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11.1 Overview

The topic of this chapter is the solution of a simple and well-defined

model problem, namely, the molecular electrostatics problem for

one or more molecules immersed in a homogeneous dielectric

medium characterized by a dielectric constant, ε. The interface

between the atomistic region (the solute) and the continuum

solvent is defined by a molecule-shaped cavity such as the ones

depicted in Figs. 11.1(a) and 11.1(b). In practice, this cavity is

often constructed from atom-centered spheres, although more
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Figure 11.1 (a) Pictorial depiction of a cavity, constructed from atom-
centered spheres, that defines the interface between the atomistic region
and the continuum. (b) Triangular tessellation of the atom-centered spheres
that define the surface of the protein 3U7T (crambin). (c) Cavity surface for a
segment of double-stranded DNA, discretized with atom-centered Lebedev
grids. Panel (b) is reprinted from Ref. [25]; copyright 2002 John Wiley and
Sons.

complicated constructions have been considered [21]. Atomistic
electrostatics is used for the solute, often with ε = 1 inside
of the cavity, although this choice is not required by the theory
and other values have been employed, e.g., in an attempt to
incorporate a protein dielectric “constant”. In any case, there is
a sharp discontinuity in ε(r) at the cavity surface. The atomistic
region can be described at various levels of complexity: quantum-
mechanically, in terms of an electron density, or classically in terms
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of a set of point charges and/or higher-order multipoles, be they

static or polarizable.

Given a solute charge distribution ρ(r) whose corresponding

electrostatic potential we denote by φρ(r), the solution to the

aforementioned model problem consists in determining the total

(solute + continuum) electrostatic potential

φ(r) = φρ(r) + φrxn(r), (11.1)

which includes a reaction-field potential, φrxn(r), that arises from

polarization of the medium. The total potential φ(r) is obtained

by solution of Poisson’s equation [7, 85]. For a sharp dielectric

boundary, this equation reads

∇̂2φ(r) = −4πρ(r) ×
{

1/εinside

1/εoutside

, (11.2)

expressed here in unrationalized CGS units [85]. [For a solute

described by classical multipoles, the definition of ρ(r) in Eq. (11.2)

might be considered problematic, but the methods discussed below

actually require only the electrostatic potential φρ(r) generated by

these multipoles.] Having determined φ(r), the total electrostatic (or

polarization) free energy is

Gpol = 1

2

∫
R3

dr ρ(r) φ(r), (11.3)

where the factor of 1/2 accounts for the reversible work done in

polarizing the medium (hence why Gpol is a free energy) [7].

Equation (11.2) is a partial differential equation in three

dimensions, subject to boundary conditions such that φ(r) is

continuous across the cavity surface but must decay faster than

r−2 as r → ∞ [77]. This equation can be solved using grid-

based finite-difference techniques [5, 35, 54], though this requires

discretizing the whole of three-dimensional space, including the

infinite continuum region. For a macromolecular solute described

using a classical force field, such methods form the basis of much of

modern biomolecular electrostatics calculations [4, 54]. (In practice,

the equation that is usually solved in biomolecular applications

is the Poisson–Boltzmann equation [4, 33], which includes the

effects of a thermal distribution of dissolved ions; this will be

considered in Section 11.3.1). Such methods are useful for producing
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an electrostatic map of the surface of the macromolecular solute,

but their finite-difference nature means that forces obtained from

such algorithms are inherently discontinuous. Although progress is

being made to reduce this problem [80–83], the discontinuities pose

a fundamental problem for the use of finite-difference solvers in

molecular dynamics (MD) simulations. Moreover, the requirement

to discretize all of three-dimensional space (or at least sufficiently

far into the continuum so that φ(r) has decayed to zero) means that

the size of the discretized linear systems becomes extremely large

for macromolecules. The matrices involved are sparse; nevertheless,

only highly parallelized approaches are tractable.

This chapter explores an alternative category of methods aimed

at solving the same continuum electrostatics problem using an

apparent surface charge (ASC), σ (s), induced at the cavity surface

by polarization of the medium. Here, we use s ∈ � to denote a

point on the cavity surface, �, whereas r ∈ R
3. The quantity σ (s)

is determined from ρ(r) as described in Section 11.2 but exists only

on �. Thus

Gpol = 1

2

∫
�

ds ρ(s) σ (s). (11.4)

Relative to finite-difference Poisson–Boltzmann approaches, such

methods have the advantage that only the two-dimensional cavity

surface must be discretized.

Methods based on an ASC have a long history in quantum-

mechanical (QM) calculations with continuum solvent [60, 61,

77], where they are generally known as polarizable continuum
models (PCMs). However, PCMs have seen little use in the area of

biomolecular electrostatics, for reasons that are unclear to us. In

the QM context, such methods are inherently approximate, even

with respect to the model problem defined by Poisson’s equation,

owing to the volume polarization that results from the tail of the

QM electron density that penetrates beyond the cavity and into the

continuum [13, 14, 89]. The effects of volume polarization can be

treated only approximately within the ASC formalism [14, 15, 89].

For a classical solute, however, there is no such tail and certain

methods in the PCM family do afford a numerically exact solution

of Poisson’s equation, up to discretization errors that are systemat-

ically eliminable. Moreover, ASC methods have been generalized to
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solve the linearized Poisson–Boltzmann equation [17, 22, 43, 58],

and to inhomogeneous dielectrics where the scalar ε is replaced

by a dielectric tensor [8, 57, 77]. Long-standing problems with

discontinuities engendered by discretization have been overcome

[41, 42, 70, 76, 87], so that intrinsically smooth forces are available

for MD simulations. Finally, linear-scaling implementations of the

PCM algorithm render such methods amenable to macromolecular

solutes [25, 69]. Such developments are potentially useful not only

for traditional biomolecular electrostatics calculations, but also for

QM/MM/PCM calculations, in which the PCM serves as a boundary

condition for a QM/MM calculation (replacing periodic boundary

conditions), but where the size of the large MM region dictates the

dimensionality of the linear equations, that must be solved to obtain

the ASC. For many QM/MM/PCM calculations, the cost of solving the

PCM equations would exceed the QM cost, were it not for linear-

scaling implementations of the PCM algorithm.

The goal of this chapter is to draw attention to some of

these developments, with the aim of popularizing PCMs beyond

small-molecule QM applications. We do not have the space here

for a comprehensive review (and several recent ones can be

found [56, 77]) but will focus mainly on our own work [41–46].

Some knowledge of basic continuum electrostatics is assumed; see

Ref. [7] for an excellent pedagogical introduction. This chapter will

focus mostly on the advantages of the PCM formulation of the

electrostatics problem, with an emphasis on methods that might

ultimately replace finite-difference Poisson–Boltzmann solvers. In

addition, details of our linear-scaling implementation of the PCM

algorithm are presented here for the first time, although this

algorithm has been available for some time as part of the Q-CHEM

software [39].

11.2 Theoretical Background

11.2.1 Continuum Electrostatics

The basic setup of the continuum electrostatics problem has been

outlined above. The ASC formalism is based on an ansatz in which
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the exact reaction-field potential—which includes the effects of

volume polarization and is defined throughout three-dimensional

space—is nevertheless generated by a charge distribution σ̃ that

exists only on the cavity surface:

φrxn(r) =
∫

�

ds
σ̃ (s)

|s − r| . (11.5)

The apparent surface charge, σ̃ , should be distinguished from the

actual surface charge that forms at any dielectric boundary [85]. The

latter is given by

σ (s) =
(

ε − 1

4π

)
(ns · ∇̂)φ(s)

∣∣
s=s+ . (11.6)

Here, ns represents the outward-pointing surface normal vector

located at the point s, so that the derivative in Eq. (11.6) represents

the outward-pointing normal component of the electric field. (The

notation s = s+ indicates that this derivative should be evaluated

infinitesimally outside of the cavity.) The normal electric field

is discontinuous at a dielectric boundary, and satisfies a “jump”

boundary condition [7, 85],

εoutside (ns · ∇̂)φ(s)
∣∣

s+ = εinside (ns · ∇̂)φ(s)
∣∣

s− . (11.7)

This comes from the fact that the electric displacement (= ε ×
electric field) is continuous across the dielectric boundary.

Equation (11.7) can be used to eliminate the exterior derivative

of φ from Eq. (11.6). Then, given some initial approximation for φ

(perhaps just φρ , which is known once the solute’s wave function

has been computed), one could compute the surface charge, and

thus the reaction-field potential, without the need to perform any

calculations outside of the solute cavity. For a QM solute, this

procedure must then be iterated to self-consistency. The original

PCM of Miertuš, Scrocco, and Tomasi [60, 61] used precisely this

approach; this model is now known as D-PCM. It is less desirable

than more modern PCMs, owing to the need to compute the

normal electric field, which may be subject to increased numerical

noise relative to later formulations that involve only electrostatic

potentials [77]. Perhaps more significantly, the formulation of

this model has conflated the apparent and actual surface charge

distributions, and corresponds to a neglect of volume polarization

[13].
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A key point in the elementary theory of dielectric materials is that

the polarization vector can be replaced by an appropriate charge

distribution, which consists of both a surface charge distribution

at the dielectric boundaries [Eq. (11.6)] and a volume charge

distribution in the dielectric material itself [7, 85]. The latter

was ignored in the early development of PCMs [13, 59], but was

finally treated carefully in the late 1990s by Chipman [13–15, 89].

Generalizing Chipman’s treatment to an arbitrary value of εinside, we

note that in the absence of the medium, the solute’s electrostatic

potential would satisfy the Poisson equation ∇̂2φρ = −4πρ/εinside

throughout all space. On the other hand, the total potential φ =
φρ + φrxn must satisfy Eq. (11.2); hence, the reaction-field potential

must satisfy the equation

∇̂2φrxn(r) =
{

0 for r inside of �

4π(ε−1
inside − ε−1

outside)ρ(r) for r outside of �
. (11.8)

This can be accomplished by invoking an apparent volume charge

β(r) =
{

0 for r inside of �

(ε−1
outside − ε−1

inside)ρ(r) for r outside of �
(11.9)

that satisfies a Poisson equation

∇̂2φβ = −4πβ. (11.10)

As such, an exact treatment of volume polarization [13, 18, 89],

which is not considered here, requires discretization of three-

dimensional space in order to solve Eq. (11.10).

