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Renormalized ladder-type expansions for many-particle propagators
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For a system of indistinguishable fermions with pairwise interactions, we consider renormalized, perturba-
tive expansions for the three- and four-particle propagators~Green’s functions! in terms of exact one-particle
propagators, along with a pair interaction that may be bare~as it appears in the Hamiltonian! or dressed
~polarized!. Care is taken to provide a rigorous foundation for the diagrammatic representations of these
perturbation series; in particular, it is demonstrated how each topologically distinct diagram represents an
embedding~in three-dimensional space! of numerous separate terms in the perturbation series. Within a renor-
malized ladder approximation for the three- and four-particle propagators, we derive diagram weights~which
differ from the two-particle diagram weights! in order to limit the perturbation series to topologically distinct,
permutationally independent diagrams. These results lay the foundation for perturbative approximations that
decouple the propagator and density matrix equations of motion.
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I. INTRODUCTION

Diagrammatic perturbation theory figures prominently
quantum-theoretical methods based upon the one- or
particle propagator~Green’s function! @1–5#. In principle, a
similar diagrammatic formalism exists for thep-particle
propagatorG(p), for any p, but propagators forp.2 are
seldom discussed. The obvious reason is thatG(2)—to the
extent that one can calculate it—provides most of the imp
tant information about a system ofN indistinguishable par-
ticles, including ground-state expectation values, excita
energies, and quasiparticle energies~ionization potentials and
affinities!.

Yet there is reason to investigate the propagatorsG(3) and
G(4) because these functions are coupled in a nontrivial w
to G(1), G(2), and the one-particle self-energy by means
certain hierarchies of integro-differential equations of mot
@2,6–12#. In an appropriate time-independent limit,G(p) af-
fords thep-particle reduced density matrix (p-RDM!, and
the density matrices for differentp are also coupled by vari
ous hierarchies of equations@13–19#. Of these, the con-
tracted Schro¨dinger equation@16–26# has recently garnere
attention within the quantum chemistry literature. Deco
pling of these hierarchies via a suitable application of per
bation theory@16,21,22,26# provides a means for direct ca
culation of the two-particle propagator or density matrix.

In this paper we consider perturbative expansions ofG(3)

andG(4), for a system of indistinguishable fermions subje
to pairwise interactions. We present a rigorous discussio
the diagrammatic representations of these series, calling
tention to the fact that each topologically distinct diagram
actually an embedding of numerous separate terms in
perturbation series. This is true~and well known! for theG(1)

and G(2) perturbation series as well; however, three- a
four-particle diagrams exhibit a greater degree of degene
and are generally more complicated than one- and t
particle diagrams. One must enumerate the extent of
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diagrammatic degeneracy, by means of certain symmetry
efficients, if the perturbation series are to be expressed
terms of topologically distinct diagrams alone.

The present work lays the foundation for perturbative d
coupling approximations for the many-particle propagato
leading in the time-independent limit to a decoupling of t
contracted Schro¨dinger equation and thus an equation for t
direct determination of the 2-RDM. The author’s interest li
in molecular electronic structure, whose physics is dom
nated by pair correlations between electrons@27#, despite the
long-range nature of the Coulomb interaction. Under su
circumstances, an appropriate starting point for decoup
the propagator or density matrix hierarchies is a ladder
proximation for the many-particle propagators, since lad
diagrams~as defined in Sec. IV! account for multiple scat-
tering events between pairs of particles but neglect simu
neous three-particle correlations.

Ladder-type expansions forG(2) are well known@1# and
relatively straightforward, but three- and four-particle ladd
diagrams can become rather complicated when both di
and exchange contributions are included. Even within
ladder approximation, diagrams proliferate rapidly as the
der in perturbation theory increases, and brute-force e
meration of these diagrams quickly becomes infeasible
this paper, we systematize the derivation of three- and fo
particle ladder diagrams by demonstrating~i! that each
‘‘twisted’’ ladder is equivalent to some permutation of
simple, untwisted one; and~ii ! that the untwisted ladders ca
be obtained in a systematic fashion. This is accomplished
means of an algorithm, introduced herein, that generates
precise set of untwisted, topologically distinct three- a
four-particle ladder diagrams. By exploiting this systema
construction, we are able to derive the symmetry coefficie
that account for the twisted ladder diagrams. Atnth order,
the appropriate coefficient for both the three- and fo
particle ladder diagrams is found to be 2n, whereas the cor-
responding symmetry factor for two-particle ladders is on
2n21.

The remainder of this paper is organized as follows.
Sec. II we briefly introduce the propagators, the dressed
©2002 The American Physical Society02-1
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JOHN M. HERBERT PHYSICAL REVIEW A66, 052502 ~2002!
teraction, and other ingredients of the perturbation the
Section III focuses on a rigorous presentation of the diag
technique for many-particle propagators, with special att
tion paid to the issue of diagrammatic degeneracy. In S
IV and V, we derive symmetry coefficients for three- a
four-particle ladder diagrams, respectively, via the aforem
tioned algorithmic construction. These results, which
rather technical in nature, are placed in context within S
VI, in which we discuss the application of this methodolo
to decoupling the propagator and density matrix hierarch
Section VII constitutes a summary.

II. BASIC CONVENTIONS AND NOTATION

Let C be the ground-state wave function for a system
N indistinguishable fermions with time-independent Ham
tonianĤ5Ĥ01V̂. In second quantization

Ĥ05(
k

«k âk
† âk ~1!

and

V̂5
1

2 (
pqrs

Vrs
pq âp

† âq
† âs âr , ~2!

where theâk
† are the creation operators for some orthonorm

spin-orbital basis$fk%.
Expanded in the basis$fk%, the p-particle propagator

~synonymously, thep-particle Green’s function! for the quan-
tum stateC is a tensorG(p) with time-dependent elements

@~G(p)!k1 , . . . ,kp

j 1 , . . . ,j p #~ t1 , . . . ,tp ;t18 , . . . ,tp8!

5 i p^Cu T̂ „â j 1

† ~ t1!•••â j p

† ~ tp! âkp
~ tp8!•••âk1

~ t18!…uC&.

~3!

