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INTRODUCTION AND OVERVIEW

What Is a Loosely-Bound Electron?

By some measure, the title of this chapter could have been “The quantum
chemistry of weakly-bound anions,” because much of it will focus on how to
describe the weak binding of an “extra” electron to a stable, neutral molecule
using electronic structure theory. Electron binding energies in such cases
may be quite small, typically less than the largest atomic electron affinities
(EAs)1 (3.4 eV for F and 3.6 eV for Cl), and even less than 0.1 eV in some
cases. Unlike the case where a neutral molecule, M, is ionized, an electron
separated from the anion M− does not experience an attractive −1∕r potential
at large separations,2,3 but rather only charge–dipole and or higher order
charge–multipole interactions. Cases where the electron affinity of M is
≲ 0.5 eV are the signature of a short-range valence potential that is weakly
attractive at best, such that electron binding in M− results primarily from
long-range electron–molecule, charge–multipole interactions. In such cases,
one expects to find an unpaired electron in M− that is radially diffuse, much
more so than in F− or Cl−, for example. It is in this sense that the odd electron
in M− is “loosely-bound.” Moreover, the preceding discussion assumes that
M− is bound at all, but in fact we will also consider cases in which the electron
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392 The Quantum Chemistry of Loosely-Bound Electrons

is adiabatically unbound (higher in energy than M + e−), but where the species
M− can exist as a temporary anion resonance, trapped behind some energy
barrier that often originates from the centrifugal potential required to conserve
angular moment when removing an electron from an orbital with 𝓁 > 0.

We will further broaden our definition of what constitutes a
loosely-bound electron to include a discussion of solvated electrons, which one
might define as cluster anions M−

N where the odd electron is bound collectively
by the solvent molecules, insofar as the anion M− of a single solvent molecule
is not a bound species. In a small cluster, M−

N might be weakly-bound, but
depending on the number (N) and nature of the solvent molecules, the electron
binding energy of M−

N can sometimes be quite large, up to a few eV in some
cases. This is still much smaller than the ionization energy of the neutral
cluster MN, and in this sense the “extra” electron may still be considered to
be weakly-bound. As a definite example, consider the case M = H2O. Vertical
electron binding energies in (H2O)−N clusters, as measured by photoelectron
spectroscopy, can exceed 2 eV for N ≳ 100,4,5 and the best estimates in the
bulk limit (N → ∞) lie in the range of 3.3–4.0 eV.5–10 Insofar as H2O− is not
bound,11 however, the unpaired electron cannot be said to be associated to
any one particular water molecule and is thus “loosely-bound.”

As another example of what we have categorized, for the purpose of
this chapter, as loosely-bound electrons, we will consider excited electronic
states of anions that possess enough energy to access an electronic contin-
uum, or in other words, excited states where the excitation energy is greater
than the electron detachment energy. Such states exist, if at all, only as tem-
porary, “auto-ionizing” resonances. Other temporary anion resonances (viz,
shape resonances and Feshbach resonances) will be explained and discussed
as well. These temporary anion resonances are chemically important in the
context of dissociative electron attachment (DEA),12 in which resonant attach-
ment of low-energy electrons is followed by internal conversion to a state where
covalent bond dissociation is energetically feasible. DEA provides a mechanism
wherein energy barriers that would be thermodynamically insurmountable on
the Born–Oppenheimer potential surface for M + e− are bypassed by means of
nonadiabatic transitions, leading to molecular fragmentation in the presence of
electrons whose kinetic energies are “just right.”

Scope of This Review

Each of the aforementioned phenomena presents special challenges for
quantum chemistry, and the methods required to meet these challenges are the
primary topic of this chapter. In addition, this chapter provides a discussion
of the basic quantum mechanical concepts that underlie the collection of
phenomena that this author has categorized as “loosely-bound electrons.”
A limited discussion of some of the interesting chemical systems that fall
under this moniker is provided as well, although this chapter is not intended
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to be a comprehensive review of the field of weakly-bound anions, solvated
electrons, or anything else. Several excellent topical reviews have appeared in
the past few years, to which the reader is referred for a thorough discussion
of the chemistry. These include a comprehensive 2008 review of the whole
field of molecular anions (experiment as well as theory),2 and a more recent
review focused on theoretical calculations.3 Reactions induced by low-energy
electrons have also been thoroughly reviewed in the past few years, including
several general overviews of electron-induced reactions,12–14 a review of
biological radiation chemistry and the role of “presolvated” electrons in
biological radiation damage,13 and a review of electron attachment (EA)
to DNA, focusing on electronic structure calculations.14 Solvated electrons,
both in clusters and in bulk liquids, have been reviewed recently from both a
theoretical perspective15,16 and an experimental perspective.17–19

This work is intended as an introduction to these topics and a tutorial
guide to performing quantum chemistry calculations intended to model these
types of molecular systems and phenomena. The focus here is on methods that
are readily available in standard quantum chemistry software packages and
thus, for example, we will discuss the calculation of resonance states using
modifications of bound-state methodology,20 since bound states are what one
computes in traditional quantum chemistry. Alternative formalisms such as
scattering theory21–26 or the explicit treatment of the interaction of a discrete
state with a continuum state27,28 will not be discussed here. The use of complex
absorbing potentials29–31 is discussed only briefly.

Our discussion of electronic structure calculations is further limited to
methods based on Gaussian basis sets rather than plane waves. This restric-
tion is partly a matter of taste, and in fact one can make a good case that
a plane-wave basis is better suited for representing the most diffuse parts of
a weakly-bound anion’s electron density, as compared to a basis comprised of
localized, atom-centered functions. However, a more important concern (in this
author’s view) is the fact that Hartree–Fock exchange is prohibitively expensive
to compute in a plane-wave basis. Although significant progress has been made
in this respect,32 the cost remains prohibitive unless the nonlocal exchange
interaction is screened at long range.33,34 As a result, the hybrid functionals
that provide the best performance for many molecular properties are ordinar-
ily not available in plane-wave density functional theory (DFT) calculations,
which proves particularly egregious in the case of weakly-bound anions. Cor-
related, post-Hartree–Fock wave functions are similarly unavailable in most
plane-wave codes, which is another reason to dismiss plane waves in the present
context.

As the title of this chapter suggests, the discussion here is limited, for the
most part, to loosely bound electrons, meaning that valence ionization is not
considered to any significant extent. It is important to keep in mind, however,
that “loosely-bound” need not mean “weakly-bound.” As mentioned earlier,
vertical electron detachment energies in excess of 1–2 eV are possible even
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in solvated-electron clusters where the “extra” electron is not strongly asso-
ciated with any particular molecular unit or chemical moiety. That said, the
quantum chemistry of weakly-bound, gas-phase anions is certainly discussed
herein, at a somewhat more pedagogical level as compared to previous reviews
on that subject.2,11,35 An exception is that Refs. 2 and 37 describe the under-
lying theory behind various post-Hartree–Fock quantum chemistry models,
material that is not covered here at all (it has been covered in previous chapters
in this series36,37). This review assumes a basic familiarity with the nomencla-
ture of quantum chemical models and basis sets, at the level of introductory
textbooks35,38,39 or previous chapters in this series.36,40,41 The performance of
a variety of quantum chemical models, as applied to weakly-bound anions, is
addressed in detail, but the inner workings of these models is not discussed here.

A unique feature of this chapter, as compared to other reviews of anion
quantum chemistry that have appeared in the past decade,2,11,42 is a greater
emphasis on treating larger systems, including anions in the condensed phase.
In large systems, compromises must inevitably be made in terms of the theoreti-
cal methods that can be deployed. As such, density functional methods – which
have hardly been discussed at all in previous reviews of anion quantum chem-
istry, except briefly in Ref. 2 and in a benchmarking capacity in Ref. 43 – are
discussed at length here. Previous chapters in this series provide an introduction
to DFT itself,40,41 but the focus here is on the performance of the models, not
their intimate details. There has been some controversy regarding the applica-
bility of DFT to anions,44–46 however, which will require delving into a bit of
detail.

Finally, this chapter covers not just bound-state methods but also methods
that can safely be applied to metastable anions (i.e., temporary anion reso-
nances), which is a far less mainstream topic.20 For metastable anions, the
emphasis of this chapter is on those methods that have been implemented in
standard quantum chemistry codes and are therefore widely available to the
chemistry community.

Chemical Significance of Loosely-Bound Electrons
Weakly-bound anions with electron detachment energies < 0.1 eV can be pro-
duced and detected experimentally.2,11 At some level, it is tempting to be cynical
about the significance of an anion M− whose electron detachment energy is
that small, since excitation of any vibrational mode with 𝜈 ≳ 800 cm−1, or
some combination of rotational and or vibrational excitations adding up to
∼800 cm−1, provides enough energy to detach the electron, depending on how
the modes in question couple to the weakly-bound electron and modulate the
electron binding energy.47–49 However, there are other possible fates for M−

that are more interesting, such as a nonadiabatic transition into a different
anion electronic state.

Anions that are formally unbound but metastable can be chemically
important. These temporary anion resonances are discussed in detail later
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in this chapter, but a pictorial illustration of one important case is provided
in Figure 1. In this particular example, the energy of the anion AB− lies
above that of neutral AB at the geometry of the latter. However, an incident
electron with appropriate kinetic energy can attach (into a virtual orbital of
AB) to form AB−, but the energy of the anion that is formed lies above the
dissociative asymptote of AB−. This is an example of DEA.12 Experimentally,
this temporary anion resonance manifests as a yield of ions B− and radicals A•

for incident electron energies that lie within a certain range that is defined by
the Franck–Condon envelope of AB’s wave function projected onto the AB−

potential surface. The thermodynamic driving force for DEA is often the large
electron affinity of the B moiety, as suggested in Figure 1.

From the standpoint of radiation chemistry, DEA reactions such as these
are classified as low-energy electron-induced reactions,12,13,50 since they are
driven by “secondary” (subionizing) electrons with E < 15 eV, rather than the
fast “primary” electrons that have enough kinetic energy to generate molecular
ions directly. An excellent recent overview of low-energy electron-induced
reactions, from an experimental perspective, can be found in Ref. 12. One key
feature of electron-induced reactions is high selectivity for cleavage of specific
bonds, which need not be (and often are not) the thermodynamically weakest
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Figure 1 Schematic representation of a temporary anion resonance leading to dissocia-
tive electron attachment. Within the Franck–Condon envelope of the neutral molecule
AB (shaded region), electron attachment is possible if the incident electron has an energy
that matches the vertical attachment energy (VAE), equal to E(AB−) − E(AB). On the
AB− potential surface, the temporary anion possesses sufficient energy to dissociate to
A• + B−, and this manifests as an observed yield of products (A• or B−) in the energy
window defined by the Franck–Condon envelope. (The vertical energy scales at the left
and right are the same, so that the potential surfaces map directly onto the observed
dissociation yield.) Important energetic quantities are indicated, including the VAE and
the adiabatic electron affinity (AEA) of the molecule AB, the vertical detachment energy
(VDE) of AB−, and the electron affinity (EA) of species B. The last is the driving force,
chemically speaking, that stabilizes the AB− potential surface relative to that of AB.
Adapted with permission from Ref. 12; copyright 2010 Elsevier.
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bonds in a polyatomic molecule, owing to details of the nonadiabatic nature of
the electron-induced reaction. This fact has been exploited in proof-of-concept
experiments that use DEA to break selected chemical bonds with 100%
selectivity,51 and single-molecule specificity,52,53 for molecules adsorbed on a
solid substrate. (In these particular experiments, the reagent electrons were
generated using the tip of a scanning tunneling microscope.) A longer list
of examples and potential applications of reactions induced by low-energy
electrons can be found in Ref. 12.

Chlorofluorocarbons (CFCs) tend to have large cross sections for DEA,
owing to the large EAs of the halogen atoms, and have been common targets for
laboratory studies of DEA. The DEA cross sections for CFCs are enhanced fur-
ther still by several orders of magnitude relative to gas-phase values, for DEA
occurring at the surface of water ice.54–57 Laboratory experiments consist of
adsorbing, for example, CFCl3 at low-surface coverage onto a thin film of ice
prepared on a metal substrate; solvated electrons at the ice/vacuum interface
are subsequently generated by photoexcitation of the metal.55,58,59 The reac-
tion CFCl3 + e−→•CFCl2 + Cl− is observed even at very low surface coverage
of CFCl3,55,59 suggesting a highly efficient reaction. Absent the CFC, the pho-
togenerated electrons in these experiments are found to be stable for minutes
at the ice/vacuum interface.60 (For comparison, solvated electrons generated
by radiolysis of bulk liquid water survive for only about 10 μs,61 owing to
fast diffusion and a variety of recombination reactions with other radiolysis
byproducts.62)

In view of this, it has been proposed that hydrated electrons generated on
the surface of stratospheric ice crystals, via cosmic rays, could contribute to Cl−

formation via DEA of adsorbed CFCs.54,56 Photodetachment of the chloride
ions might then provide a mechanism to generate the Cl radicals that lead to
ozone destruction. However, attempts to link these laboratory observations
directly to stratospheric ozone chemistry have been strongly criticized,63–71

although modeling does leave open the possibility that, at the very least,
HCl destruction on ice crystals might be important for stratospheric chlorine
chemistry.67 More work is evidently needed to resolve this controversy.

A slight variant on the DEA picture introduced in Figure 1, but one wor-
thy of mention in its own right, is the possibility of long-range electron capture
in the gas phase into a Rydberg-type orbital of some molecule. Suppose that our
molecule, M, consists of two different functional groups connected by a single
bond, M = R1—R2. If an electron initially attaches to the molecule R1—R2
via some unoccupied (virtual) molecular orbital (MO) associated with the R1
moiety, but subsequently tunnels into a 𝜎

∗ orbital associated with the R1—R2
bond, then the net effect is to reduce the formal bond order for R1—R2. It
may then be the case that the anion is no longer a bound state with respect to
dissociation along the R1—R2 bond. The process in question can be written

R1 − R2 + e− → (R1 − R2)− → R−
1 + R•

2 [1]
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Assuming that the products R−
1 + R•

2 are lower in energy than the
reactants (R1 − R2 plus an infinitely separated electron), then the intermediate
species (R1 − R2)− is a temporary anion resonance, since the bound-state
configuration of moieties R1, R2, and an extra electron is R−

1 + R•
2, not the

anion (R1 − R2)−. Whether reaction [1] will occur in practice depends sensi-
tively on the barrier(s) and nonadiabatic couplings involved in the second step
(nonadiabatic transition to the dissociative 𝜎

∗ state), as well as the energy of
the incident electron, which controls whether the temporary anion resonance
can be accessed or not.

In the case of weakly-bound anions, we note that if the electron binding
energy of M− is very small, then the unpaired electron is bound very diffusely,
so that it may, on average, be well-separated from the molecular core, M. This
scenario is unlikely to occur except in the gas phase, where M− is well sepa-
rated from other molecules. Long-range electron capture into Rydberg orbitals,
to form very weakly-bound gas-phase anions, is the mechanism that underlies
the techniques known as electron capture dissociation72 and electron transfer
dissociation73 that are used for protein sequence analysis via mass spectrom-
etry. In these methods, capture of low-energy electrons by highly protonated,
gas-phase polypeptides leads to highly specific fragmentation patterns, with
cleavage of disulfide bonds and N−C

𝛼
bonds as the dominant fragmentation

channels. Simons and coworkers74–78 have performed quantum chemistry cal-
culations in an attempt to understand the mechanism(s) behind this specificity,
and the potential energy curves shown in Figure 2 illustrate the DEA phe-
nomenon. In these calculations,74 the molecule is actually a cation (consistent
with the aforementioned experiments), namely, M+ = H3CS—S(CH2)2NH+

3 .
EA directly to the 𝜎

∗(S − S) orbital is energetically feasible at the parent cation’s
geometry, with a resulting potential curve that is indeed dissociative along the
S—S coordinate. However, the cross section for this direct attachment process
is found to be small. Instead, EA to excited Rydberg states of the —NH+

3 moi-
ety appears to offer a substantially enhanced cross section that also ultimately
results in S—S dissociation, via a DEA mechanism.77

Moving from the gas phase into solution, there is evidence that very
low-energy electrons can damage DNA,79–81,13 via a DEA mechanism some-
what analogous to that discussed earlier.82,83 In this context, “low energy”
means electrons whose kinetic energies are less than the ∼4 eV bond energies
of the single bonds that are ruptured in DNA single-strand breaks. (In the
context of radiation chemistry, electrons in the range 0–20 eV are typically
classified as “low-energy” electrons, since this is the energy distribution of
secondary electrons formed from primary ionization events,84,13 but here
we are focusing on the low end of this range.) Experimental studies of very
low-energy (E < 3 eV) EA to gas-phase nucleobases show high site selectivity
in the ion yields. For example, in thymine and uracil, there is a resonance
around E ≈ 1 eV corresponding to the dissociation of the N1—H bond (where
the base would attach to the sugar in DNA) and a somewhat higher energy
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Figure 2 Potential energy curves along the S—S coordinate, for the protonated model
peptide M+ = H3CS—S(CH2)2NH+

3 and electron-attached states thereof. Shown are
states in which the electron attaches to either of two different Rydberg orbitals localized
on the —NH+

3 moiety and the state that results from direct e− attachment to the 𝜎
∗(S—S )

orbital. Orbital isosurfaces were computed at R = 3.6 Å and contain 60% of the orbital
density in each case. Estimated nonadiabatic couplings between the Rydberg states and
the 𝜎

∗ state are shown as well. Adapted with permission from Ref. 74; copyright 2006
Elsevier.

resonance corresponding to N3−H dissociation. Notably, the former is absent
when the N1 site is methylated,85 or even deuterated,86 suggesting that the
lowest energy electrons might generate H atoms in DNA, but would not lead
directly to the loss of the nucleobase.

A mechanism for single-strand breaks induced by electrons with E ≲ 2 eV
has been proposed by Simons82 on the basis of theoretical calculations. The first
step is formation of a temporary anion resonance involving electron capture by
a 𝜋

∗ orbital of the nucleobase to form an anion radical, (nucleobase)•−. Sub-
sequently, the anion may undergo a nonadiabatic transition to a dissociative
𝜎
∗ state involving a sugar–phosphate C—O bond,82,14 and theoretical esti-

mates of the nonadiabatic transition rate suggest that this process is feasible
within the lifetime of the temporary anion resonance.75,77,74,78 This mecha-
nism is consistent with experimental results for gas-phase deoxyribose, in which
near-zero kinetic energy electrons were found to dissociate C—O bonds of the
sugar.87 However, direct experimental identification of these putative (𝜎∗)− tem-
porary anion resonances remains debatable,21,88,23,26,89 because they tend to
have shorter lifetimes as compared to (𝜋∗)− resonances and are thus subject to
a greater degree of lifetime broadening.
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Figure 3 Pathways for three possible single-strand breaks in the radical anion
of 2′-deoxycytidine-3′,5′-diphosphate, dCDP•−. The upper panels show computed
minimum-energy pathways in the gas phase and in a polarizable continuum model of
aqueous solvation, while the lower panels depict the calculated transition states corre-
sponding to rupture of the 5′ sugar—phosphate C—O bond, the 3′ sugar—phosphate
C—O bond, or the glycosidic C—N bond, with arrows to emphasize the direction of
bond scission. Adapted with permission from Ref. 90; copyright 2010 Oxford University
Press.

Figure 3 shows some computed minimum-energy pathways for single
bond ruptures in the radical anion of the nucleoside deoxycytidine diphos-
phate, dCDP•−.90 Pathways leading to dissociation of either the 3′ or the 5′

sugar–phosphate C—O bond, and also the glycosidic C—N bond, have been
located, but the computed energetics suggest that the latter pathway is inacces-
sible with the energy available from forming dCDP•− from its dCDP precursor.
The lower barrier of the 3′ pathway relative to the 5′ pathway and the high
barrier to C—N bond cleavage are all qualitatively consistent with experi-
mental studies in which DNA was bombarded by electrons in the 6–15 eV
range.80,81 In those experiments, the relative yield of 3′ cytidine strand breaks
to 5′ strand breaks increased significantly as the energy of the incident electrons
was decreased, and products corresponding to glycosidic bond cleavage were
not detected.80,81
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A possible precursor for DEA reactions occurring in condensed media
is the solvated electron, and as such this species (in various solvents, but
especially water) has been studied extensively.91,17,18,15,16,13 Solvated electrons
are generated in high yield by radiolysis of the solvent,13 but are also generated
by photoionization of common UV chromophores such as indole,92 the
chromophore in tryptophan. In that case, geminate recombination of the ion
pair (a solvated electron and an indole cation radical) is slower than the
diffusion limit,92 such that these photogenerated solvated electrons may have a
chemical role to play in solution-phase photochemistry. In the gas phase, finite
cluster analogues of the solvated electron serve as interesting model systems
for understanding how a solvent accommodates an excess charge.93–95,16,19

Challenges for Theory
Systems containing loosely-bound electrons pose special challenges for elec-
tronic structure calculations that are absent in calculations of cations, neu-
tral molecules, or even strongly-bound valence anions. For an anion, sepa-
ration of an electron from the molecular framework leaves behind a charge
neutral molecule or radical, so that an “outgoing” electron does not feel a
−1∕r Coulomb potential, as it would were an electron removed from a neu-
tral molecule, leaving a cationic core. Rather, the long-range electron–molecule
potential decays as −1∕r2 (charge-dipole) or faster.2,3 The result, which is dis-
cussed quantitatively later in this chapter, is that the anion’s electron density is
significantly more diffuse as compared to that of a neutral molecule or cation.
This is true for strongly-bound anions as well as weakly-bound ones, but the
radial extent of the electron density increases exponentially as the electron bind-
ing energy decreases. This places special demands on the basis sets that are used
to describe weakly-bound anions.

In addition, for a weakly-bound anion it may be necessary to consider
the possibility that the molecule’s vibrational motion could access regions of
the potential energy surface where the anion is no longer thermodynamically
stable with respect to electron ejection (autodetachment). For weakly-bound
anions in the gas phase, autodetachment induced by rotational motion may
also need to be considered.2

In terms of the level of electronic structure theory that is required, cal-
culation of EAs, or, in other words, electron detachment energies for anions,
tends to be more demanding than calculation of ionization potentials (IPs), if
for no other reason than that the former tend to be smaller in magnitude than
the latter. As evidence for this, one need look no further than the periodic table:
atomic EAs are bounded above by that of chlorine, at 3.6 eV,1 whereas atomic
IPs range from 5.4 eV for Li up to 17.4 eV for fluorine and larger still for
the noble gases.96 A few examples for atoms and small molecules are shown
in Table 1, illustrating that IPs tend to be ≳ 8–10 eV whereas EAs are typi-
cally ∼3 eV. (Even for molecules, a comprehensive review of experimental EAs
from photoelectron spectroscopy reveals only a very few examples larger than
4–5 eV.43)
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Table 1 Experimental Adiabatic Electron Affinities (AEAs) and Ionization Potentials
(IPs) for Some Atoms and Small Moleculesa

IP (eV) EA (eV) IP (eV) EA (eV) IP (eV) EA (eV)

C 11.26 1.26 OH 12.97 1.83 S2 9.37 1.70
Cl 12.97 3.62 P 10.49 0.75 SH 10.36 2.31
Cl2 11.50 2.41 PH 10.15 1.01 Si 8.15 1.38
O 13.61 1.46 PH2 9.81 1.27
O2 12.09 0.47 S 10.36 2.08

Reprinted with permission from Ref. 97; copyright 2003 American Chemical Society.
aThis is the “EA13/03” database of Ref. 97 and estimated vibrational zero-point energies have
been removed from the experimental data.

Moreover, EAs are intensive quantities, as are IPs, whereas both the total
electronic energy and the correlation energy are extensive. Thus, as molecular
size increases the EA that one is attempting to calculate represents a diminishing
fraction of the total energy.98,99,2 Simons2 has used this fact to argue in favor of
the so-called equation-of-motion (EOM) methods98,99 (also known as Green’s
function100 or electron propagator101–104 methods), in which EAs and IPs are
computed directly, in a single calculation, not evaluated as an energy difference.
This is accomplished by means of a perturbative or cluster-type expansion of
the EA or IP itself.

On the other hand, the correlation energy is always growing with
system size, and therefore one always faces the problem that intensive energy
differences such as bond dissociation energies or barrier heights are shrinking
in comparison to the total correlation energy, as molecular size increases.
The problem is intrinsic to large-molecule quantum chemistry and is the
reason why only size-extensive methods such as coupled-cluster (CC) the-
ory and many-body perturbation theory are appropriate for large systems.
Methods that lack size-extensivity, such as truncated configuration interaction
approaches, will recover a diminishing fraction of the correlation energy as
the number of electrons increases. In the context of EA or IP calculations,
the key is to use size-extensive quantum chemistry methods that are carefully
calibrated to provide a balanced description of both the neutral and the ionized
molecule.

On the topic of electron correlation and balanced approximations,
another challenge in the application of quantum chemistry to weakly-bound
anions is that the “zeroth order” estimate of the electron affinity, namely,
the so-called Koopmans’ theorem (KT) estimate35 (EA ≈ −𝜀LUMO) is typ-
ically a worse approximation than is the analogous KT estimate for the
IP (IP ≈ −𝜀HOMO). This has to do with an error cancellation in the latter
estimate that is not present in the former, where errors arising from neglect
of electron correlation and neglect of orbital relaxation have the same sign,
whereas for IPs these errors have opposite signs. This underscores the need
for high-level, correlated descriptions of molecular anions, which adds to the
cost. Special problems in the density-functional description of anions, arising
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from self-interaction associated with the half-filled orbital of an extra-valence
anion, complicate matters further, although the present situation is much
better than it has been in the past, due to recent progress in functional
development.

Finally, the calculation of temporary anion resonances poses a challenge
for quantum chemistry because the metastable anion M− lies higher in energy
(at a fixed molecular geometry) as compared to M + e−, where the electron
is an outgoing plane wave. Attempts to compute the energy of M− using
standard, bound-state quantum chemistry methods are therefore susceptible
to variational collapse, wherein the wave function for what is ostensibly
M− collapses to the wave function for M + e− as the basis set approaches
completeness.20 Finite-basis calculations thus afford a deceptively seductive
but ultimately unrealistic description of M−,2 and modifications to standard
quantum chemical methods are required to compute accurate energetics for
the metastable anion.20

TERMINOLOGY AND FUNDAMENTAL CONCEPTS

This section defines and explains some basic chemical and quantum-mechanical
concepts concerning anions. Bound anions (where M− is lower in energy than
M, at the minimum-energy geometry of the former) are considered first, and
subsequently we discuss metastable anions, also known as temporary anion
resonances. For easy reference, a list of acronyms is provided at the end of this
chapter.

Bound Anions

Attachment and Detachment Energies
We begin with a careful exposition of the various energy differences associ-
ated with attaching or removing an electron. For negative ions in general, one
of the key experimental observables that is directly accessible from ab initio
calculations is the vertical detachment energy (VDE), sometimes called the ver-
tical electron binding energy. This quantity is defined pictorially in Figure 1 as
the energy gap between the ground-state energy of the anion (call it M−) at its
equilibrium geometry and the value of the neutral molecule’s potential energy
surface at the anion geometry. Note that the ground-state energy of the anion
should properly include the anion’s zero-point vibrational energy, as indicated
in Figure 1. That said, a vertical transition from the anion’s minimum-energy
geometry need not land on a vibrational state of the neutral molecule, poten-
tially leading to the appearance of a vibrational progression in the anion’s
photoelectron spectrum. In the example of Figure 1, the v = 0, v = 1, and v = 2
states of AB are likely to be accessed via photodetachment from the v = 0 state
of AB−.
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Insofar as one is able to map out potential energy surfaces for both M
and M−, one could compute such a vibrational progression by evaluating the
appropriate Franck–Condon factors, ⟨𝜓anion(v = 0)|𝜓neutral(v)⟩. On the other
hand, taking a classical-mechanical view of the nuclear motion, it is often
convenient to define the VDE as a continuously varying function of molecular
geometry:

VDE(R) = Eneutral(R) − Eanion(R) [2]

Here, both energies are evaluated at the same geometry, R. For R = Ranion,
this definition coincides with the “experimental” definition of the VDE that
is suggested in Figure 1, provided that zero-point corrections are included in
Eanion(Ranion), by computing vibrational frequencies for the anion. However,
we allow for arbitrary R in the definition used here, since Eq. [2] can be used to
sample the VDE along a molecular dynamics trajectory. In such a calculation,
a histogram of the fluctuations in VDE(R) provides a semiclassical explana-
tion for the width of the photoelectron spectrum.105 The semiclassical picture
suggests that Eq. [2] can be used to find and delineate regions of the anion’s
potential energy surface where the electron would be expected to autodetach,
that is, regions where VDE(R) ≤ 0.

Note that Eq. [2] defines the VDE, which excludes relaxation of the neu-
tral species following electron detachment. Including that relaxation energy
defines the adiabatic electron detachment energy, which is more often called
the adiabatic electron affinity (AEA),

AEA = Eneutral(Rneutral) − Eanion(Ranion) [3]

The AEA is also depicted pictorially in Figure 1, as is the vertical attachment
energy (VAE), which is defined analogously to the VDE but starting from the
ground state of the neutral molecule:

VAE = Eanion(Rneutral) − Eneutral(Rneutral) [4]

One note of caution about terminology: the phrase “electron affinity”
by itself (as opposed to AEA) is used somewhat ambiguously in the literature,
in the sense that the EA in question might be the AEA, or it could be the EA
for a vertical process. We caution against this ambiguous usage. In contrast,
the vertical EA and the VDE are two different names for precisely the same
energetic quantity, and the use of one term over the other is simply a matter of
taste.

In principle, the AEA can be determined experimentally from the onset of
the photoelectron spectrum.43 In practice, however, large differences between
the anion and neutral geometries, arising from electron penetration into
antibonding orbitals of the neutral molecular framework, leading to reduced
formal bond orders in the anion, can give rise to unfavorable Franck–Condon
factors that make the AEA difficult to determine.2 Indeed, the schematic
potential energy surfaces in Figure 1 suggest that the M−(v = 0) → M(v = 0)
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transition will be difficult to locate, experimentally. (The paucity of bound
excited states for anions also limits the available experimental techniques to
determine EAs.2) In such cases, theoretical calculations may be the only means
to determine the AEA. In cases where the photoelectron spectrum cannot be
vibrationally resolved and fit to a Franck–Condon progression, the VDE is
usually taken to be the location of the maximum spectral intensity.