If φβ is known, then according to Eq. (11.6) the proper surface

charge should be [14]

σ (s) =
(

ε − 1

4π

) [
∂̂s φρ(s) + ∂̂s φβ(s) + ∂̂s φσ (s+)

]
, (11.11)

where the notation ∂̂s φ = (ns · ∇̂)φ has been introduced, and

∂̂s φσ (s+) is the contribution arising from the dielectric boundary.

Infinitesimal displacements in φρ and φβ are not necessary, as these

potentials are continuous across the cavity surface [14].

An approximate treatment is obtained by noting that the (actual)

surface charge is obtainable directly from the discontinuity in the
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normal electric field [13],

σ (s) = 1

4π

(
∂̂s φ

∣∣
s=s− − ∂̂s φ

∣∣
s=s+

)
, (11.12)

The potential φ includes the reaction-field part, which depends upon

both the surface and volume charge distributions; hence, σ implicitly

appears on both sides of Eq. (11.12). Combining this result with

Eq. (11.7), and setting εinside = 1 and εoutside = ε for the remainder

of this chapter, one obtains

σ (s) = fε
2π

∂̂s
[
φρ(s) + φσ (s) + φβ(s)

]
, (11.13)

where fε = (ε − 1)/(ε + 1) and the normal derivative ∂̂s φσ (s)

is now evaluated at the cavity surface, rather than an infinitesimal

displacement away. For pedagogical reasons we rewrite Eq. (11.13)

in the form(
1̂ − fε

2π
∂̂s

)
σ (s) = fε

2π
∂̂s

[
φρ(s) + φβ(s)

]
. (11.14)

This is as far as one can go with an exact formulation, unless

one is willing to solve Eq. (11.10) in three dimensions. However, the

effect of volume polarization can be approximated by introducing

an additional surface charge, α(s), that is defined such that its

electrostatic potential at the cavity surface is identical to that

generated by φβ . Let us define an operator Ŝ that acts on functions

f (s) defined on �, generating the corresponding electrostatic

potential:

Ŝ f (s) =
∫

�

ds′ f (s′)
|s − s′| , (11.15)

We therefore insist that [15]

Ŝα(s) = φβ(s), (11.16)

and set σ̃ = σ + α. This approximation allows for the elimination

of φβ in Eq. (11.14), affording an equation that requires only surface

integration [15]:

Ŝ
(

1̂ − fε
2π

D̂†
)

︸ ︷︷ ︸
K̂

σ̃ (s) = fε

(
1

2π
D̂ − 1̂

)
︸ ︷︷ ︸

R̂

φρ(s). (11.17)
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Here, the operator D̂† generates the negative of the outward-

pointing normal electric field [13, 15],

D̂† f (s) = −
∫

�

ds′ f (s′)
∂

∂ns
|s − s′|−1, (11.18)

and its adjoint is defined such that

D̂ f (s) =
∫

�

ds′ f (s′)
∂

∂ns′
|s − s′|−1. (11.19)

The origin of Eq. (11.17), or at least its left side, is evident from

Eq. (11.14). Equation (11.17) also indicates the notation that we will

henceforth use for this equation:

K̂ σ̃ (s) = R̂ φρ(s). (11.20)

Equation (11.20) is the primary PCM equation. It must be

discretized for actual computation (see Section 11.2.2), but then

given the solute’s electrostatic potential evaluated at the surface

discretization points, this equation can be solved for the induced

surface charge at those points (i.e., the discretized σ̃ ). In an MM/PCM

calculation, the electrostatic solvation energy is then immediately

available via a discretized version of Eq. (11.3), although in QM

applications the surface charge must be included in the next self-

consistent field (SCF) iteration, and the SCF procedure is iterated

until both the electron density and the surface charge have reached

mutual self-consistency.

For QM solutes, volume polarization is treated approximately

(but accurately [89]) by Eq. (11.17), and Chipman has called

this approach surface and simulation of volume polarization for
electrostatics [SS(V)PE] [15]. An equivalent form of Eq. (11.17) was

actually derived prior to Chipman’s work, where it was called the

integral equation formalism (IEF) [10, 58]. The equivalence is not

obvious, as the original IEF requires the solute’s electric field as an

input in addition to its electrostatic potential, but it was later shown

that the former could be eliminated in order to obtain Eq. (11.17)

[9]. The operator K̂ can similarly be manipulated into different

forms, by means of the identity [15]

D̂Ŝ = Ŝ D̂†. (11.21)
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However, this identity is not preserved upon discretization, and

different implementations of SS(V)PE/IEF-PCM are therefore pos-

sible, not all of which perform equally well in practice [44]. This is

discussed below.

Finally, it is worth emphasizing that for classical solutes φβ ≡
0 and Eq. (11.17) represents an exact solution to the continuum

electrostatics problem. To emphasize this point, we have performed

numerical comparisons of MM/PCM calculations versus results

obtained from the “adaptive Poisson–Boltzmann solver” (APBS) [5],

which represents a recent implementation of the three-dimensional

finite-difference approach. (The solvent’s ionic strength was set to

zero in the APBS calculations.) Results for amino acids, plotted

in Fig. 11.2, show sub-kcal/mol differences in most cases, and

differences of < 0.1 kcal/mol for the “X = DAS” version of SS(V)PE

(E
IE

F
-P

C
M

 –
 E

A
P

B
S
) 

/ k
ca

l m
ol

 –1

amino acids
A   C   F   G    I    L   M   N   P   Q   S   T   V   W  Y   H   K   R   E   D

100

101

X=DAS
X=SAD†

10-1

10-2

Figure 11.2 Comparison of total energies (on a logarithmic scale) for

aqueous amino acids, where the solute is described using the AMBER99 force

field and the solvent is a dielectric continuum. The continuum electrostatics

problem is solved either by finite-difference solution of Poisson’s equation

using the APBS software [5], or else using two different forms of IEF-PCM

(X = DAS or X = SAD†, as described in Section 11.2.2.1). What is plotted is

the difference E IEF-PCM − EAPBS between these two solutions. The APBS and

IEF-PCM solute cavities are identical. APBS calculations used a 193 × 193 ×
193 grid with a grid resolution of 0.1 Å, whereas IEF-PCM calculations used

590 Lebedev points per atomic sphere with Gaussian blurring.
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that is our preferred implementation of this model, for reasons

discussed below.

11.2.2 Practical Considerations

11.2.2.1 Matrix equations

Specific choices for how to construct and discretize the solute cavity

are discussed below, but for now let us assume that this has been

done, so that � has been turned into a discrete set of points si , each

with a well-defined surface area, ai . The continuous surface charge

σ̃ (s) is thus replaced with a set of point charges qi and Eq. (11.20) is

converted into a set of linear equations

Kq = Rv (11.22)

for the vector q of surface charges, with vi = φρ(si ). The matrices

K and R depend upon the matrix representations of the operators Ŝ ,

D̂, and D̂†.

Since Ŝ generates the electrostatic potential [Eq. (11.15)], it is

clear that Si j = |si − s j |−1 (in atomic units) for i �= j , because then

the quantity Si j q j is the electrostatic potential due to q j , evaluated at

the point si . The diagonal elements Sii could in principle be obtained

by evaluating the surface Coulomb integral in Eq. (11.15) over the

area ai ⊂ �. For efficiency, however, the expression

Sii = C
(

4π

ai

)1/2

f shape
i (11.23)

is widely used, where C ≈ 1.06 and f shape
i is an (often omitted)

shape factor [19]. This choice is based on the exact result Sii =
(4π/ai )

1/2 for a uniform spherical surface grid.

The integral operator D̂ is replaced by a matrix product DA,

where A is a diagonal matrix containing the areas ai . The matrix

elements of D are typically defined as [19]

Di j =
{

−(2π + ∑
k �=i Dikak)/ai for i = j

−n j · (s j − si )|s j − si |−3 for i �= j
. (11.24)

The off-diagonal matrix element is recognizable from the integrand

in Eq. (11.19), whereas the diagonal elements are based upon a sum

rule derived in Ref. [68]. (This sum rule proves to be problematic in
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modern, smooth discretization schemes, and the definitions of Dii

and Sii will be modified below.)

One complication with the discretized PCM equation is that the

discretized analogue of Eq. (11.21), which would read DAS = SAD†,

is in general not satisfied, except in the special case of a spherical

cavity. The discretized form of Eq. (11.17) is therefore ambiguous,

because the operator Ŝ D̂† appearing in that equation could be re-

placed by any linear combination X̂ = aŜ D̂†+bD̂Ŝ so long as a+b =
1, but the corresponding matrix X = aSAD†+bDAS leads to different

matrix equations for each choice of coefficients. In Chipman’s origi-

nal work on SS(V)PE [15], the choice a = b = 1/2 was suggested, as

this leads to a symmetric matrix K and thus more efficient solution

of Eq. (11.22). However, IEF-PCM calculations using the other two

“obvious” choices (a = 0 and b = 1, or vice versa) have also

been reported [24, 26, 51]. Only recently have the consequences

of these choices been recognized [44]. In particular, for realistic

molecular cavities, only the choice X = DAS achieves the correct

conductor limit (ε → ∞), whereas X = SAD† does not, nor does the

symmetrized version X = (DAS + SAD†)/2. A particular example is

shown in Fig. 11.3, and an analytic proof is provided in Ref. [44].

As a result, we choose X = DAS to define the K matrix. For

definiteness, the forms of K and R for this version of SS(V)PE/IEF-

1 10 100 1000
–55

–50

–45

–40

–35

–30

–25
IEF-PCM with X = DAS
IEF-PCM with X = SAD†

C-PCM

dielectric constant, ε 

G
 p

ol
  /

  k
ca

l m
ol

 –
1

Figure 11.3 Electrostatic solvation energy for classical histidine as a

function of dielectric constant. The C-PCM approach is free of the matrix

D and achieves the correct conductor limit as ε → ∞. Reprinted from

Ref. [44]; copyright 2011 Elsevier.
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Table 11.1 Matrices used in the equation Kq = Rv for

several different PCMsa

Method Matrix K Matrix R

SS(V)PE/
S − ( fε/2π)DAS − fε(1 − 1

2π
DA)

IEF-PCM

C-PCM/
S −(

ε−1
ε

)
1

GCOSMO

DESMO S −1 + 1
ε

M

aThe factor fε = (ε − 1)/(ε + 1) and the matrix M has elements Mi j =
δi j φ

ρ
κ (si )/φ

ρ

0 (si ).

