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Renormalized ladder-type expansions for many-particle propagators
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For a system of indistinguishable fermions with pairwise interactions, we consider renormalized, perturba-
tive expansions for the three- and four-particle propaga@reen’s functionsin terms of exact one-particle
propagators, along with a pair interaction that may be lKageit appears in the Hamiltonipor dressed
(polarized. Care is taken to provide a rigorous foundation for the diagrammatic representations of these
perturbation series; in particular, it is demonstrated how each topologically distinct diagram represents an
embeddingin three-dimensional spacef numerous separate terms in the perturbation series. Within a renor-
malized ladder approximation for the three- and four-particle propagators, we derive diagram \uefgbls
differ from the two-particle diagram weights order to limit the perturbation series to topologically distinct,
permutationally independent diagrams. These results lay the foundation for perturbative approximations that
decouple the propagator and density matrix equations of motion.
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[. INTRODUCTION diagrammatic degeneracy, by means of certain symmetry co-
efficients, if the perturbation series are to be expressed in
Diagrammatic perturbation theory figures prominently interms of topologically distinct diagrams alone.
quantum-theoretical methods based upon the one- or two- The present work lays the foundation for perturbative de-
particle propagatofGreen’s function [1-5]. In principle, a  coupling approximations for the many-particle propagators,
similar diagrammatic formalism exists for the-particle leading in the time-independent limit to a decoupling of the
propagatorG(P), for any p, but propagators fop>2 are contracted Schitinger equation and thus an equation for the
seldom discussed. The obvious reason is B&t—to the  direct determination of the 2-RDM. The author’s interest lies
extent that one can calculate it—provides most of the imporin molecular electronic structure, whose physics is domi-
tant information about a system of indistinguishable par- nated by pair correlations between electrfizig, despite the
ticles, including ground-state expectation values, excitatioong-range nature of the Coulomb interaction. Under such
energies, and quasiparticle enerdiesization potentials and circumstances, an appropriate starting point for decoupling
affinities). the propagator or density matrix hierarchies is a ladder ap-
Yet there is reason to investigate the propagaBfdand  proximation for the many-particle propagators, since ladder
G™ because these functions are coupled in a nontrivial wayliagrams(as defined in Sec. IVaccount for multiple scat-
to G, G, and the one-particle self-energy by means oftering events between pairs of particles but neglect simulta-
certain hierarchies of integro-differential equations of motionneous three-particle correlations.
[2,6—17. In an appropriate time-independent lin@( af- Ladder-type expansions f@(? are well known[1] and
fords thep-particle reduced density matrixp{RDM), and  relatively straightforward, but three- and four-particle ladder
the density matrices for differeiptare also coupled by vari- diagrams can become rather complicated when both direct
ous hierarchies of equatiorf43—-19. Of these, the con- and exchange contributions are included. Even within the
tracted Schrdinger equatiorj16—2¢ has recently garnered ladder approximation, diagrams proliferate rapidly as the or-
attention within the quantum chemistry literature. Decou-der in perturbation theory increases, and brute-force enu-
pling of these hierarchies via a suitable application of perturmeration of these diagrams quickly becomes infeasible. In
bation theory{16,21,22,2¢ provides a means for direct cal- this paper, we systematize the derivation of three- and four-
culation of the two-particle propagator or density matrix.  particle ladder diagrams by demonstratifig that each
In this paper we consider perturbative expansion& G “twisted” ladder is equivalent to some permutation of a
andG™), for a system of indistinguishable fermions subjectsimple, untwisted one; an() that the untwisted ladders can
to pairwise interactions. We present a rigorous discussion dfe obtained in a systematic fashion. This is accomplished by
the diagrammatic representations of these series, calling ataieans of an algorithm, introduced herein, that generates the
tention to the fact that each topologically distinct diagram isprecise set of untwisted, topologically distinct three- and
actually an embedding of numerous separate terms in thur-particle ladder diagrams. By exploiting this systematic
perturbation series. This is tri@nd well known for the G(*) construction, we are able to derive the symmetry coefficients
and G® perturbation series as well; however, three- andthat account for the twisted ladder diagrams.mh order,
four-particle diagrams exhibit a greater degree of degeneradjne appropriate coefficient for both the three- and four-
and are generally more complicated than one- and twoparticle ladder diagrams is found to b&, 2vhereas the cor-
particle diagrams. One must enumerate the extent of thieesponding symmetry factor for two-particle ladders is only

2"t
The remainder of this paper is organized as follows. In
*Electronic address: herbert@chem.wisc.edu Sec. Il we briefly introduce the propagators, the dressed in-
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teraction, and other ingredients of the perturbation theory. k.t

Section Il focuses on a rigorous presentation of the diagram

technique for many-particle propagators, with special atten- i[(Gu))i] tth= k. (5)

tion paid to the issue of diagrammatic degeneracy. In Secs.

IV and V, we derive symmetry coefficients for three- and it

four-particle ladder diagrams, respectively, via the aforemen- ] ) ) ]

tioned algorithmic construction. These results, which are Aterm in the expansion g8 thus consists op directed

rather technical in nature, are placed in context within SecG'” lines (quasiparticle linesconnected by certain pairwise

V| in Wh|Ch we d|scuss the app||cat|0n Of th|s methodo'ogy|nteract|0ns In its most pr|m|t|Ve form the palr interaction is

to decoupling the propagator and density matrix hierarchiessimply the “bare” interactionV(t), expressed in the interac-

Section VII constitutes a summary. tion representatiofwith respect td,) and represented dia-
grammatically as

Il. BASIC CONVENTIONS AND NOTATION
k,a k.t

2
Let ¥ be the ground-state wave function for a system of = 'fo:k: 8(ty —t}) 8(tz — t5) 8(ts — t2) .
N indistinguishable fermions with time-independent Hamil- . 5
Jvty Jash
tonianH = H0+V In second quantization 6)
Ho=> &y al ay (1)  The & functions codify the fact tha¥ is instantaneous.
k

