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Contraction relations for Grassmann products of reduced density matrices and implications
for density matrix reconstruction
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We consider, for systems of indistinguishable fermions, approximate reconstruction of the three- and four-
particle reduced density matric€RDMs) from the one- and two-particle RDMg; andT". Our ansatz for
reconstructing the four-particle RDM is the linear combinatefl™/\T") +b(y/\ y/\I') +c(y\y\y/\y),
where “/\" denotes the antisymmetrizetGrassmannproduct. This is a generalization of reconstruction
functionals employed recently to perform direct RDM calculations without wave functions via the contracted
Schralinger equation. Here we consider relationships between the paramagkerandc that are required in
order for the reconstruction functionals to respect the hierarchy of contraction relations between RDMs. To this
end we establish several general theorems concerning contractions of antisymmetrized tensor prediicts of
and various products thereof. The accuracy of proposed reconstruction functionals is evaluated using accurate
density matrices for the ground state of Be.
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I. INTRODUCTION tive, self-consistent solution of the CSE.
In this paper we examine a particular ansatz for the
“Direct” density matrix methods, in which the two- 4-RDM reconstruction functional and compare it with previ-
electron reduced density matri2-RDM or 2-matrix is cal- ~ Ously suggested reconstructions. We consider a reconstructed

culated without recourse to an electronic wave function, aré-RDM formed from antisymmetrize@Grassmannproducts

hampered by an incomplete characterization of the set o?f the 1-RDMy and the 2-RDMT',

N-representable RDMEL,2]. Recently, several methods that def

employ approximateN-representability constraints have T[] = a(TAD)+b(TAY\y) +c(Y Ay \y\y).
achieved some success. Variational calculation of the 1.1)
2-matrix, constrained by several knowrepresentability '

. _ : def
requirement$3-9], has been carried out recently for atoms Here= indicates a definition, b, andc are parameters, and

and for molecules containing no more than one heavy atom A yenotes the Grassmann produd9,27, for which a
[10]. At the same time, several groupkl-2Q have devel- recise definition is given in Sec. lll. This reconstruction

oped an alternative scheme for direct calculation of the,nsa4; is 4 generalized, density-matrix analog of decoupling
2-RDM based upon the contracted Salinger equation 555 6yimations introduced in order to solve the hierarchy of
(CSB [21-23. In these latter methods, approximate Green's function equations of motion, and each such decou-
N-representability constraints are imposed in the formeef pling scheme is equivalent to a partial summation of the
construction functionals-prescriptions for building higher-  perturbation expansion for the relevant Green's function
order RDMs from lower-order ones. [28]. However, unlike certain decoupling strategisach as
The CSE involves the two-, three-, and four-electronthe random-phase approximatjoemployed frequently in
RDMs and the two-electron reduced Hamiltonian. It iscondensed-matter physics, the reconstruction scheme of Eq.
equivalent(in a necessary and sufficient sense the elec-  (1.1) is necessarily antisymmetric. We consider the antisym-
tronic Schrainger equation but does not involve the wave metry requirement to be of paramount importance in elec-
function explicitly. The shadow of the wave function is tronic structure.
manifest, however, ilN-representability requiremeng$—9] Reconstruction of the 3-RDM®) may proceed through a
that RDMs must satisfy if they are to derive from physically separate functional, oF® may be obtained as the one-
admissible N-electron states. These requirements are tharticle contraction(trace over the coordinates of one par-
density-matrix formulation of the Pauli principle, and in their ticle) of the reconstructed 4-matrix, as in the algorithms of
absence the CSE possesses spurious, unphysical solutions Yeéildemoro and co-workergl2—14 and Mazziotti[19,20.
the 2-RDM[24]. At least for nondegenerate ground states,As such, there exist several plausible iteration schemes that
however, theN-representable 2-RDMs map one-to-one ontomight be used to achieve a self-consistent solution of the
the N-representablep-RDMs for eachp=2 [25,26. This  CSE; three such schemes are discussed in this paper.
(unknown map is precisely the reconstruction functional for ~ Given any approximate reconstruction functioR&[T'],
thep-RDM, and any approximation for this functional servesthere is always the question of whether itdentraction-
as an approximats-representability requirement in an itera- consistent That is, if we trace over the coordinates of two
particles inI'[T'], do we recover the inpUf used to gen-
erate this matrix? This question is especially germane if
*Electronic address: harriman@chem.wisc.edu one’s iteration scheme employs the contraction§Gi[T'].
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Within our Grassmann product ansatz, the contractionbeen handled numericallpy equating to zero any negative
consistency requirement leads to a set of relations betaeen diagonal elementgl1,14,31) but not analytically in the for-

b, andc, which we derive. Furthermore, we demonstrate thatnal derivation of reconstruction functionals.

neither the two- nor three-particle contractionftﬁf) can be The remainder of th_is_ arti<_:|e is §tructured as follows. In
written in a simple Grassmann product form; for example,S€C. Il we present a UI:]Ierd discussion of a class of “reduced
the one-particle contraction &) cannot be expressed as a &igénvalue equations,” of which the CSE is the most impor-
linear combination ofy/AT" and ¥\ y/\ y. It is therefore in- tant example. We formulate these both as integral equations

consistent to assume a Grassmann product form forBGth (in which the RDMs are integral kemngland as matrix equa-

d1T@ Thi lusion is impli F.’t . ¢ K b tions in a spin-orbital basis. In Sec. Il we discuss the pro-
and 1" IS_conclusion IS implicit in_recent work Dy posed reconstruction functionals of Valdem¢B2,31 and
Mazziotti[29], although he does not provide an explicit form

X 4 Nakatsuji [15—-17, as well as three possible iterative
for the contractions of Grassmann product functionals.  gchemes for solving the CSE. Section IV consists of several

(4()3Ue note concerning semantics is in order. The matrgeneral theorems concerning the contraction of antisymme-
I's’ is, by construction, antisymmetric and self-adjoint. trized products of one- and two-particle density matrices for
There is no reason, however, to expect that it is positive ifermions, and in Sec. V we apply these theoremf‘ga to
general.(Indeed, a recurring theme in the work of Mazziotti obtain the 1-, 2-, and 3-RDMs to which it corresponds. In
[19,20,3Q has been solution of the CSE supplemented withSec. VI we employ an accurate 2-RDM for the ground state
positivity constraints for the reconstructed 4-RDMs such  of Be to compare the reconstructed density matrices obtained
it is disingenuous to refer t&@'%) as a density matrix or from I''), for several sets of parameteish, andc.
4-RDM. We shall refer td'$” (or any four-particle matrix
obtained as a functional df) as areconstructed4-matrix, Il. REDUCED EIGENVALUE EQUATIONS
with similar language for 3-matrices. Implicit in this idiom is Given a wave function? (1,2, ... N) for a system oiN
the understanding that the reconstruction is not exadt‘,&@o indistinguishable fermions, th@th-order reduced density
is not a priori positive. Other than the work of Mazziotti matrix (p-RDM or p-matrix) TP for the state described by
cited above, positivity within the reconstruction process hagV is the integral kernel

def [N
rea,...p1,...pH)= (p)j‘P(l,...,N)‘If*(l’,...,p’,p+1,...,N)dxpﬂ...de

-2 . (PP 0 $R (1) ¢y, (1) 61 (D) by (P). 2.1)
Ji, v jp
|
Here “1” represents the spatial and spin coordinatgs def def

=(ry,&,) of particle 1, etc., andl¢,} is a basis of orthonor-  For convenience ley = TV andTI' = T(®).

mal spin orbitals. We assume that this basis is specified and The (p—n)-RDM is obtained from the-RDM via a lin-

fixed, so that thep-RDM is completely determined by the ear mapg_n | that is proportional to the n-trace

tensorl'®) of expansion coefficients. In order to make OUrtry ni1p-nt2,.. p- This operation is known asontraction

results more amenable to numerical implementation, wend applied td"® it gives

shall formulate what follows in terms of tensor arithmetic

rather than integral kernels. N
The elements off P can be expressed succinctly in  p(-n_p lp(p):[( )/(

second-quantized notation, pon p—n

N

p)| Pl
, . (2.9
(@ p=(vlal- - -ala ---a, [ V)il (22

R R ’ For tensors thei-trace is the usual diagonal sum, as in Eq.
where{a]} and{a,} are, respectively, the creation and anni- (2.3), but taken over only the findtightmos} n indices. For
hilation operators for the basisp,}. The tensorl'® is integral kernels the corresponding operation is

(separately antisymmetric in both its upper and lower indi-
ces. It is also self-adjoint,I((”))}i','_'_'_’Y'jF;=[(F(p))f11" _'_'_'"i';’]*, [ty ner . ,CPIA, ... p—ni1', ... (p—n)")
and is normalized to}):
=f r®a,...p;1,...(p—n),p—n+1,...p)
rr®= > (reHke-- kp:(N) (2.3
ke k Ko p X dXp i1 - 0% (2.5
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The goal of so-called direct density matrix calculations iSNote thatf\l ,andA[® depend upon the number of particles,
to compute RDMs without calculating wave functions; how- N A s seﬁ‘-adjoint] but not antisymmetric, althoug’ni‘f
e e defons i 582 ) 22 b ey sl t ntsyrtie e s o ko