PCM are explicated in Table 11.1. Also listed in this table are the

forms of K and R for the so-called conductor-like model, C-PCM [25].

This model is considerably simpler in that the matrix D is absent.

C-PCM is identical to the generalized conductor-like screening model
(GCOSMO) [78], and almost identical to the original COSMO [37].

(G)COSMO was introduced prior to SS(V)PE/IEF-PCM, based on ad
hoc arguments and designed to achieve the correct ε → ∞ limit. We

will show below that this model differs from SS(V)PE/IEF-PCM only

by terms of order ε−1. Due to its simplicity, C-PCM is therefore our

preferred model for high-dielectric solvents such as water.

11.2.2.2 Cavity construction and discretization

In order to obtain the matrix equations above, one must decide how

to construct, and subsequently discretize, the cavity surface. The

most widely used methods take the cavity to be a union of atom-

centered spheres [77], as suggested in Fig. 11.1(a). The electrostatic

solvation energy is quite sensitive to the radii of these spheres (it

varies as ∼ R−1 in the Born ion model), and highly parameterized

constructions that exploit information about the bonding topology

[6] or the charge states of the atoms [31] are sometimes employed.

The details of these parameterizations are beyond the scope of

the present work, especially given that careful reconsideration of

these parameters is probably necessary for classical biomolecular

electrostatics calculations.

Having selected a set of atomic radii, these must next be turned

into a discrete set of surface grid points. In QM/PCM calculations, the
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most popular approach has been the generating polyhedra (GEPOL)

algorithm [1], which tessellates the surface of each sphere into a

collection of small triangles or tesserae, using a 60-sided regular

polygon. [An example is depicted in Fig. 11.1(b).] A discretization

charge qi is placed in the center of each tessera. One difficulty

with this procedure is the complicated geometry of how these

triangles should change as a function of the atomic coordinates,

which significantly complicates the formulation of analytic energy

derivatives [23]. Furthermore, the GEPOL discretization has only a

limited degree of systematic improvability [1].

A more appealing procedure is to use atom-centered Lebedev

angular quadrature grids [42, 70, 87], which are designed as exact

quadratures through a given order in spherical harmonic functions

and are therefore systematically improvable [42]. Figure 11.1(c)

shows an example of double-stranded DNA, discretized using 50

Lebedev points per atomic sphere.

For QM/PCM applications, an appealing alternative to carefully

parametrized atomic radii is a one-parameter cavity construction

in which the cavity is defined as an isocontour of the QM electron

density [12, 19, 30]. Unfortunately, analytic energy gradients have

never been reported for such a construction (they are complicated

by the fact that ns becomes density-dependent [19, 30]), and in any

case such an approach is not possible in MM/PCM or QM/MM/PCM

calculations.

In the context of generalized Born models, Friesner and co-

workers [88] have experimented with a cavity defined as an

isosurface of a pseudo-density, d(r), that is expressed as a sum of

atom-centered Gaussians:

d(r) =
Natoms∑

K

exp
(−B|r − rK |2/R2

K

)
. (11.25)

The parameter B controls what we term the “blobbiness” of the

surface, and RK is a Gaussian width parameter for the atom centered

at rK . An isosurface contour value d = e−B ensures that the

isosurface coincides with the radius RK for a single, isolated atom

(Born ion model). A discretization grid for the isosurface can be

obtained using the marching cubes algorithm [52], arriving at a

tessellated surface grid made up of triangles. This construction will
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be used in macromolecular PCM calculations presented later in this

chapter.

An issue with all of these discretization schemes—except

possibly the genuine isodensity surface that is not considered in

this work—is the fact that the solvation energy is a discontinuous
function of the atomic coordinates, because discretization points

appear and disappear as the overlap between atomic spheres

changes. (In principle, the energy also loses rotational invariance

upon discretization, but we fund that this problem is not serious

[42]). The discontinuity problem, which is shared by finite-

difference Poisson–Boltzmann solvers, has recently been resolved in

the context of PCMs, with the development of intrinsically smooth

discretization algorithms [42, 70, 76, 87]. These are discussed in

Section 11.4.1.

11.2.2.3 Beyond electrostatics

This chapter is devoted strictly to a discussion of electrostatic in-

teractions between solute and continuum solvent; non-electrostatic

interactions are not discussed beyond a brief mention here.

Such interactions include the cavitation energy (a destabilizing

interaction representing the energy required to carve a molecule-

shaped void out of the continuum); dispersion (the stabilizing

van der Waals interaction); specific interactions such as hydrogen

bonding; and changes to the solvent structure upon insertion of

the solute. To some extent, these effects can be captured (especially

in QM/PCM calculations) by including one or more explicit solvent

molecules in the atomistic region, albeit at increased cost.

Simple corrections for non-electrostatic interactions have been

suggested, wherein atomic-specific parameters are used to describe

cavitation, Pauli repulsion, and dispersion [2, 3, 20, 84]. These non-

electrostatic interactions are then added to Gpol to obtain the total

solvation energy. The most successful examples of this approach

are the so-called SMx models of Cramer and Truhlar [27], most

of which are not actually PCMs per se but rather generalized

Born models. However, one such model (“SMD”) has recently been

parameterized for use with IEF-PCM electrostatics [55] and exhibits

mean errors of � 1 kcal/mol as compared to experimental solvation
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energies for small neutral molecules, although the mean error for

ions is 4 kcal/mol. More recently, Pomogaeva and Chipman [67]

suggested “more ab initio” forms for the various non-electrostatic

interactions, and demonstrated performance equal to or exceeding

that of the best SMx models, for aqueous solvation, with fewer

empirical parameters.

All of the aforementioned examples were developed in the

context of QM/PCM calculations and would undoubtedly need to be

reconsidered, or at least re-parameterized, for classical solutes.

11.3 New Models and Insights

In this section we discuss new theory, as opposed to the new

algorithms that are discussed in Section 11.4. Recent theoretical

developments include new methods for incorporating salt effects

into PCMs (Section 11.3.1) and new connections between PCM

and generalized Born models (Section 11.3.2), which may help to

improve the latter.

11.3.1 Generalized Debye–Hückel Theory

The discussion of continuum electrostatics in Section 11.2.1 was

limited to solution of Poisson’s equation, which can be achieved

exactly (for classical solutes) or to a good approximation (for QM

solutes) using PCMs. In biomolecular applications, however, the

objective is usually solution of the Poisson–Boltzmann equation

[4, 33]. For low concentrations of dissolved ions, the latter is often

replaced by the linearized Poisson–Boltzmann equation (LPBE),{
∇̂2φ(r) = −4πρ(r) for r inside of �

(∇̂2 − κ2)φ(r) = −4πρ(r)/ε for r outside of �.
(11.26)

Here, κ = 8πe2I/εkB T is the inverse Debye length, for a solution

whose ionic strength is I . The LPBE was derived by Debye and

Hückel [28], and its analytic solution for a spherical cavity forms the

basis of the eponymous theory. In this section, we discuss how PCMs

can be modified to solve the LPBE, but first we present an alternative

derivation of GCOSMO that will be useful in this respect.
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11.3.1.1 Alternative derivation of C-PCM/GCOSMO

The original derivation of COSMO was based on taking ε → ∞,

in which case Sq = −v is the exact solution to the molecular

electrostatics problem, then rescaling the solution for finite ε [37,

78]. Recently, we presented a much more satisfying derivation [43].

Our approach starts from an ansatz

φ(r) =
{

φ
ρ
0 (r) + φσ

0 (r) for r inside of �

φ
ρ
0 (r)/ε for r outside of �

(11.27)

for the electrostatic potential, consisting of a solute contribution

φ
ρ
0 and a second contribution φσ

0 arising from the induced surface

charge. The subscripts on these quantities indicate that κ = 0,

which will later be replaced by nonzero κ in the event of dissolved

ions. Enforcing the condition that φ(r) must be continuous across

�, Eq. (11.27) immediately affords the C-PCM/GCOSMO equation in

Table 11.1 [43]. On the other hand, this ansatz cannot be made to

satisfy the jump boundary condition in Eq. (11.7).

Noting that ∂̂s φ
ρ
0 is continuous across �, the reaction-field

potential must be solely responsible for the jump in the electric field

[16]. This condition can be expressed as [43]

∂̂s φrxn(s+) = −
(

ε − 1

ε

)
∂̂s φ

ρ
0 (s) + 1

ε
∂̂s φrxn(s−). (11.28)

The normal derivative of the ansatz in Eq. (11.27) lacks the

second term in Eq. (11.28); hence, C-PCM/GCOSMO engenders

errors of order ε−1, as compared to an exact treatment of classical

electrostatics. Such errors are negligible in water [44], as seen in

Fig. 11.3.

11.3.1.2 DESMO and ion exclusion

The above derivation of GCOSMO immediately suggests how this

model can be generalized to solvents with non-zero ionic strength,

using a modified ansatz of the form

φ(r) =
{

φ
ρ
0 (r) + φσ

0 (r) for r inside of �

φρ
κ (r)/ε for r outside of �

(11.29)

and enforcing continuity of φ at the cavity surface but neglecting

the jump boundary condition for the electric field [43]. In homage
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to (G)COSMO, we have called the resulting PCM the Debye–Hückel-
like screening model (DESMO), and its basic working equation is

given in Table 11.1. The only change, relative to GCOSMO, is the

need to compute the screened electrostatic potential φρ
κ at the

cavity surface, in addition to the unscreened potential, φ
ρ
0 . (The

screened form simply uses the Yukawa potential e−κr/εr in place of

the Coulomb potential 1/εr that is used in the unscreened form.)

DESMO represents the leading-order (in 1/ε) approximation to the

“screened” SS(V)PE and IEF-PCM models that have been developed

to solve the LPBE [17, 22, 58]. Working equations for the latter

models are more complicated and can be found in Ref. [43]. In high-

dielectric solvents, however, DESMO incurs negligible error with

respect to those models but retains the simplicity of (G)COSMO.

