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Contraction relations for Grassmann products of reduced density matrices and implications
for density matrix reconstruction
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We consider, for systems of indistinguishable fermions, approximate reconstruction of the three- and four-
particle reduced density matrices~RDMs! from the one- and two-particle RDMs,g and G. Our ansatz for
reconstructing the four-particle RDM is the linear combinationa(G`G)1b(g`g`G)1c(g`g`g`g),
where ‘‘̀ ’’ denotes the antisymmetrized~Grassmann! product. This is a generalization of reconstruction
functionals employed recently to perform direct RDM calculations without wave functions via the contracted
Schrödinger equation. Here we consider relationships between the parametersa, b, andc that are required in
order for the reconstruction functionals to respect the hierarchy of contraction relations between RDMs. To this
end we establish several general theorems concerning contractions of antisymmetrized tensor products ofg, G,
and various products thereof. The accuracy of proposed reconstruction functionals is evaluated using accurate
density matrices for the ground state of Be.
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I. INTRODUCTION

‘‘Direct’’ density matrix methods, in which the two
electron reduced density matrix~2-RDM or 2-matrix! is cal-
culated without recourse to an electronic wave function,
hampered by an incomplete characterization of the se
N-representable RDMs@1,2#. Recently, several methods th
employ approximateN-representability constraints hav
achieved some success. Variational calculation of
2-matrix, constrained by several knownN-representability
requirements@3–9#, has been carried out recently for atom
and for molecules containing no more than one heavy a
@10#. At the same time, several groups@11–20# have devel-
oped an alternative scheme for direct calculation of
2-RDM based upon the contracted Schro¨dinger equation
~CSE! @21–23#. In these latter methods, approxima
N-representability constraints are imposed in the form ofre-
construction functionals—prescriptions for building higher
order RDMs from lower-order ones.

The CSE involves the two-, three-, and four-electr
RDMs and the two-electron reduced Hamiltonian. It
equivalent~in a necessary and sufficient sense! to the elec-
tronic Schro¨dinger equation but does not involve the wa
function explicitly. The shadow of the wave function
manifest, however, inN-representability requirements@1–9#
that RDMs must satisfy if they are to derive from physica
admissible N-electron states. These requirements are
density-matrix formulation of the Pauli principle, and in the
absence the CSE possesses spurious, unphysical solutio
the 2-RDM @24#. At least for nondegenerate ground stat
however, theN-representable 2-RDMs map one-to-one on
the N-representablep-RDMs for eachp>2 @25,26#. This
~unknown! map is precisely the reconstruction functional f
thep-RDM, and any approximation for this functional serv
as an approximateN-representability requirement in an iter
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tive, self-consistent solution of the CSE.
In this paper we examine a particular ansatz for

4-RDM reconstruction functional and compare it with prev
ously suggested reconstructions. We consider a reconstru
4-RDM formed from antisymmetrized~Grassmann! products
of the 1-RDMg and the 2-RDMG,

GG
(4)@G# 5

def

a~G`G!1b~G`g`g!1c~g`g`g`g!.

~1.1!

Here5
def

indicates a definition,a, b, andc are parameters, an
‘‘ ` ’’ denotes the Grassmann product@19,27#, for which a
precise definition is given in Sec. III. This reconstructio
ansatz is a generalized, density-matrix analog of decoup
approximations introduced in order to solve the hierarchy
Green’s function equations of motion, and each such dec
pling scheme is equivalent to a partial summation of
perturbation expansion for the relevant Green’s funct
@28#. However, unlike certain decoupling strategies~such as
the random-phase approximation! employed frequently in
condensed-matter physics, the reconstruction scheme of
~1.1! is necessarily antisymmetric. We consider the antisy
metry requirement to be of paramount importance in el
tronic structure.

Reconstruction of the 3-RDMG(3) may proceed through a
separate functional, orG(3) may be obtained as the one
particle contraction~trace over the coordinates of one pa
ticle! of the reconstructed 4-matrix, as in the algorithms
Valdemoro and co-workers@12–14# and Mazziotti@19,20#.
As such, there exist several plausible iteration schemes
might be used to achieve a self-consistent solution of
CSE; three such schemes are discussed in this paper.

Given any approximate reconstruction functionalG(4)@G#,
there is always the question of whether it iscontraction-
consistent. That is, if we trace over the coordinates of tw
particles inG(4)@G#, do we recover the inputG used to gen-
erate this matrix? This question is especially germane
one’s iteration scheme employs the contractions ofG(4)@G#.
©2002 The American Physical Society11-1
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Within our Grassmann product ansatz, the contracti
consistency requirement leads to a set of relations betweea,
b, andc, which we derive. Furthermore, we demonstrate t
neither the two- nor three-particle contraction ofGG

(4) can be
written in a simple Grassmann product form; for examp
the one-particle contraction ofGG

(4) cannot be expressed as
linear combination ofg`G andg`g`g. It is therefore in-
consistent to assume a Grassmann product form for bothG(3)

and G(4). This conclusion is implicit in recent work by
Mazziotti @29#, although he does not provide an explicit for
for the contractions of Grassmann product functionals.

One note concerning semantics is in order. The ma
GG

(4) is, by construction, antisymmetric and self-adjoin
There is no reason, however, to expect that it is positive
general.~Indeed, a recurring theme in the work of Mazzio
@19,20,30# has been solution of the CSE supplemented w
positivity constraints for the reconstructed 4-RDM.! As such
it is disingenuous to refer toGG

(4) as a density matrix or
4-RDM. We shall refer toGG

(4) ~or any four-particle matrix
obtained as a functional ofG) as areconstructed4-matrix,
with similar language for 3-matrices. Implicit in this idiom
the understanding that the reconstruction is not exact, soGG

(4)

is not a priori positive. Other than the work of Mazziot
cited above, positivity within the reconstruction process h
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been handled numerically~by equating to zero any negativ
diagonal elements@11,14,31#! but not analytically in the for-
mal derivation of reconstruction functionals.

The remainder of this article is structured as follows.
Sec. II we present a unified discussion of a class of ‘‘redu
eigenvalue equations,’’ of which the CSE is the most imp
tant example. We formulate these both as integral equat
~in which the RDMs are integral kernels! and as matrix equa
tions in a spin-orbital basis. In Sec. III we discuss the p
posed reconstruction functionals of Valdemoro@32,31# and
Nakatsuji @15–17#, as well as three possible iterativ
schemes for solving the CSE. Section IV consists of sev
general theorems concerning the contraction of antisym
trized products of one- and two-particle density matrices
fermions, and in Sec. V we apply these theorems toGG

(4) to
obtain the 1-, 2-, and 3-RDMs to which it corresponds.
Sec. VI we employ an accurate 2-RDM for the ground st
of Be to compare the reconstructed density matrices obta
from GG

(4) , for several sets of parametersa, b, andc.

II. REDUCED EIGENVALUE EQUATIONS

Given a wave functionC(1,2, . . . ,N) for a system ofN
indistinguishable fermions, thepth-order reduced density
matrix (p-RDM or p-matrix! G(p) for the state described b
C is the integral kernel
G (p)~1, . . . ,p;18, . . . ,p8!5
def S N

p D E C~1, . . . ,N!C* ~18, . . . ,p8,p11, . . . ,N!dxp11•••dxN

5 (
i 1 , . . . ,i p
j 1 , . . . ,j p

~G(p)! j 1 , . . . ,j p

i 1 , . . . ,i p f i 1
* ~18! f j 1

~1!•••f i p
* ~p8! f j p

~p!. ~2.1!
q.
Here ‘‘1’’ represents the spatial and spin coordinatesx1
5(r1 ,j1) of particle 1, etc., and$fk% is a basis of orthonor-
mal spin orbitals. We assume that this basis is specified
fixed, so that thep-RDM is completely determined by th
tensorG(p) of expansion coefficients. In order to make o
results more amenable to numerical implementation,
shall formulate what follows in terms of tensor arithme
rather than integral kernels.

The elements ofG(p) can be expressed succinctly
second-quantized notation,

~G(p)! j 1 , . . . ,j p

i 1 , . . . ,i p 5^Cuâi 1
†
•••âi p

† â j p
•••â j 1

uC&/p!, ~2.2!

where$âk
†% and$âk% are, respectively, the creation and an

hilation operators for the basis$fk%. The tensorG(p) is
~separately! antisymmetric in both its upper and lower ind
ces. It is also self-adjoint, (G(p)) j 1 , . . . ,j p

i 1 , . . . ,i p 5@(G(p)) i 1 , . . . ,i p

j 1 , . . . ,j p#* ,

and is normalized to (p
N):

tr G(p)5 (
k1 , . . . ,kp

~G(p)!k1 , . . . ,kp

k1 , . . . ,kp5S N

p D . ~2.3!
nd

e

For convenience letg 5
def

G(1) andG 5
def

G(2).
The (p2n)-RDM is obtained from thep-RDM via a lin-

ear mapp2n
p ↓ that is proportional to the n-trace

trp2n11,p2n12, . . . ,p . This operation is known ascontraction
and applied toG(p) it gives

G(p2n)5 p2n
p ↓G(p)5F S N

p2nD /S N

p D G trp2n11, . . . ,pG(p).

~2.4!

For tensors then-trace is the usual diagonal sum, as in E
~2.3!, but taken over only the final~rightmost! n indices. For
integral kernels the corresponding operation is

@ trp2n11, . . . ,pG (p)#„1, . . . ,p2n;18, . . . ,~p2n!8…

5E G(p)
„1, . . . ,p;18, . . . ,~p2n!8,p2n11, . . . ,p…

3dxp2n11•••dxp . ~2.5!
1-2
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The goal of so-called direct density matrix calculations
to compute RDMs without calculating wave functions; ho
ever, the definitions in Eqs.~2.1! and ~2.2! both involveC
explicitly. Alternatively, without specifying any particula
wave function one may define ap-particle density matrix as
simply a positive~semidefinite!, self-adjoint tensor of rank
2p. Not all density matrices defined in this way arereduced
density matrices for real physical systems and one must
tinguish the set of physically admissible RDMs. An RDM f
a system of indistinguishable fermions is said to bepure-
state N-representable@1# if it is a contraction ofCC* for
someN-particle wave functionC that is antisymmetric with
respect to permutations of particle coordinates.