: ’ IS— _ AfS—= _ AST= ASf i
simply a positive(semidefinite, self-adjoint tensor of rank advantage we gain \;vith definitiof2.10 is that for a spin-
2p. Not all density matrices defined in this way aesluced A T ) i
density matrices for real physical systems and one must did[€€ operator\, the tenson is diagonal in the spin variables
tinguish the set of physically admissible RDMs. An RDM for of bqth particles. This block structure is lostAfis antisym-
a system of indistinguishable fermions is said tofhge-  Metrized.

state Nrepresentablg1] if it is a contraction of ¥ ¥* for Inserting Eq.(2.9) into Eq. (2.8) we have

someN-particle wave function? that is antisymmetric with

respect to permutations of particle coordinates. Arsiwlatataa.afataa vy =2n(wlatata.alw
For statistical ensembles of stafgk;} one needs to con- uzrs (W lap3ganand; 3 asa, W) = 2A (¥ |apagandm| ¥)-

sider ensemble MepresentableRDMs, the contractions of (2.1)

convex linear combinations, ¥ V5 +- - - + ¢, ¥, ¥ . We

will not consider such ensemble states, except to note thdo obtain thereduced eigenvalue equatidar the operator
each componenﬂj\Ifj* is itself a pure-stat®l-representable A, we reorder products of creation and annihilation operators
density matrix, and therefore its contractions are pure-statg Eq. (2.11) usingéiéjTJréjTéi: &;j and express the result in
N-representable RDMs. Consequently, if {h;} are eigen-  terms of density matrix elements via E&.2). This results in
functions of a self-adjoint operatok then each reduced a set of equations, which we may write in matrix form as
component satisfies a reduced eigenvalue equdiitno-

duced below with respect toA. Furthermore, if AW, A=Al +6(A,® Ap)trsATC)+ 6 try AT,

=\V; for eachj then the contractions of, ¥, W7+ - - (212

+c, ¥ Wy satisfy a reduced eigenvalue equation as well. _ ) ) _ )
We now restrict our attention to pure-state An equivalent equation can also be derived in which the

N-representable RDMs. Suppose that tidermion wave order of each matrix product is reversed. The eigenvalise
function ¥ is an eigenfunction of a self-adjoint operatby given by

Av=\v, (2.6 N=(W[AW)=tr (AT)= X, AT B9, (213
mnpq

whereA is a sum of one- and two-body operators, )
The product tensors in E§2.12 have elements

A= Fi)+2 9(i,i). 2.7 ) )
l =) (AT)S=2 AN T}, (2143
P
For indistinguishable particles, all established quantum-
mechanical observables have this form. Clearly

fere o (ATO) =27 ARF (T, (2.14b
(¥]alalamam(A—N)|¥)=0 (2.9 pa
for eachp, g, n, andm. In this second-quantized formalism and
we should replace the operatarwith the second-quantized
expansion of the corresponding two-particle reduced opera- (AF(4))irjskt6:E Afuq(r(“))irjskp/q- (2.149

tor Ay41,2)=0(1,2)+[f(1)+F(2)]/(N-1). The corre- Pa
sponding operator in second quantization is )
Note that tg(AT™)=try,(I'A) but in general

tra(ATG) #try(T®)A) since tg is a sum over one index

Mg = 5 ”Ers Ajalalaga, (2.9 while the product involves a sum over two.
The operatorA, in Eq. (2.12 is the antisymmetrizing
and the expansion coefficients are the integrals projection operator for two-particle functions, while
A A,® A, is the direct product ofl, for the vector space and
AT=(¢i(1)4;(2)]9(1,2| (1) ps(2)) A, for the dual spacfsee Eq(3.1) for a rigorous definitioh

2T . 2T _ A,® A, thus antisymmetrizes two-particle tensgis., ten-

+ <¢'(1)|f(1)|¢r(1)>515+<¢1(1)|f(1)|¢S(l)>5”_ sors with two upper and two lower indigesAlthough we

(N—1) consider only fermion density matrices here, by employing
(210  the boson commutation rukg'a; —a;al = &; one can derive
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an analog of Eq(2.12 for (symmetrig boson density matri- culations in a finite basis set. Much of the density matrix
ces; the only difference is thé¢2 is replaced by theymme- literature, however, is written in terms of integral kernels. In
trizing projection operator. order to connect with this formalism, we translate the re-

In this paper we work exclusively with tensors, in order toduced eigenvalue equatiof2.12 into this integral kernel
derive formulas that are directly applicable to numerical calHanguage:

AF(X1,X2:XL><5)=J A1 AP.a;x1,X5) T (Xq,%2:p,0) dp dg
+3f A1 AP, a;x5,1) TE(Xq,%,,r;%7,p,q) dpdq dr
—3J Aqp,a;xy,1) T®(xq,xz,15%5,p,0) dpdg dr

+6f A1 Ap.a;r,9) TH(Xy,%,,1,5X],X5,p,q)dp dg dr ds. (2.19

Herep,q, ... each represent the space- and spin-coordinates of a single particle.
The reduced operato?lvz(l,Z) has kernel

Aq AXq, X2 3 X1,X5) = 8(Xq = X1) 8(Xp—X)[9(Xy,%p) +{f(Xq) + F(X2) /(N—1)]. (2.16

Substituting this expression into E@.15), evaluating theS function integrals, and making use of the contraction relat®
between density matrix kernels yields

AT(1,2;1,2))=[F(1)+f(2")+9g(1',2)]T(1,2:1',2")

+3f {[f(3")+9g(1",3)+9g(2',3)]T®(1,2,3;1,2',3")}5/ _3dxX5

+6f {9(3",4)T")(1,2,3,4;1,2',3 ,4")} s -adx30X,. (2.17)
4'=4

This is the integral kernel version of the reduced eigenvalughis equation follows from Eq(2.6); the proof of the con-
equation forA [15,16,23. The notation{- - -}3_; means Verse forN-representable RDMs is analogous to the proof
thatx; is set equal to(; in the integrandafter the operators that thg C.SE implies the ordinary Schiger equation. This

. . , , was originally demonstrated by Nakats(fi2], then later

f andg have acted on the primed coordinatEBhe tensor  proved in second quantization by Mazzidttd] and will not
expansion of density matrix kernels in EQ.1) forces us e repeated here. The crucial point is that 812 implies
into the somgwhat uncqnventlonal 5|tua.t|on 'of having operag, zero-dispersion conditio(ﬂ)lf\(l))2=<<1>|f\2<b>, which
tors act onprlmedcoo_rdlnateﬂ. For Ha_rmltonlgn Operators, ¢ self-adjoint operators is equivalent to the eigenvalue
A=H, the reduced elgenyalue equati¢hl?) is known as equation A¢:<¢|A‘b>‘b- The presence ofi2, a four-
CSE; the corresponding integral kernel equati@il?) is  particle operator, in the zero-dispersion relation indicates

sometimes called the density equatfdd]. why the 3- and 4-RDMs must appear in the reduced equation
We have shown above how the CSE follows from theeven thougl‘f‘ alone determines the eigenva|ue_

usual Schrdinger equation, but in fact the two are equiva-  The reduced eigenvalue equation for the total spin opera-
lent (!n a necessary and sufficient sent® I\]—representablg tor & has been discussed by Valdemetal.[13], although
density matrice419,22. In other words, given some anti- jis formal similarity to the CSE has not been emphasized. To

symmetric, normalizedbut otherwis?g)arbitra%ﬁunction our knowledge all other work has focused exclusively on the
®(1,... N), suppose we defin€, I"™, and I as the  -ge a0 in what follows we, too, shall take=H as a

i i * (3) (4) . . . . . .
appropriate contractions sb®*. ThenI’, I"*, and I Hamiltonian. In keeping with standard notation, we will

satisfy Eq.(2.12 if and only if A®=\®, where A yse K=A for the matrix of the two-electron reduced
=(®|A®). Our derivation of Eq(2.12 demonstrates how Hamiltonian.
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III. RECONSTRUCTION FUNCTIONALS def

G — _ 5., N3
Sincel” contains the part o needed to compute expec- Pll] = 3yAI'=2y"7, 3.3

tation values of one- and two-electron operators, we would | . . . .
like to determine the 2-RDM directly from E@2.12). The Wh'le for p=4 the approximate particle-hole separation
equivalence of the Schdinger equation and the CSE im- Yi€lds
plies thatwithin the set of Nepresentable 2-RDMsuch a

unique solution of the CSE is possiblep to degeneragy
T 10T, Substuural ] for I above resuts i th reconstc
N-representable 2-RDMs the solution of the system of equat-Ion functional
tions in Eq.(2.12 is not unique 24].