Hereâk(t)[eitĤ âke
2 i tĤ is the Heisenberg representation

âk . The operatorT̂ is a signed permutation that brings th
time-dependent operator product into descending time o
from left to right, with creation operatorsâk

† on the left in the
case of equal times. For example,

T̂ „â j~ t ! âk
†~ t8!…5H â j~ t ! âk

†~ t8! if t.t8

2âk
†~ t8! â j~ t ! if t<t8.

~4!

A perturbative expansion ofG(p) is obtained in the usua
way @1,3#. Nominally, the terms in this series are expectat
values of time-ordered operator products, with respec
some single-determinant reference stateC0. Decomposition
of these expectation values using Wick’s theorem@1# affords
an expansion in terms of the one-particle propagator for
reference stateC0. Since our ultimate interest lies in th
many-particle propagators, from which one can easily ob
G(1), it is logical to express all diagrams using exact on
particle propagators. These we represent in diagram form
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A term in the expansion ofG(p) thus consists ofp directed
G(1) lines ~quasiparticle lines! connected by certain pairwis
interactions. In its most primitive form the pair interaction
simply the ‘‘bare’’ interactionV̂(t), expressed in the interac
tion representation~with respect toĤ0) and represented dia
grammatically as

~6!

The d functions codify the fact thatV̂ is instantaneous.
The formalism developed herein is equally applicable t

renormalized~synonymously, ‘‘polarized’’ or ‘‘dressed’’! in-
teraction, and we shall represent the pair interaction usin
double wiggle to indicate this fact. At present we need n
specify the extent of this renormalization, but an illustrati
example is the random phase approximation@1,3#, in which
the effective interaction is given by the sum of pair bubb

~7!

An important point to note is that virtual particle-ho
pairs created and subsequently annihilated by the dre
interaction@as in the latter two diagrams on the right side
Eq. ~7!# must propagate through some time intervalt22t1,
hence the dressed interaction is associated with two t
variables. As seen in the above example, however, each
termediate process originates and terminates with a bare
teraction, and consequently

~8!

The dressed interaction furthermore depends only ont2

2t1, for the simple reason that@(G(1))k
j #(t1 ;t2) depends

only on t22t1, for a Hamiltonian with no explicit time de-
pendence@1#. Both d functions in Eq.~8! and two of thed
functions in Eq.~6! can be omitted if we agree to associa
only a single time variable with each vertex. Each vert
retains two spin-orbital indices, however.

To summarize, we consider a perturbative expansion
G(p) in which thep-particle diagrams consist of quasipartic
(G(1)) lines connected by the dressed interaction in Eq.~8!.
As usual, unlinked diagrams are excluded from the exp
sion, as a result of thep-particle generalization@28# of the
linked-cluster theorem@29#. The terms (un)linked and
2-2
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RENORMALIZED LADDER-TYPE EXPANSIONS FOR . . . PHYSICAL REVIEW A 66, 052502 ~2002!
(un)connectedhave various~and occasionally synonymous!
meanings in the literature; we follow the convention
Lindgren and Morrison@30#:

Definition 1.A diagram is said to beconnectedif it cannot
be separated into pieces without severing an interaction
propagator line. A diagram isclosed if it does not contain
any incoming or outgoing propagator lines. A diagram th
contains a closed, unconnected part is said to beunlinked.

An illustration of the distinction between linked and co
nected diagrams is provided in Fig. 1.

For p>2 the perturbation series forG(p) contains terms
that are linked but not connected, such as Fig. 1~c! for p
52. We denote byGc

(p) the sum of linked, connected con
tributions to G(p), where ‘‘c’’ may equally well stand for
‘‘connected’’ or ‘‘cumulant’’ @31#. We will not consider un-
connected diagrams, since the unconnected partG(p)2Gc

(p)

of G(p) can be recovered, by means of a cumulant expans
from the propagatorsG(n) with n,p @8,9,31,32#.

III. CONNECTIVITY AND TOPOLOGY OF DIAGRAMS

nth-~renormalized!-order terms in the expansion ofG(p)

are generated from the framework of labeled vertices sho
in Fig. 2 by connecting these vertices withp directedG(1)

lines that originate on the vertices labeledj 1 , . . . ,j p and
terminate on the verticesk1 , . . . ,kp . A single quasiparticle
line should pass through each vertex in the figure, but e
line may pass through a different number of vertices. We w
not explicitly consider the mixed particle-hole compone
of G(p), in which some of the propagator lines originate on
vertexkm and terminate atj l , because such diagrams can
generated trivially from those described above. Likewise,
p-particle diagrams of time-independent perturbation the
are no different, topologically speaking, than the tim
dependent ones, which allows us to apply our results dire
to time-independent RDMs; see Sec. VI.

Definition 2.Consider annth-order term in the expansio
of G(p), constructed from the framework in Fig. 2 as d

FIG. 1. Two-particle diagrams at second order inV̂. Diagrams
~a! and ~b! are unlinked, diagram~c! is linked but not connected
and ~d! is both linked and connected.
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scribed above. LetSm5( j l , . . . ,km) be the sequence of ver
tices through which themth quasiparticle line passes. Th
connectivityof this particular term in the perturbation serie
is defined to be the set of sequences$S1 , . . . ,Sp%. The order
of theSm within this set is irrelevant; connectivity is define
only up to permutations of these sequences.

Definition 3. Two p-particle connectivities$S1 , . . . ,Sp%
and $S18 , . . . ,Sp8% are said to bedistinct if $S1 , . . . ,Sp%
Þ$S18 , . . . ,Sp8% as sets.

The fact that connectivity is defined only up to a perm
tation of the sequencesSm is a consequence of the antisym
metry of G(p), whence (G(p))k1 , . . . ,kp

j 1 , . . . ,j p is unchanged if we

permute bothj l↔ j m andkl↔km . This symmetry manifests
itself within the perturbation series as the fact that any ful
contracted term from Wick’s theorem is unchanged follo
ing two such permutations. Self-consistent renorma
zation—expressing the perturbation series in terms of ex
one-particle propagators—does not alter this symmetry.

The ‘‘connect-the-dots’’ paradigm suggested by Fig.
provides one method for obtaining all distinctp-particle con-
nectivities. An alternative procedure, advanced by Lande
Smith @33–36#, is based upon enumeration of the possib
ways in which a given pair ofp-particle connectivities can be
connected to yield a newp-particle connectivity. While this
generates all of the diagrams, it does not do so uniquely,
we shall not employ the Lande-Smith formalism.