For statistical ensembles of states$C i% one needs to con
sider ensemble N-representableRDMs, the contractions o
convex linear combinationsc1C1C1* 1•••1ckCkCk* . We
will not consider such ensemble states, except to note
each componentC jC j* is itself a pure-stateN-representable
density matrix, and therefore its contractions are pure-s
N-representable RDMs. Consequently, if the$C i% are eigen-
functions of a self-adjoint operatorL̂ then each reduced
component satisfies a reduced eigenvalue equation~intro-
duced below! with respect to L̂. Furthermore, if L̂C j

5lC j for each j then the contractions ofc1C1C1* 1•••

1ckCkCk* satisfy a reduced eigenvalue equation as wel
We now restrict our attention to pure-sta

N-representable RDMs. Suppose that theN-fermion wave
function C is an eigenfunction of a self-adjoint operatorL̂,

L̂C5lC, ~2.6!

whereL̂ is a sum of one- and two-body operators,

L̂5(
i

f̂ ~ i !1(
i , j

ĝ~ i , j !. ~2.7!

For indistinguishable particles, all established quantu
mechanical observables have this form. Clearly

^Cuâp
†âq

†ânâm~L̂2l!uC&50 ~2.8!

for eachp, q, n, andm. In this second-quantized formalism
we should replace the operatorL̂ with the second-quantize
expansion of the corresponding two-particle reduced op
tor L̂1,2(1,2)5ĝ(1,2)1@ f̂ (1)1 f̂ (2)#/(N21). The corre-
sponding operator in second quantization is

L̂1,2 ↔ 1

2 (
i j rs

Li j
rsâi

†â j
†âsâr ~2.9!

and the expansion coefficients are the integrals

Li j
rs5^f i~1!f j ~2!uĝ~1,2!uf r~1!fs~2!&

1
^f i~1!u f̂ ~1!uf r~1!&d js1^f j ~1!u f̂ ~1!ufs~1!&d ir

~N21!
.

~2.10!
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Note thatL̂1,2 andLi j
rs depend upon the number of particle

N. L is self-adjoint but not antisymmetric, althoughLi j
rs

5Lj i
sr . It is possible to antisymmetrize the integrals to ma

Li j
rs52Lj i

rs52Li j
sr5Lj i

sr , and for some purposes this ma
be convenient. Here, however,L is not antisymmetric. The
advantage we gain with definition~2.10! is that for a spin-
free operatorL̂, the tensorL is diagonal in the spin variable
of both particles. This block structure is lost ifL is antisym-
metrized.

Inserting Eq.~2.9! into Eq. ~2.8! we have

(
i j rs

Li j
rs^Cuâp

†âq
†ânâmâi

†â j
†âsâr uC&52l^Cuâp

†âq
†ânâmuC&.

~2.11!

To obtain thereduced eigenvalue equationfor the operator
L̂, we reorder products of creation and annihilation operat
in Eq. ~2.11! usingâi â j

†1â j
†âi5d i j and express the result i

terms of density matrix elements via Eq.~2.2!. This results in
a set of equations, which we may write in matrix form as

lG5LG16~Â2^ Â2!tr3LG(3)16 tr3,4LG(4).
~2.12!

An equivalent equation can also be derived in which
order of each matrix product is reversed. The eigenvaluel is
given by

l5^CuL̂C&5tr ~LG!5 (
mnpq

Lpq
mn Gmn

pq . ~2.13!

The product tensors in Eq.~2.12! have elements

~LG!rs
i j 5(

pq
Lrs

pq Gpq
i j , ~2.14a!

~LG(3)!rst
i jk5(

pq
Lst

pq ~G(3)!rpq
i jk , ~2.14b!

and

~LG(4)!rstu
i jk l 5(

pq
Ltu

pq ~G(4)!rspq
i jk l . ~2.14c!

Note that tr3,4(LG(4))5tr3,4(G(4)L) but in general
tr3(LG(3))Þtr3(G(3)L) since tr3 is a sum over one index
while the product involves a sum over two.

The operatorÂ2 in Eq. ~2.12! is the antisymmetrizing
projection operator for two-particle functions, whil
Â2^ Â2 is the direct product ofÂ2 for the vector space and
Â2 for the dual space@see Eq.~3.1! for a rigorous definition#.
Â2^ Â2 thus antisymmetrizes two-particle tensors~i.e., ten-
sors with two upper and two lower indices!. Although we
consider only fermion density matrices here, by employ
the boson commutation ruleâi

†â j2â j âi
†5d i j one can derive
1-3
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an analog of Eq.~2.12! for ~symmetric! boson density matri-
ces; the only difference is thatÂ2 is replaced by thesymme-
trizing projection operator.

In this paper we work exclusively with tensors, in order
derive formulas that are directly applicable to numerical c
lu

ra
,

he
a-

i-

02251
l-

culations in a finite basis set. Much of the density mat
literature, however, is written in terms of integral kernels.
order to connect with this formalism, we translate the
duced eigenvalue equation~2.12! into this integral kernel
language:
lG~x1 ,x2 ;x18 ,x28!5E L1,2~p,q;x18 ,x28!G~x1 ,x2 ;p,q! dp dq

13E L1,2~p,q;x28 ,r ! G (3)~x1 ,x2 ,r ;x18 ,p,q! dp dq dr

23E L1,2~p,q;x18 ,r ! G (3)~x1 ,x2 ,r ;x28 ,p,q! dp dq dr

16E L1,2~p,q;r ,s! G (4)~x1 ,x2 ,r ,s;x18 ,x28 ,p,q!dp dq dr ds. ~2.15!

Herep,q, . . . each represent the space- and spin-coordinates of a single particle.
The reduced operatorL̂1,2(1,2) has kernel

L1,2~x1 ,x2 ;x18 ,x28!5d~x12x18! d~x22x28!@g~x1 ,x2!1$ f ~x1!1 f ~x2!%/~N21!#. ~2.16!

Substituting this expression into Eq.~2.15!, evaluating thed function integrals, and making use of the contraction relation~2.5!
between density matrix kernels yields

lG~1,2;18,28!5@ f ~18!1 f ~28!1g~18,28!#G~1,2;18,28!

13E $@ f ~38!1g~18,38!1g~28,38!#G (3)~1,2,3;18,28,38!%3853dx3

16E $g~38,48! G (4)~1,2,3,4;18,28,38,48!%3853
4854

dx3dx4 . ~2.17!
of
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This is the integral kernel version of the reduced eigenva

equation forL̂ @15,16,22#. The notation$•••%3853 means
that x38 is set equal tox3 in the integrandafter the operators

f̂ and ĝ have acted on the primed coordinates.@The tensor
expansion of density matrix kernels in Eq.~2.1! forces us
into the somewhat unconventional situation of having ope
tors act onprimed coordinates.# For Hamiltonian operators

L̂5Ĥ, the reduced eigenvalue equation~2.12! is known as
CSE; the corresponding integral kernel equation~2.17! is
sometimes called the density equation@44#.

We have shown above how the CSE follows from t
usual Schro¨dinger equation, but in fact the two are equiv
lent ~in a necessary and sufficient sense! for N-representable
density matrices@19,22#. In other words, given some ant
symmetric, normalized~but otherwise arbitrary! function
F(1, . . . ,N), suppose we defineG, G(3), and G(4) as the
appropriate contractions ofFF* . Then G, G(3), and G(4)

satisfy Eq. ~2.12! if and only if L̂F5lF, where l

5^FuL̂F&. Our derivation of Eq.~2.12! demonstrates how
e

-

this equation follows from Eq.~2.6!; the proof of the con-
verse forN-representable RDMs is analogous to the pro
that the CSE implies the ordinary Schro¨dinger equation. This
was originally demonstrated by Nakatsuji@22#, then later
proved in second quantization by Mazziotti@19# and will not
be repeated here. The crucial point is that Eq.~2.12! implies
the zero-dispersion condition̂FuL̂F&25^FuL̂2F&, which
for self-adjoint operators is equivalent to the eigenva
equation L̂F5^FuL̂F&F. The presence ofL̂2, a four-
particle operator, in the zero-dispersion relation indica
why the 3- and 4-RDMs must appear in the reduced equa
even thoughG alone determines the eigenvalue.

The reduced eigenvalue equation for the total spin ope
tor Ŝ2 has been discussed by Valdemoroet al. @13#, although
its formal similarity to the CSE has not been emphasized.
our knowledge all other work has focused exclusively on
CSE and in what follows we, too, shall takeL̂5Ĥ as a
Hamiltonian. In keeping with standard notation, we w
use K5L for the matrix of the two-electron reduce
Hamiltonian.
1-4
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III. RECONSTRUCTION FUNCTIONALS

SinceG contains the part ofC needed to compute expec
tation values of one- and two-electron operators, we wo
like to determine the 2-RDM directly from Eq.~2.12!. The
equivalence of the Schro¨dinger equation and the CSE im
plies thatwithin the set of N-representable 2-RDMssuch a
unique solution of the CSE is possible~up to degeneracy!.
However, necessary and sufficientN-representability condi-
tions for the 2-RDM are unknown@2#, and outside the set o
N-representable 2-RDMs the solution of the system of eq
tions in Eq.~2.12! is not unique@24#.

As in the Green’s function literature, one means to si
step this indeterminacy is to decouple the higher-or
RDMs into products of lower-order density matrices. Th
we seekreconstruction functionalsG(3)@G# andG(4)@G# that
we may substitute into Eq.~2.12! to produce a nonlinea
equation withG as the only unknown. This equation can th
be solved self-consistently forG.