Classification of Molecular Anions
The diffuse nature of an anion’s electron density can be understood by exam-
ining the asymptotic behavior of the potential energy function for removing an
electron from either a neutral molecule, M, or else an anion, M−. Such potential
functions are illustrated schematically in Figure 4(a), and we consider the neu-
tral case first. Ionization of the neutral molecule leaves behind a cationic core
and thus asymptotically the potential energy function for this process looks like
an attractive Coulomb potential between the outgoing electron and the cation,
V(r) ∼ −1∕r. (At short range, the potential ultimately becomes repulsive due
to the other valence electrons.) This deep potential well can support a large
number of bound states, whose energies can be fit to the formula

En = −
ZeffRH

(n − 𝛿)2
[5]
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Figure 4 (a) Schematic depictions of the one-electron potential energy function for
removing a valence electron from a neutral molecule, a singly-charged anion, or a (sta-
ble) doubly-charged anion. The bound-state energy levels represent Rydberg states,
and although the figure is qualitative it correctly suggests that anions typically have
very few bound Rydberg states. (b) Alternative potential for electron ejection from a
multiply-charged anion Mn−, in the case where this species is metastable, being trapped
behind a repulsive Coulomb barrier (RCB). Panel (a) is based on a similar figure in Ref.
2; copyright 2008 American Chemical Society. Panel (b) is based on a figure in Ref. 106;
copyright 2000 American Chemical Society.
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where Zeff is some effective charge, RH = 13.6 eV is the Rydberg constant, and
𝛿 is known as the quantum defect.107 In analogy to the Rydberg series for the
hydrogen atom, these states are known as Rydberg states, and it is clear from
the figure that they constitute a series of increasingly diffuse excitations (as n
increases) of one electron about a cationic core.

Removing an electron from M− leaves a charge-neutral core. The
monopole therefore vanishes in a multipole expansion of the electron–molecule
(M + e−) Coulomb interaction, hence there is no strongly attractive−1∕r poten-
tial at long range, as there is in the M+ + e− case. The long-range form of
the potential for M + e− reflects higher order charge–multipole interactions,
the longest range of which is the charge–dipole interaction, V(r) ∼ −𝜇∕r2, if
M possesses a nonzero dipole moment, 𝜇. [If M has no dipole moment but a
nonzero quadrupole moment, Q, then the asymptotic form of the potential is
a charge–quadrupole interaction, V(r) ∼ −Q∕r3.] The M + e− potential well
in Figure 4(a) is much shallower than that for M+ + e−, consistent with the
observation that IPs for neutral atoms and molecules are large compared to
EAs. As such, the anion typically possesses few (if any) bound Rydberg states.2

In view of this discussion, it is tempting to conceptualize the
weakly-bound anions of polar molecules as dipole-bound anions.11 Solution of
the Schrödinger equation for an electron interacting with a point dipole reveals
that bound states are obtained for dipole moments 𝜇 > 1.625 debye,108,109

with no further molecular structure required. (In practice this threshold should
be modified to something like 𝜇 ≳ 2.4 debye,11 owing to the possibility of
rotational-to-electronic energy transfer,110–112 but the point remains that
a sufficiently large dipole moment alone is enough to bind an electron.)
As discussed in detail in Ref. 2, however, it is difficult to fully disentangle
the long-range charge–dipole interactions from shorter-range valence-type
interactions involving the Coulomb and exchange potentials established by
the occupied MOs, which can also stabilize electron binding. A detailed
mathematical analysis of these valence interactions has been given by
Simons.42,3

As a result of these competing interactions, the distinction between
a valence anion and a dipole-bound anion is sometimes ambiguous. For
example, the acetonitrile (CH3CN) molecule has a calculated dipole moment
of 3.94 debye,113 well above the threshold value, and an experimental VDE
of 0.012 eV.114 These values might suggest that electron binding will be
extremely weak unless the dipole moment is extremely large, since CH3CN
already has a sizable dipole moment as small molecules go, yet barely binds
an extra electron. At the same time, the (BeO)−2 anion has been classified as
quadrupole-bound,115 since the dipole moment of the D2h (BeO)2 framework
vanishes by symmetry. One might therefore expect a smaller VDE for (BeO2)−
as compared to dipole-bound cases, yet the computed VDE for (BeO)−2 is
1.1 eV!115 Clearly, short-range valence attractions must contribute significantly
to the stabilization of (BeO)−2 .



406 The Quantum Chemistry of Loosely-Bound Electrons

Even in cases where it seems safe to classify M− as a dipole-bound anion,
the balance of long-range charge–dipole interactions and short-range valence
interactions means that there is no clear correlation between the magnitude
of the neutral molecule’s dipole moment (call it 𝜇0) and the VDE of its anion.
For example, whereas 𝜇0 = 3.94 debye for CH3CN− (computed at the MP2
level),113 and the experimental VDE of this anion is a mere 0.012 eV,114 the
water dimer anion exhibits a smaller value of 𝜇0 (≲ 2.0 debye at the MP2
level116), yet a larger experimental VDE (≈ 0.045 eV).117,118

The water dimer anion also provides a simple example of a system
where vibrational motion can promote autodetachment. Figure 5 shows
one-dimensional potential energy scans of (H2O)−2 and (H2O)2 along the
so-called “flap angle” that connects cis and trans isomers of the dimer. The
cis isomer of the anion is stabilized by an enhanced dipole moment, but
this isomer is destabilized in the neutral dimer owing to slightly larger steric
repulsion. The ground vibrational state of (H2O)−2 is bound by ≈ 0.045 eV,
but the vflap = 1 state is much closer to the neutral vflap = 0 energy and might
autodetach if nonadiabatic effects were considered. (The semiclassical picture
is that motion along the flap angle coordinate may access the trans geometry,
where autodetachment is more likely.)

Consider also the case of (uracil)−. This anion exhibits both a diffuse,
dipole-bound state and a valence anion state, the latter characterized by a
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Figure 5 Solid curves: potential energy scans for (H2O)−2 and (H2O)2 along the “flap
angle” coordinate, with the other coordinates relaxed. (The cis and trans structures of
the anion, shown at right, suggest the nature of the flap angle.) Calculations were per-
formed at the CCSD(T) level with a large, diffuse basis set,119 and harmonic zero-point
corrections for all coordinates except the flap angle are included in these potentials. In
the absence of zero-point corrections, both the cis and trans isomers of (H2O)−2 are local
minima, but the latter minimum (at 38∘) disappears on zero-point correction. Broken
curves: lowest two vibrational wave functions (vflap = 0 and 1) for these one-dimensional
potentials. Adapted with permission from Ref. 119; copyright 1999 American Institute
of Physics.
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half-filled 𝜋
∗ orbital that is bound fairly closely to the molecular framework.

Calculations suggest that the two anion states are nearly isoenergetic, although
the dipole-bound anion has a much smaller VDE.120,121 This can be under-
stood in terms of the schematic potential energy surfaces that are depicted in
Figure 6(a). The dipole-bound state of (uracil)− is classified as such because
it has essentially the same geometry as neutral uracil, and the dipole-bound
anion is characterized by a highly diffuse electron situated at the positive end
of the neutral molecule’s dipole moment, largely outside of the region of space
occupied by neutral uracil’s valence electrons. The photoelectron spectrum of
(uracil)− [Figure 6(b)] is typical of what is observed for a dipole-bound anion,
namely, a single narrow peak, corresponding to the origin transition, with much
weaker features at higher energies.122 The lack of a significant Franck–Condon
progression in this case is a consequence of the essentially identical geometries
of uracil and dipole-bound (uracil)−. As such, the vibrational wave functions
are nearly the same for both species, so when the anion is prepared in its ground
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. (b) Photoelectron spectrum
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molecular orbital (SOMO) for U−

DB. The nearly identical geometries for U and U−
DB lead

to a very narrow spectrum. (c) Photoelectron spectrum for [U(H2O)]− and isosurface
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. The spectrum illustrates both the larger binding energy of

the valence anion, as compared to the dipole-bound state, as well as the much greater
spectral width resulting from distortion of U− away from a planar geometry. Panel (a)
is reprinted with permission from Ref. 120; copyright 1998 American Chemical Soci-
ety. Spectra in (b) and (c) are reprinted with permission from Ref. 122; copyright 1998
American Institute of Physics. Orbital isosurfaces plots are reprinted with permission
from Ref. 123; copyright 2004 the PCCP Owner Societies.
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vibrational state, only the origin transition is observed with any appreciable
intensity.

In contrast, the valence anion character of the (𝜋∗)− state can be deduced,
computationally, from the nonplanar nature of the anion’s geometry, which
results from the lifting of aromaticity due to an odd number of 𝜋 electrons.
As a result of geometric distortion, the VDE of the valence anion is signifi-
cantly larger than that of the dipole-bound state, as indicated in Figure 6(a),
even though these two anions are very close in energy. Electron attachment to
form the dipole-bound state, which can occur at or near the minimum-energy
geometry of neutral uracil, has been suggested as the initial step in a DEA mech-
anism that involves subsequent internal conversion to the valence anion state,
followed by bond cleavage.124,125

While theory predicts U−
DB and U−

val
to be nearly isoenergetic, only

the dipole-bound state is observed in the experiments reported in Ref. 122
[Figure 6(b)]. The thermodynamics of which isomers are stable provides
no information about how these species are actually formed in a molecular
beam experiment, and nonthermal ensembles are probably common in anion
photoelectron spectroscopy.126–129 In the experiments of Ref. 122, the valence
anion state was observed (to the exclusion of the dipole-bound anion signal)
in a complex with a single water molecule, [(uracil)(H2O)]−. The photoelec-
tron spectrum of this complex [Figure 6(c)] is much broader, owing to the
differences in the geometries of the anion and the neutral molecule that lead
to nontrivial Franck–Condon factors, even if individual vibrational states of
uracil cannot be resolved. Later, under different source conditions, the valence
anion state was observed for bare uracil,130 which highlights the fact that
anion spectroscopy can be particularly sensitive to the source conditions of the
molecular beam.

Finally, let us consider the case of multiply-charged anions, Mn−. One
possible potential energy curve for a multiply-charged anion is sketched in
Figure 4(a) for the case where Mn− is stable (lower in energy than M(n−1)− + e−).
This potential is repulsive at medium-range distances since it correlates asymp-
totically to separating two negatively charged species. At short range, however,
there may be stabilizing valence interactions leading to a local potential mini-
mum. On the other hand, these stabilizing interactions may be insufficient to
lower the potential well below the asymptotic M(n−1)− + e− energy; Figure 4(b)
depicts a case where they are not. In this case, the multiply-charged anion is
metastable only. Insofar as Mn− can be formed, it exists only because it is
trapped behind a repulsive Coulomb barrier (RCB). This species will persist
only until such time as an electron is able to tunnel through the RCB.

Although multiply-charged anions are ubiquitous in polar solvents, where
the internal Coulomb repulsion of Mn− is offset by highly favorable electro-
static and induction interactions with the solvent molecules, multiply-charged
anions have historically been difficult to prepare in gas-phase experiments that
could directly probe the M(n−1)− + e− interaction potential. Recently, however,
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it has been demonstrated that such anions can be prepared using electrospray
ionization,131,132 and photoelectron spectra at different excitation energies
place experimental bounds on the magnitude of the RCB. For the citrate tri-
anion, C3H5O(COO)3−3 , whose three negatively charged carboxylate moieties
are separated by ≈ 6 Å, the result is 1.9 eV < RCB < 2.5 eV.133 Unbranched
dicarboxylate dianions, −O2C(CH2)nCO−

2 , allow for systematic variation
of the RCB, and these species are found to be stable on the timescale of a
time-of-flight photoelectron spectroscopy experiment (∼0.1 s) for n ≥ 3.134,135

This is consistent with back-of-the-envelope calculations suggesting that two
negative charges separated by ≲ 4 Å will be unstable;2 in the n = 3 dicarboxy-
late, the two terminal carbon atoms are separated by ≈ 5 Å (assuming typical
bond lengths), whereas in the n = 2 case the separation is < 4 Å. Interestingly,
the n = 2 (succinate) dianion is rendered stable on complexation with just a
single water molecule, and the photoelectron spectrum of this complex has
been reported.134,135 Calculations suggest that a complex containing 2–3
water molecules is necessary to stabilize HPO2−

4 but ∼16 water molecules are
required to stabilize PO3−

4 .136

Cluster Anions and Solvated Electrons
The examples of the succinate–H2O complex and the uracil–H2O valence
anion state that were discussed earlier demonstrate that solvent molecules can
play a critical role in anion binding, even in a gas-phase experiment, and thus
cluster anion photoelectron spectroscopy94,19 warrants some discussion in its
own right. More dramatic examples of the role of solvent in electron bind-
ing belong to a broad class of systems known as solvated electrons. From a
gas-phase point of view, one might define a solvated electron as any cluster
anion M−

N (or mixed cluster anion; the molecules need not all be the same) for
which the molecular anion M− is not a bound species, or at least is much more
weakly-bound than is the cluster anion M−

N. As such, electron binding is a col-
lective phenomenon, and this collective binding can be quite strong for sizable
clusters. For example, whereas (H2O)−2 has a VDE of only 0.045 eV,117,118 for
(H2O)−N with N ∼ 80–100, one can find isomers with VDEs > 2.0 eV.4,5 Due
to the collective nature of electron binding in clusters, the VDE is the primary
observable of merit; AEAs are essentially impossible to determine for cluster
anions, due to solvent reorganization on electron detachment. Indeed, it is not
even clear whether the concept of an AEA is meaningful in such cases, since
removing the solute (an electron) creates a qualitatively different system (a neat
solvent cluster rather than a solvated-electron cluster).

Much of the interest in these clusters is driven by the importance of
the aqueous electron in bulk water, e−(aq). This species, along with H• and
HO•, is one of the primary radical intermediates that is formed on water
radiolysis84,17,50,18,13 and can be detected following radiolysis of ammonia,
alcohols, and organic amines as well.50 Figure 7 provides an overview of
the sequence of events involved in water radiolysis, which is initiated either
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Figure 7 Upper scheme: schematic overview of water radiolysis, wherein ionizing radi-
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schematic energy diagram for an electron interacting with liquid water but modified to
eliminate the conduction band of water in the lower panel, because other studies137,138

indicate that the conduction band lies no more than ∼0.1 eV below the vacuum level,
whereas the original figure in Ref. 13 places the conduction band much lower in energy.
(Adapted with permission from Ref. 13; copyright 2012 American Chemical Society.)

by electronically-excited water molecules or else water cation radicals that
are generated either by absorption of ionizing radiation or else via collisions
with high-energy “primary” electrons.13 Following the track on the left in
Figure 7, the initial ionization event leads to the formation of lower energy
“secondary” (2∘) electrons, which subsequently thermalize by dissipating
energy into vibrational modes of the solvent and ultimately become solvated
in a deep potential well. The depth of this well (relative to the vacuum
level, corresponding to a free electron) can be estimated by extrapolation
of VDEs for the highest-binding isomers of gas-phase (H2O)−N clusters. This



Terminology and Fundamental Concepts 411

extrapolation yields estimates of 3.4 eV139 and ∼4 eV,5 depending on the
experimental data set used. Direct experimental measurements of the VDE
for e−(aq), using liquid microjet photoelectron spectroscopy,140 afford values
ranging from 3.3 to 3.7 eV.7–10 A detailed theoretical calculation, including
the effects of electronic relaxation on vertical detachment and extrapolating
to an infinitely large simulation cell, affords a value of 3.7 eV.141

The lower panel of Figure 7 provides a rough energy-level structure for an
“excess” electron in water that is consistent with the estimated VDEs quoted
earlier. This diagram is labeled according to the conventional interpretation
of the structure of e−(aq),15,16,142,143 namely, that the ground state of the
fully hydrated species can be conceptualized as a particle in a quasi-spherical
solvent void, whose ground-state wave function exhibits pseudo-s symmetry.
Within this picture, the states responsible for the strong electronic absorption
at ∼1.7 eV (720 nm), which is the most characteristic feature of e−(aq),15 are
quasi-degenerate p-type states, as suggested in the lower panel of Figure 7.
Although this picture is quite entrenched and appears to be consistent with
plane-wave DFT simulations performed in the liquid phase,144–146 the cavity
model has been questioned both historically147–149 as well as recently.150–156

Alternative structural models are a solvent–anion complex,149 a HO− · · ·H3O
complex,147,148 a hydronium radical (H3O•) that exhibits charge-separated
biradical character on hydration,150–153 and a delocalized wave function with
a buildup of water density inside said wave function.154,156 These alternative
proposals have proved controversial,157–162 and more work is needed to
definitively resolve this question, because at present both the cavity and
noncavity models explain certain features of the spectroscopy of the species
called e−(aq), but each is inconsistent with other features.15,162,156,163

Cluster analogues of solvated electrons, M−
N, have been studied exten-

sively for a variety of polar and nonpolar solvents, as discussed in numerous
recent reviews.15,16,19,94,164 A key aspect of cluster ion spectroscopy is the
attempt to determine how the solvent network accommodates the ionic solute,
which in this case is an extra electron. Figure 8 shows VDE data, obtained
from photoelectron spectroscopy, for some representative solvated-electron
clusters. (Experimentally, the VDE is taken to be the energy at which the rather
broad photoelectron spectrum is peaked.) Figure 8 employs the common
practice of plotting cluster anion VDEs versus N−1∕3, where N denotes the
cluster size. The reason for this convention is that the cluster radius, R, should
be proportional to N+1∕3 for a spherical cluster, and by taking R ∝ N+1∕3 in
conjunction with a dielectric continuum treatment of the spherical solvent
cluster, one obtains a VDE proportional to R−1 or N−1∕3.167–170

Let us consider this in a slightly more detail. Although the result
VDE(N) ∝ N−1∕3 can be derived from continuum dielectric theory under a
variety of assumptions,167–170 a simple model is the following. Consider a
single point charge −e centered in a cavity of fixed radius, a, representing
the excluded volume of the solvent void inhabited by the solvated electron.



412 The Quantum Chemistry of Loosely-Bound Electrons

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0

1100∞ 200100

Cluster size, N

50 20 11 5

0.1 0.2

N−1/3

V
D

E
/e

V

0.3 0.4

THF

Water I

Water II

Water III

MethanoI I

MethanoI lI

Formamide

(H2O)−
n I

(NH3)−
n

(CH3OH)−
n I

(CH3OH)−
n II

(CH3CN)−
n I

(Formamide)−
n

(Benzene)−
n

(Toluene)−
n

(THF)−
n

(H2O)−
n II

(H2O)−
n III

0.5 0.6

Figure 8 VDEs for various cluster anions M−
N as a function of N−1∕3. For water, three

distinct isomeric series are observed, which are labeled I, II, and III,4 and for methanol,
two isomers (I and II) are observed.165 For acetonitrile, two isomers are observed166
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Figure 9 Illustration of the four distinct electron binding motifs identified in (H2O)−N
clusters on the basis of one-electron QM MM simulations, for the case N = 40. The
isosurfaces that are depicted encapsulate 70% of |𝜓|2. Reprinted from Ref. 95; copyright
2011 American Chemical Society.

[See, for example, the cavity isomer of (H2O)−40, at the far right in Figure 9.]
This cavity is assumed to be carved out of a spherical, homogeneous dielectric
material whose radius is R and is characterized by a dielectric constant, 𝜀s.
The solvation (free) energy for the −e charge is the VDE for this model. The
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mathematical result, for R ≫ a and given in atomic units, is170

VDE(R) = VDE(∞) − 1
2R

(
1 + 1

𝜀∞
− 2

𝜀s

)
[6]

This leads immediately to the desired result:

VDE(N) = VDE(∞) + AN−1∕3 [7]

Experimentally, the parameter A corresponds to the slope of one of the best-fit
extrapolations in Figure 8. It should be noted that the N−1∕3 proportionality in
Eq. [7] can be derived without the assumption that the electron inhabits a cavity,
provided only that the electron’s wave function is spatially localized.167–169

The two dielectric constants in Eq. [6] warrant some discussion. The
quantity 𝜀s, which is sometimes called simply “the dielectric constant” (often
denoted 𝜀 instead of 𝜀s) is more precisely the static or zero-frequency dielectric
constant. (Even more precisely, it is the scalar electric permittivity relative to
that of vacuum,171 and is therefore dimensionless.) This quantity includes
the effects of both orientational and electronic polarization. For a vertical
ionization process, however, the solvent’s orientational degrees of freedom are
frozen, but the electron densities of individual solvent molecules can adjust
on the same timescale on which the ionization process occurs. Such consider-
ations lead to a correction involving the optical (infinite-frequency) dielectric
constant, 𝜀∞ = n2

refr
, where nrefr denotes the solvent’s index of refraction.172

Values of 𝜀s vary widely from one solvent to the next, due to a particu-
lar solvent’s ability (or lack thereof) to reorient permanent dipole moments of
individual solvent molecules. Considering some examples at 25 ∘C, we have
𝜀s = 78 (water), 21 (acetone), 4.8 (chloroform), and 2.3 (benzene). Optical
dielectric constants, on the other hand, are much more similar between different
solvents: 𝜀∞ = 1.78 (water), 1.85 (acetone), 2.09 (chloroform), and 2.25 (ben-
zene). From Eq. [6], one might anticipate that electronic polarization effects
are most significant in polar solvents, for which 𝜀s ≫ 𝜀∞, and this is indeed the
case. For electron solvation in bulk water, for example, continuum models more
sophisticated than Eq. [6], as well as atomistic simulations using a polarizable
solvent model, afford an estimate of ≈ 1.4 eV for the electronic reorganization
energy that accompanies vertical detachment.141 In other words, the predicted
VDE is reduced by ≈ 1.4 eV (and brought into quantitative agreement with
experiment141) when the solvent’s electronic degrees of freedom are allowed to
adjust to electron detachment, at fixed nuclear positions.

Returning to the VDE data in Figure 8, one can see that methanol cluster
anions exhibit two distinct isomeric series. This implies that there are two peaks
in the photoelectron spectra, whose peak positions exhibit different slopes, A,
with respect to N−1∕3. (The relative intensities of the two peaks can be changed
by modifying the backing pressure of the carrier gas, which effectively changes
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the temperature of the molecular beam, thus demonstrating that the two fea-
tures are indeed distinct isomers.4,19) On the basis of theoretical calculations,
these two isomeric series have been attributed to a surface-bound electron and
a cavity-bound electron.16 Note, however, that both the “methanol I” and
“methanol II” data series in Figure 8 appear to be linear as a function of
N−1∕3. In fact, one can construct a continuum electrostatics model such that,
in large clusters, the VDE for a surface-bound electron is also proportional to
N−1∕3.170 Thus, one cannot directly infer structure from the linearity of the
data in Figure 8.

Caution is warranted especially in the case of water cluster anions, as
there has been much debate regarding the nature of the electron binding
motifs in these systems.4,5,93,95,173–177 Water cluster anions exhibit at least
three4 – and possibly four5 – distinct isomeric series, depending on exper-
imental conditions, and it is not altogether clear that the “water I” data
in Figure 8 actually correspond to a single isomeric species.5,95 In a recent
study that relies on one-electron quantum mechanics/molecular mechanics
(QM/MM) calculations using an electron–water pseudopotential model,141,95

our group has suggested four distinct binding motifs,95 examples of which are
illustrated in Figure 9 for the case of (H2O)−40. From left to right in the figure,
the four categories of isomers that we have identified are the following:

• A weakly dipole-bound cluster anion that predominates when an extra
electron is attached to a cold, equilibrated, neutral water cluster.

• A surface-bound electron with a somewhat larger VDE (and corre-
spondingly less diffuse wave function) that can be reached from the
dipole-bound state following modest rearrangement of some surface
water molecules, so that several dangling O—H moieties coordinate to
the e− wave function.

• A considerably more strongly-bound “partially embedded” surface
isomer. In this case, rearrangement of water molecules at the cluster
surface has resulted in a partial solvation shell.

• A fully internalized, cavity-bound isomer.

VDEs computed on the basis of quantum classical molecular dynamics
simulations at finite temperature correctly reproduce the N-dependent trends
observed experimentally and are in semiquantitative agreement with the abso-
lute VDEs determined from photoelectron spectroscopy4,5 for cluster anions
in the size range 20 ≤ N ≤ 200.95 These simulations suggest that the “water I”
data in Figure 8 may actually represent a transition between a surface-bound
and a partially embedded isomer, whereas somewhat higher-binding cavity iso-
mers are observed (according to the calculations) only in certain experiments,5

where the clusters are annealed in an ion trap prior to interrogation.95 On
the other hand, the predictions of one-electron models have been shown
to be somewhat sensitive to the fine details of how the electron–molecule
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pseudopotential is constructed.15,159–161 As such, it is probably too early to
say that the identities of the isomers in (H2O)−N photoelectron spectroscopy
have been definitely determined.

One final example of a solvated-electron cluster is that of acetamide clus-
ter anions, (CH3CONH2)−N. For these clusters, photoelectron spectra reveal the
presence of two isomers, and on the basis of calculations these are attributed to
the two-electron binding motifs depicted in Figure 10.178 One of these isomers
consists of coplanar, ladder-like arrangements of acetamide units, with electron
binding occurring at the free (non-hydrogen-bonded) N—H moieties. The other
isomer consists of a folded form that one might begin to call a solvated elec-
tron. One might anticipate that the highly-ordered ladder-like isomers would
be present in small clusters only, with the more globular structures prevailing
in larger clusters, but precisely the opposite is observed in the experiments. For
n ≥ 9, the feature that is attributed to the folded isomer is entirely absent.178

All of these examples underscore the need for theoretical calculations to
aid in the identification of various solvated-electron isomers and binding motifs.

Metastable (Resonance) Anions

The discussion earlier implicitly assumes that the anion M− is bound, that is,
lower in energy than the neutral molecule M at the geometry of M−. At the heart
of dissociative electron detachment, however, are temporary anion resonances
that are metastable only with respect to autodetachment. This is the case, for
example, when the anion M− is formed at the neutral molecule’s geometry in
the example depicted in Figure 1. Here, the anion is higher in energy at the
neutral molecule’s most stable geometry.

To motivate the discussion of temporary anion resonances, we first
discuss the basic quantum mechanics of the resonance phenomenon, using
a piecewise constant potential that facilitates analytic results. This is a
standard graduate-level quantum mechanics exercise, but the results should be
qualitatively informative to readers who have not seen them.

n = 9 n = 8

Electron binding energy

Figure 10 Calculated SOMOs for two different electron binding motifs in
(acetamide)−9 , on the left, and (acetamide)−8 , on the right, superimposed with the cor-
responding photoelectron spectra. Reprinted from Ref. 178; copyright 2012 American
Chemical Society.
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Basic Quantum Mechanics
Consider the symmetric double square barrier potential that is plotted in
Figure 11:

V(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, x < −1
2
L − w

V0, −1
2
L − w ≤ x ≤ −1

2
L

0, −1
2
L < x <

1
2
L

V0,
1
2
L ≤ x ≤ 1

2
L + w

0, x >
1
2
L + w

[8]

For a particle incident from the left, the wave function should have the form

𝜓I(x) = AI exp(ikIx) + BI exp(−ikIx) [9]

in region I, and the outgoing wave function should have the form

𝜓V(x) = AV exp(ikVx) [10]

in region V.
The one-dimensional probability current density is defined as179

j[𝜓] = iℏ
2m

(
𝜓

𝜕𝜓
∗

𝜕x
− 𝜓

∗ 𝜕𝜓

𝜕x

)
[11]

For a wave function of the form 𝜓(x) = A exp(ikx), one obtains j =|A|2(ℏk∕m). As such, the transmission probability, T, for transit through
the double-barrier in Figure 11 is appropriately defined as the ratio of the

I II III IV V

V
(x

)

V0

L

x = 0

W W

x

Figure 11 Potential energy function for a symmetric double square barrier. The regions
labeled I–V represent the different piecewise constant values of V(x).
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probability flux exiting the rightmost extent of the potential (x = L∕2 + w) to
that entering the left-most extent of the potential (x = −L∕2 − w):

T =
j[AV exp(ikVx)]
j[AI exp(ikIx)]

=
kV|AV|2
kI|AI|2 [12]

This ratio is dependent on the energy of the incident particle, E = (ℏkI)2∕2m,
and can be obtained by matching piecewise functions 𝜓(x) = A exp(±ikx) and
their first derivatives in regions I–V, where each piecewise function is obli-
gated to satisfy the time-independent Schrödinger equation. For the potential
in Figure 11, and for solutions with E < V0, the result is180,181

T(E) =

[
1 +

V2
0M2 sinh2 (𝛼w)
4E2(V0 − E)2

]−1

[13]

where
𝛼 = 1

ℏ

√
2m(V0 − E) [14]

is the inverse tunneling wavelength into the classically forbidden barrier regions
and

M(E) = 2(
√

E(V0 − E)) cosh(𝛼w) cos(kL) − (2E − V0) sinh(𝛼w) sin(kL) [15]

The incident wave vector, k = (2mE)1∕2∕ℏ, is set by the energy of the incident
particle, E.

The function T(E) in Eq. [13] is plotted in Figure 12 for several values of
w and L but a common value of V0. When the barrier is wide (w = 10 bohr in
Figure 12), there is very little transmission except around a sequence of narrow
resonances, for which T(E) → 1; these occur as M(E) → 0. When the tunnel-
ing length scale 𝛼

−1 is small compared to the barrier width w (which is the case
for this particular set of parameters), then tanh(𝛼w) ≈ 1, and the condition
M(E) = 0 becomes

2
√

E(V0 − E)
2E − V0

= tan(kL) [16]

This is similar to the condition that defines the bound-state energy levels for
a particle trapped in a finite square well of width L and depth V0.180 Indeed,
if we narrow the barriers to w = 4 bohr, but leave the distance between them
unchanged at L = 20 bohr, then the resonances in T(E) broaden, due to addi-
tional tunneling through the narrower barriers, yet these resonances remain
peaked around the same particle-in-a-square-well energy levels. On the other
hand, decreasing L shifts these resonances to higher energies and results in
a smaller number of them, consistent with the behavior of the square-well
energy levels as a function of L, for a square-well potential with a finite binding
energy, V0.
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Figure 12 Transmission probability, T(E), through the double-barrier potential in
Figure 11, as a function of the incident particle’s kinetic energy. The particle has the
mass of an electron, and the barrier height is V0 = 0.2 hartree.