As in the Green'’s function literature, one means to side-
step this indeterminacy is to decouple the higher-order
RDMs into products of lower-order density matrices. Thus
we seekreconstruction functional¥®)[T'] andT“)[T'] that
we may substitute into Eq.2.12 to produce a nonlinear
equation withl™ as the only unknown. This equation can then
be solved self-consistently fdr.

=4 y\T®-6 y\y\T+3 9y (349

def
=6y \y\I'-5 9y (3.5

If ' derives from a single determinant of spin orbitals then
P =/*P for eachp; in this casel'S)[T] and T{)[T'] are
exact. Furthermore, using diagrammatic expansions of the
three- and four-electron Green’s functions, Nakatsuji and Ya-
suda[15,16 have shown that Valdemoro’s reconstruction
functionals givel® andT'*) to first order in the correlation
potential.

Several approximate reconstruction function®l$)[T'] Nakatsuji and Yasudfl5,16 carry the perturbation ex-
and T[T] have been proposed, and Mazzidtti9] has pansion forT®) to second order in the correlation potential
shown how the content of these reconstruction approximato obtain a correction to Ed3.4):
tions is described conveniently using antisymme- “ na @
trized (Grassmann products. If A:(A}i """ 'J“n) and B %~6 ¥+ 4 yAI'Y =12y \y/A\I'+ 3T\’

Grassmann product ansatz

=(Bi_i """ ijm) are tensors, then their antisymmetrized prod- =TI +3(I=y\p/A\(I=y\y). (3.6

AB i i . . .
Uct A/AB is the tensor with elemen(d.9,27] These authors also perform a diagrammatic expansion of

(AAB)1 - dmen I'® but do not sum all of the second-order diagrams. The
I dmen resulting partial second-order expressionFét) defines the
def Nakatsuji-Yasuda 3-RDM reconstruction functional,
= Umen®Amen) LB
r@ry=3y \r-2y"3+1r8). (3.7

=[(m+n)!]2 2 e(o) e(qr)A‘T(il) """ o(in)

0, 7€ m4n 7T(j1) ----- 77(jn) F(g) . .
’ Uy represents the second-order contributipefs Eq. (3.3)]
o(int1), - 0limen) but cannot be written in terms of Grassmann producty of
Bw(jr;ﬂ) ..... w(jTHnn) : (3.1 andI. Consequently, the 4-matrix reconstruction functional

of Nakatsuji and Yasuda, which is obtained from E)6) by
Here S, , denotes the symmetric group of orden{n)!  substitutingl'(3) in place of the exadf®, does not have the
ande(o)= =1 is the parity ofo € S,;,. The product\ is  Grassmann product form. In addition, evaluation of the
commutative, distributive, and associative, aAd\B is a  Nakatsuji-Yasuda 4-matrix reconstruction functional is much
linear operator on theng+ n)-particle space. IA andB are  more computationally demanding than reconstruction via
self-adjoint then so i#/\B. For convenience we also define '), and we will not consider the Nakatsuiji-Yasuda recon-
a0 struction functionals in this paper.
A = ANAN - NAA. Instead, we focus our attention on the possible Grassmann
(3.2 product reconstruction functionald? . In Sec. V we derive

n factors

Such “wedge powers” must be distinguished from matrix expressions for the contractions b‘@). These formulas
products; we denote the latter by simple exponents. demonstrate that a Grassmann product formIfeY is in-

The 3- and 4-RDM reconstruction functionals proposedconsistent with a Grassmann product form for the lower-
by Valdemoro and co-workel81,32 take the form of cer- order RDMs. Nevertheless, our expressions 3@[*8‘) and
tain Grassmann products gf and I', and are derived by ‘z‘ll“g‘) allow us to obtain a self-consistent solution to the
considering exact relations between particle- and holeCSE; moreover, these expressions also allow for a
RDMs. By positing an approximate separation between theontraction-consistensolution in the sense that all density
particle and hole matrices, one may equBt® to a sum of  matrices on the right side of the C$Eq. (2.12)] are related
Grassmann products of lower-order RDWE9,32. For p by contraction(Note that this relationship is utilized explic-
=3 the result is ValdemoroF®)[T'] functional, itly in deriving the CSE). Specifically, ifI', is the (approxi-
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mate 2-matrix aftern iterations, we might construct an up- moro, Tel, and Pez-Romerd 34| derive an explicit formula
dated 2-matrix’,,, ; according to for IMAT® as a linear combination of the Grassmann
L products| AT and P~ DATE  wherel(™ denotes
e L IR O} 1o the identity operator on the-particle space. Coleman and
Fni1= E, [KGITOT) +6(A8 Ap) Absar[27] have also consider decomposition of RDMs into
4, (4) @) certain Grassmann products involving identity matrices, al-
Xtra{K (LT[} +6 trg fK(T[T ]}, though not in the context of density matrix reconstruction.
(3.9 None of the aforementioned work provides explicit ex-
pressions for the contractions of the Grassmann product
with E,=tr(KT,)) the approximate energy afteriterations.  4-matrix I'’; the derivation of such expressions occupies
Given a reconstruction functional fdr®, T, is the only  this section and the next. In this section we establish several
unknown on the right side of E¢3.8), so there is no need to theorems concerning the one-particle contractions of anti-
construct(or storg any three- or four-electron tensors in or- symmetrized products af andI" that will facilitate contrac-
der to obtainl',. ;. The advantages of this are further dis- tion of I'"”. The techniques used in each proof are similar,
cussed and quantified in the Appendix. so we provide detailed proofs only for the first two theorems
The self-consistent iteration formula in E@.8) enforces  in this section. Because the notation used in the theorems
the contraction relations at each iteration, and is the iteratiofhot to mention the proofds somewhat involved, following
algorithm currently employed by Valdemoro and co-workersseveral of the theorems we present examples of their appli-
[12-14, with T™)[I'] given by Eq.(3.5). [In truth, Valde-  cation prior to embarking upon a formal proof.
moro's procedure also includes adjustments to correct for we first define a deletion operat®. If T=T,/\T,

normalization, positivity, ands? eigenvalue, but once these /\---/\T, is the antisymmetrized product of a set of tensors

adjustments are made iteration proceeds according to Eq={T;|li=1, ... n} andSC7, then

(3.8).] This would seem to be a reasonable manner in which

to proceed, since contraction consistency is an exact require- def

ment of the physical density matrices. One can, however, TOS= /\ Ti. 4.2

envision other reasonable procedures as well.
Since both Valdemoro and Nakatsuji derive reconstruction
functionals for the 3-RDM, we might consider employing _
separate reconstructions fbf®) andI'*). This corresponds Foaﬁéigﬂegi{:ﬁ ’g-é}a ;g/s\itive/i\r;l;géer ang 0
1y »» »sM¥n

to non-negative integers wittp;+---+p,=P. Define the
P-particle tensor

TieT\S

1 ~ A
Foia=g [KD+ 6(A® Ap)tra{ KT, )}
n T= ,},Apl/\(J,Z)Apz/\. . ./\(,}ﬁ)Apn_
+6 try K(TA[ ]}, (3.9

Then the one-particle contraction ofis given b
which was the iteration formula originally used by Colmen- P g y

ero and Valdemord11]. Finally, Mazziotti’s iteration for- n
mula[19,20 is an intermediate case in whidi® is ob- 12 m m

. ’ . . trp(T)=(1/P tr TS
tained by contraction but the input matd, at thenth step P(T)=( )mE:l P (¥ TS
is used as the 2-RDM:

1 . A —(UP?) X pr(pm= DITE{y ™y A Y™
Foi1=g KTt 6( A0 A)trs{K (5| T[]} =t

n n
+6 try fK(FW[ ]} (3.10 —(2/P?) El ) Eﬂ PP ATO{y™ ¥ N\ y "™
m= /=m
Mazziotti's “ensemble representability method19] con-
sists in Eq.(3.10 supplemented by positivity conditions. Remark Deletions such a§S{y™,¥™ make sense only

In Sec. VI we provide a numerical comparison of theseif p =2. If p,,<2, however, this term does not appear as a
three iteration schemes usidgy) and I'{) along with two  result of the multiplicative factop,,(py,—1).
other reconstruction functionals in the cldﬁ). Example 1 Since try=N,

IV. CONTRACTION THEOREMS N _ (p—1)
trp(,},/\p):Bpr n_

[y P=2Ny?] (4.2

Constraints imposed upon RDM reconstruction function-
als by the contraction relations in E.4) have been dis-
cussed by several authors. In particular, Kutzelnigg andor p=2. This illustrates the case=1 andp,=p.
Mukherjee[33] and Mazziotti29] have used the contraction Example 2The casen=3, p;=2, p,=0, andp;=1 (so
relations in deriving cumulant expansions of RDMs. Valde-P=3) corresponds to
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1
tra(y\y/\y3) =gL2N( y\y3)+(tr vy (y/\y)