The formalism developed herein is equally applicable to a
renormalized'synonymously, “polarized” or “dressed”in-
teraction, and we shall represent the pair interaction using a
double wiggle to indicate this fact. At present we need not
2 VPa a a as 5“ 2) specify the extent of this renormalizat?on, but an iIIus_trative
pars example is the random phase approximafid8], in which
the effective interaction is given by the sum of pair bubbles

where thea) are the creation operators for some orthonormal

spin-orbital basig ¢} .
Expanded in the basi§¢,}, the p-particle propagator (beoed) .. = pnd +¢.~O~'+ oo
(synonymously, th@-particle Green'’s functionfor the quan-

tum state¥ is a tensoiG(P) with time-dependent elements

and

I\)II—\

[(G(p))“', - ','p](tl, cootpity ctp) An important point to note is that virtual particle-hole
. . ) pairs created and subsequently annihilated by the dressed
=iP(P| T(ajl(tl)- . -a}p(tp) akp(tg,)~ . -akl(ti))|\lf). interaction[as in the latter two diagrams on the right side of

Eq. (7)] must propagate through some time intertatt,,
©) hence the dressed interaction is associated with two time
R I variables. As seen in the above example, however, each in-
Herea,(t)=e a’\ke_ltH is the Heisenberg representation of termediate process originates and terminates with a bare in-
a,. The operator7 is a signed permutation that brings the teraction, and consequently
time-dependent operator product into descending time order

itH

. : . ~ : £ k.2
from left to right, with creation operatoai on the left in the kh "2
case of equal times. For example, M oc (ty — t7) (k2 — t3) - (8)
j],tl j29t2
a(t) ai(t’ if t>t’
T @ (1) akt')= ai(t) akEt) (4)  The dressed interaction furthermore depends onlyton
: —al(t") at) if tst’. —t,, for the simple reason thd G™))}](t;;t,) depends

only ont,—t,, for a Hamiltonian with no explicit time de-

A perturbative expansion @ is obtained in the usual pendencdl]. Both & functions in Eq.(8) and two of thes
way [1,3]. Nominally, the terms in this series are expectationfunctions in Eq.(6) can be omitted if we agree to associate
values of time-ordered operator products, with respect t@only a single time variable with each vertex. Each vertex
some single-determinant reference stlite Decomposition  retains two spin-orbital indices, however.
of these expectation values using Wick’s theofdraffords To summarize, we consider a perturbative expansion of
an expansion in terms of the one-particle propagator for th&P in which thep-particle diagrams consist of quasiparticle
reference statél,. Since our ultimate interest lies in the (G%) lines connected by the dressed interaction in @}.
many-particle propagators, from which one can easily obtais usual, unlinked diagrams are excluded from the expan-
GW, it is logical to express all diagrams using exact one-sion, as a result of thp-particle generalizatiofi28] of the
particle propagators. These we represent in diagram form dimked-cluster theorem[29]. The terms (un)linked and
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FIG. 1. Two-particle diagrams at second ordef\?inDiagrams scribed above. LeB,,= (j
(a) and (b) are unlinked, diagranfc) is linked but not connected, A
and (d) is both linked and connected.

o
® -

FIG. 2. Framework for constructingth-(renormalizegtorder
(d) terms in the expansion @,

.. K,) be the sequence of ver-
tices through which thenth quasiparticle line passes. The
connectivityof this particular term in the perturbation series
is defined to be the set of sequen¢S8s, . .. ,Sy}. The order
of the S, within this set is irrelevant; connectivity is defined
only up to permutations of these sequences.

Definition 3. Two p-particle connectivitiegS,, ... ,Sy}

(un)connectedhave variougand occasionally synonymous
meanings in the literature; we follow the convention of
Lindgren and Morrisord30]:

Definition 1.A diagram is said to beonnectedf it cannot , , . A
be separated into pieces without severing an interaction or%nd ,{Sl’ o ',’SD} are said to bedistinct if {S,, ... S}
propagator line. A diagram islosedif it does not contain 7 151 - - - Sph as sets. ,
any incoming or outgoing propagator lines. A diagram that The fact that connectivity is defined only up to a permu-

contains a closed, unconnected part is said torfimked tation of the sequences, is a consequence of the antisym-
An illustration of the distinction between linked and con- metry of G(P), whence G(p))f(ll: o JkF:) is unchanged if we
nected diagrams is provided in Fig. 1. permute bothj, <, andk, <k, . This symmetry manifests

For p=2 the perturbation series f@? contains terms jtself within the perturbation series as the fact that any fully-
that are linked but not connected, such as Fig) for p  contracted term from Wick’s theorem is unchanged follow-
=2. We denote byG{” the sum of linked, connected con- ing two such permutations. Self-consistent renormali-
tributions to G(P, where “c” may equally well stand for zation—expressing the perturbation series in terms of exact
“connected” or “cumulant” [31]. We will not consider un-  one-particle propagators—does not alter this symmetry.

connected diagrams, since the unconnected @&Pt— G(Cp) The “connect-the-dots” paradigm suggested by Fig. 2
of G(P) can be recovered, by means of a cumulant expansiorprovides one method for obtaining all distineparticle con-
from the propagator&™ with n<p [8,9,31,32. nectivities. An alternative procedure, advanced by Lande and
Smith [33-34, is based upon enumeration of the possible
IIl. CONNECTIVITY AND TOPOLOGY OF DIAGRAMS ways in which a given pair gi-particle connectivities can be

connected to yield a new-particle connectivity. While this
nth-(renormalizegtorder terms in the expansion G generates all of the diagrams, it does not do so uniquely, and
are generated from the framework of labeled vertices showmwe shall not employ the Lande-Smith formalism.