Grassmann product ansatz

Several approximate reconstruction functionalsG(3)@G#
and G(4)@G# have been proposed, and Mazziotti@19# has
shown how the content of these reconstruction approxi
tions is described conveniently using antisymm
trized ~Grassmann! products. If A5(Aj 1 , . . . ,j n

i 1 , . . . ,i n ) and B

5(Bj 1 , . . . ,j m

i 1 , . . . ,i m) are tensors, then their antisymmetrized pro

uct A`B is the tensor with elements@19,27#

~A`B! j 1 , . . . ,j m1n

i 1 , . . . ,i m1n

5
def

~Âm1n^ Âm1n!Aj 1 , . . . ,j n

i 1 , . . . ,i n Bj n11 , . . . ,j m1n

i n11 , . . . ,i m1n

5@~m1n!! #22 (
s,pPSm1n

e~s! e~p!Ap( j 1), . . . ,p( j n)
s( i 1), . . . ,s( i n)

3Bp( j n11), . . . ,p( j m1n)
s( i n11), . . . ,s( i m1n) . ~3.1!

Here Sm1n denotes the symmetric group of order (m1n)!
ande(s)561 is the parity ofsPSm1n . The product̀ is
commutative, distributive, and associative, andA`B is a
linear operator on the (m1n)-particle space. IfA andB are
self-adjoint then so isA`B. For convenience we also defin

~3.2!

Such ‘‘wedge powers’’ must be distinguished from mat
products; we denote the latter by simple exponents.

The 3- and 4-RDM reconstruction functionals propos
by Valdemoro and co-workers@31,32# take the form of cer-
tain Grassmann products ofg and G, and are derived by
considering exact relations between particle- and ho
RDMs. By positing an approximate separation between
particle and hole matrices, one may equateG(p) to a sum of
Grassmann products of lower-order RDMs@19,32#. For p
53 the result is Valdemoro’sG(3)@G# functional,
02251
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GVal
(3)@G# 5

def

3g`G22g `3, ~3.3!

while for p54 the approximate particle-hole separati
yields

G(4)'4 g`G(3)26 g`g`G13 g `4. ~3.4!

SubstitutingGVal
(3)@G# for G(3) above results in the reconstruc

tion functional

GVal
(4)@G# 5

def

6 g`g`G25 g `4. ~3.5!

If G derives from a single determinant of spin orbitals th
G(p)5g`p for eachp; in this caseGVal

(3)@G# and GVal
(4)@G# are

exact. Furthermore, using diagrammatic expansions of
three- and four-electron Green’s functions, Nakatsuji and
suda @15,16# have shown that Valdemoro’s reconstructio
functionals giveG(3) andG(4) to first order in the correlation
potential.

Nakatsuji and Yasuda@15,16# carry the perturbation ex
pansion forG(4) to second order in the correlation potenti
to obtain a correction to Eq.~3.4!:

G(4)'6 g `414 g`G(3)212g`g`G13 G`G

5GVal
(4)13~G2g`g!`~G2g`g!. ~3.6!

These authors also perform a diagrammatic expansion
G(3) but do not sum all of the second-order diagrams. T
resulting partial second-order expression forG(3) defines the
Nakatsuji-Yasuda 3-RDM reconstruction functional,

GNY
(3)@G# 5

def

3 g`G22 g `31GUV
(3) . ~3.7!

GUV
(3) represents the second-order contributions@cf. Eq. ~3.3!#

but cannot be written in terms of Grassmann products og
andG. Consequently, the 4-matrix reconstruction function
of Nakatsuji and Yasuda, which is obtained from Eq.~3.6! by
substitutingGNY

(3) in place of the exactG(3), does not have the
Grassmann product form. In addition, evaluation of t
Nakatsuji-Yasuda 4-matrix reconstruction functional is mu
more computationally demanding than reconstruction
GG

(4) , and we will not consider the Nakatsuji-Yasuda reco
struction functionals in this paper.

Instead, we focus our attention on the possible Grassm
product reconstruction functionalsGG

(4) . In Sec. V we derive
expressions for the contractions ofGG

(4) . These formulas
demonstrate that a Grassmann product form forG(4) is in-
consistent with a Grassmann product form for the low
order RDMs. Nevertheless, our expressions for3

4↓GG
(4) and

2
4↓GG

(4) allow us to obtain a self-consistent solution to t
CSE; moreover, these expressions also allow for
contraction-consistentsolution in the sense that all densi
matrices on the right side of the CSE@Eq. ~2.12!# are related
by contraction.~Note that this relationship is utilized explic
itly in deriving the CSE.! Specifically, if Gn is the ~approxi-
1-5
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mate! 2-matrix aftern iterations, we might construct an up
dated 2-matrixGn11 according to

Gn115
1

En
†K ~ 2

4↓G(4)@Gn# !16~Â2^ Â2!

3tr3$K ~ 3
4↓G(4)@Gn# !%16 tr3,4$K ~G(4)@Gn# !%‡,

~3.8!

with En5tr(KGn) the approximate energy aftern iterations.
Given a reconstruction functional forG(4), Gn is the only
unknown on the right side of Eq.~3.8!, so there is no need to
construct~or store! any three- or four-electron tensors in o
der to obtainGn11. The advantages of this are further di
cussed and quantified in the Appendix.

The self-consistent iteration formula in Eq.~3.8! enforces
the contraction relations at each iteration, and is the itera
algorithm currently employed by Valdemoro and co-worke
@12–14#, with G(4)@G# given by Eq.~3.5!. @In truth, Valde-
moro’s procedure also includes adjustments to correct
normalization, positivity, andŜ2 eigenvalue, but once thes
adjustments are made iteration proceeds according to
~3.8!.# This would seem to be a reasonable manner in wh
to proceed, since contraction consistency is an exact req
ment of the physical density matrices. One can, howe
envision other reasonable procedures as well.

Since both Valdemoro and Nakatsuji derive reconstruct
functionals for the 3-RDM, we might consider employin
separate reconstructions forG(3) andG(4). This corresponds
to

Gn115
1

En
†KGn16~Â2^ Â2!tr3$KG(3)@Gn# !%

16 tr3,4$K ~G(4)@Gn# !%‡, ~3.9!

which was the iteration formula originally used by Colme
ero and Valdemoro@11#. Finally, Mazziotti’s iteration for-
mula @19,20# is an intermediate case in whichG(3) is ob-
tained by contraction but the input matrixGn at thenth step
is used as the 2-RDM:

Gn115
1

En
†KGn16~Â2^ Â2!tr3$K ~ 3

4 ↓ G(4)@Gn# !%

16 tr3,4$K ~G(4)@Gn# !%‡. ~3.10!

Mazziotti’s ‘‘ensemble representability method’’@19# con-
sists in Eq.~3.10! supplemented by positivity conditions.

In Sec. VI we provide a numerical comparison of the
three iteration schemes usingGVal

(3) and GVal
(4) along with two

other reconstruction functionals in the classGG
(4) .

IV. CONTRACTION THEOREMS

Constraints imposed upon RDM reconstruction functio
als by the contraction relations in Eq.~2.4! have been dis-
cussed by several authors. In particular, Kutzelnigg a
Mukherjee@33# and Mazziotti@29# have used the contractio
relations in deriving cumulant expansions of RDMs. Vald
02251
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moro, Tel, and Pe´rez-Romero@34# derive an explicit formula
for I (p)`G(q) as a linear combination of the Grassma
productsI (p)`G(q21) and I (p21)`G(q), where I (n) denotes
the identity operator on then-particle space. Coleman an
Absar @27# have also consider decomposition of RDMs in
certain Grassmann products involving identity matrices,
though not in the context of density matrix reconstruction

None of the aforementioned work provides explicit e
pressions for the contractions of the Grassmann prod
4-matrix GG

(4) ; the derivation of such expressions occup
this section and the next. In this section we establish sev
theorems concerning the one-particle contractions of a
symmetrized products ofg andG that will facilitate contrac-
tion of GG

(4) . The techniques used in each proof are simil
so we provide detailed proofs only for the first two theore
in this section. Because the notation used in the theor
~not to mention the proofs! is somewhat involved, following
several of the theorems we present examples of their ap
cation prior to embarking upon a formal proof.

We first define a deletion operator*. If T5T1`T2
`•••`Tn is the antisymmetrized product of a set of tenso
T5$T i u i 51, . . . ,n% andS#T, then

T*S 5
def

`
TiPT \S

T i . ~4.1!

For example,T*$T1 ,T2%5T3`•••`Tn .
Theorem 1. Let n be a positive integer andp1 , . . . ,pn

non-negative integers withp11•••1pn5P. Define the
P-particle tensor

T5g `p1`~g 2!`p2`•••`~gn!`pn.

Then the one-particle contraction ofT is given by

trP~T!5~1/P2! (
m51

n

pm tr~g m!@T*$g m%#

2~1/P2! (
m51

n

pm~pm21!@T*$g m,g m%#`g 2m

2~2/P2! (
m51

n

(
l 5m11

n

pmpl @T*$g m,g l %#`g l 1m.

Remark. Deletions such asT*$g m,g m% make sense only
if pm>2. If pm,2, however, this term does not appear a
result of the multiplicative factorpm(pm21).

Example 1. Since trg5N,

trp~g `p!5
N

p
g `(p21)2

~p21!

p
@g `(p22)`g 2# ~4.2!

for p>2. This illustrates the casen51 andp15p.
Example 2. The casen53, p152, p250, andp351 ~so

P53) corresponds to
1-6
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tr3~g`g`g 3!5
1

9
@2N~g`g 3!1~ tr g 3!~g`g!

22 ~g 2`g 3!24 ~g`g4!#. ~4.3!

Proof of Theorem 1. The elements ofT are given by

Tj 1 , . . . ,j P

i 1 , . . . ,i P

5~P! !22 (
s,pPSP

e~s! e~p! ~g v!p( j 1)
s( i 1)

•••~gy!p( j P)
s( i P) ,

~4.4!

where v and y are, respectively, the smallest and larg
values ofm such thatpm.0. For simplicity, we define two
orderedP tuples,

I P 5
def

$ i 1 , . . . ,i P%,

JP 5
def

$ j 1 , . . . ,j P%, ~4.5!

which are reordered by permutationss,pPSP according to

s~ I P!5$s~ i 1!, . . . ,s~ i P!%,

p~JP!5$p~ j 1!, . . . ,p~ j P!%. ~4.6!