—2(y* Ny} -4 (yA\¥H]. 43

Proof of Theorem 1The elements of are given by

=(P)7? 3 elo) e(m) (¥ 50 - ()70,

4.9

PHYSICAL REVIEW &5 022511

tre(- ) =2 8ip kedjp i), (4.10

we will group the permutations in Eq4.9 according to
where they placép andjp. There are three possibilitiess
andjp can index the same matrix, they can index different
matrices having the same exponent, or they can index differ-
ent matrices with different exponents. This leads to the par-
tition

TP=2 (TPt 2 (TPt (TP, (41D
r P r,S#r P r,s P

where w and v are, respectively, the smallest and largestwhere each summand represents a restricted sum over per-

values ofm such thatp,,>0. For simplicity, we define two
orderedP tuples,

def
IP:{IlI ...,|p},

def

Jp={i1, .- ph (4.5
which are reordered by permutatioosw € Sp according to
a(lp)={o(iy), ....oip)},

7(Jp)={m(j1), ... .7(jp)}. (4.6)

Furthermore, define products

def

YOOI = (¥} () (4.7

in whichx={w, ... v} is aP-tuple whose th componen,

is the exponent for theth term in the product. We can ex-

press the elements of{IT) as

(trpT)'l 'P =(P)” 2ty (T'P) (4.8)
where
| def R |
TP = 2 elo) e(m [yX]LD). (49
P o, TEeSp P

Because thé-trace operator can be written as

mutations in Eq(4.9). (T F’)” includes thoser, e Sp for

which o(r)=P=m(r). Included in (I'J';)rs are permutations
for which x,=xg, r#s, and o(r)=P=(s). Finally,
(T'J':)rS is restricted too and 7 with o(r)=P=m(s) and

X; # Xs. Together the three summations in E4.11) exhaust
all pairs of permutations iBp®Sp. We evaluate each sum
separately, then applygrto each and thus obtain the three
terms in tp(T).

A. Evaluation of the first sum in Eq. (4.1

To treat terms in the first sum, consider a permutation
7P) e Sp with the effect

(P)O'UP)
Z{U(il)! e 1U(ir—1)!o-(ir+l)! e ,O'(ip),(f(ir)}
={a’ (1P V), o)} (4.12

def
1P~ = 1\{o(i,)} ando’ e Sp_; puts these®—1 indices
in the same order that they havedt{l p). Similarly,

P a(3p)={m' (I ), m(j)} (4.13

for somen’ e Sp_;. Observe that(c')=€(7\") e(o) and
e(w')= E(TI(,P)) e(m) soe(a’) e(7')=¢€(0) e().

Recall thati, andj, index the matrixy*r in the product
[y()?)]'f;. This of course implies thEﬁx,>0; in fact there are

exactly Px, choices ofr with the same exponemi, . Thus

| 2 i P l))
(Te= 20 el0) e(m) (¥DF vy ] ,(J(p )
o(r)=P=(r)
=[(P=!I(TY I (Y (4.14

022511-7
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[Te{yxr}]gii is, by definition, a Grassmann product on (Tgi)r’s. Fix r#s and consider the action of permutations

P—1 indices, and includes a factor pfP —1)!]~2. 7P esy and 7P Ves,_; as defined in Eq4.12:
Application of t, to Eq.(4.14) gives try*r in place of the b_1) (P Py (P )
last term. There arp, (possibly zerpvalues ofr for a given 1E V1P a(1p) =77 o’ (1P D), o)}
Xy and it follows that :{O'H(I553372)),0'“5),0'(“)}, (416)
where

trp{(P!)*Z (T';;»FP‘ZmE_l Pr(tr yMITS{ Y™},

415 o' (1P D) ={o"(1772)),a(is)}. (4.17)
def
0" eSp_, orders the indices (", 2= 1p\{a(i;),0o(ig)} in

This is precisely the first term in the statement ofthe same way as they appeardfil ). Similarly,

the theorem.

. _ _ X" Pa3p) = {7 ?),m(jo),m(i0)} (418
B. Evaluation of the second and third sums in Eq.(4.1)
for some 7" € Sp_,. Then e(o”) = (7" V) ¢(o) and
e(m") = (7" VP () and consequentlyg(c”) e(7")
(4.1) proceeds in the same fashion; we first evaluate= ¢(q) e().
(T'J"’D)rs, r #s, then make appropriate modifications to obtain  Thus we have

Initially the evaluation of both lez)rs and (T'JF;) 15 in Eq.

U//(IlgF’SfZ))

| 4 " " > o(i o(i
(TP, 20 o) elm) YOOMr s (V9 G (77 (4.19
a(r)=P=m(s) '
so that
| , N O_N(I(P—Z)) U'(i )
ol > (TP)s|= 2 2] e(0”) e(a”) [yOON Y 71, 8o (75X 70 (4.20
rS#r Jp riS#r o, TESp w"(IE'S )) m(j,)

o(r)=P=m(s)

To cast this as a Grassmann product consider the permutatiers,_, defined in Eq.(4.17), along with the analogous
permutations’ € Sp_ 1,

' A D) ={="(3 D) 7o)} (4.2
Comparing Eqgs(4.16), (4.17), and(4.22) we find thate(c") e(7")= —€e(o') €(7"). Thus
Gr(lspfl))

trp{r; (T';;>rs}=—2 2 o) e m ) YOy YY) ey

1S#r o/ ! eSp_1

=—L(P=DI X ([TO{y* YAy )7, (4.22

1

So far we have not used the fact thgt=xg; conse- =2 oy | _2
quently Eq.(4.22 remains valid if we repIace‘I‘CJFF’))rs with (P!) trP[rér (TJP)TS} =-P % Pm(Pm—1)
(T'J’;)r's. To evaluate Eq(4.22 with x,=xg, observe that
there arep, choices forr and (o, —1) choices fors#r
such thatx, = xs. Hence (4.23

X[TO{y*m, y*mt ]\ y?m.

022511-8
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To obtain thr,S(Tgi),’s, consider the aforementioned
analog of Eq(4.22, assuming, # Xs. Then there argy Px,

choices &, ,xs) for the exponents withr>s, and another
Py, Px, choices withr <s. Both cases give the same result in

Eq. (4.22 so

(P!)Ztrp[E (T'Ji’,)r’s}

n n

=—2P 72> D ppulTO{y my A Ay™
=1 m=1+1

(4.249

Equations4.23 and(4.24) are, respectively, the second and
third terms in the statement of the theorem. [ |

In order to state the next theorem succinctly we define

one-index productgI” andI'y,

def

(YD) = ; YT,

(4.295

def
F ij :e Z Fim ]
( Y)TS rs 7m'

m

If we view I' as a matrix of matrices, then these tensors

result from either right- or left-multiplication of each block
of I by the matrixy. Note thatl'y is antisymmetric in its
lower indices only,yI" is antisymmetric only in its upper
indices, and 4I") '=T"y. Retaining from the preceding proof
the notationl ,, ; andJ, . 4 to denote orderedp(+ q)-tuples
that provide a carrier space f6p. 4, we further define

def

lpra — AL dpgip+1r---ig
[@]qu Ajl ..... jijp+1 ..... iq (4.26
fortensors.A=(Ai<1 """ iP) andB=(Bi<1 """ i.q).FinaIIy,
IFEREEE ip IFEREEE iq
def .
[yPTp =7y
! ’ (4.27
p factors
Lemma LetA=(A}1 """ '].P) and put
..... o
T= 3 elo)e(m) [AL]7*2)
o,meS, _ﬂ-(JP+2)
’ p+2
in which T, as always, is antisymmetric. Lety;

=(ip+1sipr2) andd,=(jp+1,jp+2) be transpositions. Then
N T=T=73,T.

Proof. For any oeSpi2, F10(1p42)
={0'(lp),0(ips2),0(ips1)} for some o’ e€S,. Clearly
e(,0)=—¢€(o), so for any pair of permutations,
ESp+2a

PHYSICAL REVIEW &5 022511

e(910) e(m) [AL] 7002

Ur(lp)
W’(Jp)

~€(0) €(m)[AI]

(’(ip+2)r(r(ip+1)
s D7 s 2)

—€e(o) e(m) A

U(|p+2)
77'(‘JerZ) '

(4.28

The last equality follows sincFE is antisymmetric. Summing
Eq. (4.28 over allo,me Sy, ,, we obtaind, T=T. The re-
maining claim is similarly dispatched. ]
We can now establish the following.
Theorem 2Forp=2,

trp+o( ¥/ PAT) =[Np (¥ P~DAT) —p (p—1)(y/ =2
ATAY?)+2(N=1)(y"P*D)
—2p (P~
—2p (y POy ] (p+2)?

with N=tr y.
Example 3For p=2 Theorem 2 reads

1
tra(Y\YAT) =g [N(y/\D) = (y*/\ID)

+(N=D)(Y\y\y)=2 y\(yI'+T'y)].