Nothing in the definition of connectivity specifies th
paths that the quasiparticle lines must take between verti
as a result of this ambiguity there exist infinitely many d
grammatic representations of the perturbation series. To
through these various representations it is useful to disc
connectivities as topological objects.

Definition 4.A diagrammatic presentationof a connectiv-
ity C5$S1 , . . . ,Sp% ~equivalently, adiagram with connec-
tivity C) is an embedding ofp lines, with labeled endpoints
as a topological object in three-dimensional space, in wh
the mth line passes in sequence through the verticesSm .
Once this embedding has been made, all internal vertex
belsvn

L andvn
R are deleted.

A connectivity, as defined above, is not a topological o
ject, but topological equivalence of connectivities can be

FIG. 2. Framework for constructingnth-~renormalized!-order
terms in the expansion ofG(p).
2-3
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JOHN M. HERBERT PHYSICAL REVIEW A66, 052502 ~2002!
fined by means of their diagrammatic presentations:
Definition 5.Two p-particle connectivitiesC1 andC2 are

said to bediagrammatically equivalent, denotedC1.C2, if
there exist diagrammatic presentations ofC1 andC2 that are
topologically identical~can be deformed into one another
a continuous fashion, without severing any propagator li
or interactions! in three-dimensional space.

Although there are infinitely many diagrams~embed-
dings! sharing a specified connectivity, in practice it is us
ally obvious which to choose in order to demonstrate d
grammatic equivalence, namely, the diagram construc
using the shortest possible lines to connect the approp
vertices. As an example, consider the two diagrams show
Fig. 3, both of which are embeddings of the connectiv
$S1 ,S2 ,S3%, with S15( j 1 ,v1

L ,v2
L ,v3

L ,k1), S25( j 2 ,v3
R,k2),

andS35( j 3 ,v1
R,v2

R,k3). Clearly the diagram on the right in
Fig. 3 is the preferred choice of embedding. The reader m
verify that $S18 ,S28 ,S38%, where S185( j 2 ,v3

L ,k2), S28
5( j 1 ,v1

L ,v2
L ,v3

R,k2), and S385( j 3 ,v1
R,v2

R,k3), is distinct
from $S1 ,S2 ,S3% above, but is nevertheless diagramma
cally equivalent. The embedding of$S18 ,S28 ,S38% shown in
Fig. 4 makes this clear.

Given the rules for translating diagrams into algebraic
pressions@1,3#, it is obvious that ifC1.C2 then these two
connectivities must yield the same algebraic express
While there may be a large number of distinct connectivit
at a given order in perturbation theory, in general each
equivalent to one of a much smaller set of diagrammatic

FIG. 3. Two topologically inequivalent embeddings of the sa
three-particle connectivity.

FIG. 4. An embedding of the connectivity$S18 ,S28 ,S38% intro-
duced in the text.
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inequivalent connectivities. Furthermore, many inequival
connectivities will differ only by a permutation of the end
point labelsj 1 , . . . ,j p andk1 , . . . ,kp .

Definition 6. Two distinct connectivities C
5$S1 , . . . ,Sp% and C85$S18 , . . . ,Sp8% are said to beinde-
pendentif the sequences$Sm8 % cannot be obtained from th
sequences$Sm% via permutations of the vertex labe
j 1 , . . . ,j p andk1 , . . . ,kp .

An equivalent statement of this definition is the followin
Proposition 1.Two connectivitiesC andC8 are not inde-

pendent if there exist diagrammatic presentations ofC and
C8 that are topologically equivalent when the endpoint lab
are deleted.

When connected together, the interaction vertices$vn
R%

and $vn
L% in Fig. 2–without the endpoint vertices–make u

the internal partof the vertex framework. Connectivities tha
are not independent possess diagrammatically equivalen
ternal parts, and thus the corresponding algebraic exp
sions differ only by permutations ofj 1 , . . . ,j p and
k1 , . . . ,kp . Clearly we need enumerate only the indepe
dent diagrams.

Finally, note that explicit self-energy insertions within th
quasiparticle lines are forbidden, because we employ e
one-particle propagators in the perturbation series. For
ample, the diagram in Fig. 5~a! does not appear in the reno
malized perturbation series. This does not imply that a sin
quasiparticle line cannot connect both vertices of the sa
interaction, but in such cases these vertices must be sepa
by one or more additional interactions that couple two d
ferent quasiparticle lines. An example of this sort is the~al-
lowed! ‘‘vertex correction’’ diagram shown in Fig. 5~b!.
More complicated variants on this theme are of course p
sible, but the general rule is clear.

Proposition 2.Consider a connectivity$S1 ,S2 , . . . % in
which the verticesvn

L and vn
R appear within the same se

quence,Sm say. This connectivity is forbidden~excluded
from the perturbation series! unlessvn

L andvn
R are separated

within Sm by another vertexvn
L8 (vn

R8), such thatvn
R8 (vn

L8)
is not a member of the sequenceSm .

IV. LADDER-TYPE EXPANSION AND SYMMETRY
FACTORS FOR Gc

„3…

A. Many-particle ladder diagrams

As demonstrated in the preceding section, merely c
necting the dots in Fig. 2 to generate distinctnth-order con-

e

FIG. 5. Diagrams in whichv1
L andv1

R are connected by the sam
quasiparticle line.
2-4
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RENORMALIZED LADDER-TYPE EXPANSIONS FOR . . . PHYSICAL REVIEW A 66, 052502 ~2002!
nectivities results in numerous topologically~and therefore
algebraically! equivalent connectivities. In this section w
will eliminate this redundancy, for three-particle ladder-ty
diagrams, by introducing a well-defined algorithm that a
counts for allnth-order connectivities possessing a ladd
type embedding. In addition, this algorithm automatically a
counts for connectivities such as the one shown in Fig
which might not immediately appear to be ladder diagra
but are nonetheless equivalent to more traditional-look
three-particle ladders.

First let us define precisely what is meant by a lad
connectivity.

Definition 7. A p-particle connectivity is called a
p-particle ladder if it possesses a connected diagramma
presentation in which~i! the interactions do not overlap wit
one another in time~that is, in the vertical direction!, and~ii !
no quasiparticle lines run backward in time.

The presentations in Figs. 4 and 6 clearly satisfy this d
nition. Examples of nonladder diagrams include vertex c
rections such as

~9!

and particle-hole scattering diagrams such as

~10!