Furthermore, define products

@g~xW !#JP

I P 5
def

~gv! j 1

i 1
•••~gy! j P

i P , ~4.7!

in which xW5$v, . . . ,y% is aP-tuple whoser th componentxr
is the exponent for ther th term in the product. We can ex
press the elements of trP(T) as

~ trP T! j 1 , . . . ,j P21

i 1 , . . . ,i P21 5~P! !22trP~TJP

I P !, ~4.8!

where

TJP

I P 5
def

(
s,pPSP

e~s! e~p! @g~xW !#p(JP)
s(I P) . ~4.9!

Because theP-trace operator can be written as
02251
t

trP~••• !5(
k

d i P ,kd j P ,k~••• !, ~4.10!

we will group the permutations in Eq.~4.9! according to
where they placei P and j P . There are three possibilities:i P
and j P can index the same matrix, they can index differe
matrices having the same exponent, or they can index dif
ent matrices with different exponents. This leads to the p
tition

TJP

I P5(
r

~TJP

I P !rr 1 (
r ,sÞr

~TJP

I P !rs1(
r ,s

~TJP

I P !rs8 , ~4.11!

where each summand represents a restricted sum over
mutations in Eq.~4.9!. (TJP

I P) rr includes thoses,pPSP for

which s(r )5P5p(r ). Included in (TJP

I P) rs are permutations

for which xr5xs , rÞs, and s(r )5P5p(s). Finally,
(TJP

I P) rs8 is restricted tos and p with s(r )5P5p(s) and

xrÞxs . Together the three summations in Eq.~4.11! exhaust
all pairs of permutations inSP^ SP . We evaluate each sum
separately, then apply trP to each and thus obtain the thre
terms in trP(T).

A. Evaluation of the first sum in Eq. „4.11…

To treat terms in the first sum, consider a permutat
t r

(P)PSP with the effect

t r
(P)s~ I P!

5$s~ i 1!, . . . ,s~ i r 21!,s~ i r 11!, . . . ,s~ i P!,s~ i r !%

5$s8~ I r
(P21)!,s~ i r !%. ~4.12!

I r
(P21) 5

def

I P\$s( i r)% and s8PSP21 puts theseP21 indices
in the same order that they have ins(I P). Similarly,

t r
(P)p~JP!5$p8~Jr

(P21)!,p~ j r !% ~4.13!

for somep8PSP21. Observe thate(s8)5e(t r
(P)) e(s) and

e(p8)5e(t r
(P)) e(p) so e(s8) e(p8)5e(s) e(p).

Recall thati r and j r index the matrixgxr in the product

@g(xW )#JP

I P . This of course implies thatpxr
.0; in fact there are

exactlypxr
choices ofr with the same exponentxr . Thus
~TJP

I P !rr 5 ( 8
s,pPSP

s(r )5P5p(r )

e~s8! e~p8! ~gxr ! j P

i P~@g~xW !\$g xr%#
p8(J

r
(P21))

s8(I r
(P21))

!

5@~P21!! #2~@T*$g xr%#JP21

I P21 !~gxr ! j P

i P. ~4.14!
1-7
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@T*$g xr%#JP21

I P21 is, by definition, a Grassmann product o

P21 indices, and includes a factor of@(P21)!#22.
Application of trP to Eq.~4.14! gives trg xr in place of the

last term. There arepxr
~possibly zero! values ofr for a given

xr , and it follows that

trPF ~P! !22(
r

~TJP

I P !rr G5P22 (
m51

n

pm~ tr g m!@T*$g m%#.

~4.15!

This is precisely the first term in the statement
the theorem.

B. Evaluation of the second and third sums in Eq.„4.11…

Initially the evaluation of both (TJP

I P) rs and (TJP

I P) rs8 in Eq.

~4.11! proceeds in the same fashion; we first evalu
(TJ

I P) rs , rÞs, then make appropriate modifications to obta

P

02251
f

e

(TJP

I P) rs8 . Fix rÞs and consider the action of permutation

t r
(P)PSP andts

(P21)PSP21 as defined in Eq.~4.12!:

ts
(P21)t r

(P)s~ I P!5ts
(P21)$s8~ I r

(P21)!,s~ i r !%

5$s9~ I r ,s
(P22)!,s~ i s!,s~ i r !%, ~4.16!

where

s8~ I r
(P21)!5$s9~ I r ,s

(P22)!,s~ i s!%. ~4.17!

s9PSP22 orders the indices inI r ,s
(P22)5

def

I P\$s( i r),s( i s)% in
the same way as they appear ins(I P). Similarly,

ts
(P21)t r

(P)p~JP!5$p9~Jr ,s
(P22)!,p~ j s!,p~ j r !% ~4.18!

for somep9PSP22. Then e(s9)5e(ts
(P21)t r

(P)) e(s) and
e(p9)5e(ts

(P21)t r
(P)) e(p) and consequentlye(s9) e(p9)

5e(s) e(p).
Thus we have
~TJP

I P !rs5 ( 8
s,pPSP

s(r )5P5p(s)

e~s9! e~p9! @g~xW !\$g xr,g xs%#
p9(I

r ,s
(P22))

s9(I r ,s
(P22))

~g xs!p( j s)
s( i s) ~g xr !p( j r )

s( i r ) ~4.19!

so that

trPF (
r ,sÞr

~TJP

I P !rsG5 (
r ,sÞr

( 8
s,pPSP

s(r )5P5p(s)

e~s9! e~p9! @g~xW !\$g xr,g xs%#
p9(I

r ,s
(P22))

s9(I r ,s
(P22))

~g xr1xs!p( j r )
s( i s) . ~4.20!

To cast this as a Grassmann product consider the permutations8PSP21 defined in Eq.~4.17!, along with the analogous
permutationp8PSP21,

p8~Js
(P21)!5$p9~Jr ,s

(P22)!,p~ j r !%. ~4.21!

Comparing Eqs.~4.16!, ~4.17!, and~4.21! we find thate(s9) e(p9)52e(s8) e(p8). Thus

trPF (
r ,sÞr

~TJP

I P !rsG52 (
r ,sÞr

(
s8,p8PSP21

e~s8! e~p8!„@g~xW !\$g xr,g xs%#g xr1xs
…

p8(J
s
(P21))

s8(I r
(P21))

52@~P21!! #2 (
r ,sÞr

~@T*$g xr,g xs%#`g xr1xs!JP21

I P21 . ~4.22!
So far we have not used the fact thatxr5xs ; conse-
quently Eq.~4.22! remains valid if we replace (TJP

I P) rs with

(TJP

I P) rs8 . To evaluate Eq.~4.22! with xr5xs , observe that

there arepxr
choices forr and (pxr

21) choices forsÞr

such thatxr5xs . Hence
~P! !22 trPF (
r ,sÞr

~TJP

I P !rsG52P22(
m

pm~pm21!

3@T*$g xm,g xm%#`g 2m.

~4.23!
1-8
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To obtain trP( r ,s(TJP

I P) rs8 , consider the aforementione

analog of Eq.~4.22!, assumingxrÞxs . Then there arepxr
pxs

choices (xr ,xs) for the exponents withr .s, and another
pxr

pxs
choices withr ,s. Both cases give the same result

Eq. ~4.22! so

~P! !22 trPF(
r ,s

~TJP

I P !rs8 G
522P22(

l 51

n

(
m5 l 11

n

plpm@T*$g xm,g xl%#`g m1 l .

~4.24!

Equations~4.23! and~4.24! are, respectively, the second an
third terms in the statement of the theorem. j

In order to state the next theorem succinctly we defi
one-index productsgG andGg,

~gG!rs
i j 5

def

(
m

g s
m Grm

i j , ~4.25!

~Gg!rs
i j 5

def

(
m

Grs
im g m

j .

If we view G as a matrix of matrices, then these tens
result from either right- or left-multiplication of each bloc
of G by the matrixg. Note thatGg is antisymmetric in its
lower indices only,gG is antisymmetric only in its uppe
indices, and (gG)†5Gg. Retaining from the preceding proo
the notationI p1q andJp1q to denote ordered (p1q)-tuples
that provide a carrier space forSp1q , we further define

@AB#Jp1q

I p1q 5
def

Aj 1 , . . . ,j p

i 1 , . . . ,i p Bj p11 , . . . ,j q

i p11 , . . . ,i q ~4.26!

for tensorsA5(Aj 1 , . . . ,j p

i 1 , . . . ,i p ) andB5(Bj 1 , . . . ,j q

i 1 , . . . ,i q ). Finally,

~4.27!

Lemma. Let A5(Aj 1 , . . . ,j p

i 1 , . . . ,i p ) and put

T5 (
s,pPSp12

e~s! e~p! @AG#p(Jp12)
s(I p12)

in which G, as always, is antisymmetric. Letq1
5( i p11 ,i p12) andq25( j p11 , j p12) be transpositions. Then

q1T5T5q2T.

Proof. For any sPSp12 , q1s(I p12)
5$s8(I p),s( i p12),s( i p11)% for some s8PSp . Clearly
e(q1s)52e(s), so for any pair of permutationss,p
PSp12,
02251
e

s

e~q1s! e~p! @AG#p(Jp12)
q1s(I p12)

52e~s! e~p! A
p8(Jp)

s8(I p)
Gp( j p11),p( j p12)

s( i p12),s( i p11)

5e~s! e~p!@AG#p(Jp12)
s(I p12) . ~4.28!

The last equality follows sinceG is antisymmetric. Summing
Eq. ~4.28! over all s,pPSp12, we obtainq1T5T. The re-
maining claim is similarly dispatched. j

We can now establish the following.
Theorem 2. For p>2,

trp12~g `p`G!5@Np ~g `(p21)`G!2p ~p21!~g `(p22)

`G`g 2!12~N21!~g `(p11)!

22p ~g `(p21)`gG!