This simple, analytically-solvable example captures the essence of the res-
onance phenomenon: incident particle energies that match, or nearly match,
bound-state energy levels of a particular potential can become trapped, even if
such states are asymptotically unstable. In a time-dependent picture, an inci-
dent particle whose kinetic energy matches a bound-state energy level can be
captured for some finite period of time, before ultimately tunneling out of this
potential. Importantly, the incoming particle’s wave function eikx must be pre-
cisely matched to the wave function inside the potential well (or double-barrier,
in this example), as shown in Figure 13.

Classification of Temporary Anion Resonances
Temporary anion resonances can be broadly classified according to two criteria.
First, does the electron attach to the ground state of the molecule M, or is M
excited in the process? If M remains in its ground state, then the resonance is
classified as a single-particle resonance, since excitation of M’s electrons can be
ignored in a qualitative treatment. In contrast, a core-excited or target-excited
resonance involves electronic excitation of M, for example,

e− + M[(𝜋)2(𝜋∗)0] → M−[(𝜋)1(𝜋∗)2] [17]

which provides a mechanism for the attachment of higher-energy electrons,
since the M → M∗ excitation of the molecular “core” serves as a sink for elec-
tron kinetic energy. The second criterion is whether the separated species (M +
e−) are higher or lower in energy as compared to their complex (M−). In other
words, is the AEA of the molecule, M, positive or negative? If M− lies higher in
energy, the resonance is classified as a shape resonance whereas if M− lies below
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Figure 13 Illustration of a resonance state for a smooth double-barrier potential. At
most energies E = (ℏk)2∕2m, the continuum states 𝜓E(x) are affected by the presence
of the barriers but not in a way that prevents significant transmission of the particle
from left to right, or that results in significant accumulation of probability between the
barriers. Such states are indicated by the dashed plots of |𝜓E(x)|2. For certain incident
energies, however, a resonance is observed (solid wave function). The vertical axis plots
the particle’s probability density, |𝜓E(x)|2, but the plots are offset vertically according
to the value of E. Reprinted from Ref. 182; copyright 2012 Elsevier.

M + e− it is classified as a Feshbach resonance. These definitions are most easily
understood using simple one-dimensional potentials, as discussed later.

We first discuss the origin of anion shape resonances, which can be under-
stood as follows. From the Schrödinger equation for the hydrogen atom, one
learns that the electron experiences an effective radial potential of the form

Ueff(r) = U(r) + ℏ
2𝓁(𝓁 + 1)

2𝜇r2
[18]

where U(r) = −1∕r is the bare Coulomb potential (in atomic units), and the
second term is a centrifugal potential arising from the conservation of angu-
lar momentum. The same form of the potential can be expected if we try
to add an electron to a MO with angular momentum quantum number 𝓁,
except that in the molecular case the potential U(r) would involve Coulomb and
exchange operators for the valence electrons, averaged over MOs.3 An effec-
tive electron–molecule potential with correct asymptotic behavior is sketched
in Figure 14(a). A bound state of this potential with energy level 𝜀 is actually
only metastable, in the sense that it lies above the asymptotic (M + e−) value
of the potential but may be trapped temporarily by the centrifugal potential,
if the attachment process involves an orbital with nonzero angular momentum
[𝓁 > 2, in the example of Figure 14(a)]. Whether or not this occurs depends
sensitively on the details of U(r); for example, one may add an electron to a 𝜋

∗

orbital of O2 to obtain a bound O−
2 anion, yet the lowest (𝜋∗)− state of N−

2 is
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Figure 14 Schematic illustration of the origin of an anion shape resonance. (a) An
electron–molecule interaction potential, illustrating the centrifugal barrier for various
values of the angular momentum quantum number, 𝓁. (b) Single-particle shape reso-
nances arising from electron attachment to either the LUMO or LUMO+1 of molecule
ABCD. Both orbitals are assumed to be of 𝜎

∗ type, and the coordinate Q represents
stretching of either the A—B or B—C bond. Shaded regions indicate energy widths
arising from lifetime broadening. Adapted from Ref. 83; copyright 2008 Elsevier.

unbound, even though the centrifugal potential corresponds to 𝓁 = 1 in either
case.2 As always, much of the beauty as well as the complexity of molecular
physics lies in the fact that molecules are not all the same; subtle shifts in the
energy-level structure afford qualitatively different properties.

Shape resonances are cases where the species in question (M−) lies above
its own continuum (M + e−), but is trapped behind some barrier. [Note in
Figure 14(b) that M− is higher in energy than M + e− at the geometry of the
neutral molecule, M.] Although we have stated this definition in terms of an
anion shape resonance, cases not involving anions exist as well. For example,
Ar2 exhibits “orbiting” shape resonances, as do some simple atom–diatom
(A + BC) scattering experiments.183 In these cases, the rotational energy of
the complex lies above the asymptotic dissociation threshold, yet the complex
is trapped behind a centrifugal barrier arising from the orbital angular
momentum.

For temporary anion resonances, VAEs can be measured experimentally
by means of electron transmission spectroscopy,2,184,185 in which an atomic or
molecular sample is bombarded by a beam of electrons having well-defined
kinetic energy. A change in current, due to attenuation of the electron beam,
can then be detected as the kinetic energy of the electrons is tuned through a
resonant VAE.

A simple one-dimensional picture of a single-particle anion shape reso-
nance is depicted in Figure 14(b) for the hypothetical molecule ABCD. In this
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example, electron attachment to either the LUMO or the LUMO+1 of ABCD
results in a temporary (𝜎∗)− anion. This species can decay either by autodetach-
ment, which corresponds to the electron–molecule coordinate in Figure 14(a),
or else by bond dissociation. Two different bond dissociation coordinates are
mapped out in Figure 14(b), depending on which 𝜎

∗ orbital captures the elec-
tron. Although qualitative, these sketches are realistic in the sense that the
orbitals available for electron attachment in closed-shell molecules are typically
antibonding orbitals with fairly small bond dissociation energies. In certain
cases, these 𝜎

∗ states might be dissociative,82 meaning that they fail to bind
any vibrational levels at all. Single-particle shape resonances tend to be found
at low incident electron energies (≲ 5 eV), else M would likely be electronically
excited by electron attachment. In addition, the presence of readily available
exit channels, including both autodetachment and bond fission, means that
shape resonances are typically very short-lived, with lifetimes on the order of
10−12 –10−14 s,12,83,185 and often closer to 10−14 s.185

As a result of these short lifetimes, electron attachment energies for anion
shape resonances are considerably broadened by the time-energy uncertainty
principle.83,183 For a finite lifetime Δt, the resonance energy is subject to broad-
ening according to179

(ΔE)(Δt) ≳ h [19]

For Δt = 1 ps, this corresponds to a so-called “natural” line width
ΔE ≳ 0.004 eV, suggesting that a lifetime of ∼1 ps constitutes an upper
bound beyond which we need not worry too much about lifetime broadening.
For Δt = 10−14 s, however, the line width ΔE ≳ 0.4 eV is certainly not
negligible. As suggested by the diagrams in Figure 14(b), broadening increases
as the separation between anion and neutral potential surfaces increases.

Figure 15 illustrates a pair of core-excited resonances, again involving
the hypothetical molecule ABCD, which is now electronically excited on elec-
tron attachment. One of the temporary anion states suggested in the figure is
a core-excited shape resonance and the other is a core-excited Feshbach reso-
nance. The former is very much like the shape resonances discussed earlier, and
thus we expect it to be short-lived. Since the resonance involves M∗, however,
the incident electron energies might be more like ∼5–15 eV,12 which can be
understood as the ∼0–5 eV of a single-particle shape resonance plus a typical
molecular electronic excitation energy of something like 5–10 eV. As a point of
terminology, core-excited resonances involving electronic excitation are some-
times called auto-ionizing resonances, since M− in its excited electronic state is
metastable with respect to autodetachment.

In the particular scenario illustrated in Figure 15, one obtains very differ-
ent energetics depending on the orbital to which the electron attaches. For one
particular electron-attached configuration, the anion ABCD∗− lies below the
neutral excited species, ABCD∗, making this a Feshbach resonance. Because
ABCD∗ is energetically inaccessible in this case, the autodetachment channel
is closed and thus Feshbach resonances are sometimes called closed-channel
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Figure 15 One-dimensional picture of a core-excited shape resonance and a
core-excited Feshbach resonance. The two anion states differ in whether the electron
attaches to an orbital associated with AB or with CD. Reprinted from Ref. 83; copyright
2008 Elsevier.

resonances. (Similarly, shape resonances are sometimes called open channel
resonances.) Furthermore, the Feshbach resonance state cannot collapse to the
ground state of neutral ABCD except via a two-electron process, whereas other
decay mechanisms discussed so far for temporary anion resonances all involve
one-electron processes. In a MO picture, the two-electron process requires the
weak coupling between Slater determinants that arises from electron correla-
tion, which is small in comparison to the determinantal energy levels them-
selves, hence the two-electron process is much slower. Feshbach resonances thus
tend to be longer lived as compared to shape resonances.186

Next consider that a minimal set of requirements for DEA consists of the
following.12

1. A resonance lifetime ≳ 10−14 –10−12 s.
2. A transient negative ion state that is dissociative in the Franck–Condon

region of the neutral species.
3. At least one fragment of the dissociation products that has a positive EA, so

that the dissociation channel is energetically allowed.

These requirements are fulfilled by the Feshbach resonance illustrated in
Figure 15. (The final requirement, energetic accessibility, is fulfilled relative
to the excited state ABCD∗.) These requirements are also fulfilled by the
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scenario depicted in Figure 1, which we may classify as a single-particle
Feshbach resonance. Such states have sometimes been called vibrational
Feshbach resonances. Note that in this case the anion is necessarily formed in
a vibrationally excited state.

The distinction between a Feshbach resonance and a shape resonance
for a negative ion can be stated succinctly in terms of whether M− lies above
(shape) or below (Feshbach) the energy of the neutral molecule, M. Stated dif-
ferently: in the shape resonance case, M− lies above its own continuum (that
corresponding to M + e−), while in the Feshbach case, M lies below this con-
tinuum. An example is shown in Figure 16, where we consider two isomeric
forms of p-coumaric acid, which is a simplified chemical model of the chro-
mophore in photoactive yellow protein.187,188 For both the phenolate and the
carboxylate isomers of this chromophore, the S1(𝜋𝜋∗) bright state lies above
the adiabatic electron detachment threshold, hence the electronically excited
state should be considered a resonance. However, the two isomers exhibit very
different detachment processes. In the phenolate isomer (left side of Figure 16),
the lowest detachment threshold corresponds to removing an electron from one
of the 𝜋 orbitals involved in the 𝜋 → 𝜋

∗ (S0 → S1) excitation, and in that sense
the S1 state lies above its own continuum and may be classified as a core-excited
shape resonance. One expects the 1

𝜋𝜋
∗ state to be short-lived in this case.

Meanwhile, for the carboxylate isomer (right side of Figure 16), the lowest
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Figure 16 Schematic view of S0 → S1 excitation in p-coumaric acid in its phenolate (a)
or carboxylate (b) isomeric form. (Energies are given in electron volts.) In either case, the
S1 state lies above the anion’s adiabatic detachment threshold and is thus embedded in a
continuum of electron-detached states. The core-excited 𝜋𝜋

∗ resonance may be classified
as a shape resonance (on the left) or a Feshbach resonance (on the right) depending on
whether the low-lying continuum corresponds to detachment from the 𝜋 system (a′′

orbital) or from an a′ orbital that is not involved in the 𝜋 → 𝜋
∗ excitation. Adapted

with permission from Ref. 186; copyright 2013 American Institute of Physics.
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Adapted with permission from Ref. 187; copyright 2004 Elsevier.

detachment threshold corresponds to removing an electron from an orbital
with a′ symmetry that is not involved in the 𝜋 → 𝜋

∗ transition. In this case,
e− detachment from the 𝜋 system (indicated as 𝜋

−1 in Figure 16) lies above S1.
From S1, electron detachment from the a′ orbital is a two-electron process, and
the carboxylate case is an example of a core-excited Feshbach resonance.

Finally, it bears mention that where anions are involved, solvation effects
can often have a qualitative impact on the basic physical picture, especially in
polar solvents where M− is likely to be dramatically stabilized with respect to
M. Polar solvation might, for example, convert an open channel, core-excited
resonance (M∗)− into a core-excited Feshbach resonance by dragging the (M∗)−
potential curve below that of M∗. In such a case, the solution-phase anion res-
onance would be expected to have a significantly longer lifetime as compared
to its gas-phase analogue.186

Even in cases where solvation is not enough to stabilize the anion with
respect to the neutral molecule, the solution-phase environment can have
important consequences. Figure 17 depicts schematic potential energy curves
for M and M− in both the gas phase and in solution, with the environment
stabilizing M− much more than it stabilizes M. On forming the anion M−

from the neutral molecule, an autodetachment channel is available for R < Rc.
Taking a semiclassical view of electron attachment, the resulting anion spends
less time in the autodetachment region R < Rc in solution than it does in the
gas-phase case. This enhances the lifetime of the solvated anion relative to the
gas-phase species, and possibly allows it to escape the region R < Rc without
suffering autodetachment.186
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QUANTUM CHEMISTRY FOR WEAKLY-BOUND
ANIONS

In this section, we discuss the ways in which weakly-bound anions place special
demands on quantum chemistry calculations. It is presumed, in this discussion,
that the anion M− is a bound species (VDE > 0) at the molecular geometry in
question, such that the application of bound-state quantum chemistry method-
ology is appropriate. Referring to the situation in Figure 1, bound-state meth-
ods are appropriate for the description of the anion AB− only for R > Rc. For
R < Rc, the neutral molecule is lower in energy, and application of bound-state
methods to M− is not appropriate. Electronic structure methods for temporary
anion resonances are discussed later in this chapter.

Gaussian Basis Sets

Atom-Centered Basis Sets
For calculations involving anions, one should use basis sets augmented with
additional diffuse basis functions. However, the diffuse exponents for standard
augmented basis sets were optimized to describe small molecular anions189

(CH−
3 , NH−

2 , OH−, etc.) and or atomic anions,189,190 so while these basis sets
may be appropriate for describing valence anions, they are inadequate for the
description of dipole-bound or other loosely-bound electrons. This criticism
applies to all of the standard, singly-augmented basis sets, including Pople-style
basis sets such as 6-31+G*, 6-31++G**, and their triple −𝜁 analogues, as well
as the Dunning-style correlation-consistent basis sets aug-cc-pVXZ, for X = D,
T, Q, … . (The aug-cc-pVXZ basis set will sometimes be abbreviated aXZ
in this work.) That these basis sets are inadequate to describe weakly-bound
anions can be seen clearly in Figure 18(a), which depicts the convergence of cal-
culated VDEs for an isomer of (H2O)−12 for which the VDE ≈ 0 in the basis set
limit. Setting aside the density-functional calculations, which strongly overbind
the electron for reasons discussed later in this chapter, we see that the VDE
converges to about zero only after four diffuse shells have been added.

In the calculations reported in Figure 18, exponents for the additional dif-
fuse shells are chosen in an even-tempered manner, meaning they are arranged
in a geometric progression (differing by a common scaling factor), starting from
the smallest exponent in the standard 6-31++G* basis set. Use of a geomet-
ric progression is intended to reduce numerical linear dependencies that may
hamper self-consistent field (SCF) convergence,192 although such problems are
ultimately inevitable as system size grows, especially when numerous diffuse
shells are required. In cases where the anion SCF calculation proves difficult
to converge, one may try either using the neutral molecule’s MOs as an initial
guess for the anion’s MOs, or alternatively, converge the anion SCF calculation
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Figure 18 VDEs computed at various levels of electronic structure theory for two dif-
ferent isomers of (H2O)−12, as a function of the number of diffuse shells included in the
basis. The basis set is 6-31(1+,n+)G*, meaning one set of diffuse sp functions for the
oxygen atoms and n sets of diffuse exponents (with exponents comprising a geomet-
ric progression) for the hydrogen atoms. The quantity 𝜇0 is the dipole moment of the
underlying neutral (H2O)12 cluster, and “KT” denotes the Koopmans’ theorem result,
−𝜀SOMO. Reprinted with permission from Ref. 191; copyright 2005 American Chemical
Society.

in a less diffuse basis set and then use these MOs (in conjunction with basis-set
projection) as an initial guess for the MOs in the target basis set.

The valence basis sets that one wishes to augment are not always
even-tempered themselves, so Schaefer and coworkers193,43 recommend
choosing the scaling factor, 𝜅, according to

𝜅 = 1
2

(
𝜁1

𝜁2
+

𝜁2

𝜁3

)
[20]

where 𝜁1 < 𝜁2 < 𝜁3 are the smallest (most diffuse) s- and p-function expo-
nents in the valence basis set. The diffuse exponents are then taken to be
𝜅𝜁1, 𝜅

2
𝜁1, 𝜅

3
𝜁1, … . Often, the exponents contained in the valence basis set

are such that 𝜅 is roughly 1/4–1/3. Taking oxygen atom as an example, the
formula in Eq. [20] affords 𝜅

−1 = 3.65 for 6-31G*, which is not so different
from the ratio 𝜁2∕𝜁1 = 3.20 that is actually used for the diffuse exponent in
6-31+G*, where 𝜁1 was optimized for Hartree–Fock calculations on valence
anions.189 Skurski et al.192 have studied the addition of even-tempered diffuse
functions in a systematic way, for applications involving very weakly-bound
anions, and they recommend scaling the orbital exponents by a factor of
1/3–1/5, that is, 𝜅

−1 = 3–5. In the Q-Chem program,194,195 for example, a
scaling factor of 𝜅

−1 = 3.2 is used, by default, for additional diffuse functions
in Pople-style basis sets.

This leaves open the question of how many additional diffuse basis
functions should be included, and clearly the convergence behavior with
respect to diffuseness of the basis set is very different for the weakly-bound
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(H2O)−12 isomer in Figure 18(a) than it is for the more strongly-bound isomer
in Figure 18(b). To understand just how diffuse the basis needs to be, consider
that at large electron–molecule separation (when the loosely-bound electron is
far from the nuclei), the asymptotic form of the wave function is 𝜓(r) ∼ e−r∕𝜆

where
𝜆 = ℏ√

2m × VDE
[21]

This is a rigorous and general result,196,197 for both ground and excited states
(provided that VDE is understood to be the detachment energy for the elec-
tronic state in question),196 but can be understood using simple arguments. As
r → ∞, the electron tunnels out of whatever potential is responsible for its bind-
ing. For a simple model involving a square-well potential whose well depth is
V0, the characteristic length scale for the decay of the wave function into the
classically forbidden region is

𝜆 = ℏ√
2m(V0 − E)

(square well) [22]

and it seems reasonable to replace V0 − E with the VDE. Alternatively, consider
that the asymptotic behavior of the Hartree–Fock wave function also has the
form of a decaying exponential, with198

𝜆 = ℏ√
2m(−𝜀HOMO)

(Hartree–Fock) [23]

For a bound anion, the value −𝜀HOMO > 0 furnishes the KT estimate of the
VDE,35 as discussed later in this chapter. Each of these arguments suggests that
the VDE is directly related to the radial extent of the wave function.

Making a leap and replacing the wave function everywhere with its
asymptotic form 𝜓(r) ∝ e−r∕𝜆, with 𝜆 = ℏ∕(2me × VDE)1∕2 as suggested above,
one may then compute the expectation value ⟨r⟩ for this wave function. The
value thus obtained should provide at least a crude estimate of the mean
electron–molecule distance. The mathematical result is

⟨r⟩SOMO ≈ 3ℏ

2
√

2me × VDE
[24]

This is an exact result for 𝜓(r) ∝ e−r∕𝜆 but is only a crude approximation to
the actual anion’s wave function. It should work best for the singly-occupied
molecular orbital (SOMO), hence the notation ⟨r⟩SOMO in Eq. [24]. This result
has been quoted previously,2 albeit without the detailed justification presented
herein. For what follows, we note that a computationally convenient form of
Eq. [24] is ⟨r⟩SOMO ∕Å ≈ 2.928√

VDE∕eV
[25]
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Figure 19 VDEs and electronic absorption maxima for (H2O)−N clusters (20 ≤ N ≤
200), computed using a one-electron QM MM model141 on a real-space grid. The
“asymptotic model” denotes the VDE versus ⟨r⟩ relationship expressed in Eq. [25].
Adapted with permission from Ref. 95; copyright 2011 American Chemical Society.

The distance estimate in Eqs. [24] and [25] is derived only from the
asymptotic form of the wave function, but data for a large number of (H2O)−N
clusters suggest that this estimate is actually quite reasonable. Figure 19 plots
VDEs for (H2O)−N clusters versus the radius of gyration, rg, for a large number
of cluster isomers ranging in size from N = 20 to N = 200.95 The radius of
gyration is defined as

rg = ⟨(r − ⟨r⟩) ⋅ (r − ⟨r⟩)⟩1∕2 [26]

where the expectation value is with respect to some particular orbital, wave
function, or density, as appropriate; rg is a measure of the size of the proba-
bility distribution in question. The data in Figure 19 were computed using a
one-electron QM MM model141,95 rather than all-electron quantum chemistry
(so rg measures the size of the one-electron wave function), but this model has
been shown to afford an accuracy of ∼0.1 eV for VDEs as compared to MP2
benchmarks for clusters as large as N = 32.141 Importantly, the one-electron
wave function in these QM MM calculations is represented on a real-space
grid as opposed to an atom-centered basis set, so there should be no ques-
tion about whether a compact Gaussian basis set might skew the results for a
diffusely-bound electron. The data in Figure 19 demonstrate that the quadratic
relationship VDE ∝ r−2

g that is suggested by Eqs [25] and [26] offers a fairly
reasonable fit of the VDE data, especially for VDEs ≲ 1 eV. (Note that the
approximations underlying Eqs. [24] and [25] are expected to break down
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when the VDE is large, because in such cases it is no longer justified to replace
the entire wave function with its asymptotic form.)

To understand the implications for the selection of diffuse Gaussian expo-
nents, consider that the full width at half maximum (FWHM) of a primitive
Gaussian function of the form exp(−𝜁r2) is

FWHM(𝜁 ) = 2
(

ln 2
𝜁

)1∕2

≈ 1.665
𝜁

1∕2
[27]

Combining this with the estimated extent of the SOMO in Eq. [25] suggests
that one ought to choose the smallest diffuse exponent such that

𝜁

a−2
0

≪ 0.09 × (VDE∕eV) [28]

where a0 denotes the bohr radius. (Gaussian exponents are traditionally quoted
in atomic units.) The diffuse s function on the oxygen atom has an exponent
𝜁 = 0.0845 a−2

0 for the 6-31+G* basis set and 𝜁 = 0.07896 a−2
0 in the case

of aug-cc-pVDZ (abbreviated “aDZ” hereafter). These values correspond to
FWHMs of 3.03 and 3.14 Å, respectively. According to Eq. [28], or reading
from the plot in Figure 19, one would expect such a basis to be appropriate
only if the VDE is ≳ 1 eV. The (H2O)−12 isomer depicted in Figure 18(b), for
example, exhibits an MP2-level VDE of ≈ 1.2 eV, and in fact this VDE does
appear to be converged with only a single set of diffuse basis functions, that is,
a standard, singly-augmented valence anion basis set.

For a species like (H2O)−2 where the VDE is < 0.05 eV,199–201 Eq. [28]
suggests choosing 𝜁 ≪ 0.0045 a−2

0 . This suggests that three or perhaps four
additional diffuse shells, constructed as suggested above, would be required
for such a species, depending on the choice of 𝜅. (One might also worry about
the quality of the quadrature grid that is used in density-functional calcula-
tions that employ very diffuse basis functions, but this does not seem to be an
issue, and the default grids in various software programs appear to be suffi-
cient, even when three or four diffuse shells are included.191,202) This estimate
of three to four diffuse shells turns out to be similar to a recommendation
previously provided191 on the basis of a systematic study of VDEs for small
(H2O)−N cluster anions, using 6-31(m+,n+)G* basis sets that include m sets of
diffuse sp functions on the oxygen atoms and n sets of diffuse s functions on
the hydrogen atoms, using a scaling factor 𝜅

−1 = 3. In the study in Ref. 191
the 6-31(1+,3+)G* basis set was found to be sufficient to afford VDEs at the
MP2 and CCSD(T) levels that were, in most cases, within ∼0.01 eV of the
VDEs obtained in more diffuse basis sets. An exception was when the VDE
was very small (≲ 0.05 eV), in which case the accuracy was estimated to be
0.03–0.04 eV.

On the other hand, 6-31(1+,3+)G* is not appropriate for high-accuracy
calculations of the most weakly-bound anions. To converge VDEs to within
∼0.001 eV of the basis-set limit, Skurski et al.192 have shown that seven



430 The Quantum Chemistry of Loosely-Bound Electrons

diffuse shells (using 𝜅
−1 = 3.2) are required, for systems such as CH3CN−

and (H2O · · ·NH3)− whose VDEs are both ≈ 110 cm−1 or 0.014 eV.
This corresponds to smallest exponents on the order of 10−5 a−2

0 . Simi-
lar recommendations have been made by Gutowski et al.113,203–205 For
high-accuracy calculations, these authors employ aug-cc-pVDZ augmented
further with either five or seven additional diffuse sp and diffuse d shells,
depending on the value of 𝜅, such that the smallest exponent is ∼ 10−5 a−2

0 .
It is suggested that 𝜅

−1 = 3.2 is adequate if the neutral molecule’s dipole
moment, 𝜇0, is ≥ 6 debye, whereas 𝜅

−1 = 5.0 is more appropriate for
𝜇0 ∼ 3.0–4.5 debye.205 The choice to augment aug-cc-pVDZ, as opposed to
the roughly comparable 6-31++G** basis, originates in the observation that
VDEs computed using Pople-style basis sets behave somewhat erratically as
the number of diffuse shells is increased.192,202

Whether one chooses to apply this “enhanced augmentation” to 6-31+G*
or to aug-cc-pVDZ, the fact that reasonable VDEs can be obtained using basis
sets of double-𝜁 quality, using correlated wave functions, ultimately rests on
a cancellation of errors, albeit a well-justified one. When VDEs for (H2O)−N
clusters are computed at the MP2 level, for example, the differences between
results obtained in the 6-31(1+,3+)G* and 6-311(1+,3+)G* basis sets are ≲

0.01 eV.206 No reasonable electronic structure theorist would expect such a
cancellation in, say, a bond dissociation energy, or even an ionization energy
for a closed-shell molecule computed at the same level of theory. The difference
is the somewhat smaller correlation energy that is associated with the unpaired
electron, which is better separated from the other electrons and therefore less
strongly correlated. This is discussed in more detail later.

Although the convergence of VDEs provides a convenient means to evalu-
ate basis set quality, one might object that if accurate VDEs are not the focus of
a particular study, then the added computational cost of multiple diffuse shells
is unwarranted. The danger in this reasoning – that compact basis sets might
suffice, if only the computed VDEs can be ignored – is that overly compact basis
sets cannot be trusted to describe the relative energetics of both dipole-bound
anions and valence anions. Some molecules and clusters possess both types
of states, at different geometries, and one must therefore consider whether a
too-compact basis set – even one that might be quite reasonable for describ-
ing an anion whose VDE is large – may bias the calculation. Ignoring VDEs
is also perilous because it leaves the user with no means to decide whether the
anion in question is actually bound at the geometry in question, and whether
that fact might change along a molecular dynamics trajectory, for example. If
the anion is not bound, then the results of any bound-state quantum chemistry
calculation are dubious at best.

As an example of how the lack of adequately diffuse basis functions can
skew an entire potential energy surface, consider the case of (H2O)−2 . Calcula-
tions for this system on the basis of only singly-augmented basis sets suggest
a stationary point corresponding to a OH2 · · · e− · · ·H2O structure,207–210 in
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which the two water molecules are arranged in either C2h or D2d symmetry,
and the excess electron is apparently coordinated directly to all four O—H
moieties. In an early paper that reported such a structure for (H2O)−2 , it was
argued that inclusion of additional, more diffuse basis functions for the geom-
etry optimization was not necessary, because the addition of such functions
failed to change the contours of the SOMO in any qualitative way.208 How-
ever, calculations using a more appropriate basis set, with three diffuse shells
on each atom, later demonstrated that the OH2 · · · e− · · ·H2O binding motif
is unstable with respect to dissociation of the complex.119,211 Using reason-
able basis sets, the only stable structure identified for (H2O)−2 corresponds to
a dipole-bound H2O · · ·HOH · · · e− structure, with the electron bound to the
positive-dipole end of a hydrogen-bonded water dimer.211

Considerations for the Condensed Phase
Convergence of the VDEs for (H2O)−12 in Figure 18(b) suggests that when
the VDE is larger, additional diffuse functions beyond the traditional set
designed for valence anions (6-31++G*) do not alter the VDE by much. In
condensed-phase systems, the presence of atomic centers is ubiquitous enough
that one or a few diffuse shells may actually be enough to provide a con-
verged wave function, even for solvated-electron systems where the unpaired
electron resides in a solvent void (cavity) that lacks atoms, but which may
be adequately covered via atom-centered basis functions. This is illustrated
in Figure 20, which depicts a time-dependent density functional theory215

(TD-DFT) calculation of the electronic absorption spectrum of e−(aq), using
the 6-31+G* basis set.212 Comparison to the experimental spectrum139 shows
nearly quantitative agreement, despite the use of an atom-centered basis set
with only a single diffuse shell. The odd electron in these calculations inhabits
a void in the solvent, and the ground-state orbital depicted in Figure 20(b)
clearly spans this cavity, despite the lack of multiple diffuse shells. Careful
convergence tests, with respect to the diffuseness of the atom-centered basis
set as well as the size of the QM region in these QM MM calculations, reveal
that the 6-31+G* basis is sufficient to converge the first few excited states
(including, at least, the three 1s → 1p states), although basis-set effects are
larger for more highly excited states.162

That the singly-augmented 6-31+G* basis appears to be sufficient for
these e−(aq) calculations is fortunate, because the multiply-augmented basis
sets discussed above increasingly suffer from numerical linear dependencies as
the system size grows. This is problematic in larger clusters, as linear dependen-
cies tend to hamper SCF convergence and may be catastrophic in calculations
designed to model condensed-phase systems. Convergence problems can some-
times be mitigated using tight thresholds for shell-pair formation and integral
evaluation, but the computational cost may increase substantially as a result.
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Figure 20 (a) Simulated absorption spectrum for e−(aq),212 based on TD-DFT calcula-
tions at the LRC-𝜇BOP/6-31+G* level, in comparison to the experimental spectrum
from Ref. 139 (The LRC-𝜇BOP functional is described in more detail later in this
chapter; see Ref. 163 regarding the choice of functionals in TD-DFT). (b) Natural tran-
sition orbitals213 (NTOs) for several excited states of this system,15 with state labels 1s,
1p, and so on, corresponding to a “particle in a spherical box” model.214 (For the parti-
cle in a spherical box eigenfunctions, the principal quantum number does not constrain
the angular momentum quantum number, as it does for the more familiar example of
the hydrogen atom, hence the lowest excited states of this system are 1p states, not
2p states.214) These plots demonstrate that the 6-31+G* basis adequately covers the
cavity formed in the solvent; in particular, a cavity-centered SOMO is obtained for
the ground state. Adapted with permission from Ref. 212; copyright 2010 American
Chemical Society.