in Fig. 2 by connecting these vertices withdirected G(*) Nothing in the definition of connectivity specifies the
lines that originate on the vertices labelgd ... ,j, and  paths that the quasiparticle lines must take between vertices;
terminate on the verticels,, . .. k,. A single quasiparticle as a result of this ambiguity there exist infinitely many dia-

line should pass through each vertex in the figure, but eachrammatic representations of the perturbation series. To sort
line may pass through a different number of vertices. We willthrough these various representations it is useful to discuss
not explicitly consider the mixed particle-hole componentsconnectivities as topological objects.
of G| in which some of the propagator lines originate on a  Definition 4.A diagrammatic presentatioaf a connectiv-
vertexk,, and terminate ajt, , because such diagrams can beity C={S,, ... ,S;} (equivalently, adiagramwith connec-
generated trivially from those described above. Likewise, thdivity C) is an embedding ab lines, with labeled endpoints,
p-particle diagrams of time-independent perturbation theoryas a topological object in three-dimensional space, in which
are no different, topologically speaking, than the time-the mth line passes in sequence through the vertiggs
dependent ones, which allows us to apply our results directlonce this embedding has been made, all internal vertex la-
to time-independent RDMs; see Sec. VI. belsv’; andvf are deleted.

Definition 2.Consider amth-order term in the expansion A connectivity, as defined above, is not a topological ob-
of G, constructed from the framework in Fig. 2 as de-ject, but topological equivalence of connectivities can be de-
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I B s FIG. 5. Diagrams in which | andv? are connected by the same

quasiparticle line.
FIG. 3. Two topologically inequivalent embeddings of the same

three-particle connectivity. inequivalent connectivities. Furthermore, many inequivalent
connectivities will differ only by a permutation of the end-
fined by means of their diagrammatic presentations: point labelsjy, ... j, andky, ... K.
Definition 5.Two p-particle connectivitie€; andC, are Definition 6. Two distinct connectivities C
said to bediagrammatically equivalentdenotedC,=C,, if ={S;,....,S;} andC'={S], ... S}} are said to bande-

there e>_<ist diggrammatic presentationsf:gfandcz that are _ pendentif the sequence$S’} cannot be obtained from the
topologically identicalcan be deformed into one another in sequences{S,} via permutations of the vertex labels
a continuous fashion, without severing any propagator Iine?1 - ip andk, K

or interactions in three-dimensional space. An equivalent statement of this definition is the following.
_Although there are infinitely many diagramembed- Proposition 1.Two connectivitiesC andC’ are not inde-
dings sharing a specified connectivity, in practice it is UsU-pendent if there exist diagrammatic presentation€and

ally obvious which to choose in order to demonstrate dia/ that are topologically equivalent when the endpoint labels
grammatic equivalence, namely, the diagram constructed,q qeleted.

usin_g the shortest possible Iir_1es to connect the appropria_te When connected together, the interaction verti{;eg}
vertices. As an example, consider the two diagrams shown in Ly o . ' . .
and{v} in Fig. 2—without the endpoint vertices—make up

?ég' 832 g;th vsi];hwglih (f"“e f me e({dl;g)]s gz :trze COF? r|1(e)c tIV'tytheinter_nal partof the vertex frar_nework. Cpnnectiviti_es that_
Lom2=sh T 11:01,02,V3.K1), 12:03:%2), 416 not independent possess diagrammatically equivalent in-
andS;=(js,v1,v3.Ks). Clearly the diagram on the right in o151 parts, and thus the corresponding algebraic expres-
F|g: 3is the pref/err,ed s:h0|ce of emb?ddlng. '[he reade,r Ma¥jons differ only by permutations ofjy, ... j, and
verify LthaLt éslisZ'SE.}’ where R51=R(Jz,vs_'k2)’_ S kg, ... k,. Clearly we need enumerate only the indepen-
=(j1,v1,03,05,Ky), and S;=(js,v7,v5,ks), is distinct  gent diagrams.
from {S,,S;,S;} above, but is nevertheless diagrammati-  Finally, note that explicit self-energy insertions within the
cally equivalent. The embedding ¢5;,S;,S;} shown in  quasiparticle lines are forbidden, because we employ exact
Fig. 4 makes this clear. one-particle propagators in the perturbation series. For ex-
Given the rules for translating diagrams into algebraic ex-ample, the diagram in Fig.(8 does not appear in the renor-
pressiond1,3], it is obvious that ifC;=C, then these two malized perturbation series. This does not imply that a single
connectivities must yield the same algebraic expressiomjuasiparticle line cannot connect both vertices of the same
While there may be a large number of distinct connectivitiesinteraction, but in such cases these vertices must be separated
at a given order in perturbation theory, in general each iy one or more additional interactions that couple two dif-
equivalent to one of a much smaller set of diagrammaticallyferent quasiparticle lines. An example of this sort is thk
lowed) “vertex correction” diagram shown in Fig. (6).
kK, K k, More complicated variants on this theme are of course pos-
sible, but the general rule is clear.
Proposition 2.Consider a connectivitfS,;,S,, ...} in
| which the verticesv,; and v} appear within the same se-
quence,S,, say. This connectivity is forbiddegexcluded
from the perturbation seripsinlessv}; andov R are separated
within S, by another vertex ;' (v}'), such thav®’ (v)
is not a member of the sequengg.

IV. LADDER-TYPE EXPANSION AND SYMMETRY
FACTORS FOR G{®

ho s A. Many-particle ladder diagrams

FIG. 4. An embedding of the connectivi§ys;,S,,S;} intro- As demonstrated in the preceding section, merely con-
duced in the text. necting the dots in Fig. 2 to generate distinth-order con-
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nectivities results in numerous topologicallgnd therefore k1 k2 k3
algebraically equivalent connectivities. In this section we
will eliminate this redundancy, for three-particle ladder-type
diagrams, by introducing a well-defined algorithm that ac-
counts for allnth-order connectivities possessing a ladder-
type embedding. In addition, this algorithm automatically ac-
counts for connectivities such as the one shown in Fig. 6,
which might not immediately appear to be ladder diagrams
but are nonetheless equivalent to more traditional-looking
three-particle ladders.