22p ~g `(p21)`Gg!#/~p12!2

with N5tr g.
Example 3. For p52 Theorem 2 reads

tr4~g`g`G!5
1

8
@N~g`G!2~g 2`G!

1~N21!~g`g`g!22 g`~gG1Gg!#.

~4.29!
Example 4. On the right side of the equality in Theorem

2, the symbol` stands in for the the antisymmetrize
Âp11^ Âp11 @see Eq. 3.1#, since trp12(g `p`G) is a (p
11)-particle tensor. In fact, the proof of Theorem 2 pr
sented below does not requirep.1, but for p51 we must
replacegG andGg by (Â2^ Â2)gG and (Â2^ Â2)Gg, since
in this case there is no place to put the` symbol. Otherwise,
the result stated in Theorem 2 holds forp51 and is given
explicitly by

tr3 ~g`G!5
1

9
@NG12~N21!~g`g!

22~Â2^ Â2!~gG1Gg!#. ~4.30!

Proof of Theorem 2. The tensor (g `p`G) has elements

~g `p`G!Jp12

I p125@~p12!! #22

3 (
s,pPSp12

e~s! e~p! @gG#p(Jp12)
s(I p12) .

~4.31!

Since i p12 and j p12 will become summation indices whe
we apply trp12, we partition the above sum according
wheres andp permute these two indices:
1-9
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~g `p`G!Jp12

I p125@~p12!! #22F ~TG
G!Jp12

I p121~TG
g !Jp12

I p12

1~Tg
G!Jp12

I p121 (
r ,s51

p

~Trs!Jp12

I p12 G . ~4.32!
qu

c

-

02251
The notation in Eq.~4.32! means the following. Forr ,s
<p, (Trs)Jp12

I p12 includes the permutations in Eq.~4.31! for

whichs(r )5p125p(s). That is, the indicesi p12 and j p12

both appear in@g#p(Jp)
s(I p) . The remaining terms in Eq.~4.32!

are defined as
~TG
G!Jp12

I p12 5
def

(
r ,s5p11

p12

(
s,pPSp12

s(r )5p125p(s)

8 e~s!e~p!@g (p)G#p(Jp12)
s(I p12) , ~4.33a!

~TG
g !Jp12

I p12 5
def

(
r 51

p

(
s5p11

p12

(
s,pPSp12

s(r )5p125p(s)

8 e~s!e~p!@g (p)G#p(Jp12)
s(I p12) , ~4.33b!

and

~Tg
G!Jp12

I p12 5
def

(
r 5p11

p12

(
s51

p

(
s,pPSp12

s(r )5p125p(s)

8 e~s!e~p!@g (p)G#p(Jp12)
s(I p12) . ~4.33c!
two

her
The following mnemonic is helpful: the superscript ‘‘G ’’ and
subscript and ‘‘g ’’ in Tg

G indicate thatTg
G includes all permu-

tations for whichi p12 is an index ofG and j p12 indexesg.
The final term in Eq.~4.32!, ( r ,s(Trs)Jp12

I p12 , may itself be

partitioned as in the proof of Theorem 1@cf. Eq. ~4.11!#. Its

one-particle trace is then evaluated by the same techni
 es

used to establish Theorem 1, and the result is the first
terms in the statement of Theorem 2.

Now consider (TG
G)Jp12

I p12 . The sums overr and s in Eq.

~4.33a! give rise to four terms that are related to one anot
by the transpositions (i p11 ,i p12) and (j p11 , j p12). Accord-
ing to our lemma~with A5@g(p)#), all four terms are thus
identical so we have
@~p12!! #22~ trp12TG
G!Jp11

I p1154@~p12!! #22(
k

(
s,pPSp12

s(r )5p125p(s)

8 e~s!e~p!@g (p)#p(Jp)
s(I p)

Gp( j p11),k
s( i p11),k

52@~N21!/~p12!! 2# (
s8,p8PSp11

e~s8!e~p8!@g (p11)#
p8(Jp11)

s8(I p11)

52@~N21!/~p12!2#g `(p11). ~4.34!
In the second line we have used tr2G5@(N21)/2#g and in
the third line we introduce a factor of@(p11)!#2 to account
for the normalization of the resulting Grassmann produ
Equation ~4.34! is the third term in the formula for
trp12(g `p`G).

By definition, (TG
g)Jp12

I p12 is a sum over permutationss,p

PSp12 such thats( i r)5 i p12 for some r<p and p( j s)
5 j p12 for s5p11 or s5p12. For such permutations, con
sider the action oft r

(p12)PSp12 as defined in Eq.~4.12!:
t.

t r
(p12) s~ I p12!5$s8~ I r

(p11)!,s~ i r !%

5$s8~ I r
(p21)!,s8~ i p11!,s8~ i p12!,s~ i r !%

~4.35!

for r<p. As usual,s8PSp11 ordersI r
(p11) in the same way

that s orders the corresponding indices ofI p12. We can
write an analogous equation forpPSp12, and it should be
obvious by now thate(s) e(p)5e(s8) e(p8). Applying the
1-10
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transposition (p11,p12) of the last two indices to the
aforementioned analog of Eq.~4.35! we obtain

~p11,p12! t r
(p12) p~Jp12!

5$p8~Jr
(p21)!,p8~ j p11!,p~ j r !,p8~ j p12!%, ~4.36!

with p8PSp11.
We invoke the lemma once again to show, in Eq.~4.33b!,

that the two terms in the sum overs are identical. Using Eq
~4.35! and the analogous equation forpPSp12, we then
have

~TG
g !Jp12

I p1252(
r 51

p

(
s,pPSp12

s(r )5p125p(p12)

8 e~s8! e~p8!

3@g (p21)#
p8(J

r
(p21))

s8(I r
(p21))

G
p8( j p11),p8( j p12)

s8( i p11),s8( i p12)
gp( j r )

s( i r ) .

~4.37!

It follows from Eq. ~4.36!,

~ trp12TG
G!Jp12

I p12522(
r 51

p

( 8
s,pPSp12

s(r )5p125p(p12)

e~s8!e~p8!

3@g (p21)#
p8(J

r
(p21))

s8(I r
(p21))

~gG!
p8( j p11),p( j r )

s8( i p11),s8( i p12)
.

~4.38!

The sum overr is performed trivially, since the summand
the same for eachr. Thus

~ trp12TG
G!Jp12

I p12522p~p11!! 2@g `(p21)`~gG!#Jp11

I p11 .

~4.39!

The factor of (p11)!2 cancels the corresponding factor i
troduced by the Grassmann product. We pick up a facto
(p12)!22 from Eq. ~4.32!, and the net result is the fourt
term in the statement of Theorem 2.

The final term in trp12(g `p`G) arises fromTg
G in Eq.

~4.32!, but its evaluation is quite similar to that ofTG
g and is

omitted. j
Many other variations on this theme are possible.

present two additional results without proof, as the proofs
quite similar to the preceding two.

Theorem 3. For anyp>2,

tr2p~G`p!5@~N21!/2p#~g`G`(p21)!

2~1/p!~Â2p21^ Â2p21!J (p),

whereJ (p) is the tensor with elements

~J (p)! j 1 , . . . ,j 2p21

i 1 , . . . ,i 2p21 5S (
m

Gj 1 , j 3

i 1 ,m
Gj 2 ,m

i 2 ,i 3D Gj 4 , j 5

i 4 ,i 5
•••Gj 2p22 , j 2p21

i 2p22 ,i 2p21 .
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In this paper we shall only require the casep52; the
elements ofJ (2) are given explicitly in the next section. Th
final result of this section is a generalization of Theorem

Theorem 4. For p>2 andk>1,

trp12@~g k!`p`G#5$p ~ tr g k!@g `(p21)`G#2p ~p21!

3@~g k!`(p22)`G`g 2k#12~N21!

3@g`~g k!`p#22p @~g k!`(p21)

`~g kG1Gg k!#%/~p12!2.

V. CONTRACTION OF GG
„4…

Applying the theorems in the previous section toGG
(4) ,

one readily obtains

3
4↓GG

(4)

5
1

2
$@2a~N21!1bN#~g`G!2b~g 2`G!

1@b~N21!12cN#~g`g`g!26c~g`g`g2!

22b@g`~gG1Gg!#24a~Â3^ Â3!J (2)%/~N23!.

~5.1!

J (2) in Eq. ~5.1! is the tensor defined in Theorem 3 of th
previous section. LetGr

i 5(Grs
i j ) denote the matrix compris

ing the (i ,r )th block ofG. Then the tensor element (J (2)) rst
i jk

is the (k,t)th entry of the product matrix (Gr
i )(Gs

j ),

~J (2)!rst
i jk5@~Gr

i !~Gs
j !# t

k5(
m

Grt
im Gsm

jk . ~5.2!

We also define a tensorJ whose elements are traces of su
matrix products:

J rs
i j 5

def

tr@~Gr
i !~Gs

j !#5J sr
j i . ~5.3!

For tensorsA5(Aj 1 , . . . ,j n

i 1 , . . . ,i n ) andB5(Bj 1 , . . . ,j m

i 1 , . . . ,i m), define a

tensorA* B with elements

~A* B! j 1 , . . . ,j m

i 1 , . . . ,i m 5
def

(
k1 , . . . ,kn

Aj 1 , . . . ,j n

k1 , . . . ,knBk1 , . . . ,kn , j n11 , . . . ,j m

i 1 , . . . ,i n ,i n11 , . . . ,i m ,

~5.4a!

if n,m, and

~A* B! j 1 , . . . ,j m

i 1 , . . . ,i m 5
def

(
k1 , . . . ,km

Aj 1 , . . . ,j m , j m11 , . . . ,j n

k1 , . . . ,km ,i m11 , . . . ,i nBk1 , . . . ,km

i 1 , . . . ,i m ,

~5.4b!

if n>m. ~If n5m, A* B5AB.! Using this notation and the
results of the previous section one can show that
1-11
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2
4↓GG

(4)5S 1

6
@2aN~N21!1b~N22tr g2!#G1

2

3
aG22

4

3
b~g

`tr2gG!22@b~N21!12cN#~g`g2!