(4.29

Example 4 On the right side of the equality in Theorem
2, the symbol/\ stands in for the the antisymmetrizer
ﬁlp+1®ilp+1 [see Eq. 3.} since t5+2(yAp/\F) isa(p
+1)-particle tensor. In fact, the proof of Theorem 2 pre-
sented below does not requipe>1, but forp=1 we must
replaceyI” andI'y by (A4,® A4,)yI" and (4,8 A,)T'y, since
in this case there is no place to put thesymbol. Otherwise,
the result stated in Theorem 2 holds fo=1 and is given
explicitly by

trg (y/A\IN) = %[NF—F 2(N=1)(y\y)
—2(A0 ) (T +Tp)].  (4.30
Proof of Theorem 2The tensor §/'P/AT') has elements
(v PAD) P 2=[(p+2)!] 2
o(lp+2)
7(3psaa)

(4.31

>

U,WESP+2

e(o) () [ ]

Sinceip,, andj,,, will become summation indices when

we apply tp,,, we partition the above sum according to
whereo and 7 permute these two indices:

022511-9
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Ap lp+2 =2| (7 p+2 7\p+2
(¥ PAD)p 2 =[(p+2)!] 2 (Thp 2+ (TR 2

p
> (T,s>'f’+j]. (4.32

[
+(Th)pr2+
( y)JPJrZ rs=1 p+2

def P*2

by 33

o, mESH, 9

pP+2  rs=p+1

PHYSICAL REVIEW A65 022511

The notation in Eq.(4.32 means the following. For,s
<p, (Trs)'J”frZ2 includes the permutations in E¢4.31) for
whicho(r)=p+2=m(s). Thatis, the indices,, , andj,,
both appear i y]‘;E'JF;)). The remaining terms in Eq4.32
are defined as

o(r)=p+2=m(s)

def P P+2

(THp2=2 X >

0, TESH1 9

p+2 =1 s=p+1

a(r)y=p+2=m(s)

and

def Pt2 P

(Tope= > % X

o,mTES

2 r=p+1s=1

+2

e(a)e(m[y TP ), (4.333
e(o)e(m[y TP 2, (4.330
6(0-)6(77)[7,(P)[‘]Z(('J';:22)) . (4.330

a(r)y=p+2=m(s)

The following mnemonic is helpful: the superscrigdf “and
subscript and %” in T, indicate thafl", includes all permu-
tations for whichi,, , is an index ofl” andj, , , indexesy.
The final term in Eq(4.32), Er,s(Trs)lJ’”Zz, may itself be
p+

partitioned as in the proof of Theorem[df. Eq. (4.11)]. Its

used to establish Theorem 1, and the result is the first two
terms in the statement of Theorem 2.

. | .
Now consider ﬂ)j”zz. The sums over ands in Eq.
+

p
(4.333 give rise to four terms that are related to one another
by the transpositionsi {1,ip+2) and (p41,jp+2). Accord-
ing to our lemma(with A=[P]), all four terms are thus

one-particle trace is then evaluated by the same techniquédentical so we have

[(p+2)1] *(try 2T =4l(p+2)1] 22

=2[(N-1)/(p+2)!?]

=2[(N—1)/(p+2)2]y/ P,

In the second line we have usedItr=[ (N—1)/2]y and in
the third line we introduce a factor fp-+1)!]? to account

for the normalization of the resulting Grassmann product.
Equation (4.34 is the third term in the formula for

try.2(y PAT). |
By definition, (rg);*zz iS a sum over permutations, =
p+
€5p+2 such thato(i;)=i,., for somer<p and =(js)

' (790 p) olipsa).k
U,W;;erz 6(0)6(7T)[Y—]W(Jp) Fﬂ(jp+1),k

o(r)=p+2=m(s)

S elo)ela )y

' (J
0'/,7TIESp+l ( p+l)

(4.39

P (1) ={o’ (1PP"1),0(i,)}
={o" (1P D),0" (i ps1),0" (I ps2), (i)}

(4.39

for r<p. As usual,o’ € S, ordersl**) in the same way
that o orders the corresponding indices bf,,. We can

=]p+2 fors=p+1 ors=p+2. For such permutations, con- write an analogous equation fare Sy, ,, and it should be

sider the action 0fr$p+2)e“5p+2 as defined in Eq(4.12:

obvious by now that(o) e(7)=€(o’) e(7'). Applying the

022511-10
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transposition p+1,p+2) of the last two indices to the In this paper we shall only require the cape2; the
aforementioned analog of E¢4.35 we obtain elements of7(?) are given explicitly in the next section. The
final result of this section is a generalization of Theorem 2:
(p+1p+2) 7P (3, 5) Theorem 4For p=2 andk=1,
_ ’ -1 1 : 1
_{77 (Jsp ))!7T (Jp+1)a7T(Jr):7T (]p+2)}! (436) trp+2[(‘}/k)/\p/\r]:{p(tr ‘J/k)[’}’/\(p_l)/\r]_p(p_l)
with 7' € Sy 1. X[ (¢ PTAALA Y +2(N-1)
We invoke the lemma once again to show, in E433b), K\ ApT_ Ky A(p—1)
that the two terms in the sum oveare identical. Using Eq. X[YA ) P1=2p[(v5)
(4.39 and the analogous equation fare S,,,, we then AYT+Ty M (p+2)2.
have

p V. CONTRACTION OF TI'{)
(THp2=22 > eo)e(n)
p+2 r=1

7, mES 12 Applying the theorems in the previous sectionIt§",
o(r)=p+2=m(p+2) one readily obtains
1 (P—1) 1 7 .
(p-1)01° (I ) o (|p+1),<r (Ip+2) a(iy) 2 (4)
Ly ey ey ) V(i) 40 NS
(4.3

= %{[Za(N—1)+bN](y/\F)—b(72/\F)
It follows from Eq. (4.36),

+[b(N—1)+2cN](y/\y/\y)—6c(¥/\y/\¥*)
p

(trp2Tp )Jp+2_—22 UW;,H e(o)e(m') —2b[ YA (A +Ty)]—4a(A30 A3) TDH (N-3).
Y,
U(f):P+2:ﬂ'(P+2) (5.1
-1) ) L
X[y®~ 1)] ,(J<p 1) ) (41) ,?jp”))'a(?';”). J@ in Eq. (5.1) is the tensor defined in Theorem 3 of the
p+1): 7y

previous section. LeF' (F ) denote the matrix compris-
(4.38 ing the (,r)th block of I'. Then the tensor elemeny(®));

rst
is the (,t)th entry of the product matan(r)(F ),
The sum over is performed trivially, since the summand is

the same for each Thus o
(TOE=L V=2 T, (5.2
(trp+2T11:)‘I]p+22: —2p(p+1)! 2[ 'yA(pil)/\(‘yF)]‘I]p*'i_
p+ bt

(4.39 We also define a tensg@rf whose elements are traces of such
' matrix products:

The factor of p+1)!? cancels the corresponding factor in-

. def
troduced by the Grassmann product. We pick up a factor of .J _ iN1— i
(p+2)!"2 from Eq. (4.32, and the net result is the fourth tr[(F JTI1=Tsr- .3
term in the statement of Theorem 2. T i _
The final term in t5, ,(y"\P/\T) arises fromT}, in Eq. For tensorsA= (A" "") andB=(B;" """’ i), define a
(4.32, but its evaluation is quite similar to that @f and is  tensorA* B with elements
omitted. |
Many other variations on this theme are possible. We  def ) . _
present two additional results without proof, as the proofs are (A* B)'l’ '.'_‘_"j"‘ = > AL "Bl 'Ij J"“ _______ '5“ ,
quite similar to the preceding two. P kgpokn SRR AT A
Theorem 3For anyp=2, (5.43
trap(IP) =[(N—1)/2p] (y\I""~) f-n=m, and
_ P 7 (p) def
(1p)(Azp—1® Azp_1) T, (A*B)1 - im - S Ak kmdmi _inB:(l ..... ilzn
i ; A Im T Koo A1 Imodmes oo In " Kpooons m’
where 7 is the tensor with elements ' m (5.4D

(FP)ir o1 |3 plom '2 '3 rials. . plap-2:l2p-1 if n=m. (If n=m, A*xB=AB.) Using this notation and the
Jioedopoa m s lads’ J2p-2l2p-1 results of the previous section one can show that
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1 2 4 a
AT = sl2aN(N- 1)+b(N2—tr )/2)]F+§af‘2— by I‘(G“)=ﬂ[N2(N—1)2—4(N— 1)2tr 2 +4tr(r?)]

AtroyI) —2[b(N—1)+2cN](y\y) c
=2 Ay + i [NT=BN2tr 2+ BNt 4+ 3(tr )%~ 6 tr /]

+ %[4a(N—1)2+5bN(N—1)+60(N2—tr )]
N3(N—1)—5N(N—1) tr 2+ 4(N—1)tr y*

Y
X(Y\y)+ac(Y\PP) +2c(¥\Y)

(5.9

.. (4 2 ;
+(Ay® )| 3b (479~ 5[2a(N=1)+bN](/T +43 o Th.

Setting tng‘)z(T) fixes one of the parameters in terms of

2 1 .
tTy)+ §b(7’2F+ ry)+ ()T My*y) .