First let us define precisely what is meant by a ladder
connectivity.

Definition 7. A p-particle connectivity is called a
p-particle ladderif it possesses a connected diagrammatic

presentation in whiclfi) the interactions do not overlap with ]'1 j2 ]
one another in timéthat is, in the vertical directionand(ii) 3
no quaSipartide lines run backward in time. FIG. 6. A three-particle ladder diagram.

The presentations in Figs. 4 and 6 clearly satisfy this defi-
nition. Examples of nonladder diagrams include vertex cor

: ated with the vertices andv}, respectively. Ladders con-
rections such as

structed from Fig. 7 are assumed to be time ordered such that

kl kZ k3 kl k2 kj ’ ’ !
th<tii<tiz<tiz<. .. <tr<tin, (12)
- where each A, A[ e{R,L}. The necessity of this time order
©) follows immediately fromDefinition 7 while the relative
time order ofv andv}; is unspecified, these vertices must be
separated in time from all other interactions, else the result is
ho 1o s h B

not a ladder diagram. As a practical matter, this means that
we consider only topological deformations that preserve the

and particle-hole scattering diagrams such as time order of the interactions. We shall return to this point at
the end of Sec. V.

k Kk Kk k kK Construction of three-particle ladder diagrams begins, as
i shown in Fig. 7a), by drawing three quasiparticle lines ex-
tending from the verticeg;, j,, andj; to three of the inter-
action vertices. For generality, the quasiparticle line originat-

B (10
Ji J2 s b s the arrangement in Fig. 7 no quasiparticle line may run back-
ward in time, else the resulting diagram will not be a ladder.
Whereag-particle ladder diagrams involve only simulta- Hence the remaining two quasiparticle lines must attach to
neous two-body correlations, other types of diagrams involveyk andv?.

ing atj, is attached to)h“ with 2<m=n. The case where
three body and higher correlatiof9], and should therefore

this line attaches t@ﬁ will be considered separately.
be less significant in molecular electronic structure applica- @

We have less freedom, within the ladder approximation,
to attach the remaining two quasiparticle lines, because given
tions. In what follows, we restrict our discussion to ladder mm__'
diagrams only.

B. Construction of the three-particle ladders

A slight modification of the vertex framework introduced
previously yields a counting algorithm for the three-particle
ladders. This modified framework is shown in Figaj7and
consists again ofi time-ordered interactions. For clarity we
have not included the vertex labels?} and {v}} in this
figure, but we assume that the vertices are labeled as in Fig. FIG. 7. Diagrammatic representations of various steps in the
2. The interactions are drawn horizontally so that they do no&igorithmic construction afith-order, three-particle ladders. See the
overlap in time. Let andt} be the time arguments associ- text for an explanation of each step.
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s, R Si=(j1.vm. - ), (133
e P
A o, Sy=(jo,05,05, ...), (13b)
ﬁ % Si=(js.0f g, .- .). (139
Ji b Js Ji B2 Js For any connectivity, the interchangé —uv R leads to a dis-
— L‘W&) tinct but diagrammaticallythat is, topologically equivalent
A, As connectivity. Consequently, if one completes each pair of
@ ®) sequenceS,, andS/, in exactly the same fashion, the result-

ing connectivities will be diagrammatically equivalent up to
FIG. 8. (a) Untwisted andb) twisted connection of the second a permutation of, andj;. That is,
interaction in Fig. 7a).

) {51,%,,S5}=(j2 j3){S1,S;, 83}, (14)

We refer to partially-connected frameworks, such as those
shown in Figs. 7a)—-7(c), asnascent connectivitieStarting  where (, j5) denotes the transposition operator ferand
from the nascent connectivity in Fig.(&J, we intend to
buildup the internal part in a systematic manner that accounts  Taking into account all nonindependent connectivities that
for aII_ topolog|ca_lly equivalent p0_53|bll|t|es ea(_:h time an- can be generated frofs,,S,,S;} and{S;,S,,S;} via per-
other interaction is appended. This procedure is carried o4hytations of the endpoint labels, one sees that these connec-
graphically, meaning that we have made an implicit choice otjyites show up in the perturbation series as
embedding for each connectivity. Consequently, within theA ALLS A Al o o ;

. . A L . 'Sy, andA; A}{S;,S;,S;}. Since
constructive algorithms presented in this section and in Sec.> 151, %, S} 3 AdlS1,5;, 53}
V, the concept of diagrammatic equivalence is the same as Ao, T U TP
the notion of topological equivalence in three-dimensional As Agl(i2 13){S1,5:,551) =As Ag{S1,S;,S5}, (19
space. -

For eachnth-order internal part constructed by our algo- €ach complete connectivity generated from the nascent one
rithm, every permutation of the labels, j,, andjs yields a |n_F|g. 8b) is .topologlcally equwa_llent to a connectivity ob-
distinct connectivity. We account for these six nonindepeniained from Fig. 8). [We emphasize, however, that connec-

. . A . - tivities generated from(@) and &b) are distinct, in the sense

dent connectivities with an operatég, as indicated in Fig. 2 ) ) :

P ) ) " of Definition 3] As a result of this equivalence we may dis-
7, V\./hereAp.|s defined as the sum over signed permutationgarg connectivities generated from Figb substituting in-
of {j1, ....jp}. For later use let us defin& to be the sum stead a multiplicative symmetry factor of 2 associated with
over signed permutations ¢k, , ... K,}. The presence of Fig. 8@a).
Az in Fig. 7 compensates for our arbitrary choice of labels This result clearly generalizes to interactions. 3., (m
for the three incoming quasiparticle lines. —1) in Fig. 7, since each must be attached tojtheandj;