Whereasp-particle ladder diagrams involve only simulta
neous two-body correlations, other types of diagrams invo
three body and higher correlations@19#, and should therefore
be less significant in molecular electronic structure appli
tions. In what follows, we restrict our discussion to ladd
diagrams only.

B. Construction of the three-particle ladders

A slight modification of the vertex framework introduce
previously yields a counting algorithm for the three-partic
ladders. This modified framework is shown in Fig. 7~a! and
consists again ofn time-ordered interactions. For clarity w
have not included the vertex labels$vn

R% and $vn
L% in this

figure, but we assume that the vertices are labeled as in
2. The interactions are drawn horizontally so that they do
overlap in time. Lettl

R and tl
L be the time arguments assoc
05250
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ated with the verticesvl
R andvl

L , respectively. Ladders con
structed from Fig. 7 are assumed to be time ordered such

t1
A1,t

1
A18,t2

A2,t
2
A28,•••,tn

An,t
n

An8 , ~11!

where each Al ,Al8P$R,L%. The necessity of this time orde
follows immediately fromDefinition 7; while the relative
time order ofvl

R andvl
L is unspecified, these vertices must

separated in time from all other interactions, else the resu
not a ladder diagram. As a practical matter, this means
we consider only topological deformations that preserve
time order of the interactions. We shall return to this point
the end of Sec. V.

Construction of three-particle ladder diagrams begins
shown in Fig. 7~a!, by drawing three quasiparticle lines ex
tending from the verticesj 1 , j 2, and j 3 to three of the inter-
action vertices. For generality, the quasiparticle line origin
ing at j 1 is attached tovm

L , with 2<m<n. The case where
this line attaches tovm

R will be considered separately.
We have less freedom, within the ladder approximati

to attach the remaining two quasiparticle lines, because g
the arrangement in Fig. 7 no quasiparticle line may run ba
ward in time, else the resulting diagram will not be a ladd
Hence the remaining two quasiparticle lines must attach
v1

L andv1
R .

FIG. 6. A three-particle ladder diagram.

FIG. 7. Diagrammatic representations of various steps in
algorithmic construction ofnth-order, three-particle ladders. See t
text for an explanation of each step.
2-5
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JOHN M. HERBERT PHYSICAL REVIEW A66, 052502 ~2002!
We refer to partially-connected frameworks, such as th
shown in Figs. 7~a!–7~c!, asnascent connectivities. Starting
from the nascent connectivity in Fig. 7~a!, we intend to
buildup the internal part in a systematic manner that acco
for all topologically equivalent possibilities each time a
other interaction is appended. This procedure is carried
graphically, meaning that we have made an implicit choice
embedding for each connectivity. Consequently, within
constructive algorithms presented in this section and in S
V, the concept of diagrammatic equivalence is the same
the notion of topological equivalence in three-dimensio
space.

For eachnth-order internal part constructed by our alg
rithm, every permutation of the labelsj 1 , j 2, and j 3 yields a
distinct connectivity. We account for these six nonindep
dent connectivities with an operatorÂ3, as indicated in Fig.
7, whereÂp is defined as the sum over signed permutatio
of $ j 1 , . . . ,j p%. For later use let us defineÂp8 to be the sum
over signed permutations of$k1 , . . . ,kp%. The presence o
Â3 in Fig. 7 compensates for our arbitrary choice of lab
for the three incoming quasiparticle lines.

The next step in the counting algorithm is to extend thej 2
and j 3 quasiparticle lines in order to incorporate interactio
2 through (m21). Each of these interactions must be a
pended to the nascent connectivity in order, for otherw
there is no way to complete the connectivity witho
backward-propagating quasiparticle lines. Each interac
can, however, be connected to the one beneath it in
different ways, one twisted and one untwisted. These po
bilities are illustrated, for the second interaction, in Fig. 8

The untwisted nascent connectivity, Fig. 8~a!, is a dia-
grammatic presentation of$S1 ,S2 ,S3% with

S15~ j 1 ,vm
L , . . . !, ~12a!

S25~ j 2 ,v1
L ,v2

L , . . . !, ~12b!

S35~ j 3 ,v1
R,v2

R, . . . !. ~12c!

The twisted variant, Fig. 8~b!, has nascent connectivit
$S18 ,S28 ,S38%, with

FIG. 8. ~a! Untwisted and~b! twisted connection of the secon
interaction in Fig. 7~a!.
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S185~ j 1 ,vm
L , . . . !, ~13a!

S285~ j 2 ,v1
L ,v2

R, . . . !, ~13b!

S385~ j 3 ,v1
R,v2

L , . . . !. ~13c!

For any connectivity, the interchangevm
L ↔vm

R leads to a dis-
tinct but diagrammatically~that is, topologically! equivalent
connectivity. Consequently, if one completes each pair
sequencesSm andSm8 in exactly the same fashion, the resu
ing connectivities will be diagrammatically equivalent up
a permutation ofj 2 and j 3. That is,

$S1 ,S2 ,S3%.~ j 2 j 3!$S18 ,S28 ,S38%, ~14!

where (j 2 j 3) denotes the transposition operator forj 2 and
j 3.

Taking into account all nonindependent connectivities t
can be generated from$S1 ,S2 ,S3% and $S18 ,S28 ,S38% via per-
mutations of the endpoint labels, one sees that these con
tivities show up in the perturbation series
Â3 Â38$S1 ,S2 ,S3% and Â3 Â38$S18 ,S28 ,S38%. Since

Â3 Â38~~ j 2 j 3!$S18 ,S28 ,S38%!.Â3 Â38$S18 ,S28 ,S38%, ~15!

each complete connectivity generated from the nascent
in Fig. 8~b! is topologically equivalent to a connectivity ob
tained from Fig. 8~a!. @We emphasize, however, that conne
tivities generated from 8~a! and 8~b! are distinct, in the sense
of Definition 3.# As a result of this equivalence we may di
card connectivities generated from Fig. 8~b!, substituting in-
stead a multiplicative symmetry factor of 2 associated w
Fig. 8~a!.

This result clearly generalizes to interactions 3, . . . ,(m
21) in Fig. 7, since each must be attached to thej 2 and j 3
quasiparticle lines. Thus the untwisted ladder framework,
tained by connecting these interactions and depicted in
7~b!, carries an overall symmetry factor of 2m22.