1
1

6
@4a~N21!215bN~N21!16c~N22tr g2!#

3~g`g!14c~g`g3!12c~g2`g2!

1~Â2^ Â2!H 4

3
b ~gGg!2

2

3
@2a~N21!1bN#~gG

1Gg!1
2

3
b~g2G1Gg2!1

1

3
b~g* ~gG!1~Gg!* g!

2
8

3
a JJ D Y @~N23!~N22!#. ~5.5!

Finally, we contract once again to obtain the reconstruc
1-matrix,

1
4 ↓ GG

(4)5H 4a tr2~G2!1FaN~N21!21b~N21!

3S N22
3

2
tr g2D1c~N323N tr g212 trg3!Gg

2F2a~N21!21
15

6
bN~N21!

13c~N22tr g 2!Gg 213@b~N21!12cN#g3

26cg42
2

3
bG22@2a~N21!1bN# tr2~gG!

12b tr2~g2G!1
4

3
b@g•~ tr2gG!

1~ tr2gG!•g#J Y @~N23!~N22!~N21!#,

~5.6!

whereG has elements

Gr
i 5

def

(
k

@~gGg!kr
ik 1~gGg!rk

ki #. ~5.7!

Although the reconstruction functionalGG
(4) ostensibly

contains three adjustable parameters, as a result of nor
ization only two of these are independent. The normalizat
is obtained as a function ofa, b, and c by contracting Eq.
~5.6! once more. The normalization thus obtained is
02251
d

al-
n

tr GG
(4)5

a

24
@N2~N21!224~N21!2 tr g214 tr ~G2!#

1
c

24
@N426N2 tr g218N tr g313~ tr g2!226 trg4#

1
b

24FN3~N21!25N~N21! tr g214~N21!tr g3

14 (
klmn

gn
mgl

k Gmk
nl G . ~5.8!

Setting trGG
(4)5(4

N) fixes one of the parameters in terms
the other two.

Natural spin orbitals

Up to this point the spin-orbital basis$fk% has been or-
thonormal but otherwise arbitrary. Now let us introduce t
basis of ‘‘natural’’ spin orbitals~NSOs! that diagonalizeg
and putgj

i 5l jd i j . For an exact 1-RDMg, it follows that
0<lk<1 for eachk @1#.

The expressions for the reconstructed 1- and 2-RDM

2
4↓GG

(4) and 1
4↓GG

(4) , are especially simple in the NSO bas
In particular,

@~Â2^ Â2!gGg# rs
i j 5

NSO1

4
~l i1l j !~l r1ls!Grs

i j , ~5.9a!

@~Â2^ Â2!~gnG1Ggn!# rs
i j 5

NSO1

2
~l i

n1l j
n1l r

n1ls
n!Grs

i j ,

~5.9b!

@~Â2^ Â2!~g* ~gG!1~Gg!* g!# rs
i j 5

NSO

~l il j1l rls!Grs
i j ,

~5.9c!

and

@g`~ tr2gG!# rs
i j 5

NSO1

4
l r(

k
lk~d ir Gsk

jk2d j r Gsk
ik !

1
1

4
ls(

k
lk~d jsGrk

ik 2d isGrk
jk !.

~5.9d!

Expressions for the relevant components of1
4↓GG

(4) follow
readily from these equations. One finds that, in general,
reconstructed 1-matrix may possess nonvanishing
diagonal elements, even when the inputg5 1

2↓G is diagonal.
As such we must diagonalize1

4↓GG
(4) in order to investigate

whether it violates Coleman’s~ensemble! N-representability
conditions for the 1-matrix@1#. We are currently investigat
ing under what circumstances2

4↓GG
(4) and 1

4↓GG
(4) satisfy

known N-representability requirements@3–9#.
1-12
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TABLE I. Largest elements of the CI and reconstructed 2-RDMs in the NSO basis, for the ground state of Be. None of the recons
is properly normalized: tr(2

4↓GVal
(4))56.164, tr(2

4↓GG
(4))59.828 for the fit togCI , and tr(2

4↓GG
(4))56.918 for the fit toGCI . Natural spin orbitals

are labeled by the Hartree-Fock component of greatest magnitude~absolute value of coefficient.0.95 in each case!. The degeneracy
uG2sa,2sb

3sa,3sbu'uG2sa,2sb
4sa,5sbu is accidental and disappears with additional significant digits.

2-RDM element 2
4↓GG

(4) with fitted parametersa, b, andc
~NSO basis! GCI 2

4↓GVal
(4) Error Fit to gCI Error Fit to GCI Error

G1sa,1sb
1sa,1sb 0.498965 0.496461 20.002504 0.653711 0.154746 0.506778 0.007813

20.5% 31.0% 1.6%
G2sa,2sb

2sa,2sb 0.455695 0.416092 20.039603 0.593240 0.137545 0.400071 20.055624
28.7% 30.2% 212.2%

G1sa,2sb
1sa,2sb 0.455013 0.416093 20.038920 0.673567 0.218554 0.463285 0.008272

28.6% 48.0% 1.8%
G1sa,2sa

1sa,2sa 0.454976 0.338698 20.116278 0.673633 0.218657 0.463299 0.008323
225.6 48.1% 1.8%

G2sa,2sb
3sa,3sb 20.080902 20.100940 20.020038 0.053747 0.134649 20.047162 0.033740

24.8% 2166.4% 241.7%
G2sa,2sb

4sa,5sb 0.080902 0.100940 0.020038 20.053747 20.134649 0.047162 20.033740
24.8% 2166.4% 241.7%

G2sa,2sb
6sa,6sb 20.018827 20.025651 20.006824 0.014940 0.033767 20.011710 0.007117

36.2% 2179.4% 237.8%
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VI. NUMERICAL EXAMPLE: Be ATOM

In this section we use Valdemoro’s Grassmann prod
reconstruction functionalGVal

(4) to reconstruct the 4-matrix fo
the ground state of atomic Be from a highly accurate in
matrix GCI , obtained from a configuration interaction~CI!
calculation. We will evaluate the contraction consistency
GVal

(4)@GCI# and compare it with two reconstruction functiona
of the typeGG

(4) , where the parametersa, b, andc are deter-
mined by fits to the CI density matrices. Furthermore,
shall compare the three self-consistent iteration schemes
cussed at the end of Sec. III.

We choose Be for this example due to the availability
high-quality ground-state wave functions for this syste
@35,36#. The accuracy of 3- and 4-matrices reconstructed
ing Valdemoro’s prescription has been tested in the past@31#
by comparison to full CI density matrices, but only for tin
basis sets~a few basis functions beyond the minimal basi!.
The calculations in this section are the first reported rec
struction in a large basis set. The CSE as a quant
chemical methodology is still young, however, and at
present time the size of this basis set~96 spin orbitals! out-
strips our ability to effect a complete, self-consistent solut
to the CSE. Despite this limitation we have been able
accomplish the comparisons and evaluations outlined in
preceding paragraph.

We employ 1- and 2-RDMs obtained from Bunge’s
wave function@35#. This 180-configuration wave function i
represented in a Hartree-Fock optimized basis@37# consist-
ing of 96s, p, andd Slater-type spin orbitals, and the resu
ing energy boundECI5214.664 193 a.u. recovers 96.7%
the estimated~nonrelativistic! correlation energy of ground
state Be. The total nonrelativistic energy estimated from
periment is214.667 328625 a.u. @38,39#. Although more
accurate wave functions exist for this system@36#, the hu-
mongous basis sets employed in these superior calcula
02251
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make storage and manipulation of the 2-RDM troublesom
for our purposes the slightly less accurate wave funct
suffices.

2
4↓GVal

(4) was constructed in the basis of NSOs ofgCI .
Relative to the Hartree-Fock basis,GCI in the NSO basis has
fewer large elements, which facilitates presentation of
data. In Table I we have listed all independent elements
GCI greater than 0.015 in magnitude; juxtaposed with th
are the corresponding elements of2

4↓GG
(4) for three choices of

the parametersa, b, and c. 2
4↓GVal

(4) indicates thata50, b
56, andc525, as in Eq.~3.5!. For the column labeled ‘‘fit
to gCI ,’’ a, b, and c were chosen by least-squares fit

1
4↓GG

(4) to gCI , the CI 1-RDM. Similarly, ‘‘fit to GCI’’ indi-
cates thata, b, andc were chosen by fitting2

4↓GG
(4) to GCI .

The fitted parameters in both cases are listed in Table II.
Valdemoro’s reconstruction reproduces the largest ma

element quite accurately but for the other elements in Tab

2
4↓GVal

(4) differs from GCI by 10–40 %. These errors are fa
larger than those reported by Colmenero and Valdemoro@31#
for the same system with a double-z basis set~six spin or-
bitals!. However, for the elements in Table I Valdemoro

TABLE II. Parameters employed in reconstruction ofGG
(4). For

each reconstruction, the top set of parameters has not been r
malized, while the bottom set is rescaled so that trG(4)5(4

N)51 for
the reconstructed 4-RDM.

Approximation a b c

GVal
(4) @Eq. ~3.5!# 0.000000 6.000000 25.000000

0.000000 5.840070 24.866725
GG

(4) , fit to gCI 25.470984 8.709500 2.174761
23.340039 5.317155 21.327693

GG
(4) , fit to GCI 1.171816 5.353079 23.238447

21.016319 4.642740 22.808714
1-13
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TABLE III. Comparison of CI and reconstructed 2-RDMs, following renormalization.