Gaussian basis sets designed specifically for condensed-phase calculations
do exist, in which basis-function parameters have been optimized using a met-
ric designed to minimize the appearance of linear dependencies.216 However,
these basis sets lack the diffuse functions needed to describe loosely-bound elec-
trons. For ab initio molecular dynamics simulations of (H2O)−32, Jungwirth and
coworkers217 found it necessary to augment such condensed-phase basis sets
with an additional 1000 Gaussian functions centered on a 10 × 10 × 10 Carte-
sian grid. The width of these functions was chosen to be ≈ 2.5 times the spacing
between their centers.218

To appreciate another problem with highly diffuse basis sets, one must
first understand that it is common practice to use MOs from the neutral
molecule – call it M, as above – as an initial guess for the SCF calculation
on M−. This choice can greatly accelerate the anion calculation since the
closed-shell SCF cycles are 50% less expensive and often provide an excellent
guess if the anion is weakly-bound and only slightly perturbs the MOs of
the neutral molecule. Moreover, insofar as both the M and M− calculations
are required to compute the VDE, nothing is lost by first computing the SCF
wave function for M. However, for (H2O)−N isomers with very small VDEs
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(≲ 0.1 eV, in this author’s experience), such a guess occasionally converges to
a different SCF solution, as compared to an unbiased guess for (H2O)−N!

In addition, attempts to optimize the geometry of M− sometimes access
geometries in which the anion is unbound, which may lead to convergence
failure in the SCF calculation. The regions of the potential surface where this
problematic behavior occurs can be expected to proliferate as the VDE of
M− approaches zero. Such problems are usually avoided – for all the wrong
reasons – by the use of overly compact basis sets, which is perhaps why the lit-
erature is rife with weakly-bound anion calculations using inappropriate basis
sets. The VDEs reported in these studies are certainly incorrect, and the struc-
tures may be bogus as well.

Floating Centers
The discussion up to this point has considered only atom-centered Gaussian
basis sets, possibly augmented by an expensive Cartesian grid of Gaussian
functions. To avoid problems with linear dependencies, at modest cost, while
still providing highly diffuse basis sets that can be used, for example, to describe
dipole-bound anions of small molecules, one can employ floating-center basis
functions. Here, a standard augmented basis set is further augmented with a
set of diffuse functions placed on some alternative center that is treated as an
atom with zero nuclear charge (a so-called “ghost atom”). The floating-center
approach is effective for small, weakly-bound anions such as CH3CN− and
(H2O · · ·NH3)−, although diffuse basis functions of d symmetry are required
to converge VDEs.192 Analytic models of electron binding to a point dipole
suggest that d functions in a single-center expansion should be even more
important for systems with larger dipole moments,219 although calculations
on (H2O)N clusters show that diffuse, atom-centered d functions have very
little impact on VDEs.191 Presumably, this is because the greater asymmetry of
these clusters, as compared to CH3CN− or a point dipole model, allows linear
combinations of diffuse s and p functions to mimic the angular flexibility
that would otherwise be provided by diffuse d functions. It stands to reason
that in a single-center expansion, functions with higher angular momentum
will be necessary, as compared to what is required when using a multicenter
expansion.

When the size of the nuclear framework of the molecule or cluster is small
compared to the extent of the diffuse basis functions, it probably does not mat-
ter much where the floating center is positioned. In applications to (H2O)−6 ,
for example, Sommerfeld et al.128 place a single set of diffuse functions on one
oxygen atom, using an even-tempered progression out to a maximum FWHM
of 80 Å. It is reported that the VDE depends only weakly on which oxygen
atom is chosen as the center of this expansion.128

In a large molecule or cluster, however, a single floating center cannot
be expected to replace atom-centered diffuse basis functions. In the absence
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of these atom-centered functions, the floating-center approach is fundamen-
tally unbalanced because some regions of space will be better covered by basis
functions than other regions. Unless the electronic structure of the anion in
question is well understood in advance, this technique is potentially dangerous
for larger molecules of clusters because it necessarily biases the spatial location
of the SOMO toward whatever region of space is best described by the floating
center(s).220 If using floating centers in larger systems, one should at the very
least optimize their positions in any geometry optimization. (That is, the energy
should be minimized with respect to the coordinates of all centers that support
basis functions, including any ghost atoms.) In this context, it is worth noting
that the presence of the floating centers will lead to artifactual vibrational fre-
quencies, although these can be eliminated by increasing the (fictitious) mass
of the ghost atom(s) so that their motion decouples from the actual vibrational
degrees of freedom.192

Even so, the use of ghost atoms for larger molecules or clusters may
present a biased description of the potential energy surface. It may be difficult
to make a good a priori guess as to what the location of the floating center(s)
should be, and geometry optimization only guarantees finding a local minimum
with respect to the placement of these centers. A different initial guess for the
position of the floating center(s) might easily lead to a prediction of an electron
localized in a different region of space.

Orbital Isosurfaces
Given the extremely diffuse nature of the SOMO in a weakly-bound anion, an
important but frequently overlooked consideration is how this orbital should
be plotted for visual inspection and interpretation. Various software is available
to render isocontour plots of MOs,221–226 and an isosurface for the orbital 𝜙 is
defined as the locus of points for which 𝜙(r) = c, for some user-specified numer-
ical value, c. A diligent author will faithfully report the value of c that was used
to generate the isosurface, and while this does allow others to reproduce the
same plot, it is basically meaningless from the standpoint of any physical inter-
pretation. Moreover, any hand-waving arguments based on the spatial extent of
the orbital thus plotted are dubious, insofar as the orbital can easily be made to
appear larger or smaller by choosing a smaller or larger value of c, respectively.

While these comments pertain to orbital isosurface plots in general, the
situation is particularly dire for diffuse electrons. In such cases, one should
demand to know what fraction of the orbital density |𝜙|2 is encapsulated within
a given isosurface plot. In other words, we need to know the fractional electron
value,

f = ∫r∈V
dr|𝜙(r)|2 [29]

that exists within the volume V defined by the orbital isosurface.
Figure 21 presents an example illustrating the danger of reporting isocon-

tour plots with arbitrarily chosen contour values. Plotted in this example are



Quantum Chemistry for Weakly-Bound Anions 435

the Hartree–Fock/6-31(1+,3+)G* SOMOs for an isomer of (H2O)−20 and an
isomer of (H2O)−24 that both have VDEs of ≈ 1 eV (MP2 level),15 but which
exhibit very different electron binding motifs. In one case, the electron is bound
at the surface of the cluster and its wave function extends mostly into vacuum,
whereas in the other case the electron resides in cavity formed within the cluster,
wherein H2O molecules have reoriented to point their O—H moieties toward
the excess electron. In the latter case, it is tempting to conceptualize the excess
electron as a small, quasi-spherical “ball of charge” in water, and the surfaces
in Figure 21 demonstrate that it is possible to choose a value of c such that an
isocontour plot reinforces this “ball of charge” (or particle-in-a-box15) picture.
However, such a plot encompasses no more than 75% of the total probability
density |𝜙SOMO|2. When > 90% of the probability density is plotted, it becomes
apparent that the SOMO extends well beyond the first solvation shell, for the
cavity-bound electron, whereas in the surface-bound case the SOMO extends
a considerable distance out into vacuum but does not penetrate the interior of
the cluster to any significant extent.206 Condensed-phase calculations of e−(aq)
in a solvent cavity also indicate that only ∼50% of the spin density (𝜌

𝛼
− 𝜌

𝛽
) is

contained within the cavity.146

This example demonstrates that isocontour values c chosen with no
knowledge of the corresponding value of f may present a highly distorted
physical picture. Similarly, the ubiquitous practice of side-by-side comparison

55% 75% 90% 99%

Figure 21 A series of isosurfaces computed at the Hartree–Fock/6-31(1+,3+)G* level
that encompass ever-greater fractions of the SOMO for a surface-bound state of (H2O)−20
top and a cavity-bound state of (H2O)−24 bottom. The fraction f of the SOMO density,|𝜙|2, that is included within these surfaces is noted in the center. Both isomers exhibit
VDEs of ≈ 1 eV at the MP2/6-31(1+,3+)G* level.15 Reprinted with permission from
Ref. 206; copyright 2008 American Chemical Society.
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Figure 22 Isocontour plots of the SOMOs for three different loosely-bound electron
systems studied in Ref. 227: the (NH3 · · ·HCl)− dimer anion, the proton-transferred
(NH+

4 · · ·Cl−)− isomer of the same dimer, and the charge-neutral NH4 radical. (The last
of these may be viewed as a Rydberg anion state of NH+

4 .) Panel (a) shows each SOMO
plotted using a common isocontour value, c = 0.005 a−3∕2

0 . The corresponding fractions,
f , of |𝜙SOMO|2 are also listed, along with an estimate of the electron–molecule distance
for an electron in the SOMO, as determined using Eq. [25]. In panel (b), these SOMOs
are plotted for three different isocontour values, c, and the corresponding values of f
are listed as well. Adapted with permission from Ref. 228; copyright 2008 American
Chemical Society.

of different orbitals plotted using the same isocontour value may be an unfair
comparison, if the radial extent of the orbitals in question is quite different.
Because the radial extent is governed by the VDE, comparing common isocon-
tours for systems with very different VDEs is not appropriate. An example is
shown in Figure 22, which plots isocontours of the SOMO for three species
with very different VDEs. When plotted side-by-side using a common value
of c, the SOMO isosurfaces for these three systems can convey misleading
information about which of the orbitals is the most diffuse. For example,
choosing either c = 0.0035 a−3∕2

0 or c = 0.0050 a−3∕2
0 (see Figure 22), the

SOMO for (Cl− · · ·NH+
4 )

−, a species whose VDE is only 0.03 eV,227 appears
to be slightly larger than the SOMO for the proton-transferred (ClH · · ·NH3)−
isomer of the same cluster, whose VDE is 0.51 eV.227 However, the fraction of
the electron that is contained in the two isosurfaces is quite different: > 85%
of the density for the more strongly-bound species but < 30% of the electron
density for the weaker binding isomer.

In view of these examples, side-by-side comparison of orbital isosurfaces
for different molecules, clusters, or orbitals is appropriate only when com-
paring common values of f , not c.229,228,206,15 Unfortunately, this wisdom has
yet to percolate into common practice. When plotting several MOs from the
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same molecule, this issue may be less pronounced because 𝜀SOMO controls the
asymptotic decay of all occupied Hartree–Fock MOs, not just the SOMO (see
Eq. [23]).198 Nevertheless, best practice is to use consistent values of f when-
ever plotting orbitals side-by-side or when making “intuitive” arguments on
the basis of the spatial extent of an orbital.

Whereas isocontour plots for arbitrary values of c are easy to generate
from the output of most electronic structure programs, using readily avail-
able software,221–226 plotting isoprobability contours for a specified value of
f entails additional effort because volumetric data are required. Specifically,
the function 𝜙 (r) must be computed on a grid and then integrated accord-
ing to Eq. [29]. (In principle, this integration could be done internally within
an electronic structure program, but to the best of this author’s knowledge,
no widely-used quantum chemistry package has yet implemented this feature.)
Many electronic structure programs will output orbital and density data in the
form of a so-called Gaussian cube file,230 which has become something of an
“industry standard” for storing volumetric data, insofar as this format can be
read by a variety of visualization programs.224,231,221 Nevertheless, the precise
specification for “cube file” data does not appear to have been published in the
literature.

This situation is rectified in Figure 23(a), which provides the format speci-
fication. The header portion of this file specifies the number of atoms (NAtoms)
as well as their atomic numbers (Z1, Z2, … ), coordinates (x1, y1, z1, x2, … ),
origin (XOrigin, YOrigin, ZOrigin), and axes of the volumetric grid. The num-
ber of cells (voxels) in each Cartesian dimension is specified as NVoxX, and so
on, and the axes of each voxel must also be specified, so the values XAxisX,
XAxisY, and XAxisZ, for example, determine the orientation of the first (X)
axis of the voxel relative to the molecular frame. The length of these vectors
specifies the size of the voxel. Often, the voxel axes are simply aligned with the
molecular frame, in which case the three axis vectors constitute a 3 × 3 diago-
nal matrix whose diagonal entries represent the spacings between grid points.
(Note that all distances are in units of bohr.) Following the atomic coordi-
nates come the volumetric data, also in atomic units. The snippet of code in
Figure 23(b) suggests how these data values are arranged; note in particular
the line break after each batch of Z points, one of which can be seen in the
penultimate line of Figure 23(a).

Next, given an appropriately formatted cube file, the freely available
OpenCubMan program228 can be used to convert between c (isocontour
value) and f (fraction of the electron encapsulated by the specified isocontour),
and vice versa. Figure 24, which plots the radial decay of the SOMOs for the
two weakly-bound cluster anions from Figure 22, illustrates how the algo-
rithm works. Given a cube file representing 𝜙SOMO(r) evaluated on a regular
Cartesian grid, the algorithm first sorts the values of 𝜌SOMO(r) = |𝜙SOMO(r)|2
into descending order, then numerically integrates 𝜌SOMO starting from its
maximum value, until the first point where the numerical integral equals or
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(a) (b)

Figure 23 (a) Format specification for the “cube file” for storing volumetric data for-
mat. The file consists of a header that specifies the nuclei and the grid, followed by the
data values at the grid points. All data are given in atomic units. (b) Inset: a snippet of C
code that writes the data values in the appropriate order and format. This specification
is consistent with that output of the Q-Chem electronic structure program194,195 and has
been tested for reading and visualization using the Visual Molecular Dynamics (VMD)
program.224 The column of zeros in the header file in panel (a) represents information
that is not presently used by VMD.
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Figure 24 Radial plots of the SOMOs for the two weakly-bound anions from
Figure 22, illustrating the f → c algorithm of Ref. 228. The dotted regions would be
encapsulated by a 10% isoprobability contour and the hashed regions by a 50% iso-
probability contour. Adapted with permission from Ref. 228; copyright 2008 American
Chemical Society.
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exceeds f . The value of 𝜙SOMO(r) at that point is reported as the contour
value, c.228

With a bit of experimentation, this procedure can be used to plot an iso-
probability contour corresponding to a desired value of f , provided that the
volumetric data are output on a sufficiently fine grid. For coarse grids, one
may find that the process f → c → f or c → f → c does not yield completely
self-consistent results (i.e., the final value may be slightly different from the
initial value), but such discrepancies should disappear as the volumetric grid
density increases.

Wave Function Electronic Structure Methods

Importance of Electron Correlation
Simple textbook results for IPs and EAs serve as a starting point for think-
ing about quantum chemistry calculations. If we assume that the nonionized
molecule is described by a Hartree–Fock wave function, and furthermore if we
neglect any relaxation of the MOs on electron attachment or detachment – that
is, if we use the neutral molecule’s MOs to construct a Slater determinant for the
ionized species, removing an electron from the HOMO or adding an electron
to the LUMO – then the corresponding approximate IP and EA expressions
are known as KT:35

EA≈NEN+1 − ELUMO = −𝜀LUMO [30]

IP≈N−1EHOMO−NE = −𝜀HOMO [31]

Here, NE represents the Hartree–Fock energy for the N-electron system, and
the energies of the determinants formed either by adding an electron to the
LUMO or removing one from the HOMO are denoted as N+1ELUMO and
N−1EHOMO, respectively. The fact that these energy differences are equal to
(minus) orbital energies is an exact result within the model described above;
the approximations (with respect to actual EAs and IPs) involve neglect of
orbital relaxation and neglect of electron correlation.

A recent review article2 suggests that the accuracy of KT results is typi-
cally ±0.5 eV for both IPs and EAs, but often the accuracy for IPs is better than
that for EAs owing to favorable error cancellation in the case of IPs. To under-
stand this, consider that neglect of orbital relaxation must necessarily destabi-
lize the ionized species (relative to an exact calculation), since the Hartree–Fock
method is variational. At the same time, the correlation energy is extensive and
therefore tends to be larger for the species that contains more electrons. This
correlation energy will probably stabilize the species in question, relative to
the Hartree–Fock prediction, by allowing electrons to avoid one another more
successfully. For the IP case, then, orbital relaxation would decrease (stabilize)
N−1EHOMO, while electron correlation is expected to decrease NE to a greater
extent than it decreases N−1EHOMO. The two errors thus partially cancel one
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another. Szabo and Ostlund35 report small-molecule examples for which KT
IPs afford values within 0.1 eV of experiment. For the DNA nucleobases, KT
IPs evaluated using modest basis sets are also found to be within 0.15 eV of
experimental values.232

In the case of EAs, however, the species where orbital relaxation is
neglected (the anion) is also the species having the larger correlation energy,
so if both effects are included then the net result is to move NE further away
from N+1ELUMO. As such, errors in KT EAs tend to be much larger than errors
in IPs, perhaps ∼1 eV for EAs.3 Empirical scaling of the KT EAs has been
suggested,232,124 although it is probably appropriate only across a narrow
range of similar molecules. For example, the anion resonances in a series of
substituted cyanoethylenes,233 which can be determined experimentally by
electron transmission spectroscopy,184,185,2 are a good fit to the expression

VAEexpt = 0.74𝜀 − 2.0 eV [32]

Here, 𝜀 > 0 is an orbital energy (equal to the KT prediction of the VAE), com-
puted in Ref. 233 at the Hartree–Fock/3-21G level. The VAEs measured exper-
imentally and used to fit Eq. [32] range from 2 to 10 eV, meaning that the
corresponding Hartree–Fock orbital energies lie in the range 𝜀 ∼ 5–16 eV,
according to Eq. [32]. In other words, the combination of orbital relaxation,
electron correlation, and finite-basis effects (since 3-21G is far from the basis-set
limit) modifies the KT prediction for the VAEs by 3–6 eV!

That said, and while KT EAs do still find some utility in stabilization
calculations of temporary anion resonances (as discussed later in this chapter),
for bound states of M− there is little reason to rely on KT since Hartree–Fock
calculations are nowadays computationally facile on large molecules, often in
large basis sets. It is therefore easy to compute a “ΔSCF” value for the EA,
which includes the effects of orbital relaxation, simply by computing separately
the Hartree–Fock energies of M and M−, assuming that the latter is bound.
(If it is not, then neither the KT nor the ΔSCF value of the EA is reliable.)
This raises an important point, namely, that one obtains a positive EA from
KT only when 𝜀LUMO < 0, and for very weakly-bound anions there may be
no virtual orbitals with negative orbital eigenvalues. Simons3 suggests that the
orbital relaxation obtained in a ΔSCF calculation often amounts to ∼0.5 eV,
whereas EAs predicted using KT might have errors of ∼1 eV, with the other
0.5 eV representing the effects of electron correlation. To do better than this
for the calculation of EAs and/or VDEs, a correlated level of theory is required.

Much has been made of the critical role of electron correlation effects in
the description of weakly-bound anions.113,205,234,11,2,3 As with any electronic
structure problem, electron correlation is always quantitatively important and
occasionally qualitatively important. Cases where correlation is qualitatively
important include certain anions with very small VDEs, where dipole binding
effects alone (which might be reasonably well-described at the Hartree–Fock
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level) do not afford a positive VDE, even for anions whose existence can be
confirmed experimentally. Such examples will be discussed in due course, but
it should be noted at the outset that cases where electron correlation changes
the sign of the VDE almost always correspond to cases where the VDE is very
small (< 0.1 eV). In such cases, an estimate VDE ≈ 0 that might be obtained at
the Hartree–Fock level represents a rather small absolute error, quantitatively
speaking.

This distinction brings to mind the infamous example of the dipole
moment of the carbon monoxide molecule, a historically important problem
whose story is told in Ref. 235. To summarize: the experimentally-determined
dipole moment is ≈ 0.1 D and exhibits C𝛿−O𝛿+ polarization, whereas
Hartree–Fock calculations in reasonable basis sets predict 𝜇 ≈ 0.3 D but with
the opposite polarization.236 Depending upon one’s point of view, this is either
an egregious, qualitative error in Hartree–Fock theory (wrong sign for 𝜇!), or
else a reasonable prediction that differs from experiment by only about 0.4 D.
(Stated differently, Hartree–Fock theory correctly predicts that the CO dipole
moment is small.) The VDEs of weakly-bound anions exist in a similar state
of ambiguity. Since “chemical accuracy” (usually regarded as ∼1 kcal/mol or
≈ 0.04 eV) is achieved only with high-level treatments of electron correlation,
one cannot expect that electron binding in any species whose VDE ≲ 0.04 eV
will be described even qualitatively correctly in the absence of high-level
treatments of electron correlation. On the other hand, an estimate of VDE ≈ 0
for such a species represents an error of ≲ 0.04 eV.

As pointed out previously in this chapter, VDEs are intensive quantities
whereas the correlation energy is extensive. As such, it is sometimes argued
that calculation of VDEs is especially difficult and sensitive to correlation
effects.2 Note, however, that other important chemical properties also do not
scale with system size; reaction barriers, for example, tend to lie in the range
1–50 kcal/mol and depend on the local bonding environment more so than
the overall system size. Similarly, electronic excitation energies for organic
chromophores may be modulated in a chemically significant way by their
environment, yet these excitation energies span a range of a few electron volts,
largely independent of system size. In light of these facts, it is not altogether
clear that calculation of VDEs is intrinsically more difficult than calculation of
other chemically important energy differences.

Coupled-Cluster Theory
Rather than “walking up” the hierarchy of correlated wave function models, let
us start from the top, with CC methods. For tutorial reviews of CC theory, see
Refs. 38 and 39. Here, we simply note that the CCSD(T) method,237 that is, CC
theory with single and double excitations described self-consistently, and triple
excitations treated perturbatively, is widely considered to be the “gold stan-
dard” of single-reference quantum chemistry. In conjunction with high-quality
basis sets, this method often achieves “chemical accuracy” of ≲ 1 kcal/mol
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for a variety of molecular properties and energy differences, including diffi-
cult ones like atomization energies where one cannot rely on error cancellation
in computing the energy difference.238 A self-consistent treatment of the triple
excitations (CCSDT) is usually a small correction (≪ 1 kcal/mol).238

In defense of the assertion that EAs are fundamentally not significantly
more challenging as compared to other energy differences in electronic struc-
ture theory, we first wish to make the case that the CCSD(T) method’s rep-
utation as an excellent benchmark level of theory is no less appropriate in
the context of EAs and VDEs for weakly-bound anions. Considering EAs for
the atoms H through Cl, where experimental values range from 0.28 eV for
boron up to 3.61 eV for chlorine, complete-basis CCSD(T) results are in excel-
lent agreement with experiment, with the largest deviation being 0.051 eV
for Cl.239 Notably, chlorine has the largest spin-orbit correction (estimated
at −0.037 eV) and the largest relativistic correction (estimated at −0.015 eV)
of any of the atoms H—Cl in the periodic table, and when these corrections
are included, the discrepancy with experiment is reduced to < 0.0004 eV.239

Errors in EAs for the 3d transition metal atoms, computed at the CCSD(T)/CBS
level (where “CBS” denotes extrapolation to the complete basis set limit), are
< 0.3 eV (or < 7 kcal/mol) in all cases. These errors are comparable in mag-
nitude to the relativistic corrections.240 Corrections for connected triple exci-
tations (ECCSDT − ECCSD(T)) are no larger than 0.034 eV, and corrections for
perturbative quadruple excitations (ECCSDT(Q) − ECCSDT) are < 0.01 eV.240

Although not directly relevant to CC theory per se, we mention in this
context the performance of composite methods, including the W1 and W2
methods,241,242 the Gaussian-3 (G3) method,243–245 and the CBS-4 and CBS-Q
methods.246–249 These methods are “composites” in the sense that they com-
bine the results of a variety of different levels of electronic structure theory,
including vibrational zero-point energy and spin-orbit corrections, in an effort
to design an overall computational strategy that can achieve ≲ 1 kcal/mol accu-
racy for equilibrium thermochemistry. (The W1 and W2 methods even target
“spectroscopic accuracy” of ∼1 kJ/mol.241,250) For main group atoms and
small molecules, the W1 and W2 methods predict AEAs with an accuracy of
< 0.1 eV as compared to experiment.242 The accuracy for AEAs predicted by
the G3 method is 1.0–1.5 kcal/mol, or again better than 0.1 eV,251,245 and
the CBS-4 and CBS-Q methods perform similarly.246 (Error statistics for sev-
eral of these composite methods are summarized in Table 2.) The point of this
brief digression about composite methods is to reinforce the idea that, as with
CC methods, electronic structure models that are known to be accurate for
thermochemistry are also accurate for AEAs.

Composite methods are designed for equilibrium thermochemistry, not
for mapping out potential energy surfaces, so we now return to a discussion
of CC methods and consider some cases involving prediction of VDEs for
weakly-bound anions. Consider the case of (H2O)−2 , for example. The best
available calculation for the VDE of the trans isomer (depicted in Figure 5)
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Table 2 Error Statistics for Adiabatic EAs Computed by Various Composite
Methods, for the 27 Atoms and Small Molecules in the G2-1 Data Seta

Reference for Errors (eV)
Method Theory Mean MADb RMSc Maxd

G3e 243 0.031 0.049 0.065 0.182
G3(MP2)e 244 0.035 0.058 0.076 0.195
CBS-4Me 246 −0.006 0.111 0.136 0.312
CBS-QB3e 246 0.031 0.055 0.065 0.117
W1f 241 0.009 0.016 0.019 0.051
W2f 241 0.008 0.012 0.014 0.039
a252
bMean absolute deviation (MAD).
cRoot mean square (RMS) deviation.
dMaximum error for any of the 27 atoms.
eError statistics taken from Ref. 246.
f Error statistics taken from Ref. 242.

is one performed at the CCSD(T)/aug-cc-pVDZ(6s6p6d) level, where the par-
enthetical indicates six additional diffuse shells on a floating center.234 This
calculation predicts a VDE of 0.039 eV, which should be compared to values
of 0.045 ± 0.006 eV199,200 and 0.030 ± 0.0004 eV201 obtained from photo-
electron spectroscopy. For the cis isomer, a CCSD(T)/aug-cc-pVDZ(5s5p5d)
calculation affords a VDE of 0.013 eV,234 in comparison to an experimental
value of 0.017 eV,253,254 the latter measured by field detachment of (H2O)−2 in
rare-gas clusters and extrapolated to the limit of zero rare-gas atoms. Table 3
provides several other examples, along with an energy decomposition that is
discussed later in this chapter. Of the examples in Table 3, the largest differ-
ence between theory and experiment occurs in the case of (HF)−2 , for which
Jordan and Wang11 cite “sizable discrepancies” between theory and experi-
ment. CCSD(T)/aug-cc-pVDZ(5s5p5d) calculations for this dimer anion afford
a VDE of 387 cm−1 (0.048 eV),203 as compared to the experimental value of
508 cm−1 (0.063 eV).255 These comparisons to experiment establish the limit
of what it is possible to achieve with ab initio theory.

As with atomic EAs, comparisons to higher-level calculations suggest
that correlation effects on VDEs beyond the CCSD(T) level are quite small
for molecular anions.113,203,204 Consider, for example, the notoriously chal-
lenging HNC− and HCN− anions,234,256,257 whose binding energies are only
≈ 0.004 eV and ≈ 0.002 eV, respectively, with the VDE for HCN− arising
almost entirely from electron correlation effects.256 For these two species,
VDEs computed at the CCSD(T) level and the CCSDT level agree to within
0.001 eV.257 The (H2O)−6 anion provides another example: here, the VDE
computed at the CCSD(T) level258 lies within the statistical error bars of a
quantum Monte Carlo (QMC) calculation,259 the latter of which is free of
basis-set artifacts and does not require truncation of the excitation level.
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Table 3 Decomposition of Ab Initio VDEs into Physically Meaningful Componentsa

Contributions to the VDE (cm−1)

Energy Component CH3CN−b C3H−
2

b (H2O)−2
c (HF)−2

d (HF)−3
e

KT 53 55 111 165 950
ΔErelax 3 8 7 14 104

ΔE(2)
disp

57 70 114 177 625

ΔE(2)
non-disp

−38 5 −10 −73 −227

ΔE(3) 4 −38 0 −3 −24

ΔE(4) 8 34 20 27 93
ΔEHO 21 39 100 81 145

VDE[CCSD(T)]f 108 173 312 387 1666

VDE(expt)g 93 171 ± 50 363 ± 48 508 ± 24 1613 ± 2420

aReprinted with permission from Ref. 11 (copyright 2003 Annual Reviews); notation is explained
in the text.
bFrom Ref. 113.
cFrom Ref. 234.
dFrom Ref. 203.
eFrom Ref. 204.
f Basis set is aDZ(7s7p8d) for CH3CN− and C3H−

2 , aDZ(5s5p5d) for (HF)−2 , and aDZ(4s4p4d) for
(HF)−3 .
gReferences to the experimental literature can be found in the relevant theory papers.

Thus, CCSD(T) calculations with basis sets as described above are capa-
ble of reproducing experimental VDEs within the accuracy of the experiments,
and further electron correlation effects are typically smaller than experimental
precision, even in cases where the latter is quite good. The cost of CCSD(T)
calculations, however, grows as O(N7) with respect to system size, N, which
quickly becomes prohibitive. Therefore, it is important to understand how
more modest treatments of electron correlation can be expected to perform.
The convergence of VDEs with respect to the treatment of electron correlation,
using basis sets that should be saturated with respect to diffuseness, is illustrated
in Table 4 for several small (H2O)−N isomers. Two different isomers of (H2O)−6
are considered, with VDEs of 0.42 and 0.78 eV at the CCSD(T) level.260 Note
that VDEs computed at the MP2 level for the same two isomers, which are also
listed in Table 4, differ from the CCSD(T) values by only 0.06 eV (15%) and
0.03 eV (3%), respectively.