On the other hand, the screened SS(V)PE [17] and IEF-PCM

[22, 58] treatments of the LPBE lack one important feature of the

original Debye–Hückel theory, namely, a correction for the finite size

of the dissolved ions. To understand this, let us recall the model

problem considered by Debye and Hückel [28], which consists of a

point charge q centered in a spherical cavity of radius Rcav, outside

of which is the dielectric medium. The dissolved ions are assumed to

have a finite radius Rion, and their centers therefore cannot approach

the charge q closer than a distance Rcav + Rion. This manifests as an

ion exclusion layer (Stern layer) for Rcav ≤ r ≤ Rcav + Rion, and a

long-range electrostatic potential (for r > Rcav + Rion) of the form

φDH
long-range(r) = q

(
e−κr

εr

)
eκ(Rcav+Rion)

1 + κ(Rcav + Rion)︸ ︷︷ ︸
γ

. (11.30)

This potential has the form of the charge q times a screened

Coulomb potential (Yukawa potential, e−κr/εr) multiplied by what

we have termed an ion exclusion factor, γ [43]. This suggests that ion

exclusion might be incorporated into DESMO using an ansatz of the

form [43]

φρ
κ (si ) = eκ(Rion+RI )

1 + κ(Rion + RI )︸ ︷︷ ︸
γI

∫
R3

dr ρ(r)
e−κ|si −r|

|si − r| (11.31)

for discretization points si located on the I th atomic sphere.
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Table 11.2 Solvation energiesa for a model consisting

of 25 disjoint spheres with a point charge in eachb

ε κ−1/ Gpol/ Error / kcal mol−1

Å kcal mol−1 DESMO SS(V)PE/

with γI without γI IEF-PCM

4 ∞ −2899.49 −0.01 −0.01 0.98

20 ∞ −3672.69 0.00 0.00 0.27

80 ∞ −3817.67 0.00 0.00 0.07

4 25 −2914.09 −0.26 −1.39 0.70

20 25 −3675.61 −0.05 −0.28 0.21

80 25 −3818.40 −0.01 −0.07 0.06

4 5 −3035.50 −0.41 −20.92 0.37

20 5 −3699.90 −0.08 −4.18 0.13

80 5 −3824.47 −0.02 −1.04 0.04

4 3 −3122.65 −0.22 −44.47 0.30

20 3 −3717.32 −0.05 −8.90 0.09

80 3 −3828.83 −0.01 −2.22 0.03

aComputed from an exact analytic solution of the LPBE,[53] for

various values of ε and κ with Rion = 0.
bReprinted from Ref. [43]; copyright 2011 American Institute of

Physics.

Table 11.2 presents some results for a simple model consisting

of 25 disjoint spheres immersed in a salty dielectric, with a point

charge centered in each sphere but with mobile ions of zero

size (Rion = 0). The LPBE can be solved analytically for this

toy problem [53], which is intended to explore how continuum

methods might perform for modeling protein–protein interactions

in solution. Solvation energies obtained from the LPBE are on the

order of −3000 kcal/mol or more and DESMO, with ion exclusion

factors γI as suggested in Eq. (11.31), reproduces these energies to

within 0.4 kcal/mol in each case. Without the ion exclusion factors,

however, very large errors can result. Interestingly, DESMO with

ion exclusion is actually slightly more accurate than the versions

of SS(V)PE and IEF-PCM that have been suggested for use with

the LPBE (and which are equivalent for a classical solute). Errors

in SS(V)PE/IEF-PCM are a reflection of the fact that this method

is fundamentally approximate in the presence of outlying charge,
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which arises here not from tails of a wave function but rather from

the presence of disjoint solute cavities [43].

In the future, DESMO should be tested with finite ion size and

compared to numerical solution of the LPBE using a cavity surface

(defined by the van der Waals radii RI ) that does not coincide with

the ion exclusion surface (defined by RI + Rion). Finite ion size has

incorporated into Generalized Born models, however, via the ion

exclusion factors in Eq. (11.31) [46]. These models are discussed in

the next section.

11.3.2 Connections to Generalized Born Models

The most widely used implicit solvation models in biomolecular

simulations are probably the Generalized Born (GB) models [63,

79], because they are computationally inexpensive and amenable

to analytic forces. GB models posit that the electrostatic solvation

energy can be expressed in the form

GGB
pol = −1

2

(
ε − 1

ε

) ∑
i, j

qi q j

fi j
, (11.32)

where qi and q j are the MM point charges on atoms i and j , and

the quantity f −1
i j is an effective Coulomb potential. In the case of a

spherical cavity, fi j has two known limits: [34, 45]

f sphere
i j → ri j as ri j → ∞

f sphere
i j → (

r2
i j + R perf

i R perf
j

)1/2
as ri j → 0

. (11.33)

(We use atomic units in this discussion, so r−1
i j is the Coulomb

potential between charges qi and q j .) The limit ri j → ∞
corresponds to the solvable model problem of two Born ions in non-

overlapping spherical cavities, while the limit ri j → 0 becomes valid

when qi and q j occupy the same spherical cavity [34].

The quantity R perf
i in Eq. (11.33) denotes the “perfect” effective

Born radius for qi [64], the efficient and accurate computation of

which is a major part of the development of GB models. To define

R perf
i , let GPE

pol, i i denote the exact polarization energy (obtained by

solving Poisson’s equation) for the atomic charge qi in a cavity

representative of the entire molecule. (That is, we turn off all charges

 EBSCOhost - printed on 7/17/2021 12:51 PM via OHIO STATE UNIV-MAIN. All use subject to https://www.ebsco.com/terms-of-use



January 29, 2016 11:32 PSP Book - 9in x 6in 11-Qiang-Cui-c11

New Models and Insights 383

q j �=i but leave the cavity unchanged.) Then the definition

R perf
i = −1

2

(
ε − 1

ε

)
q2

i

GPE
pol, i i

(11.34)

assures the correct Born ion limit in Eq. (11.32) [45].

Equation (11.34) is not a practical construction of the perfect

radii, because it requires solving Poisson’s equation for the entire

molecule, once per atom. Computationally tractable approximations

have been proposed and tested [48, 62], but will not be discussed

here. Instead, we discuss a formal connection that was discovered

recently between PCMs and the GB ansatz [45], and propose PCMs

as a means to generate benchmark data for testing the various

approximations that go into GB models.

The key breakthrough is to recognize that when the solute is

composed of point charges (or higher-order classical multipoles

[45]), each solute charge’s contribution to the ASC can be treated

individually within the PCM formalism. As a result, the total

electrostatic solvation energy assumes a pairwise-additive form.

Equating this energy with Eq. (11.32) affords a formal expression

for the exact effective Coulomb operator for GB theory: [45]

1

fi j
= 1

qi q j

∫
�

ds φ
ρ
i (s) Ĉ −1

ε φ
ρ
j (s). (11.35)

Exact perfect radii are given by R perf
i = f −1

i i . The quantity φ
ρ
i (s)

in Eq. (11.35) denotes the electrostatic potential at the point s
that is generated by the solute charge qi , and the operator Ĉε can

be expressed in terms of the PCM operators Ŝ and D̂ introduced

above [45]. The subscript in Ĉε is intended as a reminder that this

operator depends explicitly on the dielectric constant, so that f −1
i j

cannot be independent of ε, as is assumed in most (though not all

[72]) GB models. We have argued [45] that the only reasonable,

ε-independent choice is the ε → ∞ limit (especially given the

importance of aqueous solvation), which has the added benefit of

simplifying the operator Ĉε , since IEF-PCM reduces to C-PCM in that

limit.

Thus, we have demonstrated a formal equivalence between PCM

and GB calculations, wherein perfect radii and exact values of fi j can

be computed from PCM calculations. Exact fi j values are defined
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only in a pairwise way, for each pair of atoms in a macromolecule,

and the key to an accurate GB model is to pick an analytic functional

form that can interpolate between the two limits in Eq. (11.33) while

fitting the pairwise fi j data. A commonly used form for the analytic

interpolating function is [65]

fi j =
√

r2
i j + Ri R j 
i j , (11.36)

where 
i j is some function of ri j and the atomic radii Ri and R j .

(The latter are generally some approximations to the perfect radii.)

The form


Still
i j = exp(−r2

i j /c Ri R j ) (11.37)

is often used, with c = 4 in the original GB model of Still et al. [74]

We have used C-PCM calculations to obtain a data set of fi j values

and perfect radii for a small collection of proteins, using Eq. (11.35)

[45]. Figure 11.4 plots the pairwise 
i j data obtained for one of

these proteins, which consists of 515 atoms for a total of 132,355

values of 
C-PCM
i j with i �= j . Although the functional form originally

proposed by Still et al. [74] grossly conforms to the contours of the

data, there appears to be room for improvement.

Figure 11.4 Exact values of 
i j (black dots) for all pairs of atoms in the

protein 1AJJ, obtained from C-PCM calculations with perfect radii Ri and R j .

The colored curves depict various analytic interpolating functions.
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Setting


i j = 2 �i j ri j

(Ri R j )1/2
+ �2

i j (11.38)

in Eq. (11.36) affords fi j = ri j + �i j (Ri R j )
1/2, where �i j is a new

pairwise interpolating function having limits

�i j → 1 as ri j /Ri R j → 0

�i j → 0 as ri j /Ri R j → ∞.
(11.39)

The quantities (Ri R j )
1/2 that are needed to obtain �i j and fi j can be

computed outside of the pairwise GB loop, and one may seek a form

for �i j that does not require calls to the exponential or square root

functions, both of which are required when the “canonical” form of


i j [Eq. (11.37)] is used. An example is the function

�
p16
i j =

[
1 + ξ ri j

16(Ri R j )1/2

]−16

, (11.40)

which is a 16th-order approximation to the function in Eq. (11.37),

but which can be evaluated using only a small number of floating

point operations [45]. In Ref. [45], we fit the parameter ξ (along

with the truncation order, p = 16) to a protein training set. Visual

inspection of the various interpolating functions that are plotted in

Fig. 11.4 suggests that the function 

p16
i j obtained from Eq. (11.40)

does indeed fit the data better than the function suggested by Still et

al. [74], although the enormous number of data points in the figure

somewhat obscures the true spread of the data. In any case, an exact

data set of 
i j values has never been available before, so the utility

of PCMs in re-parameterizing GB models seems clear.

Figure 11.5(a) shows contour plots of two-dimension histograms

that count the number of 
C-PCM
i j data points, as a function of

the value of 
C-PCM
i j and the dimensionless distance ri j /(Ri R j )

1/2.