The next step in the counting algorithm is to extendjthe quasiparticle lines. Thus the untwisted ladder framework, ob-
andj, quasiparticle lines in order to incorporate interactionstained by connecting these interactions andzdepicted in Fig.
2 through (n—1). Each of these interactions must be ap-7(b), carries an overall symmetry factor of'2°.
pended to the nascent connectivity in order, for otherwise Next we must attagh thenth interaction to thg ,-j 5 lad-
there is no way to complete the connectivity withoutder. The free vertex, of the mth interaction may be at-
backward-propagating quasiparticle lines. Each interactiotached to either the left or the right side of this ladder, with
can, however, be connected to the one beneath it in twthe former choice shown in Fig.(@. In the case that this
different ways, one twisted and one untwisted. These possinteraction is attached to the right side of the ladder—which
bilities are illustrated, for the second interaction, in Fig. 8. generates an entirely distinct set of connectivities—the re-

The untwisted nascent connectivity, FigiaB is a dia-  sulting framework is topologically equivalent to Fig(cy

grammatic presentation ¢5,,S,,S3} with following a permutation ofj, and 3. Arguing as before, a
factor of two accounts for the possibility of attachiua to
312(11,0,%1, Y (123 the right side of thg,-j; ladder. Hence the symmetry factor

associated with the nascent connectivity in Fig) 7s 2™ 2.
It is convenient to backtrack at this point, in order to
S,=(j2.05 05, ...), (12b  consider the case where the quasiparticle line labejgti$
connected tav rather thanvp,. Obviously this does not
affect construction of thg,-j; ladder in Fig. 7b), yet a

Ss=(jg. 013, .- ). (120 istinct collection of connectivities is obtained becaSgén

this case is given bySl:(jl,v,'Tq,...) rather thanS;

The twisted variant, Fig. ®), has nascent connectivity =(j;,v5,...) [cf. Egs. (128 and (133]. Again, though,
{S1.S5,S5}, with the resulting nascent connectivity throughinteractions is

052502-6



RENORMALIZED LADDER-TYPE EXPANSIONS F®& . .. PHYSICAL REVIEW A 66, 052502 (2002

R = -

® ®
FIG. 9. All independent third-order, three-particle ladders. s
"0 ® ® @

topologically equivalent to the one in Fig(cJ and can be m ®
neglected by increasing the symmetry factor for Fig) 7o d o A
2m, I ] Js Ja Juda Js Ja

It remains to connect the finah-m) interactions, start- - —
ing with the -+ 1)st. There are3) pairs of vertices to A, A
which we might attach each given interaction and two pos- @ )

sible ways to make this connection, one twisted and one
untwisted. By now it should be clear that the twisted variants g 11, Steps in the four-particle counting algorithffirst
can be neglected if we multiply their untwisted counterpartsasg. See the text for an explanation of each step.

by a factor of 2 for each interaction. The set of untwisted

dlag_rams 1S, b_y constructlon,_ precisely the set of all q'agramgenerates them without redundancies. However, this number
matically distinct three-particle ladders. The remaining

. ) . is a useful check that the algorithm has been employed cor-
—m interactions contribute a factor of 2™ to the symmetry g ploy

- T rectly.
Coe:f,'%em}] resulting in an overalll symmetry factor of 2 For the reader’s convenience, we restate the main results
X 2" M=2" for each diagrammatically distinctjth-order

ladder. Note that this result is independent of the index of E:.}'}‘Z;reecrtr:OfAt nth order in the dressed interaction. there
where thej, quasiparticle IineAwas originally attached. exist (3'"1—1)/2 independent three-particle ladder c’onnec-
Finally, an antisymmetrizeA; must be included to per- tjvities (that is, ladders that are diagrammatically inequiva-
muteky, Ko, andks, since the definition of a ladder involves |ent when unlabeled Each is diagrammatically equivalent to
only the internal part of the connectivity and says nothingzn gjstinct ladder connectivities in th@® perturbation se-
about the manner in which this internal part connects to th‘?ies. The total contribution t@(CB) from nth-order ladders

endpoint vertices. Hence the sum of mih-order ladder dia- PN . .
. ) 3) : . equals 2A; A} acting on the sum of independent three-
grams in the expansion d&;”’ is equal to the action of :
particle ladders.

2"A3 A3 on the sum of independent three-particle ladders, - A an illustration, we present in Figs. 9 and 10 all of the

and we have our desired symmetry coefficient. ~independent three-particle ladders at third and fourth order,
An ancillary result that follows from the above algorithm respectively, in the order that they are generated by the algo-

is the precise number of independent three-particle laddergithm described in this section. For conciseness these dia-

Observe thatg)”*m distinct internal connectivities can be grams are drawn using Sing|e lines, which C|ear|y does not
generated from the nascent connectivity in Figc)7Sum-  affect their topology.

mation over possible values of yields the number of inde-  Wwith the machinery developed in this section we can also
pendent ladders atth order derive the symmetry coefficient for two-particle ladders. Ac-
tually this is very simple because there are only two possible
Do(3\nm g ways to append each successive interaction, one twisted and
mZz ( 2) 25(3”71— 1), (16)  another untwisted. The result is given in the following propo-
sition.