/ [(N=3)(N=2)]. (5.5 Natural spin orbitals
Up to this point the spin-orbital basisp,} has been or-
thonormal but otherwise arbitrary. Now let us introduce the
Finally, we contract once again to obtain the reconstructedasis of “natural” spin orbitalSNSOg that diagonalizey
1-matrix, and putq)j:)\j&j . For an exact 1-RDMy, it follows that
0=)\¢=<1 for eachk [1].
The expressions for the reconstructed 1- and 2-RDMs,
3T and §1 T | are especially simple in the NSO basis.

8
—§aj

11 T®={4atr,(I'?)+|aN(N-1)2+b(N—1) in particular,
, 3 3 o  NsOq -
X[ NPty | +o(N*=3N T 4 21ry) |y [(A8 )3T ¥ls = 7 N+ N +AIT, (599
15
- 2a(N—1)2+ EbN(N_l) ~ R Nso1p -
[(A0 A)(YT+TY)]5s = E(N?H\?H\?H\Q)F'ﬁs,
+3c(N2—tr y2) | ¥2+3[b(N—1)+ 2cN] 93 (5.90
2 A NSO -
—6cy* - §bG—2[23(N—1)+bN] tro(yI) [(A20 A (7 (YD) +(TY* 1 = (NN FNAIT,
4 (5.99
+2btry( Y1)+ bl y- (tr91)
and
+(tr27’F)'7’]] / [(N=3)(N=2)(N=-1)], NSOq y y
[YA(r2yD T = 2020 M8 8, T
(5.6) k
+ Ex D> A(8: MK — 5K,
whereG has elements 4% Jsh ke TisT ik
(5.90
_ def _ _ ; 44 6(4)
i ik ki Expressions for the relevant components;ofl’;” follow
Gr ; LAY+ (Al 6.9 readily from these equations. One finds that, in general, the

reconstructed 1-matrix may possess nonvanishing off-
diagonal elements, even when the inpat le is diagonal.
Although the reconstruction functiondr) ostensibly ~As such we must diagonalizB| T in order to investigate
contains three adjustable parameters, as a result of normatthether it violates Coleman®nsemblg N-representability
ization only two of these are independent. The normalizatiorconditions for the 1-matrix1]. We are currently investigat-
is obtained as a function &, b, andc by contracting Eq. ing under what circumstance$|I') and 7| T satisfy
(5.6) once more. The normalization thus obtained is known N-representability requiremenf8—9].
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TABLE |. Largest elements of the Cl and reconstructed 2-RDMs in the NSO basis, for the ground state of Be. None of the reconstructions
is properly normalized: tf| T'%)) = 6.164, tr(;| T'5Y) = 9.828 for the fit toy,, and tr(3| I'&)) =6.918 for the fit tol'¢, . Natural spin orbitals
are labeled by the Hartree-Fock component of greatest magniaimmlute value of coefficient-0.95 in each cageThe degeneracy
T35 558 ~ T334 is accidental and disappears with additional significant digits.

2-RDM element 31T with fitted parameters, b, andc
(NSO basis | ) Error Fit to yg Error Fit toT'g Error
s 0.498965 0.496461  —0.002504 0.653711 0.154746 0.506778 0.007813
—0.5% 31.0% 1.6%
F%ii;iﬁ 0.455695 0.416092 —0.039603 0.593240 0.137545 0.400071 —0.055624
—8.7% 30.2% —12.2%
s 0.455013 0.416093  —0.038920 0.673567 0.218554 0.463285 0.008272
—8.6% 48.0% 1.8%
e 0.454976 0.338698  —0.116278 0.673633 0.218657 0.463299 0.008323
—25.6 48.1% 1.8%
risess —0.080902 —0.100940  —0.020038 0.053747 0.134649  —0.047162 0.033740
24.8% —166.4% —41.7%
3 0.080902 0.100940 0.020038 —0.053747 —0.134649 0.047162 —0.033740
24.8% —166.4% —41.7%
| e —0.018827 —0.025651  —0.006824 0.014940 0.033767  —0.011710 0.007117
36.2% —179.4% —37.8%
VI. NUMERICAL EXAMPLE: Be ATOM make storage and manipulation of the 2-RDM troublesome;
In this section we use Valdemoro’s Grassmann producgi:ﬁi%lérs purposes the slightly less accurate wave function

reconstruction functiondr{f) to reconstruct the 4-matrix for
the ground state of atomic Be from a highly accurate inputRe
matrix I';, obtained from a configuration interactidgl)

calculation. We will evaluate the contraction consistency o

31T{) was constructed in the basis of NSOs g, .
lative to the Hartree-Fock baslg;, in the NSO basis has
ffewer large elements, which facilitates presentation of the

rar q it with t truction functional data. In Table | we have listed all independent elements of
\all I'ci] and compare it with two reconstruction func |onasFC| greater than 0.015 in magnitude; juxtaposed with these

(4) 2 . :
of the typel's”, where the parametess b, andc are deter- 50 e corresponding elementsiofr" for three choices of

Shall compare the three seffconsistent teration schemes e Parameters, b, and ¢ £ Iy indicates thaa=0, b
P =6, andc=—5, as in Eq(3.5). For the column labeled “fit

cussed at the end of Sec. Il to yo,” @, b, and ¢ were chosen by least-squares fit of
We ch Be for thi | h ilability of Gl o " 7
e choose Be for this example due to the availability o 4lF(G4) 0 7, the CI 1-RDM. Similarly, “fit to " indi-

high-quality ground-state wave functions for this system!? 4 (4)
[35,36. The accuracy of 3- and 4-matrices reconstructed usSat€s thag, b, andc were chosen by fitting | I's” to I';;.
ing Valdemoro’s prescription has been tested in the &1t The fitted parameters in both cases are listed in Table II.
by comparison to full Cl density matrices, but only for tiny Valdemo_ro’s reconstruction reproduces the Iarge_st matrix
basis seta few basis functions beyond the minimal basis element quite accurately but for the other elements in Table I,
4 4)

The calculations in this section are the first reported reconsl I'\al differs from I'e; by 10-40%. These errors are far
struction in a large basis set. The CSE as a quantumarger than those reported by Colmenero and Valderf@itb
chemical methodology is still young, however, and at thefor the same system with a doubfebasis se{six spin or-
present time the size of this basis @6 Spin Orbita|$ out- bltalS). However, for the elements in Table | Valdemoro’s
strips our ability to effect a complete, self-consistent solution . ,
o 51e CSE Dyespite this Iimitgtion we have been able to ABLE Il. Parameters employed in reconstructionIdf’. For

lish .th . d luati Hined i theach reconstruction, the top set of parameters has not been renor-
accompiish the comparisons and evaiuations outined I tig,.ji;eq, while the bottom set is rescaled so th&ttt=(})=1 for
preceding paragraph.

. the reconstructed 4-RDM.
We employ 1- and 2-RDMs obtained from Bunge's ClI

wave function[35]. This 180-configuration wave function is approximation a b c
represented in a Hartree-Fock optimized b#8ig consist-

ing of 965, p, andd Slater-type spin orbitals, and the result- T [Eq. (3.5] 0.000000  6.000000 —5.000000
ing energy boundE = —14.664 193 a.u. recovers 96.7% of 0.000000 5.840070 —4.866725
the estimatednonrelativisti¢ correlation energy of ground- T, fit to y —5.470984 8.709500 2.174761
state Be. The total nonrelativistic energy estimated from ex- —3.340039 5.317155 —1.327693
periment is —14.667 328 25 a.u.[38,39. Although more ¥ fit to I' 1.171816 5.353079 —3.238447
accurate wave functions exist for this systgg6|, the hu- —1.016319 4.642740 —2.808714

mongous basis sets employed in these superior calculations
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TABLE Ill. Comparison of Cl and reconstructed 2-RDMs, following renormalization.

2-RDM element 31T with fitted parameters, b, andc
(NSO basis I'g 0 R Error Fit to y¢, Error Fit to g, Error
| s 0.498965 0.483228  —0.015467 0.399078 —0.099887 0.439531  —0.059434
-3.2% —20.0% —11.9%
| e 0.455695 0.329670  —0.126025 0.362162 —0.093533 0.346983  —0.108712
—27.7% —20.5% —23.9%
s 0.455013 0.405002  —0.050011 0.411200 —0.043813 0.401809  —0.053204
—11.0% —9.6% —11.7%
| REpeow 0.454976 0.405001  —0.049975 0.411240 —0.043736 0.401821  —0.053155
—11.0% —9.6% -11.7%
| s —0.080902  —0.098249 —0.017347 0.032811 0.113713 —0.040903 0.39999
21.4% —140.6% —49.4%
| I 0.080902 0.098249 0.017347 —0.032811 —-0.113713 0.040903  —0.39999
21.4% —140.6% —49.4%
| —0.018827  —0.024967 —0.006140 0.009120 0.027947 —0.010156 0.008671
32.6% —148.4% —46.1%

approximation is no worse than the fit 8f ') to I'c,. Of ~ DenotingJ=(jy,]2), we may expres¥' as a two-index ma-
course, such a fit is not a useful paradigm for solving thix in the {®,} basis,

CSE but does provide a benchmark against which we may
compare other reconstruction functionals of the Grassmann
product form.

