, given the thresholds discussed in Section 2,

and indicate that this cluster exhibits a form of ‘‘electronic

tautomerism’’, at least at the Hartree–Fock and post-Hartree–

Fock levels of theory. This tautomerism may be similar to the

‘‘bi-dipole-bound anion’’ effect, a symmetry artifact first

discovered by Gutowski and co-workers49 in linear

(HCN)n� � �HCCH� � �(NCH)n chains. In those systems, the

SOMOs have sg symmetry with lobes located on either end

of the chain, but in each case the SOMO is nearly degenerate

with a corresponding su virtual orbital. As such, there exist

low-lying Hartree–Fock solutions, corresponding to excitation

of the unpaired electron into sg � su, that localize the

unpaired electron on one end of the molecule.

In contrast to these Hartree–Fock solutions, the BHLYP

SOMO contains significant density in the center of the cluster

and penetrates throughout the water network, consistent with

a nontrivial VDE. Starting with BHLYP orbitals and using an

SCF algorithm based on direct minimization,50 we attempted

to locate a Hartree–Fock solution whose SOMO resembles the

BHLYP one, but this calculation merely relaxed to the pre-

viously-obtained Hartree–Fock solution. It remains unclear

whether the Hartree–Fock or the BHLYP orbitals are a better

model of physical reality in this cluster isomer. In such cases of

electronic tautomerism, where different SCF procedures (e.g.,

Hartree–Fock versus DFT) result in qualitatively different

molecular orbitals, finite-order perturbation theory predic-

tions are probably not sufficient to determine the electronic

structure. Such examples appear to be rare, as this is the only

one we have found despite extensive calculations for this and

previous work.5

4. Summary

We have examined whether the accuracy of MP2 detachment

energy predictions for (H2O)n
� and (HF)n

� clusters degrades

as a function of cluster size. In fact, the accuracy correlates not

with n but with the VDE itself, a behavior that we attribute to

the fact that, for (H2O)n
� isomers, the electron correlation

energy D associated with the unpaired electron grows linearly

as a function of the VDE. Even in cavity states of (H2O)24
�,

which ought to be relatively strongly correlated, D t 0.5 eV,

only half as large as the correlation energy associated with

Fig. 10 SOMOs for (H2O)24
� isomer 41464B, calculated at (a) the Hartree–Fock/6-31(1+,3+)G* level and (b) the BHLYP/6-31(1+,3+)G*

level. Both plots use a contour value of 0.005 au.
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typical valence electron pairs. This weak electron correlation

explains the success of MP2 theory for VDE predictions.

Because the total correlation energy of a cluster is domi-

nated by the sum of monomer contributions, MP2 theory

recovers an essentially constant fraction of the CCSD(T)

correlation energy in (H2O)n, (HF)n, and their anions, and as

such the MP2 results can be easily adjusted in order to achieve

better accuracy. An independent estimate of the VDE can be

obtained by applying second-order many-body perturbation

theory to DFT orbitals (obtained with the BHLYP func-

tional), and in the small cluster isomers studied here, this

procedure always affords an upper bound to the CCSD(T)

detachment energy. For a wide variety of (H2O)20
� and

(H2O)24
� isomers, these two estimates agree to within 0.15

eV, thus providing an error bar for MP2 detachment energies.

The combination of MP2 and MBPT2(BHLYP) provides

reasonably accurate VDE predictions, at low enough cost to

be applied to fairly large clusters.

We have thus far discovered only one example in which

MP2 and MBPT2(BHLYP) detachment energies differ by

significantly more than 0.15 eV. In this case, Hartree–Fock

theory exhibits a form of electronic tautomerism (which may

be a symmetry artifact) and, more importantly, the SOMO is

qualitatively different at the Hartree–Fock and BHLYP levels

of theory. In this case, the error bar established by MP2 and

MBPT2(BHLYP) is about 0.4 eV.

5. Note added in proof

We have recently calculated the VDE of isomer 41464B from

section 3.2 at the RI-MP2/TZVPP+3s2p level, where RI

indicates the resolution of identity approximation to MP2.

(Our own tests and those in ref. 28 indicate that the RI

approximation introduces errors of o 0.001 eV in VDEs.)

The RI-MP2/TZVPP+3s2p result is 0.002 eV, as compared to

0.004 eV at the MP2/6-31(1+,3+)G* level.
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