Various analytic interpolating functions 
i j are superimposed on

top of these contours. Much more so than the function 
Still
i j , the

interpolating functions 

exp
i j and 


p16
i j that we suggested in Ref. [45]

cut a path through where the number of data points is peaked. On the

other hand, Fig. 11.5(b) superimposes these functions on top of two-

dimensional histograms of the pairwise GB energy contributions,
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Figure 11.5 Analytic interpolating functions 
i j superimposed on top of

contours that represent (a) the total number of exact 
C-PCM
i j data points

for protein 1AJJ in the scatter plot of Fig. 11.4, and (b) the pairwise energies

|GGB
pol, i j | = |qi q j /2 fi j | associated with each data point. In (a), the contours

are shown in black with the outermost contour representing 100 data points

per bin and subsequent contours increasing in increments of 100 data

points per bin. In (b), the contours are shown in alternating black and gray,

with the outermost (rightmost) contour representing Gpol, i j = 1 kcal/mol

and subsequent contours increasing in increments of 1 kcal/mol. Bin widths

are 0.5 and 0.026, respectively, in the dimensionless quantities ri j /(Ri R j )
1/2

and 
i j .

|GGB
pol, i j | = |qi q j |/2 fi j [see Eq. (11.32)]. This figure seems to

suggest that the new interpolating functions push 
i j away from the

energetically most important data points, so further improvement in

the effective Coulomb operator may be possible.

 EBSCOhost - printed on 7/17/2021 12:51 PM via OHIO STATE UNIV-MAIN. All use subject to https://www.ebsco.com/terms-of-use



January 29, 2016 11:32 PSP Book - 9in x 6in 11-Qiang-Cui-c11

Advances in Algorithms 387

However, error statistics confirm that the interpolating functions

suggested in Ref. [45] do fit the |GGB
pol, i j | data better than 
Still

i j .

In fact, the function 

p16
i j [Eq. (11.40)] actually reduces the errors

in GB solvation energies while simultaneously accelerating the

calculations [45]. To wit, when quasi-perfect “R6∗” radii [62], which

can be computed cheaply, are used in place of the perfect radii that

are only available in benchmark calculations, the mean absolute

error in GGB
pol as compared to C-PCM benchmarks is reduced from

8.7 kcal/mol for the canonical GB operator 
Still
i j to 5.1 kcal/mol

for the interpolating function 

p16
i j . At the same time, use of 


p16
i j

reduces the cost by a factor of three relative to the canonical

GB model based on 
Still
i j [45]. The new interpolating function

can be “dropped in” to existing MD codes with GB capability, and

given the sizable speed-ups that we have observed, we advocate

extensive further testing of the GB kernel in Eq. (11.40) and related

functions.

Finally, let us briefly mention the incorporation of salt effects

into GB models. It is recognized that standard GB models tend to

exaggerate the importance of the salt, likely due to neglect of the ion

exclusion layer [73]. Empirical scaling of κ has been suggested as

a remedy [71, 73]. Alternatively, however, the DESMO ion exclusion

factors [γI in Eq. (11.31)], in conjunction with the formal connection

between PCMs and the GB ansatz, can be used to suggest “first

principles” corrections to GB models that incorporate salt effects

[46]. Several new GB models that incorporate salt effects were

suggested in Ref. [46], based on formal connections to DESMO, and

shown to be only slightly less accurate than methods that use an

empirical scaling factor for κ . As such, these new models may serve

as starting points for future development of salty GB models.

11.4 Advances in Algorithms

In this section we focus on technical rather than theoretical

developments, but ones that are absolutely essential if PCMs are

going to be brought to bear on macromolecules.
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11.4.1 Intrinsically Smooth Discretization

An issue with the PCM formalism introduced in Section 11.2.2.1 is

that the electrostatic energy is in general a discontinuous function

as the solute atoms are displaced, because the number and size of

the surface tesserae may change as a function of solute geometry. A

similar problem is suffered by finite-difference Poisson–Boltzmann

solvers, and the “solution” in those cases (in order to achieve stable

forces for MD simulations, for example) is tight thresholding and/or

some kind of interpolation between grid points [80–83].

The situation is simpler in the case of PCMs, where only the cavity

surface (and not the whole of three-dimensional space) needs to be

discretized. A switching function of the form

Fi =
atoms∏
K , i /∈K

f (si , rK ) (11.41)

can be used to attenuate the contribution to the PCM equations

from the i th surface grid point si , as that point passes through

a narrow buffer region around the solute cavity surface, which is

defined in terms of spheres centered at the atoms rK . The quantity

f in Eq. (11.41) is some function that changes smoothly from 0 to 1

across this buffer region [41, 42, 87].

This simple procedure, however, leads to problems for certain

cavity surface definitions [41, 44]. In particular, while the switching

function can provide a potential energy surface that is rigorously

smooth in the mathematical sense of having continuous derivatives,

those derivatives may fluctuate wildly as a function of the solute

coordinates [41]. These oscillations are actually exacerbated by the

switching function, which allows the surface charges to approach

one another more closely than would be the case if they were simply

turned on or off discontinuously at the cavity surface boundary. The

result can be sharp singularities in the energy along a geometry

optimization [41] or MD trajectory [42]. For example, Fig. 11.6

shows harmonic vibrational spectra for a relatively large system

(adenine with 52 explicit water molecules, all embedded within

a polarizable continuum) computed using the fixed points with
variable areas (FIXPVA) discretization algorithm of Ref. [75]. The

FIXPVA approach achieves a smooth potential surface by applying
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Figure 11.6 Harmonic vibrational spectra for (adenine)(H2O)52 computed

at the MM/PCM level, using two different smooth implementations of

the C-PCM solvation model. Harmonic frequencies were computed via

finite difference of analytic energy gradients and convolved with 10 cm−1

Gaussians. Arrows indicate FIXPVA peaks with no obvious SWIG analogues,

and the inset blows up the region of the spectrum < 4000 cm−1. Reprinted

from Ref. [41]; copyright 2010 American Chemical Society.

a switching function to the surface areas ai , scaling them smoothly

to zero as the point si passes through the buffer region and

into the cavity. However, sharp fluctuations in the FIXPVA energy

gradient (which, we emphasize, is a continuous function) manifest

as anomalously large vibrational frequencies of up to 16,000 cm−1!

A solution to this problem is to use Gaussian blurring of the

surface charges [41, 87], in which each discretization charge qi is

replaced by a Gaussian function

gi (r) = qi

(
ζ 2

i

π

)3/2

exp
(−ζ 2

i |r − si |2
)

. (11.42)

The width parameters ζi are chosen so as to approximate a uniform

surface charge in the case of a single point charge centered in a

spherical cavity [87], and are fixed parameters once the number

of Lebedev discretization points per sphere is specified. The matrix
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elements of S are then

Si j =
{

ζi (2/π)1/2 F −1
i i = j

erf(ζi j si j )/si j i �= j
(11.43)

where si j = |si − s j | and ζi j = ζi ζ j (ζ
2
i + ζ 2

j )1/2. The off-diagonal

element is simply the Coulomb interaction between two Gaussians,

while the diagonal element Sii consists of the s j → si limit of that

Coulomb interaction, multiplied by F −1
i . The latter factor guarantees

a smooth potential surface by ensuring that Eq. (11.22) has a null

space corresponding to grid points for which Fi = 0 [42]. As such,

it is safe to discard points for which Fi falls below a given threshold,

thus reducing the dimension of the linear system in Eq. (11.22).

The matrix elements of D require some care. Off-diagonal

elements can be computed from Si j according to [42]

Di j = n j · ∂Si j

∂si
. (11.44)

Diagonal elements are often computed by means of a sum rule [see

Eq. (11.24)] [68], but this relationship is no longer rigorously valid

in the presence of attenuated grid points that may actually reside

within the cavity. This can lead to serious numerical problems in the

context of smooth PCMs [44]. Instead, we take Dii = Sii /2RI , where

RI is the radius of the atomic sphere on which the point si resides

[42]. This formula is correct for a spherical surface of radius RI [58].

The combination of switching function, Gaussian blurring, and

Lebedev discretization, with these choices for S and D, constitutes

what we have called the switching/Gaussian (SWIG) discretization

approach [42]. All of the required matrix elements are analytically

differentiable functions of the atomic coordinates, and the deriva-

tives are rigorously continuous and free of unphysical oscillations.

As compared to the FIXPVA approach, spurious vibrational fre-

quencies are absent (see Fig. 11.6). In QM/PCM calculations, SWIG

discretization preserves the variational property of the original

operator formalism, namely, that the solute/continuum electrostatic

interaction necessarily lowers the SCF energy [42]. When the

X = DAS version of the K matrix is employed in IEF-PCM (or

when C-PCM is used instead), SWIG discretization yields the same

solvation energies, to very high accuracy, as compared to traditional

discretizations [44].
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Figure 11.7 Non-electrostatic solvation energy for a QM/PCM calculation

of aqueous NaCl, as a function of the distance between the two atoms.

The model assumes that the non-electrostatic energy is proportional to the

exposed cavity surface area, which jumps in discontinuous steps for VTN

discretization. The SWIG discretization smoothly interpolates through these

steps, whereas the FIXPVA discretization achieves smoothness by scaling

the tesserae surface areas, leading it to underestimate the total surface area.

Adapted from Ref. [41]; copyright 2010 American Chemical Society.

Within the SWIG-PCM approach, the exposed cavity surface area

is also a rigorously smooth function of the atomic coordinates, even

though the “seams” between atomic spheres are no longer sharp

cusps, and discretization points within the buffer zone do contribute

to the total surface area, albeit with some attenuation. The fact that

surface areas are smooth is important because the non-electrostatic

energy is often parameterized in terms of the cavity surface area

[2, 3, 20, 47, 84]. In biomolecular applications, so-called MM/PBSA

methods [36, 38] also use the cavity surface area to obtain the

non-electrostatic part of the solvation energy. Figure 11.7 plots the

total surface area, obtained using various discretization methods, as

two atomic spheres are pulled apart. The variable tesserae number
(VTN) scheme [49] amounts to a discontinuous throwing away of

grid points as they enter the solute cavity, and serves as a control

experiment. As one would expect for such an approach, the VTN

surface area consists of a sequence of discrete steps corresponding
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to addition or loss of grid points. Due to the simplicity of the

model, these steps should represent an accurate (if discontinuous)

approximation to the cavity surface area, and the SWIG surface area

smoothly interpolates through these steps. FIXPVA discretization,

while it does afford a rigorously smooth surface area, tends to

underestimate the VTN surface area. We have shown that the lack

of Coulomb regularization in FIXPVA necessitates a more aggressive

switching function in order to avoid singularities [41, 44], with the

result that many grid points are attenuated completely away, leading

to “holes” in the cavity surface [41].