The very weakly-bound (H2O)−4 isomer in Table 4 exhibits a larger
MP2 error: 0.14 eV or 73%. That the MP2 error tends to be larger for less
strongly-bound isomers is a general trend that will we see again later. From the
KT results (−𝜀LUMO), it is clear that this particular anion is nearly unbound
at the Hartree–Fock level. According to Eq. [23], the asymptotic decay of the
SCF wave function goes like ∼ exp(−𝜀SOMOr), so if 𝜀SOMO > 0 then the SCF
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Table 4 VDEs for Several (H2O)−N Isomers Obtained Using Various Wave Function
Modelsa

VDE (eV)
(H2O)−6

c

Model (H2O)−4
b Isomer 1 Isomer 2

Koopmans’ Theoremd 0.002 0.233 0.045
Hartree–Fock 0.003 0.259 0.254
MP2 0.051 0.361 0.750
CCSD 0.166 0.399 0.717
CCSD(T) 0.191 0.422 0.777
EOM-EA-CCSD 0.192 0.418 0.744
EOM-EA-CCSD(2)e 0.192 0.415 0.744
ADC(2) 0.192 0.400 0.748

aReprinted with permission from Ref. 260; copyright 2012 American Chemical Society.
bBasis set is aug-cc-pVTZ(6s6p6d).
cBasis set is aug-cc-pVDZ(7s7p).
dVDE = −𝜀SOMO.
eUses MP2 amplitudes to construct the cluster operator.

wave function is not normalizable, and the application of perturbation theory
is probably not appropriate, since the reference state is qualitatively wrong. In
the particular example of the weakly-bound (H2O)−4 isomer in Table 4, 𝜀SOMO
remains slightly negative (bound), but clearly the Hartree–Fock determinant
is approaching a regime where perturbation theory should be viewed with
skepticism. CC wave functions, on the other hand, are far less sensitive to
the choice of reference determinant,261 and indeed the CCSD result (treating
the singles and doubles self-consistently, as opposed to perturbatively) is a
reasonable approximation to CCSD(T), much more along the lines of what is
observed for the more strongly-bound (H2O)−6 isomers.

Since the “(T)” correction is itself perturbative, one might reasonably
question CCSD(T) results in cases where MP2 theory goes awry. Results quoted
earlier for (H2O)−2 and HCN− suggest that this is not an issue, however, pre-
sumably due to the superior reference state provided by the exp(̂T1) orbital
rotation261 in CCSD. A more direct assessment is possible using CC meth-
ods that do not rely on the weakly-bound anion as the reference state. One
such method is the “electron attachment” version262 of equation-of-motion
(EOM) CC theory with single and double excitations.263 This method, which
goes by the acronym EOM-EA-CCSD, uses the CCSD wave function for the
closed-shell neutral molecule, M, as a reference state to compute the cluster
operator ̂T = ̂T1 + ̂T2, and is therefore free of any concern regarding whether
or not 𝜀SOMO for M− is bound. The ground state of M− is then obtained by
configuration interaction with respect to the similarity-transformed Hamilto-
nian,

̂
̃H = e−

̂T ̂He
̂T [33]
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in a “two-particle, one-hole” (2p1h) basis.262 For (H2O)−4 , EOM-EA-CCSD
and CCSD(T) results are nearly identical (see Table 4), which suggests that the
CCSD(T) method is a reasonable one even for weakly-bound anions. Evidently,
for this particular example the exp(̂T1) orbital rotation operator is able to deal
with any inadequacy in the reference state.

This quantitative agreement between EOM-EA-CCSD and CCSD(T)
results may be fortuitous, however. An EOM-CCSD study of small-molecule
EAs (in the range of 0.4–3.8 eV) found that the accuracy of EOM-EA-CCSD
and EOM-IP-CCSD EAs is generally no better – and perhaps slightly
worse – than the accuracy of a ΔCCSD approach, with the accuracy of the
latter method being ≈ 0.3 eV.262 This underscores a point made earlier: it is
not completely clear whether EOM, Green’s function, or electron propagator
methods are intrinsically more accurate than standard methods that compute
Eneutral − Eanion, assuming that: (i) each of the methods in question is extended
to the same level of many-body theory, and (ii) size-extensive methods are
employed for all calculations. Moreover, whereas the EOM-EA-CCSD calcula-
tions in Table 4 were performed in an effort to avoid a potentially problematic
anion reference state,260 it was noted in Ref. 262 that the EOM-IP-CCSD
values in that study were in slightly better agreement with experiment as
compared to the EOM-EA-CCSD results, by 0.05–0.10 eV on average. The
EOM-IP-CCSD approach consists of a ground-state CCSD calculation on the
anion, followed by an EOM calculation involving removal of an electron.
Thus, the “IP” version of the method (EOM-IP-CCSD) uses orbitals optimized
for the anion.

Similar accuracy (0.2–0.3 eV for valence ionization energies below
∼20 eV) is available using propagator methods in conjunction with triple-𝜁
basis sets.102,103 These propagator methods are known in the literature
as the outer valence Green’s function (OVGF) and partial-third order (P3)
approximations.102,103 With modern semidirect batching algorithms, these
methods exhibit only fifth-order scaling (ov4, where o and v denote the number
of occupied and virtual orbitals, respectively, whereas EOM-CCSD methods
scale as o2v4), although long calculation times (due to numerous batches)
or else large amounts of memory (to reduce the number of batches) may be
required.101 That said, where point-group symmetry is available, molecules
as large as fullerenes (C60 to C144), porphyrins, and phthalocyanines [e.g.,
(C32H12N8NiO12S4)4−] have been considered.264–266

Perturbation Theory
When the VDE of M− is small, changes in the treatment of electron
correlation can have qualitative effects, analogous to the case of carbon
monoxide’s dipole moment.235 A significant development in the study of
(very) weakly-bound anions was the recognition, in the late 1990s, that
electron correlation effects sometimes do play a qualitatively important role in
electron binding,113,204,205,234 in the sense that they may make the difference



Quantum Chemistry for Weakly-Bound Anions 447

between electron binding or not binding. To interpret the physical origins of
electron binding, Gutowski and coworkers192,204,205 introduced a perturbative
decomposition of the VDE, similar in spirit to the perturbative theory of
intermolecular interactions267,268 but with the loosely-bound electron serving
as one of the “molecules.” The method requires calculations involving triple
excitations [MP4 and CCSD(T)] and is therefore applicable to small systems
only, especially in view of the basis-set requirements for high-accuracy calcula-
tions. In a series of publications, Gutowski et al.113,204,269,205,234 showed that
(second-order) electron–molecule dispersion interactions – which are wholly
electron correlation effects – make a significant contribution to the VDEs of a
variety of dipole-bound anions, some of which are analyzed in Table 3.

Dispersion interactions are absent at the Hartree–Fock level and appear
for the first time in second-order perturbation theory. Gutowski et al.204,205

proposed that a subset of the terms in the MP2 correlation energy could be
ascribed to dispersion interactions between the loosely-bound electron and the
core molecular species, namely

ΔE(2)
disp

= −1
2

occ∑
i

virt∑
ab

|⟨𝜙a𝜙b||𝜙i𝜙SOMO⟩|2
𝜀a + 𝜀b − 𝜀i − 𝜀SOMO

[34]

This second-order dispersion correction represents the terms in the MP2 corre-
lation energy that involve coupling of the transient dipoles induced by simul-
taneous excitation of the SOMO and one of the occupied MOs (𝜙i) of the core
molecular species. Because the electron repulsion integrals in Eq. [34] are anti-
symmetrized, ΔE(2)

disp
includes second-order exchange-dispersion interactions as

well, in the language of symmetry-adapted perturbation theory.268

For each of the anions in Table 3 except (HF)−3 , this second-order dis-
persion energy is larger than the VDE predicted by KT, and in all of the cases
examined in Table 3 it is larger than the remaining terms in the MP2 correlation
energy (ΔE(2)

non-disp
). Thus, with the possible exception of (HF)−3 , one can say that

electron–molecule dispersion is actually more important in stabilizing these
particular weakly-bound anions than is the electron–dipole interaction, and
as such, these are cases where correlation effects are qualitatively important.
Much of this importance is captured already at second order in perturbation
theory. The third- and fourth-order corrections to the VDE (ΔE(3) and ΔE(4)

in Table 3) are fairly small, as is the “higher-order” correction, ΔEHO, that
is assessed as the difference between fourth-order perturbation theory and a
benchmark VDE computed at either the CCSD(T) or CCSDT level.11 For each
of the weakly-bound anions in Table 3, the sum total of corrections to the VDE
beyond second-order perturbation theory is no larger than 0.03 eV.

These higher-order effects are the largest in (HF)−3 , which also has the
largest VDE of any of the anions considered in Table 3. Much larger VDEs
can be realized in larger (HF)−N clusters,11,270 and Table 5 shows the results
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of a perturbative energy decomposition for some examples. All of these are
high-symmetry clusters in which the positive ends of the molecular dipoles
have been oriented toward a common point, in an effort to construct small
clusters with large VDEs. In the VDE decomposition, one important observa-
tion is that ΔE(2)

disp
is larger than the orbital relaxation correction (ΔErelax) in

every case, where the latter is defined as the difference between the KT esti-
mate of the VDE and the ΔSCF value. Gutowski et al.205 argue that ΔErelax
should approximate the second-order induction correction, that is, ΔErelax is
the leading-order polarization correction, and insofar as this is true, the ratio

ratio =
ΔE(2)

disp

ΔErelax
[35]

provides an estimate of the relative importance of dispersion versus induc-
tion. For the weakly-bound (HF)−2 isomer in Table 5, one obtains a ratio of
10.5, echoing the large ratios found in other weakly-bound anions such as
(H2O)−2 (ratio = 16.3) and CH3CN− (ratio = 19.0).11 However, for the more
strongly-bound (HF)−N clusters in Table 5, this ratio is more like 1.5, meaning
that both the induction and dispersion corrections are quite substantive.

These observations led to a significant change in the thinking about
dipole-bound anions, whose very name implies electrostatic binding and
summons notions of charge–dipole models.271,219 On the other hand, the
second-order dispersion and non-dispersion corrections have opposite signs
and thus partially cancel, for all of the (HF)−N clusters in Table 5 as well as
many of the weakly-bound anions in Table 3. Moreover, as the VDE increases
so, too, does the fraction of the VDE that comes from electrostatic and
second-order induction effects (ΔErelax − 𝜀LUMO), and higher-order correlation
effects constitute a smaller fraction of the VDE in larger clusters. In fact, the
total fraction of the VDE arising from electron correlation gets smaller as the
VDE gets larger, as shown in the left-most column of Table 5. To some extent,
this reflects the intensive nature of the VDE versus the extensive nature of the
correlation energy, even if the clusters in Table 5 are much too small to probe
the thermodynamic limit.

Still, the correlation contribution to the VDE for (HF)−6 , while only
7.6%, is hardly negligible at 0.2 eV. Note, however, that the third-order
corrections and the “higher-order” correction have similar magnitudes
but opposite signs, so that |ΔE(3) + ΔE(4+HO)| ≤ 0.015 eV for each of the
(HF)−N clusters in Table 5, even for the dimer anion whose VDE is only
0.053 eV. This suggests that perhaps progress can be made in larger molecular
and cluster anions by application of MP2 theory, even in cases where the
VDE is rather small. In fact, MP2/6-31(1+,3+)G* VDEs for both (H2O)−N
clusters191,270 and (HF)−N clusters270 are consistently found to be only
∼0.030 eV smaller than CCSD(T)/6-31(1+,3+)G* values. Considering also
the basis-set error, it is suggested that the MP2 values are probably in error
only by ∼0.03–0.05 eV.191,270,202
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For (H2O)−N and (HF)−N clusters, second-order many-body perturbation
theory (MBPT2) based on Kohn–Sham (KS) orbitals, which we will call the
MBPT2(KS) method, has been used to gauge the sensitivity of MP2 theory to
the choice of reference determinant.270,260 The functional used in Refs. 261 and
271 is Becke’s “half and half” exchange functional272 ( BH&H ) in conjunction
with the Lee–Yang–Parr (LYP) correlation functional:273

EBH&HLYP
xc = 0.5EHF

x + 0.5EB88
x + ELYP

c [36]

Here, EHF
x and EB88

x denote the Hartree–Fock exchange energy and Becke’s
1988 exchange functional,274 respectively. The MBPT2(BH&H LYP) method
has been applied to compute VDEs for a sizable database of (H2O)−N cluster
isomers,270 and in all but one case the canonical MP2 and the MBPT2(KS)
values of the VDE were found to differ by no more than 0.15 eV. The outlier
is a case where the Hartree–Fock determinant is unbound, and therefore the
subsequent application of perturbation theory is ill-conceived.

Although it is not clear how general this MBPT2(KS) approach might
be for other weakly-bound anions, for (H2O)−N clusters the bounds on the
VDE that are obtained by MP2 calculations (lower bound) and MBPT2(BH&H
LYP) calculations (upper bound) have recently been tested against benchmark
results obtained using the ADC(2) method (second-order algebraic diagram-
matic construction).275,276 ADC(2) is a Green’s function technique that, while
based on second-order MBPT, is derived from a perturbative expansion of
the VDE itself and should therefore be less circumspect than MP2 for very
weakly-bound anions. Results for the (H2O)−4 and (H2O)−6 clusters consid-
ered previously (Table 4) show that VDEs computed at the ADC(2) level lie
very close to EOM-EA-CCSD results and within 0.03 eV of CCSD(T) results.
Table 6 compares ADC(2) and MBPT2 results for three isomers of (H2O)−24.
The Hartree–Fock SOMO eigenvalues for these three isomers are 𝜀SOMO =
+0.03 eV (unbound), −0.05 eV (very weakly-bound), and −0.5 eV (moderately
strong binding). ADC(2) results are shown in four high-quality basis sets, and
variations in the VDE as a function of basis set are on the order of 0.05–0.08 eV.
Despite the wide range of SOMO eigenvalues exhibited by these three isomers,
the ADC(2) results are bracketed in each case by the MP2 and MBPT2(BH&H
LYP) values of the VDE computed in the 6-31(1+,3+)G* basis set. In other
words, the ordering of the computed VDEs is

MP2 < ADC(2) < MBPT2(BH&HLYP) [37]

Since it is of interest to avoid the O(N6) cost of ADC(2) or
EOM-EA-CCSD calculations in favor of the O(N5) cost of MBPT2 cal-
culations, we note that the range of VDEs established by the MP2 and
MBPT2(KS) results is ∼0.2 eV for the two cases where the Hartree–Fock wave
function is bound. These bounds can be improved by the empirical scaling
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Table 6 VDEs (in eV) for Isomers of (H2O)−24, Computed at Various Levels of Theorya

Isomerb

Method Basis set 41464B 51262C 4686B

−𝜀SOMO (Hartree–Fock) 6-31(1+,3+)G* −0.027 0.054 0.544
MP2 6-31(1+,3+)G* 0.004 0.136 0.575
MP2, correlation, scaledc 6-31(1+,3+)G* 0.004 0.192 0.601
ADC(2) aDZ(7s7p) 0.147 0.132 0.626
ADC(2) aDZ(6s6p6d) 0.162 0.194 0.636
ADC(2) aTZ′(7s7p)d 0.199 0.170 0.687
ADC(2) aTZ′(6s6p6d)d 0.212
−𝜀SOMO(BH&HLYP) 6-31(1+,3+)G* −0.136 0.027 0.136
MBPT2 (BH&HLYP) 6-31(1+,3+)G* 0.346 0.362 0.726
MBPT2 (BH&HLYP), scalede 6-31(1+,3+)G* 0.302 0.316 0.632

aMP2 and MBPT2 results from Ref. 270; ADC(2) results from Ref. 260.
bIsomer labels from Ref. 270.
cMP2 correlation energies scaled by 1.053 (see Ref. 270).
dThe aTZ′ basis (Ref. 260) removes the most diffuse shell from aug-cc-pVTZ (aTZ).
eMBPT2(KS) total energies scaled by 0.8715 (see Ref. 270).

of the MBPT2 energies based on CCSD(T) results for small cluster anions,
as described in Ref. 270. Upon scaling in this manner, the spread between
the MP2 and MBPT2 VDEs is only slightly larger than the magnitude of the
ADC(2) basis-set effects.

The unbound Hartree–Fock case is an exception. Here, the range of
VDEs established by MP2 and MBPT2 calculations is 0.3 eV even after scal-
ing, although these results continue to bracket the ADC(2) results. Although
the range of VDEs is only a bit larger than in the previous two cases, the
SOMO is unbound at both the Hartree–Fock and BH&HLYP levels, and
therefore application of perturbation theory is inappropriate for this particular
isomer. It is also not surprising in this case that the SOMO obtained from a
Hartree–Fock calculation differs qualitatively from the one that is obtained
using BH&HLYP,270 since both SOMOs are crude approximations to a
plane wave.

The accuracy of the MP2 results rests on the fact that the differential
correlation energy associated with the unpaired electron is reasonably small in
the case that the unpaired electron is loosely-bound.270,206,15 Let us denote this
differential correlation energy for M− as

ΔEcorr(M−) = Ecorr(M) − Ecorr(M−) [38]

Unlike the total correlation energy (Ecorr), which is extensive, the quantity
ΔEcorr is an intensive property. How big should one expect ΔEcorr to be? An
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oft-cited order-of-magnitude estimate of the correlation energy in a generic
molecular system is 1 eV per electron pair. This estimate originates in accu-
rate variational calculations for helium atom, for which Ecorr = 1.14 eV.277 An
additional data point comes from an essentially exact calculation (in a triple-𝜁
basis set) for the equilibrium geometry of H2O, which affords a correlation
energy of 1.40 eV per electron pair.278 Thus, one may expect at least 1 eV of
correlation energy for electrons paired in valence MOs.

The differential correlation energy in Eq. [38] has been studied for
(H2O)−N and (HF)−N cluster anions,270,206 where it is found that ΔEcorr ≲ 0.3 eV,
independent of cluster size but increasing essentially linearly with the VDE.
This behavior is demonstrated for (H2O)−N clusters in Figure 25. The increase
in ΔEcorr with increasing VDE makes sense in light of the fact that the VDE is
a measure of the mean electron–cluster distance, and the linear relationship
that is observed in small clusters is preserved in surface-bound isomers of
(H2O)−N that are at least as large as N = 18.206,15 Only for cavity-bound
isomers of (H2O)−N in larger clusters, where the SOMO has significant overlap
with numerous H2O molecules, does ΔEcorr begin to approach values of
0.5–0.6 eV.206,15 Such values are closer to – but still smaller than – what one
should anticipate for an electron in a doubly-occupied MO. This is consistent
with the notion that spatial separation between the SOMO and the other
occupied MOs reduces the magnitude of correlation contributions to the
VDE, as compared to the correlation contribution to the IP of a closed-shell
molecule.
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Figure 25 Correlation energy associated with the unpaired electron, ΔEcorr (Eq. [38]),
computed at either the MP2/ or CCSD(T)/6-31(1+,3+)G* level for various isomers of
(H2O)−N. Reprinted with permission from Ref. 270; copyright 2006 the PCCP Owner
Societies.
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Large Systems and the Solution Phase
Our discussion of correlated wave function techniques demonstrates that accu-
racy sufficient to make quantitative comparisons with experiment is achievable
using standard CC methods that work well in other contexts, albeit with some
specialized basis-set requirements when weakly-bound anions are on the menu.
Useful (if not quantitative) accuracy can be obtained at the MP2 level, provided
that the VDE is ≳ 0.05 eV, the regime in which the Hartree–Fock determinant
for the anion tends to be bound and thus normalizable. The reduced scaling
of MP2 theory – O(N5) with respect to system size as compared to O(N6)
for CCSD and O(N7) for CCSD(T) – offers the possibility of treating much
larger systems. In 2008, this author206 computed MP2/6-31(1+,3+)G*-level
VDEs for cluster anions as large as (H2O)−33 (≈ 1000 basis functions) using
only modest computing resources (4 Gb of memory and 40 Gb of disk space
per node, running in serial for systems with no symmetry). Today, MP2 calcu-
lations and even some higher-level methods are feasible in considerably larger
systems,264–266 by means of resolution-of-identity (RI) techniques and related
methods,279–281 which we shall briefly summarize.

At the heart of the RI-MP2 method is an expansion of the shell pairs|𝜇𝜈) in an “auxiliary” basis of atom-centered Gaussians, |K). This allows the
four-index electron repulsion integrals required in MP2 theory to be expressed
in terms of three-index integrals:279

(ia|jb) = auxiliary∑
K,L

(ia|K)(K|L)−1(L|jb) [39]

In this equation, which is exact if the auxiliary basis is complete, the quan-
tity (K|L)−1 is an element of the inverse overlap matrix (or some other metric
matrix279,282) for the auxiliary basis, and the other quantities are electron repul-
sion integrals. While the formal scaling of the resulting RI-MP2 algorithm
remains O(N5), the prefactor is reduced by up to a factor of ∼20282 such that
the computational bottleneck is usually the iterative Hartree–Fock calculation
rather than the post-SCF integral transformation. In practice, auxiliary basis
sets {|K)} are typically uncontracted and three to six times larger than the pri-
mary basis set, {|𝜇)}, and extend to one unit higher in angular momentum.
This ensures that the basis {|K)} is sufficiently flexible to model the product
functions |𝜇𝜈). Using auxiliary basis sets that are specifically matched to – and
optimized for – the primary basis set,283,284 MP2 total energies are reproduced
to within 30–60 𝜇hartree per atom.284,282 Relative energies and other energy
differences are even more faithful to conventional MP2 results.

Timings for the Hartree–Fock part of the calculation can be dramatically
reduced using either RI techniques (also known as density fitting285,286) to build
the Coulomb and exchange matrices, or alternatively, dual-basis Hartree–Fock
methods combined with RI-MP2.287 The dual-basis RI-MP2 and density fit-
ting RI-MP2 methods can routinely be extended to systems with ∼50 atoms
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using high-quality basis sets, and to systems with ∼100 atoms using smaller
basis sets. As such, semiquantitative MP2-level VDE calculations should now
be considered routine for systems of this size, although some care must be taken
to modify and test the auxiliary basis sets for use with the highly diffuse pri-
mary basis sets that are required for weakly-bound anions. [Auxiliary basis
sets designed for a floating-center treatment of (H2O)−6 were developed in Ref.
288.] That said, and recognizing that efficient RI-MP2 gradient algorithms are
also available,289 for example, in Q-Chem,194,195 geometry optimizations at the
RI-MP2 level in systems with ≳ 50 atoms remain computationally demanding,
and ab initio molecular dynamics simulations in this size regime are prob-
ably out of the question at present. For these tasks, one must rely on less
expensive density-functional methods, which exhibit the same formal scaling
as Hartree–Fock calculations and are amenable to the same density fitting and
dual-basis acceleration techniques. The application of DFT to anions is consid-
ered later in this chapter.

The move toward larger systems allows one to consider solvation effects,
by performing a quantum chemistry calculation involving the anion and one
or more nearby solvent molecules. However, unless one is interested in rela-
tively small gas-phase cluster anions (in which case the entire cluster might
be described quantum mechanically), this sort of “microsolvation” approach
is unlikely to describe solvation effects quantitatively or even semiquantita-
tively. For example, in an attempt to study e−(aq), this author has computed
VDEs for (H2O)−N clusters that were extracted from a bulk-phase simulation
of e−(aq), such that the cluster geometries are expected to be representative
of electron binding motifs in bulk water. In these calculations, N = 25–30
water molecules were described using quantum chemistry while an additional
18,000 water molecules were described by classical point charges.212,162 For the
electronic absorption spectrum of e−(aq), this rather elaborate QM/MM setup
results in quantitative agreement with the spectrum measured experimentally
in bulk water.212,162 Nevertheless, the computed VDEs were no larger than
2.0–2.5 eV, whereas experimental measurements for the bulk-phase VDE of
e−(aq) range from 3.3 to 3.7 eV.7–10 Evidently, the absorption spectrum is sen-
sitive only to a correct treatment of the excess electron’s wave function, which in
turn depends on having a good description of the first two solvation shells into
which this wave function penetrates. To predict the VDE, however, one must
accurately describe the long-range Coulomb interactions in both charge states,
which requires a much longer-range treatment of electronic reorganization.

Dielectric continuum solvation models can help to accelerate con-
vergence toward the bulk limit. A simple, qualitative model for spherical
solvent clusters was introduced in Eq. [6], in which the solvent’s optical
dielectric constant (𝜀∞) provides a continuum correction for electronic
reorganization. More general and more sophisticated dielectric continuum
models exist, wherein the interface between the molecule and the continuum
is allowed to be “molecule-shaped” rather than spherical (by means of a
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union of atom-centered van der Waals spheres, for example), and where the
polarization of the continuum is iterated to self-consistency alongside the
solute’s wave function. In quantum chemistry, such methods are typically
known as polarizable continuum models (PCMs),290–292 or alternatively,
self-consistent reaction-field models.172,293 A complete discussion of these
models is beyond the scope of this review, and the reader is referred to several
recent reviews of the subject.290,294,295 For a discussion of the theoretical
connections between various treatments of continuum electrostatics [e.g., the
COSMO, GCOSMO, IEF-PCM, and SS(V)PE models], see Refs. 293 and
294, and for a discussion of how these models perform relative to empirical
continuum models such as SMx,291 see the work of Cramer, Truhlar, and
others.291,296–299

Here, we note only that the properties computed from these models are
extremely sensitive to how the “molecular cavity” (solute/continuum inter-
face) is constructed, and that nonelectrostatic solvation effects are typically
(though not always297,300) neglected in the PCMs such as COSMO, GCOSMO,
IEF-PCM, and SS(V)PE that are derived from Poisson’s equation for continuum
electrostatics. In contrast, such effects are built into the empirical SMx mod-
els and are crucial to accurate prediction of solvation free energies.291,297,298

It is unclear how the neglect of nonelectrostatic effects might impact the cal-
culation of anion VDEs; cavitation effect should cancel, but dispersion effects
may not, as the anion is intrinsically more polarizable. One may hope that these
effects will disappear if a sufficiently large number of explicit solvent molecules
is included as part of the QM solute.

One aspect of PCMs that does warrant mention in the context
of VDE calculations is the issue of equilibrium versus nonequilibrium
solvation.301,172,290,294 Traditionally, this distinction has been considered in
the context of electronic excitation energies,302–307 where the solute wave
function is excited in the presence of a continuum description of the solvent.
In such a situation, “equilibrium solvation” – in which both ground- and
excited-state wave functions are equilibrated separately and self-consistently
to a continuum solvent whose dielectric constant is 𝜀s – is not the appropriate
way to proceed. This is because the static dielectric constant (𝜀s) includes
the effects of orientational averaging over the solvent molecules, but these
orientational degrees of freedom are too slow to readjust on the timescale of a
vertical electronic excitation. Rather, for the excited state one should include
a correction term in which the excited-state electron density is equilibrated
self-consistently with the “fast” part of the continuum polarization, meaning
that generated by 𝜀∞, but also subject to the electrostatic potential arising
from the “slow” (orientational) polarization from the ground state, which is
generated by 𝜀s − 𝜀∞.301,307 Other versions of this nonequilibrium correction
have been derived and implemented in electronic structure codes,306 but
only the one described in Ref. 307 (which is based on much older work by
Marcus301) is correct in the high-dielectric (𝜀s → ∞) limit.
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Table 7 Aqueous-Phase Ionization Energies Measured via Liquid Microjet
Photoelectron Spectroscopy and Calculated Using Continuum Solvation Modelsa

Vertical ionization energy (eV)

MP2 + PCM

Molecule Experiment Equil.b Nonequil.c

Cytosine 6.6 7.9
Cytidine 8.3 6.6 7.8
CMP−d 6.7 7.8
CMP2−d 6.6 7.7
Thymine 6.6 7.9
Deoxythymidine 8.3 6.7 7.8
dTMP−d 6.7 7.7
dTMP2−d 6.6 7.7
H2PO−

4 9.5 7.6 8.9

aReprinted with permission from Ref. 308 (copyright 2009 Chemical Society), except for the exper-
imental H2PO−

4 ionization energy, which is from Ref. 136
bUsing an “equilibrium” PCM that incorporates 𝜀s only.
cUsing a nonequilibrium PCM that incorporates electronic reorganization using 𝜀∞.
dCMP, cytidine monophosphate; dTMP, deoxythymidine monophosphate.

We conclude this discussion with some data demonstrating the impor-
tance of equilibrium versus nonequilibrium solvation for aqueous-phase ion-
ization. Table 7 shows VDEs for several aqueous-phase nucleobases, nucleo-
sides, and nucleotides, computed at the MP2 level using both equilibrium and
nonequilibrium PCMs. In the former case, the parent and the ionized species
are separately equilibrated to a solvent whose dielectric constant is 𝜀s = 78,
whereas in the latter case the nonequilibrium version of TD-DFT + PCM is
used to estimate a correction on electron detachment such that only 𝜀∞ = 1.78
is used to relax the solvent polarization. (See Ref. 309 for details.)

For the examples in Table 7, VDEs computed with the equilibrium PCM
are 1.0–1.3 eV smaller than the nonequilibrium values, the latter of which
lie closer to experimental results obtained from liquid microjet photoelectron
spectroscopy.309,136 The ≈ 0.5 eV discrepancies that remain between the
nonequilibrium theory and the experimental VDEs probably have myriad
origins, not the least of which is likely the inherent limitations of a continuum
description of the solvent. This comparison between theory and experiment
serves as evidence of the complexity of solution-phase VDE calculations.

Density Functional Theory

A pedagogical introduction to KS DFT can be found in a previous chapter in
this series.40 While DFT methods are highly appealing in terms of their low
cost, the description of anions by DFT, even strongly-bound ones like F−, has



Quantum Chemistry for Weakly-Bound Anions 457

a controversial history that is summarized below. Until recently, the consensus
view seemed to be that DFT methods were inappropriate for anions – especially
in the context of VDE calculations – owing to problems associated with spu-
rious self-interaction error (SIE).46,310,308,311–313 A good historical overview
of how the understanding of anion DFT calculations has evolved is given in a
comprehensive review of anion DFT calculations by Schaefer and coworkers.43

Summarizing briefly, there are two main objections to the application of DFT
to anions.