2-RDM element 2
4↓GG

(4) with fitted parametersa, b, andc
~NSO basis! GCI 2

4↓GVal
(4) Error Fit to gCI Error Fit to GCI Error

G1sa,1sb
1sa,1sb 0.498965 0.483228 20.015467 0.399078 20.099887 0.439531 20.059434

23.2% 220.0% 211.9%
G2sa,2sb

2sa,2sb 0.455695 0.329670 20.126025 0.362162 20.093533 0.346983 20.108712
227.7% 220.5% 223.9%

G1sa,2sb
1sa,2sb 0.455013 0.405002 20.050011 0.411200 20.043813 0.401809 20.053204

211.0% 29.6% 211.7%
G1sa,2sa

1sa,2sa 0.454976 0.405001 20.049975 0.411240 20.043736 0.401821 20.053155
211.0% 29.6% 211.7%

G2sa,2sb
3sa,3sb 20.080902 20.098249 20.017347 0.032811 0.113713 20.040903 0.39999

21.4% 2140.6% 249.4%
G2sa,2sb

4sa,5sb 0.080902 0.098249 0.017347 20.032811 20.113713 0.040903 20.39999
21.4% 2140.6% 249.4%

G2sa,2sb
6sa,6sb 20.018827 20.024967 20.006140 0.009120 0.027947 20.010156 0.008671

32.6% 2148.4% 246.1%
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approximation is no worse than the fit of2
4↓GG

(4) to GCI . Of
course, such a fit is not a useful paradigm for solving
CSE but does provide a benchmark against which we m
compare other reconstruction functionals of the Grassm
product form.

Each of the three aforementioned reconstructions ove
timates the trace of the reconstructed 2-RDM, so we a
compared the RDMs obtained with rescaled parameters,
that trGG

(4)5(4
N) in each case. The rescaled parameters

also listed in Table II, and in Table III we compare the mat
elements of2

4↓GG
(4) for these renormalized reconstructions.

is understandable why rescaling worsens the original fits,
notable that upon renormalization Valdemoro’s reconstruc
matrix elements also show greater deviation from the CI v
ues. The energy calculated using2

4↓GVal
(4) also becomes les

accurate when we impose proper normalization, increas
from E5214.4813 a.u. ~not normalized! to E
5214.0953 a.u.~normalized!. In contrast, the energy ob
tained from the fit toGCI is significantly worse when we do
not impose proper normalization:E5216.1355 a.u.~not
normalized!, while E5213.9944 a.u.~normalized!.

Since E5( i jmnKmn
i j Gi j

mn , an errorDGi j
mn in Gi j

mn corre-
sponds to an errorDEmn

i j 5Kmn
i j DGi j

mn in the energy. The
DEmn

i j are thus an importance sampling of the errors in
reconstructed 2-matrices. In Table IV we tabulate theseDE
values for each of the largest elements of the reconstruc
renormalized 2-matrices. Again Valdemoro’s approximat
fares better than a simple fit toGCI .

We next examine the eigenvalues of the reconstruc
renormalized matrices2

4↓GG
(4)@GCI# and 1

4↓GG
(4)@GCI#. To di-

agonalize a two-particle matrix such asG it is easiest to work
in a basis of two-particle functions. Thus, we construct fro
our orthonormal spin orbitals$f i% a set of orthonormal spin
geminals$F jk%, where for eachj <k

F jk~1,2!5
def 1

A2
@f j~1!fk~2!2fk~1!f j~2!#. ~6.1!
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DenotingJ5( j 1 , j 2), we may expressG as a two-index ma-
trix in the $F jk% basis,

G~1,2;18,28!52(
i , j

(
r ,s

Grs
i j F i j* ~18,28! F rs~1,2!

5 (
J,K51

S2n
2 D

GJKFJ* ~18,28!FK~1,2!. ~6.2!

Here n is the number of orbitals, so there are 2n spin
orbitals and (2

2n) spin geminals. Comparing Eq.~2.1! to Eq.
~6.2! we see thatGJK52 Gk1k2

j 1 j 2 . We obtain the ‘‘natural’’ spin

TABLE IV. Energy differences~atomic units! for the largest
magnitude elements of reconstructed, renormalized 2-RDMs in
NSO basis, for the ground state of Be.DEmn

i j 5Kmn
i j DGi j

mn ~see text!.
The total energies calculated with these 2-matrices areECI5
214.664 andEVal5214.095 a.u. The fit togCI gives an energy of
214.209 a.u. and the fit toGCI yields an energy of213.994 a.u.

Kmn
i j DEmn

i j DEmn
i j DEmn

i j

~NSO basis! ~Valdemoro! Fit to (gCI) Fit to (GCI)

K1sa,1sb
1sa,1sb

523.015813 20.046646 20.301241 20.179242
K2sa,2sb

2sa,2sb

520.721147 20.090883 20.067451 20.078397
K1sa,2sb

1sa,2sb

522.697228 20.134891 20.118174 20.143503
K1sa,2sa

1sa,2sa

522.697228 20.134794 20.117966 20.143371
K3sa,3sb

2sa,2sb

510.357902 0.006209 20.040698 20.014316
K4sa,5sb

2sa,2sb

520.078553 0.001363 20.008932 20.003142
K6sa,6sb

2sa,2sb

510.056642 20.000348 0.001583 0.000491
1-14
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geminals and their occupation numbers~eigenvalues ofG)
by diagonalizing the matrix (GJK). More precisely, we diag-
onalize the two independent blocks of this matrix, whi
correspond to the spin componentsGaa

aa and Gab
ab ~see the

Appendix!.
The largest and smallest eigenvalues ofG and the recon-

structed, renormalized approximations thereof are displa
in Tables V and VI; eigenvalues of the correspondi
1-matrices are presented in Table VII. For the large eigen
ues we find that Valdemoro’s reconstruction is more accu
than the fitted Grassmann product functionals. Valdemo
approximation breaks down at the other end of the eig
value spectrum, however: of 4560 eigenvalues, 153 are m
negative than2131026, although none is more negativ
than20.003 440. The fit toGCI produces no negative eigen
values.

Although our primary interest in this paper is the Gra
mann product ansatz, as indicated in Sec. III the reconst
tion functionals considered by Nakatsuji, Yasuda, and
workers @15–17# include corrections to Valdemoro’

TABLE V. Largest and smallest eigenvalues ofGaa
aa and their

reconstructed, renormalized approximations, for the Be gro
state.

( 2
4↓GG

(4))aa
aa

(GCI)aa
aa ( 2

4↓GVal
(4))aa

aa Fit to gCI Fit to GCI

0.910016 0.810105 0.502110 0.697023
0.028718 0.047260 0.040686 0.047736
0.028718 0.047260 0.040686 0.047736
0.028718 0.047260 0.040686 0.047736
0.001715 0.007099 0.023537 0.021982

A A A A
0.000000 20.003440a 20.000076 0.000000

aNot listed are another 41 eigenvalues more negative t
2131026.

TABLE VI. Largest and smallest eigenvalues ofGab
ab and recon-

structed, renormalized approximations, for the Be ground state

( 2
4↓GG

(4))ab
ab

(GCI)ab
ab ( 2

4↓GVal
(4))ab

ab Fit to gCI Fit to GCI

1.000664 0.968718 0.502110 0.762930
0.998484 0.929264 0.502016 0.697030
0.910307 0.810352 0.487271 0.697030
0.910016 0.810105 0.450850 0.634978
0.028718 0.218379 0.040686 0.133495
0.028718 0.047260 0.040686 0.047736
0.028718 0.047260 0.040686 0.047736

A A A A
0.000000 20.003440a 20.131858b 0.000000

aNot listed are another 110 eigenvalues more negative t
2131026.
bNot listed are another three eigenvalues more negative
2131026.
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reconstruction that are not of the Grassmann product fo
Since these correction terms are second order in the cor
tion potential, while Valdemoro’s reconstruction is first orde
we expect that the numerical results presented above w
improve if these correction terms were included. Unfor
nately, however, computation of the Nakatsuji-Yasuda c
rection terms requires two additional summations over sp
orbital indices and for the large basis set considered here
are unable to carry out this calculation using our pres
algorithms. Nevertheless, the calculations that we have
sented are significant in that for the first time the reconstr
tion has been carried out in a large basis set.

Iteration of the CSE

Finally in this section we return to an earlier issue: t
nature of the appropriate iteration algorithm for se
consistent solution of the CSE. Three possibilities were
troduced in Sec. III. In the fully contraction-consiste
scheme of Eq.~3.8!, the approximate 2-RDM aftern itera-
tions,Gn , is used to constructGn

(4) ~the approximate 4-RDM
used in the next iteration!, while the 2- and 3-RDMs em-
ployed at the (n11)th step are the contractions ofGn

(4) . The
scheme represented by Eq.~3.9! employs separate recon
struction functionals for the 3- and 4-RDMs to constructGn

(3)

andGn
(4) from Gn . Lastly, according to the procedure of E

~3.10!, Gn
(4) is reconstructed fromGn andGn

(3) is obtained by
contraction ofGn

(4) , but the 2-RDM employed in this metho
is the input matrixGn rather than a contraction ofGn

(4) .
As indicated previously, the combination of a large ba

set and poor scaling prevents us from carrying out a co
plete self-consistent solution to the CSE at this time. Nev
theless, we are able to carry out a single update of a sm
number of matrix elements~since we cannot calculate all th
matrix elements, the iterative procedure cannot be exten
beyond a single step!. Thus, starting fromG05GCI , we cal-

d

n

n

an

TABLE VII. Largest and smallest eigenvalues of the CI 1-RD
for ground-state Be, and the reconstructed, renormalized app
mations thereof. Each eigenvalue corresponds to a set of ex
degenerate values arising fromms and uml u degeneracies. Thos
degeneracies appearing in the table are accidental.

1
4↓GG

(4)

gCI 1
4↓GVal

(4) Fit to gCI Fit to GCI

0.998136 0.959886 0.952621 0.943006
0.911596 0.776082 0.871583 0.821229
0.028778 0.083757 0.055979 0.074902
0.028778 0.083757 0.055979 0.074902
0.001856 0.083757 0.055979 0.074902
0.000484 0.005575 0.003903 0.005039
0.000352 0.001699 0.000903 0.001414
0.000352 0.001277 0.000646 0.001043
0.000055 0.001277 0.000646 0.001043
0.000055 0.001277 0.000646 0.001043
0.000055 0.000160 0.000119 0.000148

A A A A
0.000000 0.000001 0.000000 0.000000
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culate an updated value for each of the largest element
the 2-RDM by using each of the aforementioned iterat
schemes. The results are presented in Table VIII.