Next we must attach themth interaction to thej 2-j 3 lad-
der. The free vertexvm

R of the mth interaction may be at-
tached to either the left or the right side of this ladder, w
the former choice shown in Fig. 7~c!. In the case that this
interaction is attached to the right side of the ladder—wh
generates an entirely distinct set of connectivities—the
sulting framework is topologically equivalent to Fig. 7~c!
following a permutation ofj 2 and j 3. Arguing as before, a
factor of two accounts for the possibility of attachingvm

R to
the right side of thej 2-j 3 ladder. Hence the symmetry facto
associated with the nascent connectivity in Fig. 7~c! is 2m21.

It is convenient to backtrack at this point, in order
consider the case where the quasiparticle line labeled ‘‘j 1’’ is
connected tovm

R rather thanvm
L . Obviously this does not

affect construction of thej 2-j 3 ladder in Fig. 7~b!, yet a
distinct collection of connectivities is obtained becauseS1 in
this case is given byS15( j 1 ,vm

R , . . . ) rather thanS1

5( j 1 ,vm
L , . . . ) @cf. Eqs. ~12a! and ~13a!#. Again, though,

the resulting nascent connectivity throughm interactions is
2-6
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topologically equivalent to the one in Fig. 7~c! and can be
neglected by increasing the symmetry factor for Fig. 7~c! to
2m.

It remains to connect the final (n2m) interactions, start-
ing with the (m11)st. There are (2

3) pairs of vertices to
which we might attach each given interaction and two p
sible ways to make this connection, one twisted and
untwisted. By now it should be clear that the twisted varia
can be neglected if we multiply their untwisted counterpa
by a factor of 2 for each interaction. The set of untwist
diagrams is, by construction, precisely the set of all diagra
matically distinct three-particle ladders. The remainingn
2m interactions contribute a factor of 2n2m to the symmetry
coefficient, resulting in an overall symmetry factor of 2m

32n2m52n for each diagrammatically distinct,nth-order
ladder. Note that this result is independent of the indexm
where thej 1 quasiparticle line was originally attached.

Finally, an antisymmetrizerÂ38 must be included to per
mutek1 , k2, andk3, since the definition of a ladder involve
only the internal part of the connectivity and says noth
about the manner in which this internal part connects to
endpoint vertices. Hence the sum of allnth-order ladder dia-
grams in the expansion ofGc

(3) is equal to the action o

2nÂ3 Â38 on the sum of independent three-particle ladde
and we have our desired symmetry coefficient.

An ancillary result that follows from the above algorith
is the precise number of independent three-particle ladd
Observe that (2

3)n2m distinct internal connectivities can b
generated from the nascent connectivity in Fig. 7~c!. Sum-
mation over possible values ofm yields the number of inde
pendent ladders atnth order

(
m52

n S 3

2D n2m

5
1

2
~3n2121!, ~16!

which is valid for n>2. ~There are no first-order, three
particle ladders because a ladder must be connected, by
nition.! In a sense, the precise number of ladder diagram
not so important, since we now possess and algorithm

FIG. 9. All independent third-order, three-particle ladders.

FIG. 10. All independent fourth-order, three-particle ladders.
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generates them without redundancies. However, this num
is a useful check that the algorithm has been employed
rectly.

For the reader’s convenience, we restate the main res
of this section.

Theorem 1.At nth order in the dressed interaction, the
exist (3n2121)/2 independent three-particle ladder conne
tivities ~that is, ladders that are diagrammatically inequiv
lent when unlabeled!. Each is diagrammatically equivalent t
2n distinct ladder connectivities in theGc

(3) perturbation se-
ries. The total contribution toGc

(3) from nth-order ladders

equals 2nÂ3 Â38 acting on the sum of independent thre
particle ladders.

As an illustration, we present in Figs. 9 and 10 all of t
independent three-particle ladders at third and fourth or
respectively, in the order that they are generated by the a
rithm described in this section. For conciseness these
grams are drawn using single lines, which clearly does
affect their topology.

With the machinery developed in this section we can a
derive the symmetry coefficient for two-particle ladders. A
tually this is very simple because there are only two poss
ways to append each successive interaction, one twisted
another untwisted. The result is given in the following prop
sition.

Proposition 3. The total contribution toGc
(2) from

nth-order ladders equals 2n21Â2 Â28 acting on the lone dia-
grammatically inequivalent two-particle ladder.

V. LADDER-TYPE EXPANSION AND SYMMETRY
FACTORS FOR Gc

„4…

A. First case

Construction of the four-particle ladders proceeds alo
similar lines, but there are two cases to consider. Star
from a sequence ofn time-ordered interactions, one mu
again attach two quasiparticle lines~labeled j 3 and j 4, say!
to the first of these, while the remaining two quasipartic
lines ~labeledj 1 and j 2) may be attached arbitrarily. We firs
consider the case where these two lines are attached to
same interaction, say themth, where 2<m,n. This nascent
connectivity is shown in Fig. 11~a!. Note thatm must be

FIG. 11. Steps in the four-particle counting algorithm~first
case!. See the text for an explanation of each step.
2-7
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strictly less thann in this case, because whenm5n there is
no way to build a connected diagram without backwa
propagating quasiparticle lines. Analogous to the thr
particle case, we indicate a sum over signed permutation
j 1 , . . . ,j 4 with the operatorÂ4; this antisymmetrization jus
tifies our arbitrary choice of quasiparticle labels.

The next step is to buildup a ladder sequence from
first (m21) interactions, just as we did in the three-partic
construction. The resulting framework is shown in Fig. 11~b!
and carries a symmetry factor of 2m22 to account for twists
within the ladder.

We now come to themth interaction. There are (2
4) pairs

of vertices to which we may attach this interaction; as us
we include a factor of 2 in each case and thereby cons
only connectivities that are untwisted through the firstm
11 interactions. There are six such, as shown in Fig. 12.
latter four are seen to be permutations of a single nas
connectivity, while the other two are unconnected. Throu
the first (m11) interactions, then, all distinct four-particl
ladder connectivities are diagrammatically equivalent to
ther ~a!, ~b!, or ~c! in Fig. 12. Diagrams 12~a! and 12~b! each
carry a symmetry factor of 2(m21), while the coefficient for
12~c! is 2(m11), where the extra factor of 4 accounts for th
topologically equivalent connectivities in Figs. 12~d!–12~f!.