1. DFT tends to yield positive HOMO eigenvalues, even for species with sizable
EAs, suggesting that anions are unbound in DFT (in the KT sense).

2. SIE causes DFT to overstabilize half-filled orbitals, and in the context of
electron attachment to a closed-shell molecule (forming a doublet radical
anion) this means that the anion is overstabilized with respect to the neutral
molecule, possibly drastically.

However, given the steady progress in functional development it is nowa-
days broadly recognized that DFT has an important role to play in anion elec-
tronic structure theory, even (with appropriate caveats, to be discussed) in
the case of weakly-bound anions. At the same time, the literature is rife with
egregious missteps and dubious conclusions because of ill-conceived DFT cal-
culations for anions. In what follows, we attempt to sort this out and to address
the two criticisms enumerated above.

Description of Anions in DFT
The effective one-electron potential in KS DFT is traditionally expressed as
follows:

vKS(r) = vne(r) + vH[𝜌](r) + vxc[𝜌](r) [40]

The three terms represent the sum of attractive nucleus–electron Coulomb
potentials (vne), the Hartree potential

vH[𝜌](r) = ∫ dr′
𝜌(r′)|r − r′| [41]

that represents classical electron–electron repulsion, and the exchange-
correlation potential (vxc), which is the rug under which all complexity is
swept. For an electron that is well separated from any nucleus, vne(r) ∼ −Z∕r
in atomic units, where Z is the sum of all atomic numbers. Taking the lowest
multipole moment of 𝜌(r), we furthermore obtain vH(r) ∼ N∕r in the same
asymptotic limit, where N is the total number of electrons. Finally, the
asymptotic form of the exchange-correlation potential can be shown to be
vxc(r) ∼ −1∕r.314 All together, the asymptotic KS potential is thus

vKS(r) ∼ −Z − N + 1
r

[42]
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For electron attachment to a neutral molecule (Z = N − 1), one obtains
vKS(r) → 0 asymptotically, consistent with previous remarks that there is no
long-range −1∕r potential for electron attachment to a neutral molecule.

In Hartree–Fock theory, the nonlocal exchange operator −̂K replaces
vxc in Eq. [40], and the nonlocality recovers the correct form, vxc(r) ∼ −1∕r,
for an electron that is well separated from the other N − 1 electrons. The
density-functionals in common use, however, are based on local exchange and
correlation approximations, for which vxc falls off with the density, which is
to say, exponentially with distance. Note that this includes not just the local
density (homogeneous electron gas) approximation, LDA, but also generalized
gradient approximations (GGAs) that are still local potentials in the math-
ematical sense. (Sometimes GGAs are termed semilocal approximations, to
distinguish them from LDA, but vGGA

KS is still a local, scalar potential.)
The result is that, in practice, vKS(r) ∼ −(Z − N)∕r for a well-separated

electron subject to a local KS potential. The basic problem is that vH(r) is
the classical electrostatic potential for N electrons rather than N − 1, and
approximate, local exchange potentials fail to fully cancel this spurious
“self-interaction.” As a result, an electron that is well separated from the
molecule feels a repulsive potential generated by N electrons rather than N − 1.
Setting Z = N − 1, the SIE leads to an anomalous vKS(r) ∼ +1∕r asymptotic
potential for electron attachment to a neutral molecule. The electron–molecule
potential is therefore repulsive at long range in approximate DFT!

As a result of SIE and the repulsive long-range potential that it engenders,
anions that should be bound states in the real world are actually metastable
resonances in the universe described by most approximate density-functionals.
Figure 26(a) shows an example for the case of Li−. On the basis of an accu-
rate QMC density for Li−, the Kohn–Sham equation can be inverted to deter-
mine the potential, vKS(r), whose ground-state orbitals reproduce the QMC
density.46 This may be considered the exact KS potential for this particular sys-
tem, and indeed the asymptotic form of this potential is found to be −1∕r, as
it should be. This potential also binds an energy level corresponding to a sta-
ble Li− ion with a (1s)2(2s)2 electron configuration. However, when the QMC
density 𝜌 is used to evaluate the KS potential

vKS[𝜌](r) =
𝛿E[𝜌]
𝛿𝜌

[43]

using an approximate density-functional E[𝜌], the potential rises above
zero at intermediate distances and decays only very slowly back to zero
[see Figure 26(b)].46 Solution of the KS equations affords an energy level
𝜀 = +0.80 eV, which represents a metastable resonance since vKS(r) → 0 as
r → ∞. This point has been raised in various places, and used to suggest
that DFT (with approximate functionals containing SIE) is not appropriate
for the study of negative ions.315,316,45 Notably, the density in KS DFT is
represented in terms of a Slater determinant, so the considerations discussed
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Figure 26 (a) The Kohn–Sham potential, vKS[𝜌](r), for Li−. The solid curve is the poten-
tial obtained from an accurate QMC density, for which the KS equations are inverted to
obtain the corresponding KS potential. The broken curve is the potential obtained from
the LDA functional, evaluated using the QMC density. (b) The exchange-correlation
part of vKS for Li−, demonstrating that in the asymptotic region the LDA result (evalu-
ated using the QMC density) differs from the QMC result by a roughly constant overall
shift of the potential. Adapted with permission from Ref. 46; copyright 2010 American
Chemical Society.

previously regarding positive orbital exponents in Hartree–Fock calculations
are pertinent here as well: if 𝜀SOMO > 0 for a doublet radical anion, then in the
limit of a complete basis set, the density for the “anion” M− should converge
to that of the neutral molecule M superimposed on a free electron.

The LDA version of vKS(r) that is plotted in Figure 26(a) has an outer
classical turning point at r = 17 Å,46 and one could therefore argue that in typ-
ical atom-centered basis sets, the lack of basis functions at such large values
of r effectively forces the potential to go to infinity in those regions, and there-
fore the state that is metastable in the basis-set limit is transformed into a bound
state in a finite-basis calculation. (In other words, the electron is trapped behind
a very wide barrier, but the finite basis set does not allow one to notice this fact
or to sample regions beyond the barrier.) Extremely diffuse basis sets may be
required to detect this behavior. For example, DFT calculations on F− show that
𝜀HOMO appears to converge to a positive value, even when the aug-cc-pV5Z
basis is further augmented with an even-tempered progression of diffuse p func-
tions out to 𝜁 = 2 × 10−5 a−2

0 , corresponding to a FWHM of 197 Å.44 How-
ever, with diffuse functions out to 𝜁 = 10−10 a−2

0 (FWHM > 9 × 104 Å), the
HOMO eigenvalue converges to zero from above.317 In the latter calculation,
only a fraction (14%) of an electron is transferred in the asymptotic region, so
that the converged DFT solution describes the system as F0.86− + 0.14 e−.317

At the same time, these extra diffuse functions change the energy (and
therefore the computed EA) only modestly, if at all, and DFT values for EAs
are often not disastrously wrong,43 even if the accuracy may be insufficient for
the study of weakly-bound anions. (The accuracy of approximate DFT methods
is discussed in more detail below.) This apparent paradox between predicted
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“ΔSCF” EAs that are often quite reasonable, but HOMO energy levels that
are unbound, can be explained by noting that the LDA potential vKS[𝜌](r),
evaluated using the QMC density, differs by a roughly constant shift from
the QMC potential itself, at least outside of the core region [Figure 26(b)].46

Note that the KS potential is arbitrary up to a constant. Moreover, orbital
energies play different roles in Hartree–Fock theory (where the Slater deter-
minant is intended as a genuine approximation to the wave function, and the
HOMO–LUMO gap approximates the “fundamental gap”, IP − EA) as com-
pared to Kohn–Sham theory (where the Slater determinant represents a ficti-
tious reference system, and the HOMO–LUMO gap approximates the “optical
gap,” or in other words the lowest electronic excitation energy).318 Together,
these observations suggests that a positive HOMO eigenvalue is not automati-
cally fatal in KS DFT, nor is it a sign that the DFT result must be rejected out of
hand.46 That said, if the basis set extends beyond the turning point in the poten-
tial, then the density will begin to resemble an unbound electron. In the case
of F−, the potential barrier is high enough and/or wide enough that this does
not occur except in ludicrously diffuse basis sets. For weakly-bound anions,
however, one cannot be certain that the situation will be equally favorable.

Performance of Standard Functionals
The situation described above implies that one cannot trust the approach to
the basis-set limit for most anion DFT calculations. (In fact, the complete-basis
limit may not be completely well-defined for anion DFT,313 as it may cor-
respond to fractional electron transfer to the continuum.317) One solution
to the lack of a well-defined basis-set limit in anion DFT calculations is to
compute orbitals using Hartree–Fock theory, where the anion’s HOMO tends
to be bound (except in cases of very weak electron binding) and then use the
Hartree–Fock density to evaluate energy by means of a density-functional
containing both exchange and correlation.46,313 The results of such a proce-
dure, as applied to the G2-1 set252 of EAs, are shown in Figure 27. (The G2-1
set includes EAs for atoms and small molecules that range from ∼0 up to
3.6 eV, with most of the EAs in the data set being > 1 eV.) The figure compares
self-consistent B3LYP predictions for the EAs to predictions obtained by
computing the B3LYP energy of the Hartree–Fock density. Unfortunately,
one cannot say that, on the whole, the composite procedure affords any clear
improvement over self-consistent B3LYP calculations; the advantage is that
the HF-B3LYP procedure has a well-defined basis-set limit that should bind
the electron.

In light of previous discussion, positive HOMO eigenvalues do not appear
to be fatal for DFT anion calculations, and thus another approach is simply to
charge ahead but benchmark thoroughly. To this end, Schaefer and coworkers43

have benchmarked the performance of numerous density-functionals and basis
sets against a data set consisting of 91 AEAs that have been determined, using
photoelectron spectroscopy, to an accuracy of better than ±0.09 eV. (On the
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Figure 27 Errors in electron affinities (as compared to experiment) for self-consistent
B3LYP/aug-cc-pVTZ calculations, and also for cases where the B3LYP energies for
the neutral molecule and the anion were evaluated using Hartree–Fock densities
(HF-B3LYP). The dashed horizontal lines are mean errors, which include considerable
cancellation between over- and underestimation of the experimental EAs. The data set is
G2-1,252 except that the CN molecule is removed because of spin contamination in the
Hartree–Fock determinant. Adapted with permission from Ref. 313; copyright 2011
American Institute of Physics.

Table 8 Error Statistics for DFT DZP++ Calculations of Adiabatic EAsa

B3LYP B3P86 BH&HLYP BLYP BP86 LSDA

Mean abs. error 0.14 0.59 0.24 0.14 0.18 0.68
(0.16) (0.60) 0.25 (0.15) (0.19) (0.67)

Max. abs. error 0.71 1.04 0.87 0.67 0.62 1.23
(0.76) (1.14) (0.87) (0.71) (0.66) (1.01)

Std. deviation 0.14 0.16 0.17 0.13 0.13 0.16
(0.17) (0.18) (0.18) (0.13) (0.15) (0.14)

% of AEAs that are overest’d 71 99 25 46 87 100
(68) (99) (29) (45) (86) (100)

Reprinted with permission from Ref. 43; copyright 2002 American Chemical Society.
aThe data set is 91 atoms and molecules for which experimental uncertainties are no worse than
±0.09 eV, excluding SF6. Values in parenthesis are vibrational zero-point energy contributions.

basis of the comprehensive review of 1,101 experimentally-determined AEAs
in Ref. 43, this data set consists of essentially all of the accurately determined
AEAs, as of 2002.) Error statistics for a subset of these functionals are reported
in Table 8.

In general, the species in the data set are not weakly-bound anions, and
the basis set used in these calculations (DZP++) reflects that. Although this
basis does contain diffuse s and p functions on the heavy atoms, with differ-
ent exponents, the ratio of those exponents is only, for example, 1.185 for
carbon and 1.264 for oxygen,43 rather than the scaling factors of ≈ 3.5 that



462 The Quantum Chemistry of Loosely-Bound Electrons

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

D
F

T
 e

rr
o
r 

/ 
e
V

Experimental AEA / eV

(a) (b)

no ZPE correction
with ZPE correction

1

10

100

1000

10000

%
 e

rr
o
r

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Experimental AEA / eV

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 28 (a) Errors in B3LYP/DZP++ calculations of adiabatic EAs, either with or
without a correction for the vibrational zero-point energy (ZPE), for 91 atoms and
molecules whose experimental AEAs are known to be better than ±0.09 eV. (The outlier,
with an error of 1.59 eV, is SF6, which was excluded from the error statistics in Table 8.)
(b) Percentage errors in the ZPE-corrected values, on a logarithmic scale. Both plots are
based on data provided in Ref. 43.

were suggested in the discussion of basis sets presented earlier in this chapter.
As such, the DZP++ basis set is effectively a singly-augmented one. (A vari-
ety of other singly-augmented basis sets were tested in Ref. 43 but did not
afford results that were improved in any statistically meaningful way relative to
DZP++ results.) The B3LYP/DZP++ and BH&HLYP/DZP++ results are fairly
good, with mean absolute errors of 0.14 and 0.24 eV, respectively, although the
maximum errors are 0.7–0.9 eV. The error for SF6 is larger, and this molecule
is therefore excluded from the statistics in Table 8. The authors of Ref. 43
attribute this larger error to the lack of f-type polarization functions in the
DZP++ basis set.

The actual B3LYP/DZP++ errors are plotted in Figure 28(a) as a func-
tion of the magnitude of the experimental AEA. Somewhat surprisingly, the
errors do not appear to be any larger for cases where the AEA is small (say,
< 0.5 eV) as compared to cases where the AEA is several eV. Certainly, the
percentage error is quite large for the more weakly-bound cases, and an error
of ≈ 0.5 eV (toward overbinding) is fairly egregious for an anion that, exper-
imentally, is almost unbound. Figure 28(b) shows that while B3LYP/DZP++
errors are mostly < 10% in cases where the AEA is larger than 1.5 eV, errors
of 50–100% or more are not uncommon when the AEA is less than 1 eV. It
is also worth noting that zero-point corrections have almost no effect on the
error statistics, according to results in Table 8. Detailed examination of the
B3LYP data from Ref. 43 shows that the difference between zero-point cor-
rected and uncorrected AEAs is no larger than 0.05 eV for any molecule in the
data set. Although one expects the zero-point corrections to be small (possibly
vanishing) for dipole-bound anions, these are not well represented in the data
set, hence the smallness of the zero-point corrections is perhaps something of a
surprise. It may be attributable to the relatively small sizes of the molecules in
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the data set (organic molecules no larger than tetracene, C18H12, and inorganic
compounds no larger than SF4).

The comprehensive benchmark study of Schaefer and coworkers,43

which recommended B3LYP/DZP++ for EA calculations, is already more
than a decade old at the time of this writing. Although B3LYP continues to
enjoy widespread use in computational chemistry, considerable progress in
functional development has transpired since the writing of Ref. 43 to the point
that B3LYP is arguably no longer state-of-the-art. However, more modern
functionals have not yet been tested exhaustively for EA and VDE calculations.
Truhlar and coworkers319–322 have compared a great many functionals, both
new and old, against a small database, consisting of 13 AEAs for atoms and
small molecules for which the data range from 1.3 to 3.6 eV.97 (This is the
data set that is listed in Table 1 of this chapter.) In compiling this data set,
experimental AEAs were adjusted by subtracting out a harmonic DFT estimate
of the zero-point energy, to obtain “zero-point exclusive” experimental
AEAs.97

Mean unsigned errors (MUEs) for the AEAs in this data set, computed
using a wide range of functionals, are shown in Figure 29. (Only functionals
affording a smaller MUE than B3LYP are considered.) For context, the MUE for
Hartree–Fock AEAs in this same data set is 1.2 eV,320 an order-of-magnitude
larger than the DFT errors, consistent with a value of ΔEcorr ∼ 1 eV for the dif-
ferential correlation energy in Eq. [38]. This is larger than the values of ΔEcorr
that were observed for (H2O)−N and (HF)−N cluster anions, but many of the
AEAs in the data set (Table 1) are quite sizable and correspond to placing an
electron into a valence orbital, for which one should expect ΔEcorr to be closer
to 1 eV.

In examining the error statistics in Figure 29, one should keep in mind
that the MUE for B3LYP of Table 1 and Ref. 97 is 0.10 eV, as compared to
the MUE of 0.16 eV that is obtained in the larger data set of Ref. 43. This
comparison affords some estimate of how these MUEs might shift around if a
different set of molecules was considered. With this in mind, the only function-
als that really stand out in comparison to B3LYP are M11325 and M08-HX,326

which have MUEs of 0.04 and 0.06 eV, respectively, for the small data set. It
is worth mentioning, however, that all 13 AEAs in this data set are included
in the training set that is used to parameterize both of these functionals. (They
are also included in the training set for the SOGGA11-X functional,327 which
according to Figure 29 also performs reasonably well for these AEAs.) Errors
in AEAs for these functionals, using a data set on which the functionals have
not been trained, do not appear to have been reported in the literature.

Let us now turn our attention back to weakly-bound anions. The aver-
age error in B3LYP/6-31(1+,3+)G* VDEs for (H2O)−N isomers was quoted as
0.24 eV in Ref. 202 on the basis of CCSD(T) benchmarks for N ≤ 6. In truth,
this value is not much larger than the average B3LYP error of 0.16 eV that is
reported in Table 8, although absolute errors of this magnitude constitute a
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Figure 29 Mean unsigned errors for the database of 13 AEAs given in Table 1, with
zero-point corrections removed from the experimental data,97 and considering only
functionals that perform at least as well as B3LYP. Note that the Minnesota (M) func-
tionals and SOGGA11-X were parameterized based in part on this same set of AEAs.
The basis set is G3(MP2)large,244 but with diffuse functions removed from the hydro-
gen atoms, a basis that Truhlar and coworkers call MG3S. Data for the three long-range
corrected (LRC) functionals are reported here for the first time; the parameters in these
functionals are taken from Ref. 323 (LRC-𝜔PBE), Ref. 324 (LRC-𝜔PBEh), and Ref. 202
(LRC-𝜇BOP). The remaining data are taken from Refs. 319–322.

much larger fraction of the VDE for a very weakly-bound anion, where even
a 0.1–0.2 eV error might constitute 50–100% of the actual VDE. Moreover,
the basis sets used to compile the error statistics in both Table 8 and Figure 29
are all singly-augmented, and thus inadequate for weakly-bound anions. Look-
ing at the most diffuse exponent on the carbon and hydrogen nuclei in these
basis sets and using Eq. [28] to convert the exponent into a minimum VDE
suggests that these basis sets are appropriate only for VDEs ≫ 0.4–0.5 eV. For
the more electronegative oxygen atom (which has a correspondingly smaller
diffuse exponent), the same estimate suggests that these singly augmented basis
sets are appropriate when the VDE is > 0.9 eV.

This is especially troubling in view of the fact that SIE, which leads to
overestimates of VDEs for doublet radical anions in the complete-basis limit
(because the SIE preferentially stabilizes the anion, with its half-filled orbital),
can be substantially cancelled by the incompleteness of the basis set. (Diffuse
functions preferentially stabilize the anion, so their omission destabilizes the
anion.) The weakly-bound (H2O)−12 isomer in Figure 18(a) is a good example. In
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an overly compact basis set such as 6-31++G*, which is n = 1 in Figure 18(a),
the B3LYP functional predicts VDE ≈ 0, which is in fact the right answer, based
on MP2 calculations with very diffuse basis sets. However, the B3LYP VDE
increases steadily as the quality (diffuseness) of the basis set is improved, such
that when a more appropriate basis like 6-31(1+,3+)G* is used, the B3LYP
prediction is a VDE of 0.2 eV. As such, it is possible (though certainly not
advisable!) to use benchmark calculations or experimental data to “tune” the
diffuseness of the basis set such that a given functional may afford an accurate
VDE. However, there is no way to tell whether that particular combination
of functional and basis set has any robustness or generality, and there is every
reason to suspect that it does not.

Another hallmark of self-interaction problems, and another opportunity
for ill-advised tweaking of DFT parameters, is the fact that DFT errors in
VDEs are tunable, over a fairly wide range, as a function of the fraction of
Hartree–Fock exchange that is included in the functional.191 Of the commonly
used functionals (as of 2005), BH&HLYP was the only choice found to yield
useful results,191 which is why this functional was selected for tests of the
MBPT2(KS) approach that was discussed previously. VDEs predicted using
BH&HLYP were typically ∼0.03 eV larger than CCSD(T) predictions,191 and
this is borne out in the benchmark VDE comparison for (H2O)−N clusters that
is shown in Figure 30(a). This comparison suggests a tractable way of putting
error bars on computed VDEs, namely, by comparing the MP2 and BH&HLYP
values,191,270 although this approach would need to be tested against other
methods on a wider variety of systems before it could convincingly be deployed
to study weakly-bound anions other than the water and hydrogen fluoride clus-
ter anions studied in Refs. 191 and 271.

Self-Interaction Corrections
Rather than tuning the combination of functional and basis set, and bench-
marking against wave function methods for similar systems, another strategy
is to try to eliminate the SIE that is a major source of error in VDE calculations.
A simple self-interaction correction (SIC) was proposed in 1981 by Perdew and
Zunger (PZ),328 in which the self-interaction is subtracted orbital-by-orbital
from the KS energy:

EPZ[{𝜌i𝜎}] = EKS[𝜌𝛼
, 𝜌

𝛽
] − ESIC[{𝜌i𝜎}] [44]

Here, 𝜌i𝜎 = |𝜙i𝜎 |2 is the density associated with an occupied MO, and 𝜎 = 𝛼 or
𝛽 is a spin index (thus 𝜌

𝜎
=
∑

i

𝜌i𝜎). The SIC is

ESIC[{𝜌i𝜎}] =
∑
𝜎=𝛼,𝛽

occ∑
i

(Exc[𝜌i𝜎,0] + J[𝜌i𝜎]) [45]
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Figure 30 Comparison of VDEs for (H2O)−N, N = 2–7, versus benchmark CCSD(T)
results. In (a), cluster geometries were optimized at the B3LYP/6-31(1+,3+)G* level.
MP2 and CCSD(T) calculations employ the 6-31(1+,3+)G* basis set while DFT calcu-
lations use the aDZ+diff basis from Ref. 202 which contains one more diffuse shell as
compared to aug-cc-pVDZ, generated using a scaling factor 𝜅 = 1∕8. In (b), all calcula-
tions use the aDZ+diff basis and MP2 geometries are used, except where indicated for
the LRC-𝜇BOP calculations. Panel (a) is adapted with permission from Ref. 15; copy-
right 2009 Taylor and Francis. Panel (b) is adapted with permission from Ref. 202;
copyright 2008 American Chemical Society.

Using the notation of Hartree–Fock theory,35

J[𝜌] = ∫ dr vH(r)𝜌(r) [46]

is the so-called Hartree (or Coulomb) functional. The Perdew–Zunger SIC in
Eq. [45] failed to find widespread use, however, because it spoils the invariance
of the energy with respect to unitary transformations of the occupied MOs and
is thus difficult to implement self-consistently within the standard KS formal-
ism. Systematic tests of this SIC were not reported until 2004,329 and it was
then determined that this SIC does not improve the accuracy of DFT thermo-
chemistry, except in the case of the LDA functional. (Enthalpies of formation
were the only properties examined in Ref. 329.)

As a simpler alternative for doublet radical anions, one might try to elimi-
nate the SIE from the SOMO only, since that is likely the main source of error in
the VDE. Jungwirth and coworkers330,331,218,217 have reported ab initio molec-
ular dynamics simulations on (H2O)−32, using the BLYP and PBE functionals
plus an ad hoc SIC of this form, which had been proposed previously.332,333

This SIC is based on the reasoning that, if the exact Exc were known, then it
would cancel the self-interaction in J[𝜌] exactly. In view of this consideration,
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a sensible SIC for doublet radicals is332

ΔESIC[𝜌𝛼
, 𝜌

𝛽
] = −J[m(r)] − Exc[m(r),0] [47]

where m(r) = 𝜌
𝛼
(r) − 𝜌

𝛽
(r) is the spin density. For self-consistency, one should

implement ΔESIC by taking its functional derivatives with respect to density,
and adding this as a correction to vKS(r),332 although this is not always done in
practice. Equation [47] can be viewed as an ad hoc modification of the original
Perdew–Zunger procedure and is appropriate only for systems with a single
unpaired electron. Unlike the more general Perdew–Zunger scheme, however,
the correction in Eq. [47] is inexpensive to evaluate and does not spoil orbital
invariance among the doubly occupied MOs. Unfortunately, this simplified SIC
does lead to unphysical distortions of these MOs, such that 𝜙i𝛼 becomes very
different from 𝜙i𝛽 . To prevent this, the slightly more complicated333 restricted
open shell Kohn–Sham formalism334–336 is required,332 in which 𝜙i𝛼 = 𝜙i𝛽 (by
construction) for each doubly-occupied MO.

In the context of simulating the aqueous hydroxyl radical using
plane-wave DFT, VandeVondele and Sprik suggested a modified form of Eq.
[47] that introduces two adjustable parameters, a and b:

ΔESIC[𝜌𝛼
, 𝜌

𝛽
] = −aJ[m(r)] − bExc[m(r),0] [48]

These authors then took b = 0 by fiat, citing studies of hemibonded cation rad-
ical systems in which the SIE, which arises primarily from an overly delocalized
cation hole, was found to be roughly proportional to J[m(r)].337,338 The value
a = 0.2 was then chosen by comparison to CCSD(T) calculations for some
cation dimer radicals. Whether this rationale extends to anions is unclear, and
in fact very different parameters (a = 0.8 and b = 0.5) have been suggested on
the basis of studies of other, non-hemibonded cation radicals.339 Nevertheless,
the parameters a = 0.2 and b = 0 were adopted in the aforementioned (H2O)−32
calculations,217 whereas in ab initio molecular dynamics simulations of e−(aq)
in bulk water, the value a = 0.3 (with b again fixed at zero) was found to pro-
vide better agreement with the experimental absorption spectrum.145 In Ref.
330, isosurface plots of m(r) are presented for one particular isomer of (H2O)−32,
and the result obtained at the SIC-PBE level is seen to be qualitatively similar to
the MP2 result. However, the SIC-PBE and RI-MP2 VDEs are rather different,
and these differences do not appear to be systematic.330 (On the other hand,
the RI-MP2/6-311G* benchmarks in Ref. 330 could certainly be improved, in
terms of the diffuseness of the basis set.) Moreover, the SIC is found to have
qualitative effects on reactivity; the aqueous-phase reaction H+ + e− → H, sim-
ulated inside of a water cluster, proceeds readily with the SIC but not without
it.340 In view of these issues, it seems that careful, systematic benchmark studies
of SIC functionals for weakly-bound anions are probably warranted.
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An alternative to explicit SICs is the use of long-range corrected (LRC)
functionals,341–344 also known as range-separated hybrid functionals,345

which have garnered significant interest over the past decade. The LRC idea,
as put forward by Hirao and coworkers341 on the basis of earlier ideas by
Savin and coworkers,346,347 is to partition the electron–electron Coulomb
operator, r−1

12 , into short- and long-range components, which are then described
using different theoretical models. The most common partition uses the error
function, erf(x):

1
r12

=
1 − erf(−𝜇r12)

r12
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

SR

+
erf(−𝜇r12)

r12
⏟⏞⏞⏞⏟⏞⏞⏞⏟

LR

[49]

The first term on the right is the short-range component, and decays to
zero on a length scale ∼ 𝜇

−1, where 𝜇 is taken as an adjustable range sepa-
ration parameter. Consider an exchange-correlation functional of the form
Exc = Ex + Ec, and furthermore separate the exchange functional into a
nonlocal Hartree–Fock component and a local GGA component:

Exc = Ec + CHFEHF
x + (1 − CHF)EGGA

x [50]

Here, CHF represents the coefficient of Hartree–Fock exchange. For example,
CHF = 0.2 for B3LYP, CHF = 0.5 for BH&HLYP, and CHF = 0 for BLYP. Then
the corresponding LRC functional is

ELRC
xc = Ec + CHFEHF,SR

x + (1 − CHF)E
GGA,SR
x + EHF,LR

x [51]

The labels “SR” and “LR” indicate whether each component is evaluated using
the short-range or the long-range component of r−1

12 , as defined in Eq. [49].
The terms EHF,SR

x and EHF,LR
x in Eq. [51] can be handled using modified

electron repulsion integrals,348 but EGGA,SR
x requires fundamental modifica-

tions to the GGA exchange functional. Two different ways to perform these
modifications have been suggested: one on the basis of a modification to the
GGA exchange enhancement factor,341 and another on the basis of a mod-
ified exchange hole.349 The papers developing the former ansatz have mostly
been written by Hirao and coworkers,341,342,350,351,343 who consistently use the
symbol 𝜇 to represent the range separation parameter, as in Eq. [49], whereas
Scuseria and coworkers33,352,353,349,345 consistently use the symbol 𝜔 instead.
As such, a notation for LRC functionals is the following:354 LRC-𝜇GGA is the
LRC version of a particular GGA functional (e.g., GGA = PBE or BLYP) that is
constructed according to the modified exchange enhancement factor introduced
by Hirao’s group.341 LRC-𝜔PBE, on the other hand, denotes the LRC func-
tional that uses the short-range 𝜔PBE functional from the modified exchange
hole introduced by Scuseria and coworkers.349 (Whereas Hirao’s construction
can be applied to both the PBE and Becke88 exchange functionals, affording
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short-range exchange functionals that we denote as 𝜇PBE and 𝜇B88, respec-
tively, the exchange-hole formalism has been applied only to PBE, affording
the 𝜔PBE short-range exchange functional.) This notation, introduced in Ref.
354, is consistent with how these functionals are designated in the Q-Chem
electronic structure program.194,195 Note, however, that the LRC-𝜔PBE func-
tional has also been called LC-𝜔PBE,349 and the functional discussed below
that is called LRC-𝜇BOP in Q-Chem has also been called LC-BOP.202 One must
also take care that different electronic structure programs may have different
default values for the 𝜇 or 𝜔 parameter, and computed properties can be very
sensitive, in some cases, to the precise value that is used.355,356,324

For well-separated electrons, the exchange-correlation functional in Eq.
[51] consists of 100% Hartree–Fock exchange, since Ec is local. Hartree–Fock
theory is free of self-interaction, at least in the sense that this term has histori-
cally been defined, namely, Exc = 0 for a one-electron system. (More recently,
this traditional definition has been called the “one-electron” SIE.357,311) As
such, one might expect LRC functionals to mitigate some of the problems
associated with the DFT description of VDEs, especially in cases where the
SOMO is largely separated from the valence MOs, and this is indeed the case
with certain LRC functionals.202,358 This is demonstrated in Figure 30, where
VDEs for a variety of (H2O)−N clusters are computed using LRC-𝜇BOP and
LRC-𝜇BLYP and compared to CCSD(T) benchmarks. The LRC-𝜇BOP func-
tional with 𝜇 = 0.33 bohr−1 is found to perform just as well as MP2 theory
and slightly better than MP2 if the geometries are optimized at the same level
of theory that is used to compute the VDEs. In the latter case, the mean absolute
deviations relative to CCSD(T) are 0.014 eV for LRC-𝜇BOP versus 0.044 eV
for MP2.202

On the other hand, LRC-𝜇BLYP results are only moderately better than
B3LYP results; see Figure 30(b). Both LRC-𝜇BLYP and LRC-𝜇BOP use a
short-range version of Becke88 exchange274 (𝜇B88) for the EGGA,SR

x term in
Eq. [51], and the same value of the range separation parameter, 𝜇. Thus, the
only difference between the two is the correlation functional: the well-known
LYP functional273 in one case, versus the “one-parameter progressive” (OP)
functional359 in the other. Yagi et al.202 suggest that the superior performance
of LRC-𝜇BOP originates in the fact that the OP correlation functional satisfies
the exact constraint that the correlation energy density should vanish in the
limit of a rapidly varying density,359 whereas the LYP functional violates this
constraint.