A major advantage of the inherently smooth SWIG-PCM ap-

proach, as compared to a grid-based finite-difference solution of

Poisson’s equation, is that stable forces for MD simulations are

obtained by straightforward differentiation of Eq. (11.22) [42],

even for fairly coarse discretization grids. In the finite-difference

approach, one must resort to very fine grids, or else interpolation

or other tricks, in order to render discontinuities small enough so

that energy-conserving MD can be achieved [80–83]. Figure 11.8

plots the electrostatic solvation energy, Gpol, from an ab initio

MD trajectory of glycine in implicit water [42]. In this simulation,

the solute is initialized in its carboxylic acid tautomer, whereas

the zwitterionic tautomer is more stable in aqueous solution. As

such, the molecule spontaneously undergoes intramolecular proton

transfer, evident in Fig. 11.8 by the dramatic change in Gpol.

Close examination, however, reveals that Gpol is a perfectly smooth

function of time, even during the course of this radical change in

cavity geometry.

Stable forces are also obtained in MM/PCM simulations, as

shown in Fig. 11.9 for a classical MD simulation of a segment of DNA

bound to a histone protein. Here, the energy fluctuations amount to

an acceptable ∼0.0001% of the total energy.

11.4.2 Linear Scaling and Parallelization

The MM/PCM simulation in Fig. 11.9 consists of ∼124,000 surface

discretization points (those for which Fi > 10−6). As such, solution

of Eq. (11.22) by matrix inversion or other O(N3) methods is clearly

infeasible, and a linear-scaling approach (in both memory and CPU
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Figure 11.8 Ab initio (PBE0/6-31+G*) QM/PCM MD simulation o� in-
tramolecular proton transfer in aqueous glycine. The inset shows the
total electrostatic solvation energy (Gpol), which is much larger for the
zwitterionic tautomer than for the carboxylic acid tautomer. The shaded
region has been enlarged in the main part of the figure, in order to
demonstrate that the solvation energy is a smooth function of time despite
the radical change in cavity shape upon proton transfer. The time step is
≈ 1 fs. Adapted from Ref. [42]; copyright 2010 American Institute of Physics.

time) is required. Such algorithms have been reported [25, 69],
and parallelization has been discussed as well [29]. Our approach
is described here for the first time, although versions o� it have
actually been available in the Q-CHEM software [39] since v. 3.2. Our
strategy involves (bi)conjugate gradient solvers for linear equations,
which do not require explicit formation of matrices such as S and
D; a treecode version [50] of the fast multipole method [32]; and
parallelization using both OpenMP and MPI. The discussion below
pays particular attention to scalability and to the parallelization
strategy, focusing on practical considerations as the system size is
scaled up, and on how appropriate choices can be made for optimal
efficiency at different points along the way.
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Figure 11.9 Energy fluctuations in an MM/PCM MD simulation of a
segment of DNA bound to a histone protein. The solute (DNA + protein)
consists of 21,734 AMBER99 atoms and the cavity surface is discretized using
≈ 124,000 surface charges. After the initial equilibration period, energy
fluctuations amount to ≈ 0.0001% of the total energy.

11.4.2.1 Conjugate gradient solvers

The straightforward way to solve Eq. (11.22) is by constructing the
matrix K− 1R, or more realistically by some equivalent factorization
procedure such as LU decomposition. Even in an iterative SCF
procedure, this needs to be done just once per molecular geometry.
Nevertheless, this operation scales as O (N3

grid) and becomes the
bottleneck surprisingly quickly in QM/PCM calculations, especially
for dense discretization grids. The SWIG discretization procedure
exacerbates the cost of QM/PCM calculations, both by increasing the
number of grid points (we retain all si for which Fi > 10− 6) and
also because it requires evaluation of three-index Gaussian integrals,
(gi |µν ). For example, inHartree–Fock/6-31G* calculations on linear
alkanes, using 302 Lebedev points per atom (which is sufficient to
converge the electrostatics to within ≈ 0.3 kcal/mol [42]), the PCM
cost exceeds the QM cost starting around octane. For QM/MM/PCM
calculations, the O (N2

grid) cost in memory can also become a serious
limitation.

A solution is to use Krylov subspace methods, such as the
conjugate gradient (CG) method, the biconjugate gradient (BiCG)
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method, or other variants. The former is appropriate for C-PCM and

DESMO, where the matrix K is symmetric, and the BiCG algorithm

can be used for the non-symmetric SS(V)PE/IEF-PCM case. The cost

of these algorithms is dominated by matrix-vector products that

scale as O(N2
grid), although matrix-matrix multiplication is required

for SS(V)PE/IEF-PCM, which brings that method’s scaling back up to

O(N3
grid) if matrices are constructed explicitly.

These matrix multiplications can be avoided using a combination

of the CG and BiCG algorithms to bypass construction of K [19]. In

the first stage, the BiCG algorithm is used to solve the equation(
I − fε

2π
DA

)
w = − fε

(
I − 1

2π
DA

)
v (11.45)

for w. Following that, the equation Sq = w is next solved for q,

using the CG algorithm. The cost of this two-stage approach scales

as O(N2
grid).

The CG and BiCG algorithms are complicated by the presence of

an inverse switching function in the definition of Sii [Eq. (11.43)],

which causes Sii → ∞ as Fi → 0. Although in practice these

matrix elements are discarded when Fi is smaller than some pre-

determined threshold, values of Fi just above threshold tend to

inflate the condition number of S, which can cause numerical

instabilities or slow convergence in CG/BiCG algorithms. Large

condition numbers can be avoided by appropriate factorizations, for

example

S = S1/2
diag

(
1 + S−1/2

diag SoffS−1/2
diag

)
S1/2

diag , (11.46)

where Sdiag and Soff represent the diagonal and off-diagonal parts

of S, respectively. The factor in parentheses is symmetric and thus

amenable to a CG approach, and ought to have a significantly

smaller condition number than S because small Fi appear in the

numerator of S−1/2
diag . For C-PCM, Eq. (11.46) can be used to obtain an

intermediate equation(
1 + S−1/2

diag SoffS−1/2
diag

)
q̃ = − fε S−1/2

diag v (11.47)

that is solvable by CG techniques. Having solved this equation for q̃,

the final C-PCM charges are q = S−1/2
diag q̃. This strategy can also be

used in the two-stage CG/BiCG calculation for SS(V)PE/IEF-PCM, as

outlined above. The cost remains O(N2
grid) in CPU time.
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Pre-conditioning improves both the rate of convergence and the

stability of CG algorithms, but its effectiveness depends sensitively

on the nature of the pre-conditioner matrix, M. For solving linear

equations Ax = b, the pre-conditioner should be selected such

that M−1A has a smaller condition number than A, which usually

implies that M−1 is some approximation to A−1. A common choice

is to set M equal to the diagonal of A, but if the C-PCM equations

are factored according to Eq. (11.47), this would make M a

unit matrix and therefore pointless. We find that factorization

according to Eq. (11.47), without pre-conditioning, exhibits superior

convergence properties as compared to pre-conditioning using the

diagonal of A.

Block-diagonal pre-conditioners, which can be easily diagonal-

ized and stored in core memory, are also popular, and this is the

approach that we take. The fast multipole method [32, 50] (FMM)

that is described below is used to partition the surface discretization

charges, and this partition suggests a natural block structure for M.

We define the blocks of M to be equal to sub-blocks of S consisting of

the “leaf boxes,” which are the smallest partitions in the “octree” data

structure of the FMM (see below). The maximum number of grid

points in one of these leaf boxes is a controllable threshold (Nthresh)

in the FMM procedure, and keeping Nthresh � 200 ensures that M
can be rapidly diagonalized and efficiently stored. We use this pre-

conditioner without the factorization in Eq. (11.47), and find that

convergence is accelerated by about 20% for large systems, relative

to other methods discussed here (Fig. 11.10).

11.4.2.2 Fast multipole method

Given that the matrix elements of both S and D are essentially just

particle–particle interactions, the FMM algorithm [32] can be used

to improve the scaling to either O(N) or O(N log N), depending on

the precise details. Our implementation (in Q-CHEM [39]) is based

on the octree Cartesian FMM developed by Krasny and co-workers

[50], which recursively sub-divides space into eight cubes of equal

size and computes a multipole expansion of the charges contained in

each box. In our implementation, these sub-divisions cease when the

number of particles in a box falls below a given threshold (Nthresh),
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Figure 11.10 Convergence of AMBER99/C-PCM calculations for (alanine)1000

using SWIG discretization with 110 Lebedev points per atom. Method (a)

uses the factorization in Eq. (11.47) with no pre-conditioning; method (b)

uses a diagonal pre-conditioner; and method (c) uses a block-diagonal pre-

conditioner. The convergence threshold was set to a maximum residual of

10−4 and electrostatics were computed exactly (no FMM).

or when the distance between the center and the vertices of the cube

falls below another threshold (Rthresh).

Following construction of the octree data structure, the Coulomb

interaction between a given particle (surface grid point) and the

N−1 other particles is computed by traversing the octree, starting at

the root box and then traveling downward into each box containing

the given particle’s coordinates, until the particle reaches a terminal

(“leaf”) box of the tree. At each level in this traversal, we sum the

multipole interactions between the given particle and each “child”

box that is within a certain multipole acceptance criterion (MAC),

θMAC [50]. The criterion for using multipoles rather than explicit

particle–particle interactions is

Rc,box/ric ≤ θMAC, (11.48)

where Rc,box is the radius of the cth box (or “cluster” in the language

of Ref. [50]), and ric is the distance between the i th tree-traversing

particle and the center of the cth box. If the inequality in Eq. (11.48)

is met, then the multipole expansion for the cth box is used for its

interaction with tree-traversing particle i , otherwise the pairwise

particle–particle interactions are computed explicitly. (The limit
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θMAC = 0 is equivalent to never accepting multipoles, and the limit

θMAC = 1 accepts all multipoles except for those inside of a box, so

that particle–particle interactions are computed explicitly in the leaf

boxes.) Tree traversal terminates when the particle reaches a leaf

box, and in the leaf box, the particle computes its explicit pairwise

interactions within the leaf box as well as any remaining boxes on

the same level that are not within the MAC. At the end, one will have

summed the pairwise interactions between particle i and all other

particles, in O(log N) effort. Repeating this for all N values of i leads

to overall O(N log N) scaling. No matrices are stored, so memory

usage is O(N).