Any diagram generated from Fig. 12~c! is necessarily
connected. Untwisted connection of the remaining (n2m
21) interactions exhausts all inequivalent connectivities t
can be built from Fig. 12~c!, while a factor of 2n2m21 ac-
counts for the equivalent, twisted connectivities. The ove
symmetry factor for independent ladders constructed fr
Fig. 12~c! is 2n2m2132m1152n, independent ofm.

The situation is somewhat different for the as-y
unconnected possibilities in Figs. 12~a! and 12~b!. Append-
ing the (m12)nd interaction to either of these nascent co
nectivities results in a set of six diagrams analogous to th
in Fig. 12. Two of these each consist of a pair of unconnec
ladders, while the other four are connected and also topol

FIG. 12. Possible nascent connectivities associated with c
necting the first (m11) interactions in Fig. 11~b!.
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cally equivalent. The four connected diagrams can be trea
as above, the result being a symmetry factor of 2n once the
connectivity has been completed. For the two unconnec
diagrams, attaching the (m13)rd interaction leads to an
other six possibilities, and so on, until finally we come
attach thenth interaction. This must be done in such a w
that the entire diagram becomes connected, so we hav
this final case only the four topologically equivalent, co
nected possibilities analogous to Figs. 12~c!–12~f!. As with
the other cases the result is a symmetry coefficient of 2n for
each completed connectivity.

To obtain the number of independent four-particle la
ders, in the case that all four propagator lines initially co
nect to only two interaction rungs, letq index the interaction
at which thej 1-j 2 and j 3-j 4 halves of the diagram becom
connected@(m11)<q<n#. For example,q5(m11) in
Fig. 12~c! but connectivities built from Figs. 12~a! and 12~b!
do not become connected until someq.(m11). A diagram
that becomes connected at theqth interaction ultimately gen-
erates (2

4)n2q topologically inequivalent ladder diagrams.
Two of the nascent connectivities in Fig. 12 are unco

nected through the firstm interactions, and the number o
unconnected nascent connectivities doubles each time
other interaction is appended. Hence there are 2q2m21 topo-
logically inequivalent nascent connectivities that first b
come connected at theqth interaction. Summation over th
possible values forq andm yields the number of independen
four-particle ladders for the case discussed thus far:

(
m52

n21

(
q5m11

n

2q2m21 S 4

2D n2q

5
3

10
~6n2221!2

1

2
~2n2221!, ~17!

for eachn>3.

B. Second case

There is a second case to consider, namely, that in wh
the j 1 and j 2 quasiparticle lines do not initially connect to th
same interaction.~The j 3 and j 4 interactions must still attach
to v1

L andv1
R .) A framework for discussing this case is d

picted in Fig. 13. We attach thej 1 line to v r
L and thej 2 line

to vm
L , for 2<m,r<n. Cases wherem.r amount to a

permutation ofj 1 and j 2, and the operatorÂ4 indicated in
Fig. 13 accounts for all such permutations. Cases in wh
the j 1 line, the j 2 line, or both attach at the right of a
interaction will be incorporated as we proceed.

Through (r 21) interactions, the four-particle nasce
connectivity in Fig. 13 is the same as a three-particle nasc
connectivity that was considered previously, in Fig. 7~a!.
~The fact that the endpoint labels differ is unimportant sin
we consider all permutations of these labels.! The results of
Sec. IV B thus furnish the appropriate symmetry coefficie
through (r 21) interactions, namely 2r 21. By construction,
this factor accounts for all diagrammatically equivalent n
scent connectivities, so we may assume that the firstr 21
interactions in Fig. 13 are connected without topological

n-
2-8
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RENORMALIZED LADDER-TYPE EXPANSIONS FOR . . . PHYSICAL REVIEW A 66, 052502 ~2002!
dundancies. As a result, each of the (2
3) ways in which ther th

interaction can be connected to those below it generat
topologically distinct nascent connectivity. An additional fa
tor of 2 accounts for the fact that we might have attached
j 1 propagator line tov r

R, which generates exactly the sam
set of diagrams as when this propagator attaches tov r

L . Fi-
nally, the remainingn2r interactions can each be attach
in (2

4) ways, with the usual factor of 2 at each interaction
account for the twisted connectivities. The total symme
coefficient is thus 2r 213232n2r52n, just as it was in the
other four-particle case.

The total number of ladder diagrams for this case is
tained as follows. We know that nascent four-particle ladd
generated from Fig. 13 look just like three-particle ladde
through the (r 21)st interaction, so Eq.~16! tells us that
there are (3r 2221)/2 nascent four-particle ladders throug
the first (r 21) interactions.@In using Eq. ~16!, we have
summed over possible values ofm from 2 to (r 21), hence
this result is independent ofm.# Appending ther th interac-
tion increases the number of diagrams by a factor of (2

3), but
following this each additional interaction increases the nu
ber of topologically inequivalent diagrams by a factor of (2

4).
The number of independent four-particle ladders in this s
ond case is therefore

(
r 53

n
1

2
~3r 2221! S 3

2D S 4

2D n2r

5S 3(n21)

2 D ~2n2221!2
3

10
~6n2221!, ~18!

for eachn>3. Combining this with Eq.~17!, we summarize
our results for four-particle ladders in the following The
rem.

Theorem 2.At nth order there exist (2n2221)(3n21

21)/2 independent, four-particle ladders. The total contri
tion to Gc

(4) from nth-order ladders equals 2nÂ4 Â48 acting on
the sum of these independent ladder diagrams.

FIG. 13. Illustration of the four-particle counting algorithm~sec-
ond case!.
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As an illustration of these results, the independent fo
particle ladders at third order are depicted in Fig. 14, in
order in which they are generated by the construction
scribed above. The first of these diagrams belongs to ca
while the other three arise from case 2.

At fourth order there are 39 independent ladder conn
tivities. We shall not depict all of these, but two are shown
Fig. 15 in order to illustrate a subtle point that does not ar
until fourth order. As indicated by Eq.~11!, our ladder dia-
grams are constructed with an intrinsic time order, since
do not consider topological deformations that alter the ti
order of the interactions. Consequently, the procedure
scribed in this section generates both of the diagrams sh
in Fig. 15, which differ only in the relative time order of th
final two interactions. In evaluating the diagram shown
Fig. 15~a!, for example, the time argumentst4

R andt4
L for the

topmost interaction are restricted to be greater than eithet3
R

or t3
L , the time arguments for the interaction below. This

no problem in practice, and in fact both diagrams in Fig.
are easily combined into a single diagram by combining
two time integration ranges. Our restriction on time ord
merely simplifies the algorithm for constructing the ladde
and does not affect the symmetry factors.