As mentioned above, predicted properties can be sensitive, in some
cases, to the value of the range separation parameter.356,355,324 In this context,
it is worth noting that the original suggestion to use 𝜇 = 0.33 a−1

0 comes
not from fitting anion VDEs but rather was optimized to reproduce bond
lengths for second-row diatomic molecules.342 In other LRC functionals, the
𝜇 (or 𝜔) parameter has been optimized to reproduce various experimental
data.353,343,349,324,323 A less empirical approach has been advocated344 and
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may have particular appeal for the calculation of anion VDEs and excitation
spectra, but to understand this approach we must first digress to discuss a
particular theorem in exact DFT, on which the method is based.

It is known that if the exact functional E[𝜌] were employed in a KS DFT
calculation, then the value −𝜀HOMO obtained from that calculation would be
exactly equal to the system’s smallest IP.197,360,361 This result is in sharp con-
trast to the Hartree–Fock case, where −𝜀HOMO is the KT approximation to the
IP. On the other hand, for typical approximate density functionals, the value
of −𝜀HOMO is often a very crude approximation to the actual IP, much worse
than the KT approximation obtained from a Hartree–Fock calculation. For
example, a recent study362 compared IPs for atoms and small molecules com-
puted at the CCSD(T)/aQZ level to −𝜀HOMO/aQZ values for several functionals
and found mean differences of 1.5 eV for M05-2X, 3.5 eV for B3LYP, and
5.3 eV for BOP, as compared to 0.8 eV for Hartree–Fock theory. As such, the
recommended way to compute an IP using DFT is not to use −𝜀HOMO, but
rather to use a ΔSCF approach. LRC functionals, however, do a much better
job of achieving −𝜀HOMO ≈ IP, with a mean error of only 0.2 eV for LRC-𝜇BOP
(with 𝜇 = 0.47 a−1

0 ) as compared to benchmark CCSD(T)/aQZ results.362

Motivated by the aforementioned theorem (IP = −𝜀HOMO), Baer et al.344

have suggested tuning 𝜇 (or 𝜔) in a system-specific way to satisfy this condition.
Taking the IP to be defined by a ΔSCF calculation then provides some degree of
self-consistency to this optimization procedure and provides an asymptotically
correct exchange-correlation potential for the system of interest. Although
Baer and coworkers have mostly been interested in ionization of neutral
molecules,363,344 in keeping with the spirit of this chapter we will state this
condition in terms of the IP (= VDE) of the anion M−:

EM(𝜇) − EM−(𝜇) = −𝜀HOMO,M−(𝜇) [52]

The left-hand side of this equation is simply the ΔSCF value of the VDE for M−,
evaluated at a particular value of 𝜇. The “tuning” procedure of Baer et al.344

consists in locating a (system-specific) value of 𝜇 that satisfies Eq. [52]. While
there is no theoretical guarantee that such a value must exist, some commonly
used LRC functionals approximately satisfy this condition already, with values
of 𝜇 that were obtained by minimizing the statistical errors with respect to
some set of experimental data. This suggests that exceptional cases,364 where
no value of 𝜇 that satisfies Eq. [52] can be found, may be just that: exceptions.

Figure 31 shows an example of this tuning procedure for one particu-
lar isomer of (H2O)−6 .162 This system was chosen because its VDE has been
reported on the basis of a large-basis CCSD(T) calculation and a QMC cal-
culation, and the two benchmark VDEs agree to within the statistical error of
the QMC result.259 For this system, the condition in Eq. [52] is satisfied when
𝜇 = 0.25 a−1

0 , and at this value of 𝜇 the error in the VDE (with respect to the
benchmark) is 0.08 eV. In contrast, a ΔSCF calculation of the VDE agrees with
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Figure 31 VDE for the “OP1-AA” isomer128 of (H2O)−6 , computed at the
LRC-𝜇BOP/aDZ+diff level, as a function of the range separation parameter, 𝜇. Results
from a traditionalΔSCF calculation of the VDE are plotted along with the value−𝜀SOMO.
The solid horizontal line represents the CCSD(T) VDE from Ref. 259, which is in good
agreement with quantum Monte Carlo results. Reprinted with permission from Ref.
162; copyright 2011 American Chemical Society.

the benchmark for 𝜇 = 0.35 a−1
0 . At this larger value of 𝜇, the condition in Eq.

[52] is violated only by about 0.05 eV, which suggests that LRC-𝜇BOP with
0.25 a−1

0 ≲ 𝜇 ≲ 0.35 a−1
0 is a good method for this system. Note, however, that

the tuned value of 𝜇 often varies strongly with system size, such that a rather
different value may be optimal for larger (H2O)−N clusters.163

These considerations lend some credence to the use of LRC functionals for
moderate accuracy (∼0.1 eV) VDE calculations in weakly-bound anions, which
is especially promising for studies of cluster anions and other condensed-phase
species, where large system sizes are required to obtain a realistic model. It has
also been found that LRC functionals avoid the spurious transfer of fractional
electrons from negatively to positively charged moieties on molecules that con-
tain both.317,365 At the same time, even for LRC functionals one is not free of
the dependence of the result on the choice of functional, hence benchmarking
against wave function methods remains advisable. The “tuning” criterion for 𝜇

in Eq. [52] suggests how this parameter can be validated, or perhaps modified,
if some other LRC density-functional were to be used in place of LRC-𝜇BOP.

QUANTUM CHEMISTRY FOR METASTABLE ANIONS

The traditional quantum chemistry methods discussed up to this point are
designed to find the lowest Born–Oppenheimer energy and wave function (or
density) for a given arrangement of the nuclei. For the AB− system described
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in Figure 1, the lowest-energy state for R > Rc does indeed correspond to an
anion: either the molecular anion AB− (around the minimum-energy geome-
try), or else the radical A• plus the anion B− (in the exit channel as R → ∞). For
R < Rc, however, the lowest-energy form of AB− corresponds (in the basis-set
limit) to a neutral AB molecule and a free electron. As such, bound-state
quantum chemistry methods are not appropriate for R < Rc. In that regime,
bound-state quantum chemistry applied to AB− will afford an orthogonalized
discretized continuum (ODC) solution,366,233,367–369 consisting of 𝜓AB for the
neutral molecule superimposed on a poor quality, finite-basis approximation
of a free electron. In such a case, the VDE should converge to zero in the limit
of an infinitely-diffuse basis set.

Stated differently, while it is possible to use standard quantum chem-
istry methods to compute an energy for the unbound (R < Rc) state of AB−, in
general the computed wave function will not match the correct boundary con-
ditions to qualify as a proper resonance state. In terms of the one-dimensional
example in Figure 13, not every particle that is incident from the left yields
a resonant enhancement of the probability density inside of the potential well.
Only for a narrow range of incident particle energies is the phase matching “just
right” to afford a resonance. As Simons puts it,2 “An arbitrarily chosen basis,
even with diffuse functions included, will yield but an arbitrary energy for the
metastable anion rather than the correct resonance.” This has not prevented
the appearance of numerous studies of purportedly stable molecular anions in
which what was really being examined is the structure of a neutral molecule in
the field of a −e charge that is smeared out over the most diffuse functions that
are included in the basis set.

An example is depicted in Figure 32, which shows the results of two dif-
ferent calculations aimed at understanding whether electrons with near-zero
kinetic energy can initiate DEA reactions within the DNA backbone.370–372

The hypothesis was put forward that e− attachment to P–O 𝜋
∗ orbitals of a

phosphate moiety could subsequently lead to a rupture of a sugar–phosphate
C—O bond.371 Using a charge stabilization method that is discussed later (as an
appropriate technique for computing potential curves for metastable anions),
Simons and coworkers370 obtained the C—O potential energy scans shown in
Figure 32(a). These potentials do suggest the existence of a (𝜋∗

CO)
− anion reso-

nance and also a dissociative (𝜎∗
CO)

− resonance. Electron attachment to form the
(𝜋∗

CO)
− state is therefore capable of causing C—O bond dissociation, according

to the calculation. However, the calculations also suggest that the (𝜋∗
CO)

− res-
onance lies > 2.5 eV above the energy of the neutral species in its equilibrium
geometry. Bond rupture by ∼0 eV electrons is therefore excluded, according to
this calculation.370,372

A wholly different picture emerges when traditional bound-state quantum
chemistry methods are applied, as shown in Figure 32(b).371 A B3LYP/6-31+G*
calculation of the C—O moiety affords “anion” potential energy curves that
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Figure 32 One-dimensional potential energy scans for a section of DNA backbone,
addressing the question of whether attachment of zero-energy electrons to P–O 𝜋

∗

orbitals can subsequently cause rupture of a sugar—phosphate C—O bond. (a) Potential
energy curves for the neutral 5′ C—O bond and two-electron-attached states thereof, the
latter obtained using stabilization methods that can correctly describe metastable anion
resonances. Qualitatively similar curves are obtained for the 3′ C—O bond but are not
shown, for clarity. An electron whose energy matches the neutral-to-(𝜋∗)− energy gap
could potentially attach to form a temporary negative ion, which might subsequently
undergo internal conversion to the (𝜎∗)− state, resulting in C—O bond dissociation. (b)
Potential energy curves along both the 3′ and the 5′ C—O bond, obtained from a con-
ventional B3LYP/6-31+G* calculation of the sugar—phosphate—sugar moiety and its
anion. In both panels, the equilibrium value of the neutral C—O bond is used to define
the zero of energy. Panel (a) is reprinted with permission from Ref. 370; copyright 2004
American Chemical Society. Panel (b) and the chemical structure drawing are reprinted
with permission from Ref. 371; copyright 2003 American Chemical Society.

are essentially isoenergetic with the neutral curves, in the vicinity of the equilib-
rium geometry that both the neutral and anionic species reportedly share. After
passing over a small barrier, the anion’s potential energy curves become disso-
ciative at larger C—O bond lengths, which was taken as evidence in favor of the
hypothesis that very low-energy electrons could induce single-strand breaks.371

However, the isoenergetic minima and similarly-shaped potential curves are
also features that one would expect for a neutral molecule that is subject to
the weak field arising from a smeared-out one-electron density trapped a few
Angstroms away by a set of diffuse (but atom-centered) Gaussian functions.
Larger bond lengths lead to a larger C—O bond dipole, such that the extra
electron is probably stabilized into a 𝜎

∗
CO orbital as the bond is stretched. In a

sense, this calculation captures the correct physics at large C−O bond lengths,
yet the description of the anion states in the vicinity of the neutral molecule’s
equilibrium geometry is almost certainly wrong.370

The remainder of this section is devoted to methods that can get such
systems right. As mentioned in the introductory remarks to this chapter,
the discussion here is limited to methods that are based on relatively



474 The Quantum Chemistry of Loosely-Bound Electrons

straightforward modifications to traditional (bound-state) quantum chemistry
methods, since these are the only theoretical approaches that are widely
accessible to the chemistry community. Such methods have also been reviewed
in Ref. 20.

Maximum Overlap Method

Let us consider a slightly different case first, namely, the protonated model
peptide system that was discussed in the context of electron transfer disso-
ciation spectroscopy (see Figure 2). The goal of the calculations reported in
Figure 2 is to obtain electron-attached Rydberg states, two of which are shown
in the figure, and then to determine whether internal conversion to a dissocia-
tive (𝜎∗)− state is feasible.77,74 At the equilibrium geometry of the parent species
(the peptide cation), the lowest of the electron-attached Rydberg states is also
the lowest Born–Oppenheimer electronic energy for a system composed of the
parent molecule and an extra electron. As such, this state can be determined
using traditional quantum chemistry, but the higher-lying Rydberg-attached
state cannot be, nor can the (𝜎∗)− state.

Instead, the higher lying states were found using the following procedure.

1. First, compute MOs for the parent molecule (which happens to be a cation,
in the calculations of Refs. 74 and 77 but might be a neutral molecule in
other applications).

2. Second, compute the electron-attached Hartree–Fock determinant for the
state of interest, using the neutral molecule’s MOs as an initial guess but
altering the initial occupancies such that an electron is added not to the
LUMO but to some higher-lying virtual MO.

Following this procedure, the SCF calculation may converge (in the sense of
finding a stationary point in the space of MO coefficients) to a legitimate solu-
tion of the SCF equations, but one that is not the lowest-energy solution. If so,
then this state represents a Hartree–Fock approximation to an excited state (a
higher-lying Rydberg-attached state, or the (𝜎∗)− state in the present example)
including full orbital relaxation upon electron attachment. Electron correla-
tion can be included subsequently, simply by using this excited Hartree–Fock
determinant as the reference state for a correlated wave function. (The curves
in Figure 2 were computed in this way at the MP2 level.74)

On the other hand, this procedure is by no means guaranteed to work.
In many cases, the “non-aufbau” guess for the initial MO occupancies may
suffer variational collapse as the SCF iterations proceed, such that despite the
elaborate initial guess, the final, converged SCF solution is simply the lowest
energy anion state. In the calculations reported in Figure 2,74 it proved pos-
sible to locate the excited Rydberg-attached state in this way, but attempts to
determine the 𝜎

∗-attached state suffered variational collapse, and the potential
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curve for that state was ultimately computed in an entirely different way, using
stabilization methods that are described later in this chapter.

To avoid variational collapse, it is probably advisable to use an SCF con-
vergence algorithm that is based on direct minimization373 rather than extrap-
olation methods such as direct inversion in the iterative subspace (DIIS)374

and related methods,375 which are the default convergence algorithms in most
quantum chemistry programs. Direct minimization, while often very slow to
reach convergence, is more likely to converge to the desired local minimum in
the space of MO coefficients.

Nevertheless, even direct minimization remains vulnerable to variational
collapse, since the newly-occupied MO of the anion is subject to a different
potential as compared to virtual MOs that might be nearby in energy. Subse-
quent SCF iterations can therefore modify the energetic ordering of the MOs,
and in such cases, it is unclear which MOs should be the occupied ones at
the next SCF iteration. The maximum overlap method (MOM)376,377 offers
a possible solution to this problem, and a more refined version of the orbital
relaxation technique.

Originally implemented in Q-Chem194,195 as a way to assist SCF con-
vergence in cases of near degeneracies, MOM has more recently been used
as a means to compute electronically excited states using ground-state SCF
technology,376,377 and extension to electron-attached states is straightforward.
The basic idea is that once the initial MO occupancies have been specified (with
one or more holes below the Fermi level), the Fock matrix is constructed and
diagonalized to obtain new MOs, but then the occupancies of these MOs are
chosen, not according to the aufbau principle but rather by determining which
orbitals exhibit maximum overlap with the orbitals from the previous SCF
iteration.376 Although not immune to variational collapse (especially, in our
experience, when large, diffuse basis sets are employed, which may be a prob-
lem), this method has been applied successfully to the challenging problem of
computing core-level excitation spectra.377 In other words, SCF solutions that
correspond to the promotion of an electron from a core orbital into a low-lying
virtual orbital have been converged successfully, without collapse of the core
hole. In the future, MOM may provide a more robust way to perform orbital
relaxation for electron-attached states, although the algorithm has not yet been
tested extensively in this capacity.

Note that the states that are generated by MOM are diabatic states, in the
sense that the character of the wave function changes smoothly as each state
passes through the interaction region with another state (see Figure 2). In a
one-dimensional, two-state diabatic model, we can write the Hamiltonian in
the form

H =

(
E1 (R) V(R)

V(R) E2(R)

)
[53]
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Here, E1(R) and E2(R) are the diabatic potential energy curves obtained, for
example, using the MOM procedure. The adiabatic (Born–Oppenheimer)
potential energy curves are the eigenvalues of this matrix:

E± = 1
2
(E1 + E2) ±

1
2

√
(E1 − E2) + 4V2 [54]

The quantities E1, E2, and V each depend on molecular geometry, R, but this
is suppressed in Eq. [54], for brevity. At the point R× where the two dia-
batic curves cross (E1 = E2), the adiabatic states are split by ΔE = E+(R×) −
E−(R×) = 2V(R×). Having obtained the point R× from plotting the diabatic
potential curves, if one can compute adiabatic energies at R× for the two states
in question, then one can evaluate the coupling, V(R×). (In fact, this procedure
could be followed at any value of R, using Eq. [54] to map out the coupling
V(R), but we assume for simplicity that this coupling changes little in the
vicinity of the crossing point.) Calculating the Born–Oppenheimer adiabatic
energies E±(R) requires performing some type of electronic structure calcula-
tion that is capable of computing excited states, and this procedure has been
used by Simons and coworkers74–78 to evaluate V(R×) for systems such as the
protonated peptide electron capture problem that is depicted in Figure 2.

With the coupling matrix element V = ⟨𝜓diabatic
1 |̂H|𝜓diabatic

2 ⟩ in hand, the
semiclassical Landau–Zener formula378,379 can be used to estimate the rate of
nonadiabatic transitions. According to Landau–Zener theory, the probability
(call it pLZ) of making a transition from state 1 to state 2 is

pLZ = 1 − exp
(
− 2𝜋V2

ℏ
̇R|ΔF|

)
[55]

where ̇R is the speed at which the nuclei are passing through the interaction
region and ΔF is the difference in the forces (slopes) on the two diabatic poten-
tial energy curves. (Both of these ideas are semiclassical in that they take a
classical view of the nuclear motion.)

To use Eq. [55], one must estimate the nuclear speed ̇R along the reaction
coordinate in question. A harmonic approximation for the reaction coordinate
(e.g., the S−S stretching coordinate for the example in Figure 2) affords a simple
means to do this,74 and one that is consistent with the semiclassical nature
of Landau–Zener theory. Having computed the (linear) harmonic frequency 𝜈

for the mode in question, using some flavor of quantum chemistry, one may
compute the classical turning points of the harmonic potential:

x± = ±

√√√√(
n + 1

2

)
h

4𝜋2m𝜈

[56]
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where m is the reduced mass for the mode in question, and n = 0,1, … is the
vibrational quantum number. Taking twice the distance between the two turn-
ing points as a measure of the distance traversed during a single vibrational
period, one obtains the estimate ̇R ≈ 4x+𝜈 (speed = distance × frequency),
which works out to be

̇R ≈ 2
𝜋

⎡⎢⎢⎢⎣
(

n + 1
2

)
h𝜈

m

⎤⎥⎥⎥⎦
1∕2

[57]

Finally, one may estimate the nonadiabatic transition rate according to74

rate = (frequency) × (transition probability) = 𝜈pLZ [58]

Simons and coworkers74–78 have used this procedure to estimate electron cap-
ture and DEA rates for problems such as the one in Figure 2.

Landau–Zener theory is applicable in the regime where the nuclear
kinetic energy is large compared to the spacing between the adiabatic potential
energy surfaces in the crossing region.380 The latter may be estimated as
ΔE ≈ 2V (from Eq. [54] with E1 = E2), whereas the nuclear kinetic energy is
m ̇R2∕2. These considerations suggest that Landau–Zener theory is appropriate
in the limit

|V| ≪
(

n + 1
2

)
h𝜈

𝜋
2

[59]

Assuming a typical disulfide harmonic frequency h𝜈 ≈ 515 cm−1,381 the cou-
plings V ≈ 350 cm−1 for the system considered in Figure 2 lie outside of this
limit. However, they are at least small compared to h𝜈, so that Landau–Zener
theory can be used to estimate the nonadiabatic transition rate, even if the
theory is not completely rigorous in this particular system.

Complex Coordinate Rotation

As compared to the MOM approach discussed earlier, other methods for treat-
ing metastable states are somewhat more involved, and understanding them
requires a few concepts that go beyond bound-state quantum mechanics. One
idea that is needed is the notion of analytic continuation of the bound-state
energy levels into the complex plane. A heuristic explanation of why this is nec-
essary goes as follows.382 In some ways, a temporary anion resonance resembles
a stationary state of the molecular potential, at least in the sense that the proba-
bility distribution is relatively localized around the molecule (see Figure 13). At
the same time, however, the resonance has a finite lifetime and will ultimately
tunnel out of the potential that is responsible for it. In view of these facts, it
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seems reasonable that the simplest possible mathematical description of a reso-
nance that is localized in space at time t = 0 might be the usual stationary-state
time evolution formula,

𝜓(r, t) = e−iEt∕ℏ
𝜓(r,0) [60]

but with a complex energy

E = ER − 1
2

iΓ [61]

(The quantities ER and Γ are real.) Putting these two equations together, we
have

𝜓(r, t) = e−tΓ∕2ℏ [e−iERt∕ℏ
𝜓(r,0)] [62]

The quantity in square brackets looks like an ordinary stationary state, suggest-
ing that the real part of the energy (ER) is the resonance energy. The imaginary
part of the energy (−Γ∕2) contributes an envelope function that decays expo-
nentially on a timescale 𝜏 ∼ ℏ∕Γ. This is consistent, up to factors of order unity,
with the time-energy uncertainty principle in Eq. [19], if we take ΔE ∼ Γ. It is
therefore not surprising that the quantity Γ is known as the resonance width.
The lifetime of the metastable resonance is 𝜏 ∼ ℏ∕Γ.

Scattering states are non-normalizable (and thus not in L2, the Hilbert
space of square-integrable functions), since they remain nonzero as r → ∞.
Moreover, one cannot obtain a complex energy as the eigenvalue of any
self-adjoint operator. As such, the resonances cannot be computed directly
using the machinery of bound-state quantum chemistry, but can be computed
as eigenfunctions and eigenvalues of a modified, non-Hermitian Hamilto-
nian. The mathematical basis of this statement is a theorem by Balslev and
Combes,383 which we shall motivate below using a simple example and then
summarize in a pedagogical way.

The underlying idea behind the complex coordinate rotation (CCR)
method382,384 that is suggested by the Balslev–Combes theorem is a complex
scaling of the Cartesian coordinates in the Hamiltonian operator, each by
the same complex phase factor: x → xei𝜃. This transformation defines a new,
complex-scaled Hamiltonian, ̂H → ̂H(𝜃). In one dimension (for simplicity),
the complex-scaled Hamiltonian is

̂H(𝜃) = −ℏ
2e−2i𝜃

2m
𝜕

2

𝜕x2
+ U(xei𝜃) [63]

This idea is readily extended to the Born–Oppenheimer electronic Hamilto-
nian by noting that x → xei𝜃 implies that interparticle coordinates should be
scaled as r → rei𝜃. For 𝜃 ≠ 0, the operator ̂H(𝜃) is non-Hermitian and therefore
admits complex eigenvalues. In its simplest form, the CCR method consists of
determining these eigenvalues.
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Before stating the general Balslev–Combes theorem, let us first consider
two simple examples.382 Up to constants and in atomic units (ℏ = me = 1), the
1s wave function for the hydrogen atom is 𝜓(r) = e−r, which becomes 𝜓(rei𝜃) =
exp(−rei𝜃) upon complex scaling. The latter is still in L2, provided that |𝜃| ≤
1
2
𝜋, else the function is not single-valued. (We will see that the CCR method

uses only quadrant IV of the complex plane, corresponding to rotation angles
0 ≥ 𝜃 ≥ −1

2
𝜋.) To determine the energy of the state 𝜓(rei𝜃), we compute the

expectation value ⟨E⟩ = ⟨𝜓(rei𝜃)|̂H(𝜃)|𝜓(rei𝜃)⟩⟨𝜓(rei𝜃)|𝜓(rei𝜃)⟩ . [64]

In more detail, this expectation value is

⟨E⟩ = ∫
∞

0
e−rei𝜃

[(
− e−2i𝜃

2
1
r2

𝜕

𝜕r
r2 𝜕

𝜕r
− 1

rei𝜃

)
e−rei𝜃

]
e3i𝜃r2dr

∫
∞

0
(e−rei𝜃 )2e3i𝜃r2dr

[65]

Two points warrant explanation here. First, e3i𝜃r2dr is simply the radial vol-
ume element following complex scaling. Second, and more subtle, is the fact
that the CCR factor of ei𝜃 does not get complex-conjugated, that is, [𝜓(rei𝜃)]∗ =
exp(−rei𝜃). The reason is that this factor ultimately results from an integration
contour in the complex plane, taking advantage of Cauchy’s residue theorem;
see Ref. 382 for a more detailed explanation of this point. The factor in square
brackets in Eq. [65] represents the action of ̂H(𝜃) on 𝜓(rei𝜃) and can be evalu-
ated directly; the result is −1

2
𝜓(rei𝜃). Evaluating the integrals in Eq. [65] then

affords ⟨E⟩ = −1
2

in atomic units, meaning that the energy of this bound-state
solution is unchanged on complex scaling.

The scattering wave functions, on the other hand, will behave something
like eikr at long range. On scaling r → rei𝜃, these continuum functions will not
remain finite as r → ∞ unless k → ke−i𝜃,382 which also makes sense in terms
of the inverse relationship between r (position) and ℏk (momentum). A con-
tinuum state is characterized by its kinetic energy, and therefore the energy
E = (ℏk)2∕2m is transformed upon complex scaling into E = e−2i𝜃(ℏk)2∕2m. It
has been rotated into the complex plane by an angle of −2𝜃.

With these examples in hand, a pedagogical version of the Balslev–Combes
theorem383 can be stated as follows.382

1. Bound-state eigenvalues of the original Hamiltonian are equal to
bound-state eigenvalues of ̂H(𝜃) and are independent of 𝜃, provided
that |𝜃| ≤ 1

2
𝜋.

2. Segments of the continuum beginning at a given scattering threshold are
rotated by −2𝜃 into quadrant IV of the complex plane.
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3. Resonance states appear as discrete (albeit complex) eigenvalues of ̂H(𝜃),
having L2 eigenfunctions. The quantities ER and Γ are obtained from the
real and imaginary parts of the complex energy, respectively, according to
Eq. [61].

4. The discrete resonances are independent of 𝜃 so long as they are isolated
from the continuum states, appearing or disappearing as the continuum
states rotate past.

A pictorial illustration is provided in Figure 33. It is important to emphasize
that the theorem is rigorously valid for exact eigenfunctions of ̂H(𝜃) in L2.
For approximate solutions, including finite-basis solutions, these results
are not exact, and in particular the complex resonance energies acquire a
𝜃-dependence in finite basis sets.187 It is suggested in practice to compute E(𝜃)
and to use the value where |dE∕d𝜃| is minimized as a best estimate of the
resonance energy.385,187

The CCR idea has been around for a long time, as reviewed in Refs.
389 and 391, and many applications to temporary anion resonances have
been reported. Nevertheless, this technique has remained somewhat spe-
cialized. Within the context of electronic structure theory, what is required
for a CCR calculation is to combine the complex-scaled Hamiltonian in
Eq. [63] with the usual wave function ansätze, and this involves extend-
ing quantum chemistry codes to handle complex-valued wave functions
and energies and non-Hermitian matrices. CCR implementations of the
Hartree–Fock,386,387 configuration interaction,386 and multiconfigurational
SCF (MCSCF) models387 have been reported but are not available in standard

Bound

states
Bound

states

⊗ ⊗

Resonance

(hidden)
Resonance

(exposed)

Thresholds

Real(E)→

Spectrum of H
 
(θ = 0) Spectrum of H

 
(θ ≠ 0)

Im
a
g
e
(E

) 
→

Figure 33 Pictorial illustration of the Balslev–Combes theorem and the complex coor-
dinate rotation method. Horizontal and vertical axes represent the real and imaginary
parts of the complex energy, respectively. Application of the complex-scaling transfor-
mation x → xei𝜃 rotates the continuum by an angle of −2𝜃 in the complex plane, leaving
the resonances “exposed” as discrete states with square-integrable wave functions and
complex energies. Bound states remain on the real axis. Adapted with permission from
Ref. 187; copyright 2013 American Institute of Physics.
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quantum chemistry codes. In any case, the Hartree–Fock version of CCR
is incapable of describing auto-ionizing Feshbach resonances, since these
are two-electron processes (see the right side of Figure 16, for example).
Hartree–Fock theory is obviously not suitable to describe such states, and a
time-dependent DFT (TD-DFT) description of a true two-electron excitation
requires the use of a frequency-dependent exchange-correlation kernel.388

Such kernels so far exist only at the proof-of-concept level.388,389

Very recently, however, a CCR implementation of the EOM-CCSD
method has been reported187 in the Q-Chem program,194,195 which promises
to make such methods more routinely available to a wider variety of
researchers. As it is based on a correlated wave function, this approach is
capable of describing auto-ionizing, core-excited Feshbach resonances. So far,
only atomic anion resonances have been considered, and the generation of
molecular potential energy surfaces is complicated by the fact that the mathe-
matical proof of the Balslev–Combes theorem requires the nuclear coordinates
to be complex-scaled as well. Special techniques are therefore required to
extract potential energy surfaces from CCR calculations.390–394 Alternatively,
the EOM-CCSD method has also been implemented in conjunction with a
complex absorbing potential,31,395 ̂H

𝜉
= ̂H − i𝜉W, where the potential W

turns on at large electron–molecule separation. Historically, the resonance
energies thus obtained have been sensitive to the details of this potential,
including most notably the coupling strength 𝜉, but recent progress has been
made toward analyzing the 𝜉-dependent results in a way that minimizes this
dependence.31

It is emphasized in Ref. 187 that very flexible basis sets are required to
deal with the finite-basis 𝜃-dependence of the complex eigenvalues in CCR
methods, and in particular to converge the resonance widths. However, the
term “very flexible” is used in comparison to standard basis sets for valence
anions, and in fact good results are obtained for auto-ionizing resonances of
He, H−, and Be using the aug-cc-pVTZ+[3s3p] basis,187 which includes three
even-tempered diffuse s and p shells. This is not much different from the basis
sets recommended here for proper description of loosely-bound electrons in
general gas-phase calculations.