Among the three iteration schemes, the fully contractio
consistent scheme is comically bad, while the procedure
employs separate reconstruction functionals@Eq. ~3.9!#
stands apart in accuracy, with relative errors that are an o
of magnitude smaller than the third iteration strategy, E
~3.10!. Note in particular that iterated matrix elements in t
second scheme lie closer to the CI values than do the
ments of 2

4↓GVal
(4)@GCI# in Table I. Insofar as we may draw

conclusions on the basis of only one iteration, the s
consistent procedures of Eqs.~3.9! and ~3.10! appear to be
heading in the right direction, i.e., back toward the init
2-RDM. However, this behavior may be an artifact of t
fact that, at the first iteration, Eqs.~3.9! and ~3.10! employ
G0, the accurate 2-RDM, while Eq.~3.8! uses the approxi-
mate 2-matrix2

4↓GG
(4)@G0#.

VII. CONCLUSION

In this paper we have derived contraction formulas for
most general 4-RDM reconstruction functional that can
formed from a linear combination of Grassmann products
the 1-RDM g and the 2-RDMG. We have used accurat
RDMs for Be atom to test and compare various reconstr
tion functionals and iteration schemes that have been
posed for solving the contracted Schro¨dinger equation. This
represents the first test of density matrix reconstruction
mulas in a large basis set.

It is known, both from the cumulant expansions pursu
by Kutzelnigg and Mukherjee@33,40# and by Mazziotti@29#,
as well as from the Green’s function expansions of Nakat
and Yasuda@15# and Yasuda and Nakatsuji@16#, that recon-

TABLE VIII. First iterative correctionG1 to the CI 2-RDM for
the ground state of Be.G1 is obtained from a single iteration of th
CSE by using three different iteration schemes, as described in
text. Beneath each matrix element is listed its deviation from
accurate CI starting value,G0.

Matrix G1 G1 G1

element G0 Eq. ~3.8! Eq. ~3.9! Eq. ~3.10!

G1sa,1sb
1sa,1sb 0.498965 0.120794 0.496747 0.49552

20.378171 20.002218 20.003436
G2sa,2sb

2sa,2sb 0.455695 0.043428 0.426295 0.37463
20.412267 20.029400 20.081057

G1sa,2sb
1sa,2sb 0.455013 0.124256 0.451807 0.43389

20.330757 20.003206 20.021122
G1sa,2sa

1sa,2sa 0.454976 0.124185 0.451779 0.43386
20.330791 20.003197 20.021107

G2sa,2sb
3sa,3sb 20.080902 20.040809 20.084309 20.000960

0.040093 20.003407 0.079942
G2sa,2sb

4sa,5sb 0.080902 0.040812 0.084310 0.09150
20.040090 0.003408 0.010601

G2sa,2sb
6sa,6sb 20.018827 20.011907 20.020068 20.006087

0.006920 20.001241 0.012740
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struction ofG(4) by Grassmann products ofg andG is nec-
essarily approximate~see also Ref.@41#!. These authors poin
out that the Grassmann productsg`g`g`g, G`g`g,
and G`G cannot by themselves incorporate correlatio
~‘‘collision terms,’’ in the language of diagrammatic pertu
bation theory! between three or more particles. It is possib
however, that the parametersa, b, and c appearing in the
ansatz of Eq.~1.1! could be chosen so as to incorporate~pos-
sibly in an indirect or a semiempirical way! some of these
higher-order correlation effects, much as an uncorrela
Hückel calculation can recover certain correlation effects
the parameters are chosen appropriately. It is worth pursu
whether the parameters here can be related to the afore
tioned cumulant expansions.

It is also known that the Grassmann product ansatz is
contraction-consistent except in the single-determinant lim
so that in general2

4↓GG
(4)ÞG, whereG and g5 1

2↓G are the
density matrices used in the reconstruction. The Grassm
product form forG(4) is thus inconsistent with a Grassman
product form forG(3), as our results in Sec. V demonstra
explicitly. A related question is the stability of the contract
Schrödinger equation: if an accurate 2-RDM is introduced
the starting point, will it be returned following reconstructio
and iteration of the CSE?

The 4-matrix reconstruction functional proposed by V
demoro and co-workers@32# produces an approximateG(4)

that yields, upon contraction, a 2-matrix that is a good
proximation to the inputG. For ground-state Be, this ap
proximate 2-RDM better reproduces the large matrix e
ments ofG than does the general Grassmann reconstruc
functional optimized by least-squares fit toG itself. More-
over, Valdemoro’s approximate 2-RDM is even closer to t
accurateG following a single iteration of the contracte
Schrödinger equation. The energy, as computed usingE
5tr KG, is also somewhat better for the Valdemoro reco
struction than for the contracted best-fit reconstruction.

Finally, for the same numerical example, we have co
pared the three self-consistent iteration schemes that h
been published in the literature. Of these we find that
method proposed by Colmenero and Valdemoro@11# gives
the best results after a single iteration, although Mazziot
procedure@19# is only slightly less accurate and should n
be discounted on the basis of this calculation alone. Inter
ingly, the procedure that fares worst is the one currently e
ployed by Valdemoro’s group@12–14#, in lieu of their earlier
procedure.

In closing we should mention that although the Gra
mann product ansatz is compact and elegant for formal
nipulations, a great deal of redundancy is hidden within
sums over permutations that define the antisymmetrizers.
example, naive application ofÂ4^ Â4 to Gj 1 j 2

i 1i 2 Gl 1l 2

k1k2 results in

(4!)25576 terms for each element ofG`G, but taking into
account permutational antisymmetry ofG this number can be
reduced to a mere 18. Elements ofg`4 involve only 24
independent terms~not 576! and elements ofg`g`g2 can
be expressed using 18 rather than(3!)2536 terms. The list
goes on. Moreover, since each of these tensors is antis
metric and also self-adjoint, many of its elements are

he
e
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required. An example of this~further elaborated in the Ap
pendix! is G itself: the only independent elements ofGkl

i j are
those for whichi , j , k, l , and i<k, and furthermore when
i 5k only those elements withj < l are independent.

To some extent we have incorporated these simplify
symmetries into our algorithms, although not in a system
or exhaustive fashion. It is possible that in the future these
other symmetries may be applied systematically to ob
efficient algorithms not only for accomplishing the reco
struction but also for iterative solution of the CSE. In pa
ticular, Valdemoro’s group@12–14# has spent a great deal o
time developing such algorithms.
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APPENDIX: STORAGE REQUIREMENTS

Using the contraction formulas to avoid storage of 3- a
4-RDMs reduces storage requirements by the fourth po
of the basis size, for a basis of spin orbitals. In fact we can
more explicit about memory requirements. Let us first int
duce a basis set of orthonormal orbitals$x1 , . . . ,xn% and
construct from them 2n spin orbitals$f1 , . . . ,f2n%, ordered
such that fk(r ,j)5xk(r )a(j) if k<n and fk(r ,j)
5xk2n(r )b(j) for k.n. Expanding the 2-RDM by spin
components, we have

G~r1 ,j1 ,r2 ,j2 ;r18 ,j18 ,r28 ,j28!

5~Gaa
aa!a* a* aa1~Gab

ab!a* b* ab

1~Gba
ba!b* a* ba1~Gba

ab!a* b* ba

1~Gab
ba!b* a* ab1~Gbb

bb!b* b* bb, ~A1!

where Gab
ab5Gab

ab(r1 ,r2 ;r18 ,r28), for example, depends onl
on spatial coordinates. The notation for the two-electron s
functions is a* b* ab5a* (j18)b* (j28)a(j1)b(j2), etc.
There are 16 functions of this type, but as a result of
requirementms(1)1ms(2)5ms(18)1ms(28) for Ŝz eigen-
states, only the six spin components listed above are n
:
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zero. In fact only three of these are independent@42,43# and
we may take the independent components to beGaa

aa , Gab
ab ,

and Gbb
bb . This follows readily from the permutational ant

symmetry ofG, as we now demonstrate.
ExpandingGab

ab(r1 ,r2 ;r18 ,r28) in the $xk% basis we may
represent this spatial kernel by its tensor of expansion c
ficients, which we denote byGab

ab . The tensorGab
ab has ele-

ments (Gab
ab)kl

i j 5Gk,l 1n
i , j 1n for i , j ,k,l<n, so, for example, we

have

~Gab
ab!kl

i j 5G k,l 1n
i , j 1n 52Gl 1n,k

i , j 1n 52~Gba
ab! lk

i j . ~A2!

Similar relations exist among other spin components.
We wish to determine the number of independent e

ments in the three independent spin component tensors
thereby derive an explicit expression for storage requ
ments as a function of basis size. Consider first a typ
element (Gaa

aa)kl
i j , with i , j ,k,l<n. SinceGaa

aa is self-adjoint
and antisymmetric, we require only those elements witi
, j , k, l , and i<k. Furthermore, wheni 5k we need only
the elements withj < l . The number of elements satisfyin
these requirements is

Naaaa5 (
i 51

n21

(
j 5 i 11

n F (
k5 i

n21

(
l 5k11

n

12 (
l 5 i 11

j 21

1G
5

1

8
n~n322n213n22!. ~A3!

The second of the terms in brackets subtracts the numbe
elements withi 5k and j . l . ClearlyNbbbb5Naaaa , and a
similar exercise demonstrates thatNabab5n3(n21)/2. Add-
ing these together we get the total number of independ
elements for an arbitrary 2-RDM expressed in a basis se
2n spin orbitals:

Nind~n!5
1

4
n~n21!~3n22n12!. ~A4!

This is the number of matrix elements that must be stored
order to solve Eq.~2.12! self-consistently. The tensorG con-
tains a total of 16n4 elements, so asn→` the ratio ofNind to
the total number of elements inG approaches 0.046 875. Fo
singlet statesGaa

aa5Gbb
bb , which further decreases the numb

of independent elements ofG.
a,
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