Proposition 3. The total contribution toG{® from

which is valid forn=2. (There are no first-order, three- 1R A . .
particle ladders because a ladder must be connected, by de[Fit-h'OrOIer ladders equals'2"A; A; acting on the lone dia-

nition.) In a sense, the precise number of ladder diagrams igrammatlcally inequivalent two-particle ladder.
not so important, since we now possess and algorithm that

V. LADDER-TYPE EXPANSION AND SYMMETRY
WM FACTORS FOR G{*
A. First case
Construction of the four-particle ladders proceeds along
whe wW similar lines, but there are two cases to consider. Starting
from a sequence ofi time-ordered interactions, one must

again attach two quasiparticle linéabeledj; andj,, say

to the first of these, while the remaining two quasiparticle
lines (labeledj, andj,) may be attached arbitrarily. We first
consider the case where these two lines are attached to the

same interaction, say threth, where 2<m<(n. This nascent
FIG. 10. All independent fourth-order, three-particle ladders. ~ connectivity is shown in Fig. 18). Note thatm must be

052502-7



JOHN M. HERBERT PHYSICAL REVIEW A66, 052502 (2002

cally equivalent. The four connected diagrams can be treated
as above, the result being a symmetry factor boRce the
connectivity has been completed. For the two unconnected
diagrams, attaching them(+3)rd interaction leads to an-
other six possibilities, and so on, until finally we come to
s . A A S attach thenth interaction. This must be done in such a way
Wil JsJa Jid2JsJe JiJ2 J3 Js that the entire diagram becomes connected, so we have in
@) ) © this final case only the four topologically equivalent, con-
nected possibilities analogous to Figs(d212f). As with
the other cases the result is a symmetry coefficient"dio2
each completed connectivity.

To obtain the number of independent four-particle lad-
ders, in the case that all four propagator lines initially con-
nect to only two interaction rungs, lgtindex the interaction
at which thej,-j, andj;-j, halves of the diagram become
s, Lo, . connected[(m+1)<q=<n]. For example,g=(m+1) in

Ji J2 03 Ja JiJ2 J3Je JiJr J3Ja Fig. 12c) but connectivities built from Figs. 18) and 12b)
@ © ) do not become connected until soape (m+1). A diagram
that becomes connected at it interaction ultimately gen-

FIG. 12. Possible nascent connectivities associated with conerates §)”’q topologically inequivalent ladder diagrams.
necting the first {1+ 1) interactions in Fig. 1(b). Two of the nascent connectivities in Fig. 12 are uncon-

] ) ) ] nected through the firah interactions, and the number of
strictly less tham in this case, because whem=n there is  ,nconnected nascent connectivities doubles each time an-
no way to build a connected diagram without backward-giher interaction is appended. Hence there &reé™® topo-
propagating quasiparticle lines. Analogous to the threejggically inequivalent nascent connectivities that first be-
particle case, we indicate a sum over signed permutations @y me connected at thgth interaction. Summation over the
j1, - - Ja with the operatoA,; this antisymmetrization jus- possible values fog andmyields the number of independent
tifies our arbitrary choice of quasiparticle labels. four-particle ladders for the case discussed thus far:

The next step is to buildup a ladder sequence from the o ] ]
first (m—1) interactions, just as we did in the three-particle > S e-me (4) q

m=2 qg=m+1 2

construction. The resulting framework is shown in Fig(t1
and carries a symmetry factor of"22 to account for twists
within the ladder. he2 1 .5

We now come to thenth interaction. There are) pairs :E(G -1- 5(2 -1, (17)
of vertices to which we may attach this interaction; as usual
we include a factor of 2 in each case and thereby considdgor eachn=3.
only connectivities that are untwisted through the finst
+1 interactions. There are six such, as shown in Fig. 12. The B. Second case
latter four are seen to be permutations of a single nascent
connectivity, while the other two are unconnected. Througi}h
the first (m+1) interactions, then, all distinct four-particle

There is a second case to consider, namely, that in which
ej, andj, quasiparticle lines do not initially connect to the

ladder connectivities are diagrammatically equivalent to ei>ame interactior(The j; and], interactions must still attach

ther (), (b), or (c) in Fig. 12. Diagrams 1@) and 12b) each tq U'i a_nd vf.) A framework fqr d_|scu35|rllg this case is de-
carry a symmetry factor of @), while the coefficient for plcteLd in Fig. 13. We attach thig line tov, and thej; line
12(c) is 2m*1), where the extra factor of 4 accounts for the {0 v, for 2<m<r<n. Cases wheren>r amount to a
topologically equivalent connectivities in Figs. (E2-12f). permutation ofj, andj,, and the operatoA, indicated in
Any diagram generated from Fig. @ is necessarily Fig. 13 accounts for all such permutations. Cases in which
connected. Untwisted connection of the remainimg-m  the j; line, the j, line, or both attach at the right of an
— 1) interactions exhausts all inequivalent connectivities thatnteraction will be incorporated as we proceed.
can be built from Fig. 1&), while a factor of 2-™" 1 ac- Through ¢—1) interactions, the four-particle nascent
counts for the equivalent, twisted connectivities. The overalconnectivity in Fig. 13 is the same as a three-particle nascent
symmetry factor for independent ladders constructed frontonnectivity that was considered previously, in Fida)7
Fig. 12c) is 2" M 1x 2M*1=2" independent ofm. (The fact that the endpoint labels differ is unimportant since
The situation is somewhat different for the as-yet-we consider all permutations of these labeEhe results of
unconnected possibilities in Figs. (B2 and 12b). Append-  Sec. IV B thus furnish the appropriate symmetry coefficient
ing the (m+2)nd interaction to either of these nascent con-through ¢ —1) interactions, namely'2®. By construction,
nectivities results in a set of six diagrams analogous to thosthis factor accounts for all diagrammatically equivalent na-
in Fig. 12. Two of these each consist of a pair of unconnectedcent connectivities, so we may assume that the ffirst
ladders, while the other four are connected and also topologinteractions in Fig. 13 are connected without topological re-
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e FIG. 14. All independent four-particle ladders at third order.