VI. LADDER-TYPE DECOUPLING APPROXIMATIONS

In this section we give an overview of how the formalis
developed herein can be applied to derive decoupling
proximations for the three- and four-particle propagators
RDMs, within a renormalized ladder-type approximation.
we have indicated, the validity of such an approximati
depends upon simultaneous three-body correlations b
small, although it has recently been shown@19# that self-
consistent iteration of the contracted Schro¨dinger equation
serves to rebuild three-body correlations that are negle
by ladder-type decoupling approximations for the 3- a
4-RDMs. At any rate, our intention here is not to justify th
approximation but rather to demonstrate how the results
sented in Secs. IV and V greatly facilitate derivation of t
appropriate decoupling formulas.

The connected part of the two-particle propagator, wh
we represent diagrammatically as

FIG. 14. All independent four-particle ladders at third order.

FIG. 15. Two independent four-particle ladders that differ on
in time order.
2-9
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JOHN M. HERBERT PHYSICAL REVIEW A66, 052502 ~2002!
~19!

possesses a perturbative expansion consisting of conne
two-particle diagrams, several of which are shown in Fig.
Likewise, Gc

(p) can be expanded in terms of connect
p-particle diagrams. To develop decoupling approximatio
for Gc

(3) andGc
(4) in terms ofGc

(2) , we take the latter to be a
known quantity and recast the perturbation series forGc

(3)

and Gc
(4) as expansions in an effective interaction equal

the sum of all connected two-particle diagrams; this is p
cisely the interaction shown diagrammatically in Eq.~19!.

Consider the selection of connected three-particle d
grams in Fig. 17.~Endpoint labels have been omitted in th
figure, for clarity; all diagrams are assumed to be labeled

FIG. 16. A few diagrams in the expansion ofGc
(2) , at second

order in the dressed interaction.

FIG. 17. Selected diagrams in the expansion ofGc
(3) .
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the same way.! Up to permutations of the endpoint label
each is contained within the single renormalized diagram

in which the hatched square is the same effective interac
that appears inGc

(2) . The veracity of this claim may be veri
fied by substituting various two-particle diagrams~Fig. 16!
in place of the effective interaction. We call this diagram
quasipair ladder~QPL! @26# because the effective interac
tion, according to Eq.~19!, represents the complete intera
tion between apair of correlatedquasiparticles within the
many-body medium. In each of the diagrams shown in F
17, the interactions can be partitioned into three groups
do not overlap in time, corresponding to the three effect
interactions in the above QPL diagram.

The diagram rules and symmetry coefficients derived p
viously must be modified slightly in order to account for th
latest renormalization. In contrast to the dressed interac
discussed in Sec. II, the effective interaction in Eq.~19! is
nonlocal in all four of its time arguments, so there is
analogue of Eq.~8! for this interaction. As a result, we mus
introduce an additional caveat: repeated factors of this ef
tive interaction between the same two quasiparticle lines
forbidden. This eliminates certain of the diagrams genera
in Secs. IV and V.

The symmetry factors derived previously are also mo
fied following the renormalization introduced in this sectio
BecauseGc

(2) is an antisymmetric function of its coordinate
and since no coordinate permutations are included in
~19!, the effective interaction must carry this antisymmet
However, symmetry factors derived in Secs. IV and V p
tained to an interaction that was not antisymmetrized.
adapt these for use in the present case, thenth-order symme-
try coefficient of 2n must be divided by 4n in order to ac-
count for the four distinct coordinate permutations~think of
them as twisted diagrams! contained within each factor o
the effective interaction.

Eliminating the forbidden diagrams from Figs. 9 and 1
and supplementing the lone second-order ladder diagr
one obtains the three-particle QPL diagrams shown in F
18. In light of the remarks above, the appropriate symme
factor for each is (1/2)n, wheren is the number of effective
interactions. When augmented by this factor and also per
tations of the endpoint labels, the diagrams in Fig. 18 p
vide either a second-, third-, or fourth-order QPL approxim
tion to Gc

(3) . Similar QPL approximations forGc
(4) follow

from the diagrams and symmetry factors derived in Sec.
The effective interaction appearing in the QPL diagra

can be obtained, in terms ofGc
(2) , by inverting the integral

equation corresponding to Eq.~19!, which allows the QPL
2-10
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RENORMALIZED LADDER-TYPE EXPANSIONS FOR . . . PHYSICAL REVIEW A 66, 052502 ~2002!
diagrams to be evaluated in terms ofGc
(2) . In conjunction

with known expressions@8,9,31,32# for the unconnected con
tributions to the propagators, QPL estimates ofGc

(3) andGc
(4)

thus provide areconstructionof G(3) andG(4), as function-
als of G(2). These functionals can be used to express
propagator equations of motion in terms ofG(2) alone.

As noted previously, time-independent many-body per
bation theory shares a common diagrammatic representa
with the time-dependent theory~from which the time-
independent theory is obtained, as a limiting case!, although
the rules for evaluating these diagrams~time integration ver-
sus energy denominators, etc.! obviously differ. The deriva-
tions in Secs. IV and V, however, utilized only the topolog
cal properties of the diagrams and, implicitly, their relation
Wick’s theorem, so all of these results are equally valid
time-independent diagrams. In particular, one can defin
QPL approximation for the 3- and 4-RDMs using exactly t
same diagrams as those appearing in the time-depen
QPL approximation. An approximate decoupling proced
can then be introduced@16,22,26#, by means of which the
time-independent three- and four-particle diagrams are w
ten as matrix products of two-particle pieces that are rea
evaluated in terms of the 2-RDM.