This FMM procedure readily interfaces with the CG solver,

replacing all matrix-vector products involving S with the FMM

using the Coulomb kernel r−1
i j for point charges [50]. The matrix

D can similarly be replaced by computing the electric field via

FMM and appropriately multiplying the normal vectors. However,

the Gaussian blurring used in SWIG discretization complicates

the situation, because it involves a modified pairwise kernel,

erf(ζi j ri j )/ri j . Although variants of FMM that are appropriate for

Gaussian basis sets have been developed [86], we take a simpler

approach, allowing Gaussian charges to interact as if they were

point charges outside of a certain distance, Rerror. Note that the

pairwise Coulomb kernel Sii reduces to the point-charge kernel

in the limit ζi j → ∞. For a given PCM grid, we therefore select

a minimum Gaussian width, ζmin
i , whence the minimum possible

value of ζi j is ζmin
i /

√
2. The maximum error in the pairwise Gaussian

charge interactions is then equal to 1 − erf(ζmin
i Rerror/21/2), so

Rerror can be tuned to achieve a desired accuracy. The minimum box

“radius”, Rthresh, serves as a stopping criterion during the subdivision

recursion, such that the minimum distance for meeting the MAC is

Rthresh/θMAC. Then, in order to ensure that we only accept multipoles

beyond Rerror, one must simply ensure that

Rthresh/θMAC ≤ Rerror. (11.49)

This applies to explicit charge–charge interactions, while the

error in multipoles remains controlled by the order at which

the multipole expansions are truncated. The explicit pairwise

interactions between Gaussian charges in the leaf boxes are still

computed explicitly using the erf(ζi j ri j )/ri j kernel.
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11.4.2.3 Parallelization strategies

The methods described above can be applied to any PCM discussed

herein, including those based on SWIG discretization, and scale as

O(N log N) in CPU time and O(N) in memory. Here, we discuss a hy-

brid OpenMP/MPI paradigm that we have used to parallelize these

calculations. Our focus is on C-PCM and its DESMO extension for

salt effects, as these models are simpler and cheaper than SS(V)PE/

IEF-PCM, and provide nearly identical results in water. Although

parallel implementations of the FMM algorithm for MD simulations

have been reported before [11, 40], achieving good scalability for

the two-dimensional PCM electrostatics problem (with a cavity

surface that is changing dynamically as the simulation evolves) may

pose different challenges as compared to three-dimensional MD

simulations. Indeed, our preliminary implementation suffers from

some load-balancing issues, as discussed below, that have not yet

been resolved.

Most of the work in an FMM implementation of C-PCM goes into

computing the matrix-vector products in each CG iteration; these

operations are a good target for multithreading with OpenMP. We

store the entire FMM octree data structure in shared memory so

that each thread can access the octree in a parallel fork. We do not

store the Taylor series multipole expansion coefficients for the FMM

but instead compute them on-the-fly as needed, via bootstrapping

through recursion, whenever the MAC is met. This maintains a low

memory footprint and also seems to benefit the performance with

more cache hits within the function stack memory than by otherwise

fetching the coefficients more slowly from heap memory. When the

FMM is called, the multipole moments for each box in the octree are

updated with the provided charges. We multithread this loop over

boxes, providing it with the “guided” OpenMP threading schedule to

account somewhat for load imbalance in the boxes. The FMM can

then proceed to compute the electrostatic potential for each particle.

We multithread the loop over the particle tree traversals, which

must be done once for each discretization point, and each particle

accumulates its potential into the shared memory vector that stores

the result of the matrix-vector product. For t OpenMP threads, the

ideal scaling for each CG iteration is O[(N log N)/t].
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We reserve distributed MPI parallelism for a different purpose.

The Cartesian space of the surface grid is partitioned into separate

regions and each region is owned by a single MPI rank that is

responsible for storing the surface grid data (Cartesian coordinates,

normal vectors, charges, etc.) for that region. In so doing, the

memory storage for the surface grid is distributed, scaling roughly as

O(N/p) for p MPI ranks, assuming an even load balance of the grid

points. The regions can be determined in a number of ways, either

automatically or fixed ahead of the calculation. The boundaries of

the regions should not overlap, as this may degrade the accuracy of

the FMM. The reason for this restriction is that we let each MPI rank

build a distinct FMM tree for its region. This provides parallelization

over the number of regions, which is in addition to the tree traversal

parallelization provided by the OpenMP multithreading.

Because the surface grid is distributed, a given grid point is

available to only one MPI rank at first. In order to compute electro-

static interactions between grid points belonging to different MPI

ranks, it is therefore necessary to communicate grid information

between MPI ranks. To do so, we establish a communication ring

for all MPI ranks, wherein each rank has a neighbor rank to the

“left” and also one to the “right,” forming a closed circle. To carry out

the distributed FMM, we first let each MPI rank compute in parallel

its local electrostatic interactions (i.e., interactions with the grid

points that comprise the given MPI rank’s FMM tree). Next, each MPI

rank sends its list of grid-point information and the corresponding

(incomplete) electrostatic potential vector to its neighboring MPI

rank to the right, while simultaneously each MPI rank receives

incoming grid and potential information from its neighbor to the

left. The incoming grid points, which are only stored temporarily,

are then allowed to traverse the MPI rank’s FMM tree, accumulating

the interactions in the incoming electrostatic potential vector. After

tree traversal has been performed for all temporary grid points,

the grid information and potential are again passed along to the

neighboring MPI rank. This compute-and-pass procedure continues

until the grid information makes a complete cycle around the ring,

which takes p steps of communication. Upon completion of the cycle,

the electrostatic potential that has been passed around will have

traversed the FMM tree of each MPI rank, and it will have returned
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to the MPI rank to which it belongs. This communication pattern can

benefit from using non-blocking MPI sends and receives, allowing

computation and communication to overlap to some extent.

A further optimization that is possible within the distributed

FMM scheme is to impose a certain cutoff distance for interactions

between grid points belonging to different MPI ranks. When a grid

point from rank pi interacts with those from rank pj , the MAC

criteria are tested for pi ’s grid point against the level-zero box from

pj ’s FMM tree. So long as pi and pj are sufficiently distant, the MAC

will always be met for points in pi , and there is no need for these

points to traverse pj ’s octree. The criterion to let all of pi ’s grid

points interact with the level-zero multipole expansion of pj ’s grid

is

ri j − Ri,box − R j,box ≥ Rcut-box, (11.50)

where ri j is the distance between the centroids of trees pi and

pj , Ri,box is the radius of pi ’s level-zero box, and Rcut-box is a pre-

determined cutoff. If the inequality in Eq. (11.50) is satisfied, then

we only compute level-zero multipoles for pj ’s grid points, which

affords some savings.

In the distributed FMM scheme, it is also beneficial to use the

same FMM trees to compute the electrostatic potential on the

surface grid. This involves a procedure similar to that described

above, in which all solute point charges traverse the distributed

surface grid. In our implementation, we let each MPI rank store all

atomic coordinates and related information, so that each MPI rank

can independently compute its portion of v in Eq. (11.22), without

communication. Allowing all MPI ranks to store the global atomic

coordinates and charges is usually feasible because there are far

fewer atoms than surface grid points.

What we have described above applies only to solute point

charges, whereas an electron density must be treated differently.

A simple procedure for the latter is to let the QM charge density

interact explicitly (rather than through the distributed FMM trees)

with all surface grid points within a certain pre-determined cutoff

distance, which maintains a nearly constant amount of CPU time

for a fixed QM region. The electrostatic potential thus computed

can then be communicated as needed to the appropriate MPI ranks.
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For QM/MM/PCM jobs, this means that the FMM trees are used

to compute interactions between the surface charges themselves,

and between the surface charges and the MM charges, but not for

interactions that involve the QM region. While this approach clearly

could be improved, we often find that the purely classical steps are

the bottlenecks when the MM region is large.

11.4.2.4 Surface construction strategies

The distributed FMM scheme can also be used to accelerate

construction of the PCM surface grid. Note that SWIG discretization

requires the evaluation of O(N2
atoms NLebedev) switching functions,

although this number could be reduced somewhat by atom–atom

pairwise distance cutoffs. The FMM octree spatial partitioning

provides further acceleration, by constructing an octree for all the

atoms of a given solute, similar to what was described above for the

surface grid electrostatic interactions. Then, each atom traverses the

octree using a switching function acceptance criterion (instead of a

MAC) to determine if the tree-traversing atom needs to compute its

switching function with the atoms of a neighboring octree box or not.

The switching function acceptance criterion that we use is

ric − Rc,box ≤ Rcut-switch, (11.51)

where Rcut-switch is a pre-determined cutoff distance, selected so

that atom–atom distances larger than this cutoff will not alter the

switching function for the i th atom’s grid points. The quantity ric

is the distance from the i th tree-traversing atom to the center of

the cth octree box whose radius is Rc,box. Only if the inequality

in Eq. (11.51) is valid do we compute the explicit atom–atom

pairwise switching functions. This procedure scales roughly as

O(NLebedev Natoms log Natoms) and can afford significant savings for

macromolecular solutes.

Furthermore, this octree switching function procedure can

be parallelized within the distributed surface scheme. In our

implementation, each MPI rank is assigned a set of atoms whose

switching functions it will compute. Each MPI rank independently

constructs the switching function octree from the entire global set of

solute atoms (stored in each MPI rank) and then the chosen subset
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of atoms for each MPI rank traverses the switching-function octree.

In the end, each MPI rank will have evaluated and constructed the

PCM surface grid for its set of atoms. It is this surface, then, from

which the surface octree is constructed and used in the distributed

FMM scheme. This is a preliminary implementation and there are

undoubtedly load-balance issues associated with this approach. In

a globular solute, for example, one MPI rank may be assigned

only interior atoms and end up with no surface grid because the

switching functions all evaluate to zero. A load-balancing scheme

that can dynamically respond to protein conformational changes

would be preferable, but remains to be developed.