As an illustration of these results, the independent four-
) U particle ladders at third order are depicted in Fig. 14, in the
"',m,® order in which they are generated by the construction de-
scribed above. The first of these diagrams belongs to case 1
m while the other three arise from case 2.
At fourth order there are 39 independent ladder connec-
tivities. We shall not depict all of these, but two are shown in
L J Fig. 15 in order to illustrate a subtle point that does not arise
Y until fourth order. As indicated by Ed11), our ladder dia-
A, grams are constructed with an intrinsic time order, since we
do not consider topological deformations that alter the time
FIG. 13. lllustration of the four-particle counting algoritisec- order of the interactions. Consequently, the procedure de-
ond casp scribed in this section generates both of the diagrams shown
) . . in Fig. 15, which differ only in the relative time order of the
dundancies. As a result, each of i ways in which the'th  final two interactions. In evaluating the diagram shown in
interaction can be connected to those below it generates F—"\g. 15a), for example, the time argumem%andt'g for the

topologically distinct nascent connectivity. An additional fac- . . .
tor of 2 accounts for the fact that we might have attached théOpTOSt interaction are restricted to be greater than effher

j1 propagator line twR, which generates exactly the same or t3, the time argu.ments fqr the interact_ion bEIOV.V' T.his s
set of diagrams as when this propagator attacheétoFi— no prob!em n praCt'C.e’ and n fact _both diagrams n '.:'g' 15
nally, the remainingh—r interactions can each be attached "¢ easily combined into a single diagram by combining the

in (‘2‘) ways, with the usual factor of 2 at each interaction totW0 time' intggration ranges. Our restriction' on time order
account for the twisted connectivities. The total symmetrymerely simplifies the algorithm for constructing the ladders
coefficient is thus 27 1x2x 2" "=2" just as it was in the and does not affect the symmetry factors.
other four-particle case.

The total number of ladder diagrams for this case is ob-
tained as follows. We know that nascent four-particle ladders V!- LADDER-TYPE DECOUPLING APPROXIMATIONS
generated from Fig. 13 look just like three-particle ladders,
through the (—1)st interaction, so Eq(16) tells us that
there are (8°2—1)/2 nascent four-particle ladders through
the first —1) interactions.[In using Eq.(16), we have

In this section we give an overview of how the formalism
developed herein can be applied to derive decoupling ap-
proximations for the three- and four-particle propagators or
summed over possible values mffrom 2 to (r—1), hence RDMs, W't.h'n. a renormahzeq !adder-type approxmat.lon. .AS
we have indicated, the validity of such an approximation

this result is independent oh] Appending therth interac- depends upon simultaneous three-body correlations being
tion increases the number of diagrams by afactoéhf but small, although it has recently been shoya®] that self-

following this each additional interaction increases the num-

. . . . consistent iteration of the contracted Salinger equation
ber of topologically inequivalent diagrams by a factor of. : .
pologicatly Ineq 9 y @f( serves to rebuild three-body correlations that are neglected

The number of independent four-particle ladders in this sec: . o
: by ladder-type decoupling approximations for the 3- and
ond case is therefore ; . X L .
4-RDMs. At any rate, our intention here is not to justify this
3\ [4\nT approximation but rather to demonstrate how the results pre-
5 sented in Secs. IV and V greatly facilitate derivation of the
appropriate decoupling formulas.
(3(n1) The connected part of the two-particle propagator, which

3
2 ) (2”’2—1)—E(6”72—1), (18)  we represent diagrammatically as

for eachn=3. Combining this with Eq(17), we summarize
our results for four-particle ladders in the following Theo-
rem.
Theorem 2.At nth order there exist (22—1)(3"?! (@) (b)
—1)/2 independent, four-particle ladders. The total contribu-
tion to G{*) from nth-order ladders equald'&, A} acting on FIG. 15. Two independent four-particle ladders that differ only
the sum of these independent ladder diagrams. in time order.
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2

each is contained within the single renormalized diagram
kg kot ko
A ,
N

kot k4 kot kG the same way.Up to permutations of the endpoint labels,

oty ot ot Qb

! ! !
kyt! ky. k.t k.G

',;J , 3 t,

hoh Bl S5
in which the hatched square is the same effective interaction
that appears i6{?). The veracity of this claim may be veri-

) o Cei fied by substituting various two-particle diagraifisg. 16

Jvhy Johy July T in place of the effective interaction. We call this diagram a

guasipair ladder(QPL) [26] because the effective interac-
tion, according to Eq(19), represents the complete interac-
tion between goair of correlatedquasparticles within the
many-body medium. In each of the diagrams shown in Fig.

FIG. 16. A few diagrams in the expansion 6%, at second
order in the dressed interaction.

k.t k.g 17, the interactions can be partitioned into three groups that
do not overlap in time, corresponding to the three effective
2 [ @)\ G2 L interactions in the above QPL diagram.
2 [(GMNRR (1, b2 1, 85) = , (19 The diagram rules and symmetry coefficients derived pre-
viously must be modified slightly in order to account for this
latest renormalization. In contrast to the dressed interaction

Jut Bty discussed in Sec. Il, the effective interaction in EP) is

possesses a perturbative expansion consisting of connectg@nlocal in all four of its time arguments, so there is no

two-particle diagrams, several of which are shown in Fig. 16@nalogue of Eq(8) for this interaction. As a result, we must
Likewise, G can be expanded in terms of connectegintroduce an additional caveat: repeated factors of this effec-
r ~c

; ; : . _..__live interaction between the same two quasiparticle lines are
p-particle diagrams. To develop decoupling approxmaﬂons} . e . .

3 4) - > orbidden. This eliminates certain of the diagrams generated
for G andG{® in terms ofG(®), we take the latter to be a

i ) - y  inSecs. IVand V.
known quantity and recast the perturbation seriesGgt The symmetry factors derived previously are also modi-
and G\ as expansions in an effective interaction equal tofied following the renormalization introduced in this section.
the sum of all connected two-particle diagrams; this is preBecauses!? is an antisymmetric function of its coordinates,
cisely the interaction shown diagrammatically in E&9). and since no coordinate permutations are included in Eq.
Consider the selection of connected three-particle dia¢19), the effective interaction must carry this antisymmetry.
grams in Fig. 17(Endpoint labels have been omitted in this However, symmetry factors derived in Secs. IV and V per-
figure, for clarity; all diagrams are assumed to be labeled irained to an interaction that was not antisymmetrized. To
adapt these for use in the present casentheorder symme-
try coefficient of 2' must be divided by 2 in order to ac-
count for the four distinct coordinate permutatigtisink of
them as twisted diagramsontained within each factor of
the effective interaction.