The procedure described above has been implemente
Nakatsuji and Yasuda@21,22# to obtainreconstruction func-
tionals for the 3- and 4-RDMs; such functionals are need
in order to solve the contracted Schro¨dinger equation directly
for the 2-RDM. Nakatsuji and Yasuda consider only t
lowest-order~second-order! correction to the 3-RDM and
utilize an unconnected approximation for the 4-RDM. T
symmetry coefficients for their second-order, three-part
QPL approximation appear to have been derived by br
force enumeration of the diagrams, since no mention is m
of any systematic paradigm. The procedures develo
herein thus simplify the derivation of Nakatsuji and Yasud
reconstruction functionals. More importantly, our metho
allow this ‘‘reconstructive’’ perturbation theory to be ex

FIG. 18. Three-particle QPL diagrams, through fourth order.
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tended to higher orders, and to the 4-RDM as well as
3-RDM, with relatively little effort. These extensions are di
cussed more fully in Ref.@26#.

VII. SUMMARY

We have discussed diagrammatic representations of
perturbation series for many-particle propagators, in term
connectivities and their topology. For many-particle propa
tors, it is vital to have in one’s mind a clear and preci
understanding of the relationship between diagrams and
tinct terms in the perturbation series, because there are
merous, topologically inequivalent ways to embed
p-particle diagram as a topological object in thre
dimensional space. In addition, many terms in the pertur
tion series possess the same diagrammatic embedding.

With regard to the latter point, we have studied in det
the connected, ladder-type diagrams arising in the exp
sions of the three- and four-particle propagatorsG(3) and
G(4). Symmetry coefficients~diagram weights! were de-
rived, which account for the number of distinct connectiv
ties ~terms in the perturbation series! that are manifested in
each topologically distinct diagram. Use of these symme
coefficients allows the perturbation series to be limited
inequivalent diagrams, for a savings of 2n diagrams atnth
order. ~Notably, this coefficient differs from the diagram
weight for two-particle ladder diagrams, another indicati
that three- and four-particle diagrams have more complica
topologies that one- or two-particle diagrams.! Finally, algo-
rithms were introduced that generate the necessary se
inequivalent three- and four-particle ladder diagrams exac
without omissions or redundancies.

Expansions ofG(3) and G(4) in terms of a renormalized
pair interaction derivable fromG(2) allows for a self-
consistent decoupling of the various hierarchies of propa
tor and RDM equations of motion, thus providing a sche
for direct determination of eitherG(2) or the 2-RDM. Absent
some systematic procedure, direct enumeration of all ne
sary diagrams is laborious and prone to error, due to
complicated topology of three- and four-particle diagram
Equipped with the algorithms and symmetry coefficients
troduced herein, however, derivation of the decoupling f
mulas is quite facile.

This methodology is extendible, in principle, to man
particle diagrams that are not of the ladder variety, althou
the author’s experience hints that the formalism is m
complicated for nonladder diagrams. These extensions
worth pursuing, should the ladder-type decoupling schem
outlined in Sec. VI yield a useful starting point for dire
calculation of two-particle propagators or RDMs.
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@5# Y. Öhrn and G. Born, Adv. Quantum Chem.13, 1 ~1981!.
@6# P.C. Martin and J. Schwinger, Phys. Rev.115, 1342~1959!.
@7# L. P. Kadanoff and G. Baym,Quantum Statistical Mechanic

~Benjamin, New York, 1962!.
@8# C. de Dominicis and P.C. Martin, J. Math. Phys.5, 14 ~1964!.
@9# C. de Dominicis and P.C. Martin, J. Math. Phys.5, 31 ~1964!.

@10# R.D. Mattuck and A. Theumann, Adv. Phys.20, 721 ~1971!.
@11# S. Fujita, Kinam5, 234 ~1983!.
@12# S.-J. Wang, W. Zuo, and W. Cassing, Nucl. Phys. A573, 245

~1994!.
@13# H. Nakatsuji, Phys. Rev. A14, 41 ~1976!.
@14# S.-J. Wang and W. Cassing, Ann. Phys.~N.Y.! 159, 328~1985!.
@15# V.A. Golovko, Physica A230, 658 ~1996!.
@16# K. Yasuda, Phys. Rev. A59, 4133~1999!.
@17# D. Mukherjee and W. Kutzelnigg, J. Chem. Phys.114, 2047

~2001!; 114, 8226~E! ~2001!.
@18# J.M. Herbert and J.E. Harriman, Phys. Rev. A65, 022511

~2002!.
@19# J. M. Herbert and J. E. Harriman, J. Chem. Phys.117, 7464

~2002!.
05250
@20# F. Colmenero and C. Valdemoro, Int. J. Quantum Chem.51,
369 ~1994!.

@21# H. Nakatsuji and K. Yasuda, Phys. Rev. Lett.76, 1039~1996!.
@22# K. Yasuda and H. Nakatsuji, Phys. Rev. A56, 2648~1997!.
@23# D.A. Mazziotti, Phys. Rev. A57, 4219~1998!.
@24# H. Nakatsuji, inMany-Electron Densities and Reduced Dens

Matrices, edited by J. Cioslowski~Plenum, New York, 2000!,
p. 85.

@25# C. Valdemoro, L.M. Tel, E. Pe´rez-Romero, and A. Torre, J
Mol. Struct.: THEOCHEM537, 1 ~2001!; 574, 255~E! ~2001!.

@26# J. M. Herbert~unpublished!.
@27# O. Sinanog˘lu, J. Chem. Phys.36, 706 ~1962!.
@28# D.H. Kobe, J. Math. Phys.7, 1806~1966!.
@29# J. Goldstone, Proc. R. Soc. London, Ser. A239, 267 ~1957!.
@30# I. Lindgren and J. Morrison,Atomic Many-Body Theory, 2nd

ed. ~Springer-Verlag, Berlin, 1986!.
@31# P. Ziesche, inMany-Electron Densities and Reduced Dens

Matrices, edited by J. Cioslowski~Plenum, New York, 2000!,
p. 33.

@32# D.A. Mazziotti, Chem. Phys. Lett.289, 419 ~1998!.
@33# A. Lande and R.A. Smith, Phys. Lett.131B, 253 ~1983!.
@34# R. A. Smith, in Condensed Matter Theories, edited by F. B.

Malik ~Plenum, Berlin, 1986!, Vol. 1, p. 9.
@35# R. A. Smith and A. Lande, inCondensed Matter Theories,

edited by J. S. Arponen, R. F. Bishop, and M. Manninen~Ple-
num, New York, 1988!, Vol. 3, p. 1.

@36# A. Lande and R.A. Smith, Phys. Rev. A45, 913 ~1992!.
2-12