Since this methodology is fairly new to mainstream quantum chemistry,
it is impossible to provide a broad overview of its performance at this time,
so let us close this section instead with a provocative example,187 illustrat-
ing the fundamental importance of such methods. Earlier in this chapter, we
introduced p-coumaric acid as a molecule with an auto-ionizing resonance, in
the sense that its S1(𝜋𝜋∗) bright state lies above its adiabatic electron detach-
ment energy. (The molecule in question was introduced previously in Figure 16,
but its structure is reproduced here in Figure 34.) This particular molecule
carries significant chemical interest insofar as it is a simplified model of the
chromophore in photoactive yellow protein.188 In Figure 34, we show a large
number of excitation energies computed for this molecule,187 in a sequence
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of increasingly diffuse basis sets, at the level of singles configuration interac-
tion (CIS). By the time one has put a single set of diffuse functions on all
atoms (6-31++G**), the 1

𝜋𝜋
∗ excited state – which can be identified either

by inspecting the orbitals involved in the transition, or more easily by exam-
ining oscillator strengths – is not the lowest energy excitation! That honor
goes instead to an excitation that transfers an electron from the 𝜋 system into
the diffuse orbitals, with very little oscillator strength. Adding more and more
diffuse shells results in an increasingly large density of states corresponding
to excitations of the latter type, to the point where these 𝜋-to-diffuse exci-
tations start to mix strongly with the 𝜋 → 𝜋

∗ excitations, gradually bleeding
the oscillator strength out of the latter. (This is reminiscent of the manner in
which spurious, low-energy charge-transfer states predicted by TD-DFT with
asymptotically incorrect exchange-correlation functionals can form a dense
manifold that steals intensity from the true bright states.397)

The explanation of the behavior in Figure 34 is the following. The
auto-ionizing nature of the S1(𝜋𝜋∗) state means that it is not the lowest energy
excited state at the S0 geometry; an electron-detached state is lower. As the
finite basis set extends farther into space, more and more ODC states appear
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Figure 34 CIS calculations, in a sequence of increasingly diffuse basis sets, for the phe-
nolate isomer of p-coumaric acid, a chemical model of the chromophore in photoactive
yellow protein. (The energy level structure of this molecule is depicted in Figure 16.)
Dashed lines connect the 𝜋 → 𝜋

∗ transition(s) obtained in each basis, which mix with
the continuum states in the more diffuse basis sets. The lowest-energy level in each basis
set represents −𝜀HOMO, which is the threshold energy for the onset of the continuum
in the basis-set limit.396 The other levels denote CIS excitation energies, most of which
correspond to discretized continuum states. Adapted with permission from Ref. 187;
copyright 2013 American Institute of Physics.
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at energies below the 1
𝜋𝜋

∗ state. This type of behavior is expected whenever
the lowest electronic excitation energy lies above −𝜀HOMO, which represents
the threshold energy for the onset of the continuum states in a complete-basis
CIS (or complete-basis TD-DFT) calculation.396,187 This type of behavior may
well be endemic for electronically excited states of anions (it is well known, for
example, in the case of the aqueous halide anions398), suggesting that methods
appropriate for metastable states may be necessary in many such cases. To
date, these considerations have not been widely recognized.

Moreover, in aqueous solution there is always a solvated-electron
energy level sitting ∼3.5 eV below vacuum level, and the S0 → S1 excitation
of an aqueous chromophore may be enough energy to access such a state.
Common aromatic chromophores have photoionization thresholds corre-
sponding to ultraviolet wavelengths (e.g., 4.35 eV for indole399), so that
these solvated-electron states may be very much in play in solution-phase
photochemistry and photophysics.92 The molecular-level details of the electron
ejection process, and the structure of the initially formed solvated electron,
remain poorly understood.

Stabilization Methods

As compared to the complex-scaling method described earlier, the methods
discussed in this section have been used more widely in quantum chemistry,
although the proper computation of temporary anion resonances (as opposed
to dubious calculation of random ODC states) continues to be a niche market.
Historically, stabilization methods were introduced as an alternative to quan-
tum scattering methods,400 by means of which resonances could be located by
solving a Schrödinger equation for bound-state energy levels only. In the present
context, this means that the well-developed machinery of bound-state quantum
chemistry can be deployed to compute temporary anion resonances. The basic
idea (stated here using the language of a temporary anion resonance, although
the technique is more general400) is to first stabilize an otherwise metastable
anion M− by placing it in confining potential and thereby converting it into a
bound state, whose energy can be computed using standard methods. Then, by
examining how that bound-state energy level varies as a function of the spa-
tial extent of the confining potential, the resonance energy can be extracted
as described below. (With some additional effort, resonance widths can be
extracted as well.) In effect, we aim to place the molecule into a box that is
large enough so that its presence does not perturb the energy levels of the neutral
molecule. Assuming this is so, then the effect of the box (confining potential)
is to modulate the kinetic energy of the extra electron, whereas the molecular
energy levels should not be significantly perturbed.
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Exponent Stabilization and Analytic Continuation
In the context of quantum chemistry, a finite Gaussian basis set provides
a natural confining potential, because any region of space that is not sup-
ported by basis functions is in effect subject to a potential of +∞. In what
is sometimes known as the exponent stabilization method,369,401 one first
selects a Gaussian basis set that is appropriate to describe the molecule, M,
then constructs an adjustable confining potential simply by adding additional
diffuse basis functions and scaling their orbital exponents, 𝜁 → 𝜂𝜁 . This
is tantamount to varying the size of the box in which M− is confined. The
additional diffuse functions should include s, p, d, … angular momentum
functions as appropriate to describe any centrifugal barrier that might exist in
the electron–molecule potential (see Figure 14).

The exponent stabilization method consists of a sequence of bound-state
calculations in which various energy levels of M− are computed as a function
of the scaling parameter, 𝜂. Properly speaking, one should compute actual elec-
tronic states of M−. At a simple level, however, this might consist of attaching
the electron to different orbitals of the neutral molecule, using KT estimates of
the VAE, or perhaps by performing a proper SCF calculation to include orbital
relaxation. The MOM can be used in the case that the electron is attached
to an orbital of M other than the HOMO. (To date, most applications of the
exponent stabilization method have been to small molecules where orbital sym-
metry may prevent collapse to the HOMO.) Figure 35(a) provides a schematic
depiction of the results,2 which are 𝜂-dependent energy levels for M−, while
Figure 35(b) and (c) provide examples from actual calculations.402,368 A fixed
value of 𝜂 in these plots corresponds to a particular set of orbital exponents,
and a vertical slice through the stabilization graph therefore represents the ener-
gies computed for various states of M− (measured, for convenience, relative to
the energy of neutral M). It is important to bear in mind that these states are
generally ODC states, none of which need represent a true temporary anion
resonance, but rather an electron that is artificially confined by a finite basis
set. Techniques to extract the resonance energies and widths from these plots
are discussed below.

The true resonance energy can be extracted by examining the
𝜂-dependence of these pseudo-bound-state energies. To understand how,
let us first understand the behavior of the curves sketched in Figure 35(a).
Note that the action of the radial kinetic energy operator, ̂Tr, on a Gaussian
basis function exp(−𝜂𝜁r2), is

̂Tr e−𝜂𝜁r2 =
[
− ℏ

2

2mr2

𝜕

𝜕r

(
r2 𝜕

𝜕r

)]
e−𝜂𝜁r2 = −ℏ

2
𝜂𝜁

m
(2𝜂𝜁r2 − 3)e−𝜂𝜁r2

[66]

For an anion that is bound only by the confining potential, one expects the
largest contribution to the wave function to come from the Gaussian(s) with
the smallest exponent, and Eq. [66] suggests that the energy of such a state
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Figure 35 (a) Schematic illustration of the stabilization method, wherein anion ener-
gies are computed as a function of a dimensionless parameter, 𝜂, that is used to scale
the diffuse basis function exponents. (b) Data for the a′′ orbitals [(𝜋∗)− electron-attached
states] of (uracil)−, in which crosses mark the locations of avoided crossings. ODC states
that are unaffected by exponent scaling have been removed from this plot. (c) Data for
electron attachment to au orbitals of 1,4,5,8,9,10-hexahydroanthracene (whose struc-
ture is shown at the top of the figure), where the open circles indicate avoided crossings
and the two filled circles are located on relatively stable plateaus at 𝜂 = 1.8. The dashed
curves are states that are not affected by interactions with any resonance state(s). Panel
(a) is reprinted with permission from Ref. 2; copyright 2008 American Chemical Society.
Panel (b) is adapted with permission from Ref. 368; copyright 2011 American Chemical
Society. Panel (c) is reprinted with permission from Ref. 402; copyright 2000 American
Institute of Physics.

should vary as 𝜂
2 for large r. At certain energies, however, the extra electron’s

wave function is precisely matched – in magnitude, slope, and phase – for
resonant enhancement by the molecular potential, and the result is that the
∼ 𝜂

2 dependence of the energy levels vanishes as the electron’s wave function
becomes localized on the molecule. The result is a plateau in E(𝜂), as depicted in
Figure 35(a), and avoided crossings that can be understood in terms of the inter-
action between a bound state of the molecule and a continuum (ODC) state.
[Some of these avoided crossings are indicated in Figure 35(b).] The location of
the avoided crossing(s) identifies the true resonance energy or energies. A free
electron with these special kinetic energies can be captured by the molecular
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potential, so that the energy of the resulting anion is only weakly dependent on
𝜂 in the vicinity of the resonance.

As suggested in the schematic example of Figure 35(a), one sometimes
observes a “plateau” in the E(𝜂) curves, or in other words a range of 𝜂 over
which the energy is approximately independent of 𝜂. The origin of this behavior
is that the electron’s wave function has localized on the molecule, and thus its
size is controlled by the spatial extent of the molecular potential rather than
the artificial confining potential introduced by the finite basis set. In such cases,
one may safely identify the resonance energy as the energy of the plateau in
E(𝜂). Alternatively, one may estimate the resonance energy by finding the point
of the closest approach (call it 𝜂0) of two E(𝜂) curves and simply taking the
average of the two E(𝜂) values:

ER ≈ 1
2
[E1(𝜂0) + E2(𝜂0)] [67]

This is the procedure suggested by the dashed lines in Figure 35(a). It has been
called the midpoint method,233 and is basically equivalent to setting ER to be
the energy of the “plateau,” in the case where the plateau exists and the avoided
crossings are well separated.

Unfortunately, the complexity of the real stabilization graphs is often
significantly greater than that of the idealized example in Figure 35(a). In
Figure 35(c), for example, two plateau-like regions can be identified, and
the point 𝜂 = 1.8 is singled out in this figure because it was found to lie in
the middle of the plateau for other, similar molecules.402 For this particular
molecule, however, the “plateaus” in Figure 35(c) are constant to no better
than ∼0.5 eV. Moreover, there are numerous avoided crossings and some
states (the dashed curves) that lack any avoided crossings at all. The latter
are ODC states that, for one reason or another, do not interact strongly with
the resonances. Data for (uracil)− [Figure 35(b)] show hardly any plateaus at
all, and the value of E(𝜂) also changes significantly as one moves through the
region of the avoided crossing.

For these more complicated cases, more sophisticated methods for
extracting the resonance energy are required. Such methods are based on
fitting E1(𝜂) and E2(𝜂) in the region near 𝜂0 and then analytically continuing the
energy into the complex plane, taking advantage of the fact that the complex
energy in Eq. [61] should correspond to a stationary point, 𝜕E∕𝜕𝜂 = 0, for
complex 𝜂.403–406 (The notation 𝜂 will be used whenever the real scaling
parameter 𝜂 has been analytically continued into the complex plane.) While
these approaches are more complicated, they are also more rigorous, and
provide the resonance width Γ in addition to its energy. Two variants of the
analytic continuation method are described later.

To understand these methods, first consider the underlying physics of the
avoided crossings in the stabilization graphs. These arise due to the interaction
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between a bound state and a continuum state, with a noncrossing rule in one
dimension as the parameter 𝜂 is varied. This suggests a two-state model,403,405

H =

(
H1 (𝜂) V(𝜂)

V(𝜂) H2(𝜂)

)
[68]

in which H1 represents a slowly-varying resonance root and H2 is a contin-
uum root that couples to the resonance, with a coupling V. This two-state
Hamiltonian has eigenvalues

E±(𝜂) =
1
2

H+(𝜂) ±
1
2

{
[H−(𝜂)]2 + 4[V(𝜂)]2

}1∕2
[69]

where H± = H1 ± H2. The two branches of the avoided crossing are to be
understood as data sets representing the functions E+(𝜂) and E−(𝜂).

One possible analytic continuation procedure is as follows.405 Since the
data plotted in the stabilization graphs are E±(𝜂), one can express the three
unknown functions H1(𝜂), H2(𝜂), and V(𝜂) as polynomials whose coefficients
are determined by fitting to one or both branches of the E±(𝜂) data, using the
two-state model of Eq. [69]. Once these polynomial coefficients are fixed, one
then analytically continues the functions H1, H2, and V into the complex plane
by solving for the complex value 𝜂0 such that E+(𝜂0) = E−(𝜂0). Thus, 𝜂0 is the
solution to the equation

[H−(𝜂0)]2 + 4[V(𝜂0)]2 = 0 [70]

Having found 𝜂0, one then expands the two eigenvalues E±(𝜂) in the vicinity of
𝜂0 and searches for a stationary point where 𝜕E∕𝜕𝜂 = 0. This stationary point
is the complex energy in Eq. [61], from which one obtains ER and Γ.

An alternative way to perform the analytic continuation is based on gen-
eralized Padé approximations.403,406,368 In this approach, the energy E is taken
to be a solution to the polynomial equation

E3P3 + E2P2 + EP1 + P0 = 0 , [71]

in which each Pk is itself a polynomial in 𝜂:

P0(𝜂) = c0,0 + c0,1𝜂 + · · · + c0,m0
𝜂

m0 [72]

P1(𝜂) = c1,0 + c1,1𝜂 + · · · + c1,m1
𝜂

m1 [73]

P2(𝜂) = c2,0 + c2,1𝜂 + · · · + c2,m2
𝜂

m2 [74]

P3(𝜂) = 1 + c3,1𝜂 + · · · + c3,m3
𝜂

m3 . [75]
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The cubic polynomial for the energy in Eq. [71] allows for the possibility
that three states might be strongly interacting in the vicinity of the avoided
crossing.406 If only two states are strongly interacting, as assumed in the
analytic continuation procedure based on the two-state model in Eqs. [68]
and [69], then one may set P3 ≡ 0 in Eq. [71] and set c2,0 = 1 in Eq. [74].
As earlier, the data points for determining the polynomial coefficients are
points (𝜂,E) along the stabilization graphs. Given m0 + m1 + m2 + m3 + 3
such data points, all coefficients in Eq. [35] can be determined exactly, since
there are exactly as many (𝜂,E) data points as there are parameters to define
the polynomials Pk. (In the two-state case, only m0 + m1 + m2 + 2 data points
are required.)

Once the polynomial coefficients in Eq. [35] are determined, they are
taken to be fixed parameters, but 𝜂 is allowed to become complex, and Eq. [71]
for the energy is extended into the complex plane. One searches for complex
roots E that are also stationary, 𝜕E∕𝜕𝜂 = 0. The quality of the results is sensitive
to the quality of the (𝜂,E) data and also to the order of the polynomials in Eq.
[35]; in recent applications, the quadratic (two-state) version of the procedure
with m0 = m1 = m2 = 3, 4, or 5 has been used.368 It should be noted that this
procedure can produce spurious roots368 (which tend to appear far from the
real line), just as it is not clear a priori which root in Eq. [69] is the physically
correct one.405 If the (𝜂,E) data are accurate, the E(𝜂) fits are good, and the
nonlinear search for stationary points is thorough, then it is claimed that these
spurious solutions should be easy to identify,404,405,368 as they are sensitive to
the number and choice of the points (𝜂,E) used in the analytic continuation
procedure.368

In principle one may construct a stabilization graph by computing the
energies of various electronic states (including excited states) of M− at various
values of 𝜂, each corresponding to a different set of orbital exponents. In prac-
tice, the calculation of proper electronic excited states is usually unnecessary,
and sufficient accuracy to assign experimental VAEs (obtained from electron
transmission spectroscopy184,185,2) can be achieved using simple modifications
of the KT VAEs, which are equal to −𝜀virtual. Often, electron transmission spec-
tra are assigned on the basis of empirical shifting and scaling of the virtual MO
eigenvalues to match known data in similar molecules,233,407,125 as in Eq. [32]
for example. In doing so, it is important to use relatively compact basis sets,
as the low-lying virtual orbitals will mix with ODC states as one approaches
the basis-set limit, and any correspondence between virtual MOs and actual
electronic states of M− will be lost.

From an ab initio perspective, a more satisfying procedure, yet one that is
still enormously simpler than computing proper anion electronic states, is to use
a stabilized version of KT.406,366,408,401,367,409,368 This approach amounts to the
approximation E(𝜂) ≈ −𝜀virtual(𝜂), that is, the virtual MO eigenvalues are used
to construct the stabilization graphs, from which resonance energies can be
extracted either using the midpoint method (Eq. [67]) or else by proper analytic
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continuation. Recently, Chen and coworkers have explored this technique using
virtual MOs from KS DFT, with good results obtained when LRC functionals
with correct asymptotic behavior are used.401,409,368 There is a formal objection
along the lines that incorporating Hartree–Fock exchange into these function-
als serves to push the Kohn–Sham eigenvalue spectrum (which is fundamentally
an approximate electronic excitation spectrum) toward the Hartree–Fock spec-
trum (where the HOMO–LUMO gap approximates IP − EA, but the occupied
→ virtual transitions are poor approximations to electronic excitations),318

thereby defiling the meaning of the KS DFT orbital energies. For VDE calcula-
tions, however, this choice may be justified.

Table 9 shows an example, for the case of (𝜋∗)− and (𝜎∗)− resonances
of (uracil)−. Stabilized KT (S-KT) results are shown for the LRC functional
𝜔B97X-D;410 the “double hybrid” functional B2PLYP-D,411 which mixes MP2
and DFT correlation as well as Hartree–Fock and DFT exchange; and the
meta-GGA functional M06-HF.320 Experimentally, only the (𝜋∗)− resonances
have been measured by electron transmission spectroscopy,407 as the (𝜎∗)− res-
onances are shorter-lived. The S-KT results for all three functionals, which are
based on stabilization graphs resembling the one in Figure 35(b), are in rea-
sonable agreement with the lowest two (𝜋∗)− VAEs measured experimentally,
with differences of 0.2–0.3 eV that are comparable to the differences between
the resonance energies (ER) obtained with the three different functionals. In
contrast, when Hartree–Fock virtual orbital energies are used [S-KT(HF)], the
accuracy is unacceptable. Even for the DFT results, the agreement is less good
for the third (𝜋∗)− resonance, but at least good enough to assign the experimen-
tal spectrum. Note also that the resonance energies obtained using the midpoint
method are nearly identical to those obtained using analytic continuation based
on Padé approximations, although only the latter method affords resonance
widths. Both the resonance energies and widths are in good agreement with
the results of several quantum scattering calculations,23,89,26 although there are
other scattering calculations in the literature that place these resonances 1–2 eV
higher in energy.368 Overall, this (uracil)− example demonstrates the limits of
how accurately one can expect to obtain resonance energies via the exponent
stabilization method.

Extrapolation into the Metastable Domain
The advantage of the exponent stabilization method is that all necessary cal-
culations can be performed using standard quantum chemistry codes, without
modification. This makes such calculations readily accessible to the average
chemist, and in addition various levels of theory can be brought to bear to com-
pute the E(𝜂) stabilization curves. That said, the procedure is somewhat more
complicated as compared to ordinary bound-state quantum chemistry calcula-
tions, because multiple states of M− must be calculated, the stabilization graphs
must be fit to analytic functions in the avoided crossing region(s), and finally
these functions must be analytically continued and stationary points located
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in the complex plane. In the end, however, one obtains not just the resonance
energy but also the resonance width.

An alternative charge stabilization method has been suggested for com-
puting resonance energies (only),412,413 which is simpler insofar as comput-
ing multiple states of M− is not required. (This method has also been called
Z-extrapolation, for reasons that will become clear.) The idea is to identify
the likely binding site for the extra electron and then artificially increase the
atomic numbers (Z) of one or more nearby nuclei. For sufficiently large values
of Z, the anion M− should be converted to a bound state treatable with stan-
dard quantum chemistry methods. Calculations are performed at a variety of
nuclear charges, and the actual resonance energy is approximated as

ER = lim
Z→Z0

E(𝜂) [76]

where Z0 denotes the actual atomic number. The success of this method
depends critically on using values of Z that do indeed transform M− into a
bound state.

An example is shown in Figure 36 for the case of SO2−
4 .414 This species is

an example of a metastable dianion of the sort suggested in Figure 4(b), where
the dianion can exist only when trapped behind the RCB to e− detachment. As
such, the lowest-energy state of gas-phase SO2−

4 in a finite basis set corresponds
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Figure 36 Variation of the VDE for the sulfate dianion, VDE = E(SO2−
4 ) − E(SO−

4 ), as
a function of the atomic number, Z, that is assigned to the sulfur atom. In cases where
VDE < 0, the scaling of Z is insufficient to convert SO2−

4 into a bound state; these data
points should be discarded. Reprinted with permission from Ref. 414; copyright 2002
American Institute of Physics.
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to an ODC state as discussed above, and the energetics from bound-state quan-
tum chemistry calculations should not be trusted for this species. However, an
increase of the sulfur atom’s atomic number by 0.1–0.3 (depending on the level
of theory) is sufficient to obtain a bound state whose energetics can be trusted
and can be extrapolated back to Z0 = 16. Plots of the VDE as a function of Z
(Figure 36) are remarkably linear except close to Z = 16, where the dianion is
unbound. These unbound data points should not be used in the extrapolation.

Figure 37 shows an example of the charge stabilization method as
applied to several different electronic states of O−

2 computed at a high level of
theory, CCSD(T)/aug-cc-pVTZ. (Each state has a different symmetry and thus
can be computed from a reference determinant of appropriate symmetry, as if
it were the ground state.) Excellent agreement with spectroscopic potentials
is obtained, demonstrating the feasibility of this method. Other studies have
shown that this Z-extrapolation method affords resonance energies in good
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Figure 37 Potential energy curves for the ground state (X3Σ−
g ) of O2 (solid circles) along

with three different states of O−
2 : the X 2Πg state (open circles), the a4Σ−

u state (inverted
triangles), and the A2 Πu state (squares). The solid curves are derived from experimental
spectroscopic parameters, whereas the data points come from theory. All points where
O−

2 is not the lowest-energy species were obtained using the charge stabilization method
at the CCSD(T)/aug-cc-pVTZ level. Reprinted with permission from Ref. 415; copyright
2003 American Chemical Society.
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agreement with those obtained from methods based on complex absorbing
potentials, provided that one extrapolates the VAE rather than the total
energy.416 (This is implicit in the stabilization graphs shown in Figure 36.) It
was also recommended in Ref. 416 to scale the Gaussian exponents by a factor
of (Z∕Z0)2, so as to provide a balanced basis set for each value of Z. (Recall
that the radial wave functions for a one-electron atom decay as e−Zr∕a0 , so the
corresponding Gaussian basis function looks like e−Z2

𝜁r2
.)

A clever alternative to Z-extrapolation has been introduced by Ceder-
baum and coworkers,416 for cases where one-dimensional potentials are
desired along some relatively simple distance coordinate. The proposed
“R-extrapolation” technique is based upon the observation that the attach-
ment energy VAE(R) is often nearly linear in R, or at least the curvature
is such that VAE(R) can easily be fit to a low-order polynomial, unlike
potential energy curves. This is shown in Figure 38(a) for N−

2 and CO−
2 . The

solid VAE(R) curves have been computed in the region where the anion is
lower in energy than the neutral molecule, then extrapolated into the region
R ≳ 1.4 Å where the anion is metastable. Alternative methods based on
complex absorbing potentials (open symbols in the figure) can be performed
on both sides of the metastability threshold Rc ≈ 1.4 Å, and agree quite well
with the R-extrapolated results.416 Adding the VAE(R) curve (in both the
stable and metastable domains) to potential energy curves for the neutral
molecule then affords a reasonable potential energy curve for the anion, on
both sides of the metastability threshold. This is shown in Figure 38(b).

In both the Z- and R-extrapolation examples, only resonance energies
were computed, not resonance widths. To date, that seems to be the state of
things: resonance widths have been extracted only on the basis of the exponent
stabilization technique, not by Z- or R-extrapolation. However, we note that
the analytic continuation procedure discussed above in the context of exponent
stabilization has also been used in conjunction with an alternative stabilization
technique in which the anion is stabilized by placing it inside of a large spheri-
cal array of positive point charges,417,418,406,366,408 which will convert the anion
into a bound state if the charges are sufficiently large. Stabilization graphs, com-
plete with avoided crossings, are then generated by varying either the magnitude
of the charges or the radius of the spherical array, and analytic continuation
that is based on Padé approximations is applied. The fact that this is a form of
charge (rather than exponent) stabilization suggests that it might be possible
to perform similar techniques on the basis of Z-extrapolation, if sufficiently
diffuse basis functions were included, so that ODC states that might interact
with the resonance states would appear in the calculations. In Ref. 416, it was
demonstrated in the case of CO−

2 that avoided crossings could be generated as
Z was varied, although no attempt was made to locate these quantitatively or
to apply analytic continuation.
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CONCLUDING REMARKS

The loosely-bound electron, orphaned from any molecular unit and ranging
far outside of the valence region as it is bound only by weak charge–multipole
interactions, nevertheless manages to play a role in a variety of important chem-
ical phenomena. These range from DEA reactions in the gas phase – where a
weakly-bound anion may serve as a “doorway” to molecular dissociation – to
putative DEA reactions in condensed phases. Solvated electrons may play a role
in condensed-phase DEA, but in any case the solvated electron is undisputedly
present as a reactive intermediates following solvent radiolysis. This species can
actually be quite strongly bound, in the sense of its VDE, despite the fact that it
is not strongly associated with any particular molecular unit and is bound only
collectively by solvent molecules.

Quantum chemistry calculations for loosely-bound electrons come with
some specialized demands in terms of the one-particle basis set, which must
be “ultra-diffuse” in weakly-bound cases. (On the other hand, highly diffuse
but double-𝜁 basis sets often suffice for the calculation of vertical detachment
energies.) With that caveat about basis-set requirements, however, standard
high-accuracy ab initio methods such as CCSD(T) continue to perform well,
even for weakly-bound anions. Perturbative methods such as MP2 also work
reasonably well, except in cases where the electron binding energy is exceed-
ingly small (≲ 0.05 eV), such that the Hartree–Fock reference determinant is
unbound or nearly so. DFT methods can also achieve semiquantitative accu-
racy (∼0.1–0.3 eV), especially when SICs are employed. A promising route
to correcting the SIE for weakly-bound anions is the use of LRC functionals.
These appear to eliminate most of the SIE associated with the unpaired elec-
tron in doublet radical anions, especially when they are “tuned” to achieve a
system-specific asymptotic correction, according to the criterion 𝜀HOMO = −IP.

While CCSD(T), MP2, DFT, and so on are appropriate for bound anions,
theoretical description of metastable anions requires specialized techniques.
Many of these techniques are well-established but have seen far less use as com-
pared to bound-state quantum chemistry. In this chapter, we have discussed a
variety of techniques (the maximum overlap method, CCR, and stabilization
methods) that are all based, at some level, on modifications to bound-state
quantum chemistry that can be implemented as reasonably straightforward
modifications of standard bound-state quantum chemistry codes. It is this
author’s hope that this review of such methods for temporary anion resonances
will prompt renewed and increased interest in these techniques.
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APPENDIX A: LIST OF ACRONYMS

ADC(2) second-order algebraic diagrammatic construction
aDZ aug-cc-pVDZ basis set
AEA adiabatic electron affinity
aQZ aug-cc-pVQZ basis set
aTZ aug-cc-pVTZ basis set
CBS complete basis set
CCSD coupled-cluster theory with single and double excitations
CCSDT coupled-cluster theory with single, double, and triple

excitations
CCSD(T) CCSD plus perturbative (noniterative) triple excitations
CIS configuration interaction with single excitations
DEA dissociative electron attachment
DFT density-functional theory
EA electron affinity
EOM-CCSD equation-of-motion coupled-cluster theory
EOM-EA-CCSD equation of motion coupled-cluster theory with electron

attachment
EOM-IP-CCSD equation of motion coupled-cluster theory with electron

detachment
FWHM full width at half maximum
GGA generalized gradient approximation
HF Hartree–Fock
HOMO highest occupied molecular orbital
IP ionization potential
KS Kohn–Sham
KT Koopmans’ theorem
LDA local density approximation
LRC-DFT long-range-corrected density-functional theory
LUMO lowest unoccupied molecular orbital
MBPT2 second-order many-body perturbation theory
MO molecular orbital
MOM maximum overlap method
MP2 second-order Møller–Plesset perturbation theory
MUE mean unsigned error
ODC orthogonalized discretized continuum
PCM polarizable continuum model
QM/MM quantum mechanics molecular mechanics
QMC quantum Monte Carlo
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RCB repulsive Coulomb barrier
RI resolution of identity
SCF self-consistent field
SIC self-interaction correction
SIE self-interaction error
S-KT stabilized Koopmans’ theorem
SOMO singly occupied molecular orbital
TD-DFT time-dependent density-functional theory
VAE vertical attachment energy
VDE vertical detachment energy
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