Alternatively, one could abandon the switching functions of

SWIG discretization and construct a smooth isodensity surface,

either using the actual electron density [12, 19, 30] (in QM/

PCM calculations) or else some pseudo-density, as discussed in

Section 11.2.2.2. A pseudo-density isosurface can be constructed

using the marching cubes algorithm [52], which is trivially paral-

lelizable by multithreading the “marching” loop over all cubes and

partitioning the array of cubes across MPI ranks. We perform this

partition before the calculation begins, by assigning a number of

MPI ranks to each of the x , y, and z Cartesian dimensions. As with

the SWIG octree approach, this procedure is vulnerable to poor load

balance if some MPI process receives a set of solvent-inaccessible

atoms. In practice, we are often able to achieve reasonably good load

balance by examining the geometry of the solute and assigning a

greater number of MPI processes to the larger Cartesian dimensions,

but for MD applications a dynamical load-balancing scheme is

probably required. As with the switching function octree, the

resulting distributed surface grid is reused in the FMM scheme for

solving the PCM equations.

11.4.2.5 Scalability tests

We next consider some examples to demonstrate the scalability of

the algorithms described above, focusing on AMBER99/C-PCM jobs.

We set ε = 78.4 and (for DESMO calculations) κ−1 = 3.0 Å,

which equates to a fairly large ionic strength of about 1 mol/L for

water at 25◦C. The solute cavity is constructed as a pseudo-density
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Table 11.3 Dimensionless width

parameters for pseudo-density

isosurfaces.

�x/Åa ζ b

≥ 0.4 5.9

0.3 5.5

0.2 5.2

0.1 4.9

aMarching cubes grid resolution.
bGaussian widths ζi in Eq. (11.42) are given

by ζi = ζa−1/2
i .

isosurface (see Section 11.2.2), with B = 2.5 Å as in Ref. [88]. Our

implementation of this cavity construction uses Gaussian blurring

(Section 11.4.1) to avoid numerical issues related to Coulomb

singularities. As such, a set of Gaussian widths is required. We

determine these by minimizing the error in the Born ion solvation

energy for a spherical cavity of radius 2 Å, at various grid resolutions.

The width parameter ζ obtained for each grid resolution is listed in

Table 11.3, and the Gaussian width parameters ζi in Eq. (11.42) are

taken to be ζi = ζa−1/2
i . A marching cubes grid resolution of 0.4 Å

was employed in all calculations.

Parameters for the CG-FMM algorithm were selected based on

test calculations for (alanine)20, in order to obtain a solvation

energy that is within 1 kcal/mol of that obtained by explicit matrix

inversion. Multipoles up to � = 5 were included for computing

interactions between the surface charges, using Rthresh = 2.0 Å,

Nthresh = 200, and θMAC = 0.7. For interactions between the solute

charges and the surface charges, multipoles up to � = 4 were

included, with Rthresh = 2.0 Å, Nthresh = 50, and θMAC = 0.5. The CG

algorithm was considered converged when the maximum residual

fell below a threshold of 10−3. All calculations were performed on

a cluster of 12-core HP Intel Xeon x5650 processors with 48 Gb of

RAM per node, using a locally modified version of Q-CHEM [39].

A quasi-linear solute is a best-case scenario for scalability, so

we first examine unfolded alanine polypeptides, (Ala)n. Table 11.4

is a strong-scaling analysis for a fixed solute size, (Ala)250, with

a surface grid consisting of ≈ 350, 000 points, well beyond the
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Table 11.4 Strong-scaling data for CG-FMM applied to

(Ala)250
a

Nodes Threads Cores Wall time/sec Parallel efficiency

1 1 1 171.0 1.00

1 2 2 88.0 0.97

1 4 4 46.0 0.93

1 8 8 26.4 0.81

1 12 12 19.5 0.73

2 12 24 10.2 0.70

4 12 48 6.9 0.52

8 12 96 4.1 0.43

16 12 192 2.9 0.31

aSurface grid consists of 349,797 points.

feasible memory limits for matrix inversion. The multithreaded

CG-FMM approach scales quite well across all 12 cores of one

node, with a parallel efficiency of 73% that greatly exceeds that of

recent multi-threaded FMM algorithms [11, 66]. However, the use

of additional nodes at 12 cores/node scales only moderately well

for a few additional nodes, and leads to diminishing returns as the

amount of work/node becomes small and communication becomes

a significant fraction of cost. Nevertheless, this fairly significant

single-point calculation can be performed in just 10 seconds on

2 × 12 cores, with 70% parallel efficiency.

Next we investigate weak-scaling parallelism with (Ala)n poly-

mers, increasing n in proportion to the number of MPI ranks (Ta-

ble 11.5). Although the parallel efficiency is not great, calculations

Table 11.5 Weak-scaling data for CG-FMM applied to (Ala)n
a

Nodes Cores Wall time/ Parallel n No. grid

sec efficiency points

1 12 19.5 1.00 250 349,797

2 24 23.8 0.82 500 698,589

4 48 32.4 0.60 1000 1,397,704

8 96 38.7 0.50 2000 2,793,018

16 192 46.2 0.42 4000 5,583,607

aAll calculations use 12 cores/node, and the parallel efficiency is defined relative to the

single-node performance.
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Table 11.6 Strong scaling data for the protein 1LXLa

COSMO DESMO

wall time/ parallel wall time/ parallel

N
o

d
es

T
h

re
ad

s

C
or

es

sec efficiency sec efficiency

1 1 1 344.1 1.00 351.7 1.00

1 2 2 175.6 0.98 180.0 0.98

1 4 4 90.6 0.95 92.9 0.95

1 8 8 50.9 0.85 52.1 0.84

1 12 12 37.4 0.77 37.9 0.77

2 12 24 25.9 0.55 25.0 0.59

4 12 48 15.4 0.47 15.7 0.47

8 12 96 11.2 0.32 12.1 0.30

16 12 192 11.0 0.17 11.2 0.16

aSurface grid consists of 285,446 points.

with several million grid points can be performed in less than

a minute for systems as large as (Ala)4000. The calculations in

Table 11.5 represent the largest PCM calculations of which we are

aware.

Finally, we present strong-scaling tests for an irregularly shaped

protein (PDB code 1LXL) in Table 11.6, using both C-PCM and

DESMO. As with the quasi-linear alanine chains, scaling remains

good across one node but drops noticeably across multiple nodes.

Note, however, that the DESMO method, which incorporates salt

effects, incurs negligible overhead as compared to C-PCM. The extra

overhead in a DESMO MM/PCM calculation is simply the need to

compute the screened electrostatic potential on the surface grid one

time, and this can be accomplished using an adaptation of the FMM

algorithm of Krasny and co-workers [50].

Clearly, it is desirable to improve the MPI aspect of the

parallelization strategy, which is presently bottlenecked by com-

munication of grid information around the ring of MPI ranks. One

possible way to accomplish this would be to define neighboring MPI

ranks based on their FMM boxes. Non-neighbors could either be

ignored beyond some cutoff, or (preferably) they could broadcast

only their FMM level-zero multipoles, rather than the larger quantity

of grid information that is passed in our present implementation. In

this modified algorithm, grid information needs only to be passed
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between neighboring MPI ranks, rather than the full ring, which may

lead to a quantity of communication that is nearly constant with

respect to system size.

Alternatively, one could introduce another layer of parallelism

between the distributed-grid MPI ranks and the tree-traversing

OpenMP threads. In this layer, one would allow a certain number

of MPI ranks to perform tree-traversal, with each of possessing a

copy of the grid information that it needs. In this master/slave setup,

each MPI master rank builds the appropriate portion of the grid (as

every single MPI rank does in our present implementation), then

passes the grid information to its set of MPI slaves. In addition, each

of the MPI slaves would also exploit OpenMP multi-threading (as

in our current implementation) to assist with tree traversal. Such

an algorithm does not directly reduce the communication problem,

but by sub-dividing the work of tree-traversal this approach allows

the use of larger boxes at the level of the “master” MPI ranks. This

should reduce the communication in an indirect way, since fewer

master ranks will be required, and these are the only ones that must

communicate grid information around the ring.

11.5 Summary and Future Directions

The prospects for the use of PCMs in macromolecular electrosta-

tics calculations seem bright. The accuracy is (and theoretically

speaking, should be) comparable to that achievable using finite-

difference solution of Poisson’s equation [44], but the computational

cost is greatly reduced since only the molecular cavity surface,

and not the whole of three-dimensional space, need be discretized.

Problems with discontinuous forces are entirely eliminated by

recently developed smooth discretization schemes [41, 42, 70, 76,

87]. Reported here for the first time is our multithreaded OpenMP

implementation of a conjugate gradient/fast multipole PCM solver,

whose cost is O(N) in memory and O(N log N) in CPU time. This

approach shows good scalability across all 12 cores of one node,

with a parallel efficiency exceeding that of other multi-threaded

FMM algorithms, although the present implementation does not

scale well beyond one or two nodes.
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To improve the accuracy of implicit-solvent potential energy

surfaces, non-electrostatic interactions must be included, although

such interactions have received only a brief mention here. The

smooth, linear-scaling PCM technology that is discussed here is

immediately ready for use in MM/PBSA applications [36, 38], as

a replacement for finite-difference electrostatics. Other formulas

for the non-electrostatic interactions [47] can also be used in PCM

calculations, possibly after some re-parameterization. In general

these non-electrostatic interaction formulas depend in some way

on the cavity surface area, which is smooth and easily calculable by

means of the PCM algorithms discussed herein.

Particular attention should be paid to the DESMO method

[43], as this model appears to be suitable for use with solvents

containing dissolved ions that are described by the linearized

Poisson–Boltzmann equation. DESMO shows promising accuracy

with respect to benchmark LPBE calculations. This includes an

analytically solvable model problem consisting of multiple solute

cavities, as would be encountered in a study of protein–protein

interactions in implicit solvent.

Finally, PCMs are useful for creating a data set of perfect radii

and effective pairwise Coulomb interactions that can be used to

parameterize novel generalized Born models. Several improved GB

models, having slightly better accuracy and significantly lower cost,

have been suggested based on comparisons to PCM benchmarks

[45]. These new GB models are ready to be “dropped in” to existing

MD codes. Comparison to DESMO suggests new ways to incorporate

salt effects into GB models [46], which warrant further exploration

as well.
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