Each of the three aforementioned reconstructions overes-
timates the trace of the reconstructed 2-RDM, so we also
compared the RDMs obtained with rescaled parameters, such = > [®%(1,2)Dg(1,2. (6.2
that trF(GA)z(L}') in each case. The rescaled parameters are JK=1
also listed in Table II, and in Table Il we compare the matrix Here v is the number of orbitals, so there are 2pin
elements ot‘z‘il“g‘) for these renormalized reconstructions. It orbitals and £*) spin geminals. Comparing E.1) to Eg.
is understandable why rescaling worsens the original fits, bu.2) we see thal’;x=2 [‘LﬂkZ_ We obtain the “natural” spin
notable that upon renormalization Valdemoro’s reconstructed 12
matrix elements also show greater deviation from the Cl val- TABLE IV. Energy differences(atomic units for the largest
ues. The energy calculated usiégl“ﬁ,g also becomes less magnitude elements of reconstructed, renormalized 2-RDMs in the
accurate when we impose proper normalization, increasindSO basis, for the ground state of BeE,) =K, AT (see text
from E=-14.4813 a.u. (not normalizedd to E The total energies calculated with these 2-matrices Bge=
=—14.0953 a.u(normalized. In contrast, the energy ob- —14.664 andE,,=—14.095 a.u. The fit taq, gives an energy of
tained from the fit tal, is significantly worse when we do —14.209 a.u. and the fit tb¢, yields an energy of-13.994 a.u.
not impose proper normalizationE= —16.1355 a.u.(not

[(1,2,1,2)=2>, > Id*(1',2) d,4(1,2

1<j r<s !

(21/

normalized, while E= —13.9944 a.u(normalized. Kin _ AEq, AEp, AEq,
Since E:EijmnKlr#n[?n’ an errorAFi”j"” in Finjm corre- (NSO basis (Valdemorg  Fitto (yc)  Fitto (')

sponds to an errodEy =K AT} in the energy. The Klse 18

AE} , are thus an importance sampling of the errors in the =3 015813  —0.046646 —0.301241 —0.179242

reconstructed 2-matrices. In Table IV we tabulate th&ge K 25256

values for each of the largest elements of the reconstructed, = _ 721147 -0.090883 —0.067451 —0.078397

renormalized 2-matrices. Again Valdemoro’s approximationKi:a,ig

fares better than a simple fit £ —72697228  —0134891 —0.118174 —0.143503
We next examine the eigenvalues of the reconstructed, is«,2sa

renormalized matrice$| T¢[T'e] and 1ITE Tl Todi- 2% 0000 (134704 —0.117066 0143371

agonalize a two-particle matrix such Bst is easiest to work |, 2sa,2s

in a basis of two-particle functions. Thus, we construct from 3i“f8 357902 0.006209 0040698 —0.014316
our orthonormal spin orbitals$;} a set of orthonormal spin KZSQ‘ZS,;' ' ' '

. ) - 4sa,558
geminals{®;}, where for eactj <k —0.078553 0001363 —0.008932 —0.003142
def 1 K%iﬁé@ﬁ
(Djk(lrz)zﬁ[d’j(l)d)k(z)_¢k(1)¢j(2)]- 6.1) — 10056642  —0.000348 0001583  0.000491
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TABLE V. Largest and smallest eigenvalues I6f; and their TABLE VII. Largest and smallest eigenvalues of the Cl 1-RDM
reconstructed, renormalized approximations, for the Be groundor ground-state Be, and the reconstructed, renormalized approxi-
state. mations thereof. Each eigenvalue corresponds to a set of exactly

degenerate values arising fromg and |m;| degeneracies. Those
(glrg”)gg degeneracies appearing in the table are accidental.
(Tenag (21T ae Fit to yc, Fit to I
1re)

0.910016 0.810105 0.502110 0.697023 Yo 4 Fit t0 ¢, Fit to T'g,

0.028718 0.047260 0.040686 0.047736

0.028718 0.047260 0.040686 0.047736 0.998136 0.959886 0.952621 0.943006

0.028718 0.047260 0.040686 0.047736 0.911596 0.776082 0.871583 0.821229

0.001715 0.007099 0.023537 0.021982 0.028778 0.083757 0.055979 0.074902

: : : : 0.028778 0.083757 0.055979 0.074902
0.000000 —0.003446 —0.000076 0.000000  0.001856 0.083757 0.055979 0.074902
0.000484 0.005575 0.003903 0.005039

ot listed are another 41 eigenvalues more negative tha®.000352 0.001699 0.000903 0.001414
—1x1078, 0.000352 0.001277 0.000646 0.001043
0.000055 0.001277 0.000646 0.001043

geminals and their occupation numbéesgenvalues ofl") 0.000055 0.001277 0.000646 0.001043

by diagonalizing the matrixI(;x). More precisely, we diag- 0'090055 0'090160 0'_000119 0"000148

onalize the two independent blocks of this matrix, which
correspond to the spin componedt§; and Fgg (see the
Appendix.

The largest and smallest eigenvalued'odnd the recon-  reconstruction that are not of the Grassmann product form.
structed, renormalized approximations thereof are displayedince these correction terms are second order in the correla-
in Tables V and VI; eigenvalues of the correspondingtion potential, while Valdemoro’s reconstruction is first order,
1-matrices are presented in Table VII. For the large eigenvakyve expect that the numerical results presented above would
ues we find that Valdemoro’s reconstruction is more accuratgnprove if these correction terms were included. Unfortu-
than the fitted Grassmann product functionals. Valdemoro'siately, however, computation of the Nakatsuiji-Yasuda cor-
approximation breaks down at the other end of the eigenrection terms requires two additional summations over spin-
value spectrum, however: of 4560 eigenvalues, 153 are moigrbital indices and for the large basis set considered here we
negative than—1x10"°, although none is more negative are unable to carry out this calculation using our present
than —0.003 440. The fit td’¢, produces no negative eigen- algorithms. Nevertheless, the calculations that we have pre-
values. sented are significant in that for the first time the reconstruc-

Although our primary interest in this paper is the Grass-tijon has been carried out in a large basis set.
mann product ansatz, as indicated in Sec. Il the reconstruc-
tion functionals considered by Nakatsuji, Yasuda, and co- Iteration of the CSE
workers [15-17] include corrections to Valdemoro's

0.000000 0.000001 0.000000 0.000000

Finally in this section we return to an earlier issue: the
_ 5 nature of the appropriate iteration algorithm for self-
TABLE VL. Largest and smallest eigenvaluesldf; and recon-  consistent solution of the CSE. Three possibilities were in-

structed, renormalized approximations, for the Be ground state. {rgduced in Sec. IlIl. In the fully contraction-consistent
4 N a8 scheme of Eq(3.8), the approximate 2-RDM aften itera-

s 4 nap o GIEE)as. tions,I',, is used to construdt*) (the approximate 4-RDM
(Feap (21 al) o Fit to yc, FittoI'e, used in the next iterationwhile the 2- and 3-RDMs em-
1.000664 0.968718 0.502110 0.762930 Pployed at the i+ 1)th step are the contractions Bﬁ“) . The
0.998484 0.929264 0.502016 0.697030 Scheme represented by E@.9) employs separate recon-
0.910307 0.810352 0.487271 0.697030 Struction functionals for the 3- and 4-RDMs to constrlif?
0.910016 0.810105 0.450850 0.634978 andI'‘* from I',,. Lastly, according to the procedure of Eq.
0.028718 0.218379 0.040686 0.133495 (3.10, I'“ is reconstructed frorl’, andI'®®) is obtained by
0.028718 0.047260 0.040686 0.047736  contraction oY), but the 2-RDM employed in this method
0.028718 0.047260 0.040686 0.047736 is the input matrixI', rather than a contraction dT,({‘).