Eliminating the forbidden diagrams from Figs. 9 and 10,
and supplementing the lone second-order ladder diagram,
one obtains the three-particle QPL diagrams shown in Fig.
18. In light of the remarks above, the appropriate symmetry
factor for each is (1/2) wheren is the number of effective

interactions. When augmented by this factor and also permu-

tations of the endpoint labels, the diagrams in Fig. 18 pro-
vide either a second-, third-, or fourth-order QPL approxima-
tion to GI). Similar QPL approximations fo6{* follow
from the diagrams and symmetry factors derived in Sec. V.
The effective interaction appearing in the QPL diagrams

can be obtained, in terms ng), by inverting the integral
FIG. 17. Selected diagrams in the expansiorGg? . equation corresponding to E¢L9), which allows the QPL
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tended to higher orders, and to the 4-RDM as well as the
3-RDM, with relatively little effort. These extensions are dis-
cussed more fully in Ref26].

VIl. SUMMARY

We have discussed diagrammatic representations of the
perturbation series for many-particle propagators, in terms of
connectivities and their topology. For many-particle propaga-
tors, it is vital to have in one’s mind a clear and precise
understanding of the relationship between diagrams and dis-
tinct terms in the perturbation series, because there are nu-
merous, topologically inequivalent ways to embed a
p-particle diagram as a topological object in three-
dimensional space. In addition, many terms in the perturba-
tion series possess the same diagrammatic embedding.

With regard to the latter point, we have studied in detail
FIG. 18. Three-particle QPL diagrams, through fourth order.  {ne connected, ladder-type diagrams arising in the expan-
sions of the three- and four-particle propagat®s’ and

4 . . . .
diagrams to be evaluated in terms @? . In conjunction G®. symmetry coefficients(diagram weights were de-

with known expressioni8,9,31,32 for the unconnected con- rived, which account for the number of distinct connectivi-

tributions to the propagators, QPL estimateSfP andG(» ties (terms in'the pertqrbatiqn serjethat are manifested in
thus provide aeconstructionof G& andG®, as function- each topologically distinct diagram. Use of these symmetry

als of G®. These functionals can be used to express tn&oefficients allows the perturbation series to be limited to

propagator equations of motion in terms@® alone. Inequivalent diagrams, for a savings df giagrams ainth

. . ) order. (Notably, this coefficient differs from the diagram
As noted previously, time-independent many-body pertur eight for two-particle ladder diagrams, another indication

bation theory shares a common diagrammatic representati . . ;
y 9 b at three- and four-particle diagrams have more complicated

with the time-dependent theorffrom which the time- topologies that one- or two-particle diagrajmSinally, algo-
independent theory is obtained, as a limiting gaaéhough rithms were introduced that generate the necessary sets of

the rules for evaluating these diagraftime integration ver- inequivalent three- and four-particle ladder diagrams exact!
sus energy denominators, gtobviously differ. The deriva- €q o parti 9 Y
without omissions or redundancies.

tions in Secs. IV and V, however, utilized only the topologi- Expansions oG® and G® in terms of a renormalized
cal properties of the diagrams and, implicitly, their relationto .= . .
brop g PlCItlY pair interaction derivable fromG® allows for a self-

Wick’s theorem, so all of these results are equally valid for . - ) . .
onsistent decoupling of the various hierarchies of propaga-

time-independent diagrams. In particular, one can define 4r and RDM equations of motion, thus providing a Scheme
PL imation for the 3- 4-RDM i tly th X o . N
QPL approximation for the 3- and S Using exactly efﬁ)tr direct determination of eithed®) or the 2-RDM. Absent

same diagrams as those appearing in the time-depende . . .
QPL approximation. An approximate decoupling procedure° M€ systematic procedure, direct enumeration of all neces-

can then be introducefll6,22,26, by means of which the 527 diagrams is laborious and prone to error, due to the
time-independent three- and four-particle diagrams are Writgompllcated topology of three- and four-particle diagrams.

ten as matrix products of two-particle pieces that are readil quipped W'th. the algorithms a.md.symmetry coefﬁugnts n-
evaluated in terms of the 2-RDM. roduced herein, however, derivation of the decoupling for-

The procedure described above has been implemented 69“_:_?15_ is ql{[i:]e dfa<|:ile. . tendible. i inciole. t
Nakatsuji and Yasudf21,22 to obtainreconstruction func- NS methodology IS extendibie, in principle, 1o many-
tionals for the 3- and 4-RDMs: such functionals are needeopartlcle diagrams that are not of the ladder variety, although

in order to solve the contracted Schinger equation directly the al_Jthor’s experience hmt_s that the formalism IS more
for the 2-RDM. Nakatsuji and Yasuda consider only thecompllcated for nonladder diagrams. These extensions are

lowest-order (second-order correction to the 3-RDM and worth pursuing, should the ladder-type decoupling schemes

utilize an unconnected approximation for the 4-RDM. Theoutlined_ in Sec. VI yi_eld a useful starting point for direct
symmetry coefficients for their second-order, three—particlecalcuIatIon of two-particle propagators or RDMs.

QPL approximation appear to have been derived by brute-
force enumeration of the diagrams, since no mention is made
of any systematic paradigm. The procedures developed The author thanks Professor John Harriman for extensive
herein thus simplify the derivation of Nakatsuji and Yasuda’sdiscussions and for comments on the manuscript. This work
reconstruction functionals. More importantly, our methodswas financially supported by the U.S. Department of
allow this “reconstructive” perturbation theory to be ex- Defense.
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