: : : : As indicated previously, the combination of a large basis
0.000000 —0.003446 —0.131858 0.000000 set and poor scaling prevents us from carrying out a com-

plete self-consistent solution to the CSE at this time. Never-
ot listed are another 110 eigenvalues more negative thatheless, we are able to carry out a single update of a small

—1x10°6. number of matrix elementsince we cannot calculate all the
PNot listed are another three eigenvalues more negative thamatrix elements, the iterative procedure cannot be extended
—1x1078, beyond a single stepThus, starting frorT,=T¢,, we cal-

022511-15



JOHN M. HERBERT AND JOHN E. HARRIMAN PHYSICAL REVIEW A65 022511

TABLE VIII. First iterative Correctionl"l to the Cl 2-RDM for struction ofr'(A) by Grassmann products Q,fandl" IS nec-
the ground state of Bd'; is obtained from a single iteration of the essarily approximatésee also Ref41]). These authors point
CSE by using three different iteration schemes, as described in th8ut that the Grassmann producig\ y\y\y, TAy \y
text. Beneath ea.ch matrix element is listed its deviation from theand I'AT' cannot by themselves incorpora,te correlaltions
accurate Ci starting valudo. (“collision terms,” in the language of diagrammatic pertur-
Matrix r, r, r, bation theory between three or more particles. It is possible,
element T, Eq. (3.9 Eq.3.9 Eq.(3.10 however, that the parameteas b, and c appearing in the
ansatz of Eq(1.1) could be chosen so as to incorporgtes-
| o 0.498965  0.120794  0.496747  0.495529 sjbly in an indirect or a semiempirical wagome of these

—0.378171 -0.002218 —0.003436  higher-order correlation effects, much as an uncorrelated
| e 0.455695  0.043428  0.426295  0.374638 Hiuickel calculation can recover certain correlation effects if
—0.412267 —0.029400 —0.081057 the parameters are chosen appropriately. It is worth pursuing
s 0.455013  0.124256  0.451807  0.433891 whether the parameters here can be related to the aforemen-
—0.330757 —0.003206 —0.021122 tioned cumulant expansions.
Fﬁijiﬁ 0.454976 0.124185 0.451779 0.433869 It is also known that the Grassmann product ansatz is not
—0.330791 —0.003197 —0.021107 contraction-consistent except in the single-determinant limit,
ik 0080902 —0.040809 —0.084309 —0.000960 SO that in generaf| I #T, wherel” and y=|T are the
0.040093 —0.003407  0.079942 density matrices used in the reconstruction. The Grassmann
risess 0.080902  0.040812  0.084310  0.091503 Product form forF(‘;) is thus inconsistent with a Grassmann
—0.040090 0.003408 0.010601 prod_upt form forl'®), as _our_results in Sec. V demonstrate
ngi:gﬁfé —0.018827 —0.011907 —0.020068 —0.006087 expl!plt_ly.AreIateq question is the stability of the contracted
0.006920 —0.001241 0.012740 Schrcdmger eq'uatlo_nz'lf an accurate 2—RDM is mtroducec_i as
the starting point, will it be returned following reconstruction
and iteration of the CSE?

The 4-matrix reconstruction functional proposed by Val-
culate an updated value for each of the largest elements @fsmoro and co-worker32] produces an approxima®
the 2-RDM by using each of the af(_)rementloned iterationy ot yields, upon contraction, a 2-matrix that is a good ap-
schemes. The results are presented in Table VIII. proximation to the inpufl’. For ground-state Be, this ap-

Among the thl’ee iteration SChemeS, the fU”y Contraction'proximate 2-RDM better reproduces the |arge matrix e|e_
consistent scheme is comically bad, while the procedure thahents ofI" than does the general Grassmann reconstruction
employs separate reconstruction functionaq. (3.9]  functional optimized by least-squares fit Boitself. More-
stands apart in accuracy, with relative errors that are an ordgfyer, valdemoro’s approximate 2-RDM is even closer to the
of magnitude smaller than the third iteration strategy, Eqgccuratel” following a single iteration of the contracted
(3.10. Note in particular that iterated matrix elements in theSchr"cdinger equation. The energy, as computed usig
second scheme lie closer to the CI values than do the e‘|e—:trKI‘, is also somewhat better for the Valdemoro recon-
ments of 3| T&[T¢i] in Table I. Insofar as we may draw sgryction than for the contracted best-fit reconstruction.
conclusions on the basis of Only one iteration, the self- Fina”y, for the same numerical examp|e, we have com-
consistent procedures of Eq8.9) and (3.10 appear to be pared the three self-consistent iteration schemes that have
heading in the right direction, i.e., back toward the initial heen published in the literature. Of these we find that the
2-RDM. However, this behavior may be an artifact of the method proposed by Colmenero and Valdemfid] gives
fact that, at the first iteration, Eq63.9) and (3.10 employ  the best results after a single iteration, although Mazziotti's
Iy, the accurate 2-RDM, while Eq3.8) uses the approxi- procedure[19] is only slightly less accurate and should not

mate 2-matrix3| ' [ To]. be discounted on the basis of this calculation alone. Interest-
ingly, the procedure that fares worst is the one currently em-
VIl. CONCLUSION ployed by Valdemoro’s groufil2—14], in lieu of their earlier
procedure.

In this paper we have derived contraction formulas for the
most general 4-RDM reconstruction functional that can beE.‘

formed from a linear combination of Grassmann products o ipulations, a great deal of redundancy is hidden within the

the 1-RDM y and the 2-RDMI'. We have used accurate g mg over permutations that define the antisymmetrizers. For
RDMs for Be atom to test and compare various reconstruc- . S A A i 115 K ko .
tion functionals and iteration schemes that have been progxample, naive application of,® A, to Fjlizrlllz results in
posed for solving the contracted Sctimger equation. This (4!)?=576 terms for each element BY\T’, but taking into
represents the first test of density matrix reconstruction foraccount permutational antisymmetrylothis number can be
mulas in a large basis set. reduced to a mere 18. Elements ¢f* involve only 24

It is known, both from the cumulant expansions pursuedndependent term&ot 576 and elements of/\ y/\+? can
by Kutzelnigg and Mukherjef83,40 and by Mazziotti29],  be expressed using 18 rather th@1)?=36 terms. The list
as well as from the Green'’s function expansions of Nakatsujgoes on. Moreover, since each of these tensors is antisym-

and Yasudd15] and Yasuda and Nakats|ji6], that recon- metric and also self-adjoint, many of its elements are not

In closing we should mention that although the Grass-
ann product ansatz is compact and elegant for formal ma-
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required. An example of thifurther elaborated in the Ap- zero. In fact only three of these are independd@t43 and
pendix is T itself: the only independent elementsidf, are ~ we may take the independent components td'ijg, rgg,
those for whichi <j, k<I, andi=<k, and furthermore when andI'4;. This follows readily from the permutational anti-
i =k only those elements with=I| are independent. symmetry ofl’, as we now demonstrate.

To some .extent we he}ve incorporated thgse simplifying Expandingl“gg(rl,rz;ri,ré) in the {x,} basis we may
symmetries into our algorithms, although not in a systemati¢epresent this spatial kernel by its tensor of expansion coef-
or exhaustive fashion. It is possible that in the future these oficients, which we denote by‘gg_ The tensoﬂ‘gg has ele-
othe_r symmetries may be applied syster_na’_ucally to obtainnents Tglﬁ;)EFFL’,ﬁVV for i,j,k,I<w, so, for example, we
efficient algorithms not only for accomplishing the recon-p .6
struction but also for iterative solution of the CSE. In par- B N N B
ticular, Valdemoro's group12—14 has spent a great deal of (I‘gg)[(ﬂ:[‘;('},i;: -hk= —(Fgﬁ)if(. (A2)
time developing such algorithms.

Similar relations exist among other spin components.
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APPENDIX: STORAGE REQUIREMENTS the elements withj<I. The number of elements satisfying
Using the contraction formulas to avoid storage of 3- anoIhese requirements Is
4-RDMs reduces storage requirements by the fourth power v=1 v [v-1 » -1
of the basis size, for a basis of spin orbitals. In fact we can be N yoe= > > 1-> 1
more explicit about memory requirements. Let us first intro- I=1j=itl | k=il=k+1 =i+l
duce a basis set of orthonormal orbitd)g,, ... ,x,} and 1
construct from them 2 spin orbitals{ ¢, . . . ,¢,,}, ordered = gv( 3 —212+3v-2). (A3)

such that ¢, (r,&)=x,(r)a(é) if k<v and ¢.(r,¢&)

=X« (1) B(§) for k>v. Expanding the 2-RDM by Spin  Tha second of the terms in brackets subtracts the number of
components, we have

elements with =k andj>1. ClearlyNgggs=N, 440, and a
A, similar exercise demonstrates tmﬁaﬁ=v3(v—l)/2. Add-
Fréur2.6irn 61, 12.62) ing these together we get the total number of independent
=T a* a* aa+ (rgg)a* B*ap elements for an arbitrary 2-RDM expressed in a basis set of
2v spin orbitals:
+(Tgo)B* a* Ba+ (T gh) a* B* Ba .
@ , = y(y— 2_
+(TE3) B* a* ap+ (T8 B* B* BB, (A1) Nina(v) = 7 (v =1)(3v°=v+2). (A4)

whereT45=T35(r1,r5;r1,15), for example, depends only This is the number of matrix elements that must be stored in
on spatial coordinates. The notation for the two-electron spiyrder to solve Eq(2.12 self-consistently. The tensdt con-
functions is a* B* aB=a* (&) B*(&x) a(é1)B(€2), etc.  tains a total of 16* elements, so as— o the ratio ofN;q to
There are 16 functions of this type, but as a result of thehe total number of elements Ih approaches 0.046 875. For
requirementmg(1)+mg(2)=mg(1') +my(2") for éz eigen-  singlet statefgf,f:l“gg, which further decreases the number
states, only the six spin components listed above are noref independent elements &t
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